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Recommended books for univariate asymptotics

I H. Wilf, generatingfunctionology,
http://www.math.upenn.edu/~wilf/DownldGF.html

I M. Kauers and P. Paule, The Concrete Tetrahedron,
www.risc.jku.at/people/mkauers/publications/

kauers11h.pdf.

I P. Flajolet and R. Sedgewick, Analytic Combinatorics,
http://algo.inria.fr/flajolet/Publications/

AnaCombi/anacombi.html

I A. Odlyzko, Asymptotic Enumeration Methods,
www.dtc.umn.edu/~odlyzko/doc/enumeration.html..

http://www.math.upenn.edu/~wilf/DownldGF.html
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Main references for all lectures

I R. Pemantle and M.C. Wilson, Analytic Combinatorics in
Several Variables, Cambridge University Press 2013.
https://www.cs.auckland.ac.nz/~mcw/Research/mvGF/

asymultseq/ACSVbook/

I R. Pemantle and M.C. Wilson, Twenty Combinatorial
Examples of Asymptotics Derived from Multivariate
Generating Functions, SIAM Review 2008.

I Sage implementations by Alex Raichev:
https://github.com/araichev/amgf.

https://www.cs.auckland.ac.nz/~mcw/Research/mvGF/asymultseq/ACSVbook/
https://www.cs.auckland.ac.nz/~mcw/Research/mvGF/asymultseq/ACSVbook/
https://github.com/araichev/amgf
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Lecture plan

I These lectures discuss results obtained over more than 10
years of work with Robin Pemantle and others, explained in
detail in our book.

I Outline of lectures:

(i) Motivation, review of univariate case, overview of results.
(ii) Smooth points in dimension 2.

(iii) Higher dimensions, multiple points.
(iv) Computational issues.
(v) Extensions and open problems.

I Exercises are of varying levels of difficulty. We can discuss
some in the problem sessions. Those marked (C) involve
probably publishable research, for which I am seeking
collaborators, and should be accessible to PhD students.
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Lecture 1: Overview

I In one variable, starting with a sequence ar of interest, we
form its generating function F (z). Cauchy’s integral theorem
allows us to express ar as an integral. The exponential growth
rate of ar is determined by the location of a dominant
singularity z∗ of F . More precise estimates depend on the
local geometry of the singular set V of F near z∗.

I In the multivariate case, all the above is still true. However,
we need to specify the direction in which we want asymptotics;
we then need to worry about uniformity; the definition of
“dominant” is a little different; the local geometry of V can
be much nastier; the local analysis is more complicated.
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Standing assumptions

I Unless otherwise specified, the following hold throughout.

I We use boldface to denote a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd). Similarly zr = zr11 . . . zrdd .

I A (multivariate) sequence is a function a : Nd → C for some
fixed d. Usually write ar instead of a(r).

I The generating function (GF) is the formal power series
F (z) =

∑
r∈Nd arz

r.

I The combinatorial case: all ar ≥ 0.

I The aperiodic case: ar is not supported on a proper sublattice
of Nd.



ACSV summary Hagenberg

Introduction and motivation

Standing assumptions

I Unless otherwise specified, the following hold throughout.

I We use boldface to denote a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd). Similarly zr = zr11 . . . zrdd .

I A (multivariate) sequence is a function a : Nd → C for some
fixed d. Usually write ar instead of a(r).

I The generating function (GF) is the formal power series
F (z) =

∑
r∈Nd arz

r.

I The combinatorial case: all ar ≥ 0.

I The aperiodic case: ar is not supported on a proper sublattice
of Nd.



ACSV summary Hagenberg

Introduction and motivation

Standing assumptions

I Unless otherwise specified, the following hold throughout.

I We use boldface to denote a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd). Similarly zr = zr11 . . . zrdd .

I A (multivariate) sequence is a function a : Nd → C for some
fixed d. Usually write ar instead of a(r).

I The generating function (GF) is the formal power series
F (z) =

∑
r∈Nd arz

r.

I The combinatorial case: all ar ≥ 0.

I The aperiodic case: ar is not supported on a proper sublattice
of Nd.



ACSV summary Hagenberg

Introduction and motivation

Standing assumptions

I Unless otherwise specified, the following hold throughout.

I We use boldface to denote a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd). Similarly zr = zr11 . . . zrdd .

I A (multivariate) sequence is a function a : Nd → C for some
fixed d. Usually write ar instead of a(r).

I The generating function (GF) is the formal power series
F (z) =

∑
r∈Nd arz

r.

I The combinatorial case: all ar ≥ 0.

I The aperiodic case: ar is not supported on a proper sublattice
of Nd.



ACSV summary Hagenberg

Introduction and motivation

Standing assumptions

I Unless otherwise specified, the following hold throughout.

I We use boldface to denote a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd). Similarly zr = zr11 . . . zrdd .

I A (multivariate) sequence is a function a : Nd → C for some
fixed d. Usually write ar instead of a(r).

I The generating function (GF) is the formal power series
F (z) =

∑
r∈Nd arz

r.

I The combinatorial case: all ar ≥ 0.

I The aperiodic case: ar is not supported on a proper sublattice
of Nd.



ACSV summary Hagenberg

Introduction and motivation

Standing assumptions

I Unless otherwise specified, the following hold throughout.

I We use boldface to denote a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd). Similarly zr = zr11 . . . zrdd .

I A (multivariate) sequence is a function a : Nd → C for some
fixed d. Usually write ar instead of a(r).

I The generating function (GF) is the formal power series
F (z) =

∑
r∈Nd arz

r.

I The combinatorial case: all ar ≥ 0.

I The aperiodic case: ar is not supported on a proper sublattice
of Nd.



ACSV summary Hagenberg

Introduction and motivation

Univariate case

From sequence to generating function and back

I Most sequences of interest satisfy recurrences. We analyse
them using the GF. Sequence operations correspond to
algebraic operations on power series (e.g. an ↔ F (z) implies
nan ↔ zF ′(z)).

I The GF can often be determined by translating the recurrence
into a functional equation for F , then solving it.

I Example: (Fibonacci)

ar = ar−1 + ar−2 if r ≥ 2

a0 = 0, a1 = 1

automatically yields F (z) = z/(1− z − z2).

I Our focus this week is on the next step: deriving a formula
(usually asymptotic approximation) for ar, given a nice
representation of F . This is coefficient extraction.
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Univariate case

Univariate case: exponential growth rate
I Let U be the open disc of convergence of F , having radius ρ,
∂U its boundary.

I Let CR denote the circle of radius R centred at 0. If R < ρ
then by Cauchy’s Integral Formula

an =
1

2πi

∫
C
z−n−1F (z) dz.

I This directly yields |an| ≤ (2πiR)KR−n−1/(2πi) = KR−n.
I Letting R→ ρ− shows that the exponential growth rate is

1/ρ:

lim sup
1

n
log |an| = − log ρ.

I Suppose that ρ <∞. Then (Vivanti-Pringsheim) z = ρ is a
singularity of F , and is the only singularity of F on ∂U.

I Further analysis depends on the type of singularity.
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Univariate case

From singularities to asymptotic expansions

There are standard methods for dealing with each type of
singularity, all relying on choosing appropriate contours of
integration. The most common:

I if ρ is a pole, use the residue theorem;

I if F is rational, can also use partial fraction decomposition;

I if ρ is algebraic/logarithmic, use singularity analysis
(Flajolet-Odlyzko 1990);

I if ρ is essential, use the saddle point method.
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Univariate case

Example (Univariate pole: derangements)

I Consider F (z) = e−z/(1− z), the GF for derangements.
There is a single pole, at z = 1, so ar = O(1).

I Using a circle of radius 1 + ε we obtain, by Cauchy’s residue
theorem,

ar =
1

2πi

∫
C1+ε

z−r−1F (z) dz − Res(z−r−1F (z); z = 1).

I The integral is O((1 + ε)−r) while the residue equals −e−1.

I Thus [zr]F (z) ∼ e−1 as r →∞.

I Since there are no more poles, we can push the contour of
integration to∞ in this case, so the error in the approximation
decays faster than any exponential function of r.
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Univariate rational functions: general solution

I Given a rational function p(z)/q(z) with q(0) = 1, factor it as
q(z) =

∏
i(1− φiz)ni with all φi distinct.

I Use partial fractions to expand

F (z) =
∑
i

ni∑
j=1

cij
(1− φiz)j

.

I This allows for an exact formula, and restricting to the largest
φi (corresponding to the minimal zeros of q) gives the
asymptotic expansion.

I For example, Fibonacci yields ar ∼ 5−1/2[(1 +
√

5)/2]r.

I Repeated roots provide polynomial correction to the
exponential factor. For example, 1/(1− 2z)3 =

∑
r

(
r+2
2

)
2rzr.
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Example (Essential singularity: saddle point method)

I Here F (z) = exp(z). The Cauchy integral formula on a circle
CR of radius R gives an ≤ F (R)/Rn.

I Consider the “height function” logF (R)− n logR and try to
minimize over R. In this example, R = n is the minimum.

I The integral over Cn has most mass near z = n, so that

an =
F (n)

2πnn

∫ 2π

0
exp(−inθ)F (neiθ)

F (n)
dθ

≈ en

2πnn

∫ ε

−ε
exp

(
−inθ + logF (neiθ)− logF (n)

)
dθ.
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Example (Saddle point example continued)

I The Maclaurin expansion yields

−inθ + logF (neiθ)− logF (n) = −nθ2/2 +O(nθ3).

I This gives, with bn = 2πnne−nan,

bn ≈
∫ ε

−ε
exp(−nθ2/2) dθ ≈

∫ ∞
−∞

exp(−nθ2/2) dθ =
√

2π/n.

I This recaptures Stirling’s approximation, since n! = 1/an:

n! ∼ nne−n
√

2πn.
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Multivariate asymptotics — some quotations

I (Bender 1974) “Practically nothing is known about
asymptotics for recursions in two variables even when a GF is
available. Techniques for obtaining asymptotics from bivariate
GFs would be quite useful.”

I (Odlyzko 1995) “A major difficulty in estimating the
coefficients of mvGFs is that the geometry of the problem is
far more difficult. . . . Even rational multivariate functions are
not easy to deal with.”

I (Flajolet/Sedgewick 2009) “Roughly, we regard here a
bivariate GF as a collection of univariate GFs . . . .”
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Finding multivariate GFs

I Unlike the univariate case, a constant coefficient linear
recursion need not yield a rational function. This occurs, for
example, in lattice walks where steps go forward in some
dimensions and backward in others.

I The kernel method (see Chapter 2.3) is often useful for
dealing with these cases.

I Linear recursions with polynomial coefficients yield linear
PDEs, which can be hard to solve, certainly harder than the
ODEs in the univariate case.

I We will not deal with this issue in these lectures - we assume
that the GF is given in explicit form (say rational or algebraic)
and concentrate on extraction of Maclaurin coefficients.
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Diagonal method

I Suppose that d = 2 and we want asymptotics from F (z, w)
on the diagonal r = s.

I The diagonal GF is F1,1(x) =
∑

n annx
n.

I We can compute, for some circle γx around t = 0,

F1,1(x) = [t0]F (x/t, t)

=
1

2πi

∫
γx

F (x/t, t)

t
dt

=
∑
k

Res(F (x/t, t)/t; t = sk(x))

where the sk(x) are the singularities satisfying
limx→0 sk(x) = 0.

I If F is rational, then F1,1 is algebraic.
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Example (Delannoy lattice walks)

I Consider walks in Z2, starting from (0, 0), with steps in
{(1, 0), (0, 1), (1, 1)} (Delannoy walks).

I Here F (x, y) = (1− x− y − xy)−1.

I This corresponds to the recurrence
ars = ar,s−1 + ar−1,s + ar−1,s−1.

I How to compute ars for large r, s?

I For example, what does a7n,5n look like as n→∞?
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Use the diagonal method?

I We could try to compute the diagonal GF
Fpq(z) :=

∑
n≥0 apn,qnz

n as above.

I This would work fairly well for p = q = 1, but is generally a
bad idea (see Chapter 13.1):

I The computational complexity increases rapidly with p+ q.
I We can’t handle irrational diagonals, or derive uniform

asymptotics (if p/q changes slightly, what do we do?).
I If d > 2, diagonals will not be algebraic in general, even if F is

rational.
I Fancier methods exist (based on holonomic or D-finite theory),

but again computational complexity is a major obstacle.
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Our plan

I Thoroughly investigate asymptotic coefficient extraction,
starting with meromorphic F (z) := F (z1, . . . , zd) (pole
singularities).

I Directly generalize the d = 1 analysis for poles.

I Use the Cauchy Integral Formula in dimension d.

I Use residue analysis to derive asymptotics.

I Amazingly little was known even about rational F in 2
variables. We aimed to create a general theory.
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Multivariate case

Some difficulties when d > 1

I Asymptotics:

I many more ways for r to go to infinity;
I asymptotics of multivariate integrals are harder to compute.

I Algebra: rational functions no longer have a partial fraction
decomposition.

I Geometry: the singular variety V is more complicated.

I it does not consist of isolated points, and may self-intersect;
I real dimension of contour is d, that of V is 2d− 2, so less

room to avoid each other;
I topology of Cd \ V is much more complicated;

I Analysis: the (Leray) residue formula is much harder to use.
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Introduction and motivation

Multivariate case

Outline of results
I Asymptotics in the direction r are determined by the

geometry of V near a (finite) set, crit(r), of critical points.

I For computing asymptotics in direction r, we may restrict to a
dominant point z∗(r) lying in the positive orthant. (*)

I There is an asymptotic expansion formula(z∗) for ar, where
formula(z∗) is an asymptotic series that depends on the type
of geometry of V near z∗, and each term is computable from
finitely many derivatives of G and H at z∗.

I This yields
ar ∼ formula(z∗)

where the expansion is uniform on compact subsets of
directions, provided the geometry does not change.

I The set crit(r) is computable via symbolic algebra.
I To determine the dominant point requires a little more work,

but usually not much. (*)
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Multivariate case

Obvious questions

I Can we always find asymptotics in a given direction in this
way?

I How do we find the dominant point?

I How easy is it to carry out all the computations?

I What about higher order terms in the expansions?

I How does our method compare with others?

I How does it all work? (I want to see the details)
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Exercises

Exercises: finding GFs

I Find (a defining equation for) the GF for the sequence (an)
defined by a0 = 0; an = n+ (2/n)

∑
0≤k<n ak for n ≥ 1.

I (C) Find an explicit form for the GF of the sequence given by

p(n, j) =
2n− 1− j

2n− 1
p(n− 1, j) +

j − 1

2n− 1
p(n− 1, j − 1)

with initial condition p(1, 2) = 1.

I Express the GF for the sequence given by the recursion

f(r, s) = f(r − 1, s) + f(r, s− 1)− (r + s− 1)

(r + s)
f(r − 1, s− 1)

f(0, s) = 1, f(r, 0) = 1

as explicitly as you can.
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Exercises: diagonal method

I Find (by hand) a closed form for the GF for the leading
diagonal in the Delannoy case (that is, compute F1,1).

I Repeat this for F2,1.

I Challenge for D-finiteness experts: for Delannoy walks, what
is the largest p+ q (where gcd{p, q} = 1) for which you can
compute an asymptotic approximation of apn,qn, with an error
of less than 0.01% when n = 10?
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Lecture 2: Overview

I If the dominant singularity is a smooth point of V, the local
geometry is simple. In the generic case, the local analysis is
also straightforward. We can derive explicit results that apply
to a huge number of applications. In dimension 2, these are
even more explicit.

I We first consider the case where the dominant singularity is
strictly minimal, meaning that F is analytic on the open
polydisc D defined by z∗, which is the only singularity on D.
In this case we can use univariate residue theory accompanied
by elementary deformations of the contour of integration.
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Basic smooth point formula in dimension 2

Proof of generic smooth point formula — overview

I A point z of V is smooth if ∇H(z) 6= 0 (z is a simple pole).

I At a smooth point, we can reduce to an iterated integral
where the inner integral is 1-dimensional.

I We can use univariate residue theory to approximate the inner
integral.

I It remains then to integrate over the remaining d− 1 variables.

I The first and last steps are unnecessary in the univariate case.

I We focus here on the d− 1 = 1 case but everything works in
general dimension.
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Basic smooth point formula in dimension 2

Reduction step 1: localization
I Suppose that (z∗, w∗) is a smooth strictly minimal pole with

nonzero coordinates, and let ρ = |z∗|, σ = |w∗|. Let Ca
denote the circle of radius a centred at 0.

I By Cauchy, for small δ > 0,

ars = (2πi)−2
∫
Cρ

z−r
∫
Cσ−δ

w−sF (z, w)
dw

w

dz

z
.

I The inner integral is small away from z∗, so that for some
small neighbourhood N of z∗ in Cρ,

ars ≈ I := (2πi)−2
∫
N
z−r

∫
Cσ−δ

w−sF (z, w)
dw

w

dz

z
.

I Note that this is because of strict minimality: off N , the
function F (z, ·) has radius of convergence greater than σ, and
compactness allows us to do everything uniformly.
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Basic smooth point formula in dimension 2

Reduction step 2: residue
I By smoothness, there is a local parametrization
w = g(z) := 1/v(z) near z∗.

I If δ is small enough, the function w 7→ F (z, w)/w has a
unique pole in the annulus σ − ∂ ≤ |w| ≤ σ + δ. Let Ψ(z) be
the residue there.

I By Cauchy,
I = I ′ + (2πi)−1v(z)sΨ(z),

where

I ′ := (2πi)−2
∫
N
z−r

∫
Cσ+δ

w−sF (z, w)
dw

w

dz

z
.

I Clearly |zr∗I ′| → 0, and hence

ars ≈ (2πi)−1
∫
N
z−rv(z)sΨ(z) dz.
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Reduction step 3: Fourier-Laplace integral

I We make the substitution

f(θ) = − log
v(z∗e

iθ)

v(z∗)
+ i

rθ

s

A(θ) = Ψ(z∗ exp(iθ)).

I This yields

ars ∼
1

2π
z−r∗ w−s∗

∫
D

exp(−sf(θ))A(θ) dθ

where D is a small neighbourhood of 0 ∈ R.
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Basic smooth point formula in dimension 2

Fourier-Laplace integrals

I We have been led to asymptotic (λ >> 0) analysis of
integrals of the form

I(λ) =

∫
D
e−λf(θ)A(θ) dθ

where:

I 0 ∈ D, f(0) = 0.
I Re f ≥ 0; the phase f and amplitude A are analytic.
I D is a neighbourhood of 0.

I Such integrals are well known in many areas including
mathematical physics. Potential difficulties in analysis:
interplay between exponential and oscillatory decay of f ,
degeneracy of f , boundary issues.
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Laplace approximation to Fourier-Laplace integrals

I Integration by parts shows that unless f ′(0) = 0, I(λ) is
rapidly decreasing (except for boundary terms).

I If 0 is an isolated stationary point and the boundary terms can
be neglected, then we have a good chance of computing an
asymptotic expansion for the integral.

I If furthermore f ′′(0) 6= 0 (the nondegeneracy condition), we
have the nicest formula: the standard Laplace approximation
for the leading term is

I(λ) ∼ A(0)

√
2π

λf ′′(0)
.
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Our specific F-L integral

I Note that

f ′(0) = −i
(
z∗v
′(z∗)

v(z∗)
− r

s

)
.

I Thus if α := r/s and α 6= zv′(z∗)/v(z∗), our “reduction” is of
no use, whereas when α = zv′(z∗)/v(z∗) (critical point
equation), we definitely get a result of order |z∗|−r|w∗|−s as
r →∞ with r/s = α.

I Furthermore

f ′′(0) =
z2∗v
′′(z∗)

v(z∗)
+
z∗v
′(z∗)

v(z∗)
−
(
z∗v
′(z∗)

v(z∗)

)2

.

I So given (z∗, w∗), for this value of α we can derive
asymptotics using the Laplace approximation as above.
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Converting back to the original data

I We have made several reductions and obtained an asymptotic
approximation for ars, in terms of derived data.

I The derivatives of f can be be expressed in terms of
derivatives of H by using the chain rule and solving equations.

I Substituting at the point θ = 0 and solving yields

f ′(0) = i
r

s
− i zHz

wHw

f ′′(0) = Q := −(wHw)2zHz − wHw(zHz)
2 − (wHw)2z2Hzz

− (zHz)
2w2Hww + zwHzHwHzw.

where these are evaluated at (z∗, w∗).
I The residue can also be computed in terms of H. We can

now put everything together to give an explicit formula in
terms of original data.
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Generic smooth point asymptotics in dimension 2

I Suppose that F = G/H has a strictly minimal simple pole at
p = (z∗, w∗).
If Q(p) 6= 0, then when s→∞ with (rwHw − szHz)|p = 0 ,

ars = (z∗)−r(w∗)−s

[
G(p)√

2π

√
−wHw(p)

sQ(p)
+O(s−3/2)

]
.

The apparent lack of symmetry is illusory, since
wHw/s = zHz/r at p.

I This, the simplest multivariate case, already covers hugely
many applications.

I Here p is given, which specifies the only direction in which we
can say anything useful. But we can vary p and obtain
asymptotics that are uniform in the direction.
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Illustrative examples

Important special case: Riordan arrays
I A Riordan array is a bivariate sequence with GF of the form

F (x, y) =
φ(x)

1− yv(x)
.

I Examples include: Pascal, Catalan, Motzkin, Schröder, etc,
triangles; sums of IID random variables; many plane lattice
walk models.

I In this case, if we define

µ(x) := xv′(x)/v(x)

σ2(x) := x2v′′(x)/v(x) + µ(x)− µ(x)2

the previous formula boils down (under extra assumptions) to

ars ∼ (x∗)
−rv(x∗)

s φ(x∗)√
2πsσ2(x∗)

where x∗ satisfies µ(x∗) = r/s.
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Illustrative examples

Example (Delannoy walks)

I Recall that F (x, y) = (1− x− y − xy)−1. This is Riordan
with φ(x) = (1− x)−1 and v(x) = (1 + x)/(1− x). Here V is
globally smooth and for each (r, s) there is a unique solution
to µ(x) = r/s.

I Solving, and using the formula above we obtain (uniformly for
r/s, s/r away from 0)

ars ∼
[

r

∆− s

]r [ s

∆− r

]s√ rs

2π∆(r + s−∆)2
.

where ∆ =
√
r2 + s2.

I Extracting the diagonal is now easy: a7n,5n ∼ ACnn−1/2
where A ≈ 0.236839621050264, C ≈ 30952.9770838817.

I Compare Panholzer-Prodinger, Bull. Aust. Math. Soc. 2012.
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Example (Equal numbers of parts)

I What is the probability that two independently and uniformly
chosen elements of a combinatorial class have the same
number of parts, k, given that they have the same total size
n?

I Compare Banderier-Hitczenko, Discrete Mathematics 2012.

I If (ank) is Riordan defined by φ, v, then the numerator is

bn :=
∑
k

a2nk = [tnun]
φ(t)φ(u)

1− v(t)v(u)

I Aside: this formula gives interesting sum of squares identities..
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Example (Equal numbers of parts continued)

I The smooth point formula applies, provided
limx→ρ− v(x) > 1, where ρ is the radius of convergence of v.
This is the supercritical case.

I In the supercritical case, let c be the positive root of
v(x) = 1. Then

bn ∼ c−2n
φ(c)2√

4πµv(c)σ2v(c)
n−1/2.

I Aside: we can proceed analogously for arbitrary d ≥ 2.

I See M.C. Wilson, Diagonal asymptotics for products of
combinatorial classes, Combinatorics, Probability and
Computing (Flajolet memorial issue).
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Example (Polyominoes)

I A horizontally convex polyomino (HCP) is a union of cells
[a, a+ 1]× [b, b+ 1] in the two-dimensional integer lattice
such that the interior of the figure is connected and every row
is connected.

I The GF for horizontally convex polyominoes (k = rows, n =
squares) is

F (x, y) =
∑
n,k

ankx
nyk

=
xy(1− x)3

(1− x)4 − xy(1− x− x2 + x3 + x2y)
.
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Example (Polyominoes continued)

I Here V is smooth everywhere except (1, 0), which cannot
contribute to asymptotics except when s = 0, so we ignore
that.

I For each direction with 0 < λ := k/n ≤ 1, there are 4 critical
points. Finding the dominant one symbolically is a little tricky.
It lies in the first quadrant and there is a unique such point.

I The x and y-coordinates of the dominant point are each given
by a quartic (with coefficients that are polynomial in λ). Thus
they are algebraic, but complicated to express.

I For each λ we can solve numerically if desired. The general
asymptotic shape is clear from the smooth point formula.

I More on this example in Lecture 4.
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Illustrative examples

Example (Symmetric Eulerian numbers)

I Let ars/(r!s!) be the number of permutations of the set
[r + s+ 1] := {1, 2, . . . , r + s+ 1} with precisely r descents.

I The exponential GF is

F (x, y) =
ex − ey

xey − yex
=

(ex − ey)/(x− y)

(xey − yex)/(x− y)

I Here V is globally smooth. The dominant point for r = s is
(1, 1) and for other directions it is given by

(1− x)s = (y − 1)r

xey = yex.

I The smooth point formula gives the asymptotic form, and for
a fixed direction we can solve numerically.
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Exercises

Exercises: 2D smooth points
I Write down explicitly the Fourier-Laplace integral for the

Delannoy example. Is it obvious that f ′(0) = 0 from this
representation?

I What extra assumptions on φ and v are required in order for
the smooth point analysis to apply to a Riordan array, and for
which directions does our method yield asymptotics?

I Given an equation of the form f(z) = zφ(f(z)) where
f(x) =

∑
n anz

n, use the Lagrange Inversion Formula to show
that

nan = [xnyn]
y

1− xφ(y)
.

and hence derive first order asymptotics for an. When is the
approximation valid?

I (C) Use the formula for bn above to systematically derive
identities involving sums of squares that are not in OEIS.
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Lecture III

Higher dimensions, other geometries

Higher dimensional smooth points

Geometric interpretation

Multiple points
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Lecture 3: Overview

I We can generalize the smooth point analysis to the case of
multiple points. In higher dimensions, there is a nice
geometric interpretation in terms of convex geometry of the
logarithmic domain of convergence.

I We derive explicit formulae for multiple points. The residue
computations can be done in terms of residue forms, which
enables us to derive stronger results.
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Higher dimensional smooth points

Higher dimensions

I The smooth point argument from the previous lecture
generalizes directly to dimension d.

I The difference is that the ensuing Fourier-Laplace integral is
in dimension d− 1.

I There is a generalization of the Laplace approximation, namely

I(λ) ∼ A(0)

√
1

λdet Q
2π

.

I There are technical issues involved in proving this, because
the phase f is neither purely real nor purely imaginary. See
Chapter 5.
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Higher dimensional smooth points

Smooth formulae for general d

I z is a critical point for r iff

∇logH(z) := (z1H1, . . . , zdHd) is parallel to r.

I When z∗ is a critical point for r, then, with Q denoting the
Hessian of the derived function f in the Fourier-Laplace
integral, k any coordinate where Hk := ∂H/∂zk 6= 0:

ar ∼ z∗
−r 1√

det 2πQ(r)

G(z)

zkHk(z∗)
r
(1−d)/2
k .

I This specializes when d = 2 to the previous formula.
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Higher dimensional smooth points

Example (Alignments)

I A (d, r1, . . . , rd)-alignment is a d-row binary matrix with jth
row sum rj and no zero columns.

I These have applications to bioinformatics.

I The generating function for the number of (d, ·)-alignments is

F (z) =
∑

a(r1, . . . , rd)z
r =

1

2−
∏d
i=1(1 + zi)

.

I Our hypotheses are satisfied: smooth, combinatorial,
aperiodic. For each r, there is a dominant point in the
positive orthant.
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Higher dimensional smooth points

Example (Alignments continued)

I For the diagonal direction we have z∗(1̄) = (21/d − 1)1 (by
symmetry), so the number of “square” alignments satisfies

a(n, n . . . , n) ∼ (21/d − 1)−dn
1

(21/d − 1)2(d2−1)/2d
√
d(πn)d−1

I Confirms a result of Griggs, Hanlon, Odlyzko & Waterman,
Graphs and Combinatorics 1990, with less work, and extends
to generalized alignments.
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Geometric interpretation

Logarithmic domain

I Recall U is the domain of convergence of the power series
F (z). We write log U = {x ∈ Rd | ex ∈ U}, the logarithmic
domain of convergence.

I This is convex with boundary logV = {x ∈ Rd | ex ∈ V}.
I Each point x∗ of logV yields a minimal point z∗ := exp(x∗)

of V, lying in the positive orthant.

I The cone spanned by normals to supporting hyperplanes at
x∗ ∈ logV we denote by K(z∗).

I If z∗ is smooth, this is a single ray determined by the image of
z∗ under the logarithmic Gauss map ∇logH.
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Geometric interpretation

log U for smooth Delannoy and polyomino examples
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Geometric interpretation

log U for nonsmooth example
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Geometric interpretation

Interpretation of smooth asymptotic formula

I The stationary point of the F-L integral for direction r
corresponds to a critical point of V that lies on ∂U.

I The dominant point z in the first orthant is exp(x), where the
outward normal to log U at x is parallel to r.

I If V is smooth everywhere, then asymptotics in all directions
are supplied by such points.

I The quantity Q is essentially the Gaussian curvature of logV.
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Geometric interpretation

Alternative smooth point formula

I

ar ∼ z∗
−r

√
1

(2π|r|)(d−1)/2κ(z∗)

G(z∗)

| ∇logH(z∗)|

where |r| =
∑

i ri and κ is the Gaussian curvature of logV at
log z∗.
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Geometric interpretation

Nonsmooth points

I Arbitrarily complicated singularities are possible. We should
be satisfied with a general procedure rather than a formula.
Today we discuss multiple points.

I The point z ∈ V is a multiple point if every small
neighbourhood of z in V is the union of finitely many smooth
hypersurfaces.

I We have good results when the intersection of these sheets is
transverse.

I For multiple points that are not transverse, we also have
results.

I We also have some results for cone points (Chapter 11, very
difficult, not presented this week).
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Multiple points

A generalization of the smooth argument works

I We can follow the same reduction steps as in the smooth
case. Step 1 (localization) is the same.

I Step 2 (residue): there are n poles in the annulus, and we
need to express the residue sum somehow (the individual
residues are not integrable). A trick allows us to do this via an
integral over a simplex.

I Step 3 (Fourier-Laplace integral): the resulting integral is
more complicated, with a nastier domain and more
complicated phase function.

I However in the generic (transverse) case we automatically
obtain a nondegenerate stationary point in dimension
n+ d− 2, and can use a modification of the Laplace
approximation (which deals with boundary terms).
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more complicated, with a nastier domain and more
complicated phase function.

I However in the generic (transverse) case we automatically
obtain a nondegenerate stationary point in dimension
n+ d− 2, and can use a modification of the Laplace
approximation (which deals with boundary terms).
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Multiple points

Generic double point in dimension 2

I Suppose that F = G/H has a strictly minimal pole at
p = (z∗, w∗), which is a double point of V such that
G(p) 6= 0. Then as s→∞ for r/s in K(p),

ars ∼ (z∗)
−r(w∗)

−s

[
G(p)√

(z∗w∗)2 Q(p)
+O(e−c(r+s))

]

where Q is the Hessian of H.

I Note that

I the expansion holds uniformly over compact subcones of K;
I the hypothesis G(p) 6= 0 is necessary; when d > 1, can have
G(p) = H(p) = 0 even if G,H are relatively prime.
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Multiple points

Example (Queueing network)

I Consider

F (x, y) =
exp(x+ y)

(1− 2x
3 −

y
3 )(1− 2y

3 −
x
3 )

which is the “grand partition function” for a very simple
queueing network.

I Most of the points of V are smooth, and we can apply the
smooth point results to derive asymptotics in directions
outside the cone 1/2 ≤ r/s ≤ 2.

I The point (1, 1) is a double point satisfying the above. In the
cone 1/2 < r/s < 2, we have ars ∼ 3e2.

I Note we say nothing here about the boundary of the cone.
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Multiple points

log U for queueing example
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Multiple points

Example (lemniscate)

I Consider F = 1/H where

H(x, y) = x2y2−2xy(x+y)+5 (x2+y2)+14xy−20(x+y)+19.

This is combinatorial, and H is an irreducible polynomial.

I All points except (1, 1) are smooth, and (1, 1) is a transverse
double point. Showing it is strictly minimal takes a little work.

I In the cone 1/2 < r/s < 2 we have ars ∼ 6, outside we use
the smooth point formula.

I Note that H factors locally at (1, 1) but not globally.
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Multiple points

V and log U for lemniscate
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Multiple points

Multiple points: generic shape of formula(z∗)
I (smooth point, or multiple point with n ≤ d)

z∗
−r
∑
k

ak|r|−(d−n)/2−k.

I (smooth/multiple point n < d)

a0 = G(z∗)C(z∗)

where C depends on the derivatives to order 2 of H;
I (multiple point, n = d)

a0 = G(z∗)(det J)−1

where J is the Jacobian matrix (∂Hi/∂zj), other ak are zero;
I (multiple point, n ≥ d)

z∗
−rG(z∗)P

(
r1
z∗1
, . . . ,

rd
z∗d

)
,

P a piecewise polynomial of degree n− d.
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Multiple points

Aside: residue forms

I Instead of computing a residue and then integrating it
directly, we can often repeat this process.

I The best way to understand this is via differential forms, in a
coordinate-free way.

I This reduces the computation from d dimensions to d− n
where n is the number of sheets.

I When n = d, this is the only way we know to get the
exponential decay beyond the leading term.

I When n > d, we first preprocess (see Lecture 4) to reduce to
the case n ≤ d.
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Multiple points

Example (2 planes in 3-space)

I The GF is

F (x, y, z) =
1

(4− 2x− y − z)(4− x− 2y − z)
.

I The critical points for some directions lie on one of the two
sheets where a single factor vanishes, and smooth point
analysis works. These occur when min{r, s} < (r + s)/3.

I The curve of intersection of the two sheets supplies the other
directions. Each point on the line
{(1, 1, 1) + λ(−1,−1,−3) | −1/3 < λ < 1} gives asymptotics
in a 2-D cone.

I For example, a3t,3t,2t ∼ (48πt)−1/2 with relative error less
than 0.3% when n = 30.
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Exercises

Exercise: binomial coefficient power sums

I The dth Franel number is f
(d)
n :=

∑
k

(
n
k

)d
.

I For odd d ≥ 3, the GF is not algebraic (and probably for even
d?)

I The supercritical Riordan case holds as above.

I Derive the formula mentioned in Lecture 2 for the GF of f
(d)
n ,

for arbitrary d.

I Compare with the exact result when d = 6, n = 10.
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Exercises

Exercise: double point asymptotics

I For the queueing example, compute the asymptotics in the
cone 1/2 < r/s < 2 by an iterated residue computation,
rather than using the formula given above.

I Compute asymptotics for the queueing example in the cone
1/2 < r/s < 2 by reducing to Fourier-Laplace integral as
mentioned above.

I Which method do you prefer?

I Which method can say something about asymptotics on the
boundary of the cone?
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Exercises

Exercise: biased coin flips

I A coin has probability of heads p, which can be changed. The
coin will be biased so that p = 2/3 for the first n flips, and
p = 1/3 thereafter. A player desires to get r heads and s tails
and is allowed to choose n. On average, how many choices of
n ≤ r + s will be winning choices?

I The answer is given by the convolution

ars =
∑
a+b=n

(
n

a

)
(2/3)a(1/3)b

(
r + s− n
r − a

)
(1/3)r−a(2/3)s−b

I Derive asymptotics for ars when 1/2 < r/s < 2.
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Lecture IV

Computational aspects

Asymptotics of Fourier-Laplace integrals

Higher order terms

Computations in rings
Local factorizations
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Lecture 4: Overview

I All our asymptotics are ultimately computed via
Fourier-Laplace integrals. All standard references make
simplifying assumptions that do not always hold in GF
applications. In some cases, we needed to extend what is
known.

I Once the asymptotics have been derived, in order to apply
them in terms of original data we require substantial algebraic
computation. We have implemented some of this in Sage.
Higher order terms in the expansions are particularly tricky.

I The algebraic computations are usually best carried out using
defining ideals, rather than explicit formulae.
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Asymptotics of Fourier-Laplace integrals
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Asymptotics of Fourier-Laplace integrals

Low-dimensional examples of F-L integrals
I Typical smooth point example looks like∫ 1

−1
e−λ(1+i)x

2
dx.

Isolated nondegenerate critical point, exponential decay

I Simplest double point example looks roughly like∫ 1

−1

∫ 1

0
e−λ(x

2+2ixy) dy dx.

Note Re f = 0 on x = 0, so rely on oscillation for smallness.
I Multiple point with n = 2, d = 1 gives integral like∫ 1

−1

∫ 1

0

∫ x

−x
e−λ(z

2+2izy) dy dx dz.

Simplex corners now intrude, continuum of critical points.
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Asymptotics of Fourier-Laplace integrals

Difficulties with F-L asymptotics

I All authors assume at least one of the following:

I exponential decay on the boundary;
I vanishing of amplitude on the boundary;
I smooth boundary;
I purely real phase;
I purely imaginary phase;
I isolated stationary point of phase, usually quadratically

nondegenerate.

I Many of our applications to generating function asymptotics
do not fit into this framework. In some cases, we needed to
extend what is known.
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Asymptotics of Fourier-Laplace integrals

Example

I Consider

I(λ) =

∫ ε

−ε

∫ 1

0
e−λφ(p,t) dp dt

where φ(p, t) = iλt+ log
[
(1− p)v1(eit) + pv2(e

it)
]
.

I This arises in the simplest strictly minimal double point
situation. Recall the vi are the inverse poles near the double
point.

I The answer is

I(λ) ∼ 2π

|v′1(1)− v′2(1)|λ
I This doesn’t satisfy the hypotheses of the last slide, and so we

needed to derive the analogue of the Laplace approximation.
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Higher order terms

I We can in principle differentiate implicitly and solve a system
of equations for each term in the asymptotic expansion.

I Hörmander has a completely explicit formula that proved
useful. There may be other ways.

I Applications of higher order terms:

I When leading term cancels in deriving other formulae.
I When leading term is zero because of numerator.
I Better numerical approximations for smaller indices.
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Higher order terms

Hörmander’s explicit formula
For an isolated nondegenerate stationary point in dimension d,

I(λ) ∼
(

det

(
λf ′′(0)

2π

))−1/2∑
k≥0

λ−kLk(A, f)

where

f(t) = f(t)− (1/2)tf ′′(0)tT

D =
∑
a,b

(f ′′(0)−1)a,b(−i∂a)(−i∂b)

L̃k(A, f) =
∑
l≤2k

Dl+k(Af l)(0)

(−1)k2l+kl!(l + k)!
.

L̃k is a differential operator of order 2k acting on A at 0
(considering the order 3m zero of fm), whose coefficients are

rational functions of f ′′(0), . . . , f (2k+2)(0).
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Example (nonoverlapping patterns)

I Given a word over alphabet {a1, . . . , ad}, players alternate
reading letters. If the last two letters are the same, we erase
the letters seen so far, and continue.

I For example, in abaabbba, there are two occurrences.

I How many such snaps are there, for random words?

I Answer: let ψn be the random variable counting snaps in
words of length n. Then as n→∞,

E(ψn) = (3/4)n− 15/32 +O(n−1)

σ2(ψn) = (9/32)n+O(1).
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Example (snaps continued)

I The details are as follows. Consider W given by

W (x1, . . . , xd, y) =
A(x)

1− yB(x)

A(x) = 1/[1−
d∑
j=1

xj/(xj + 1)]

B(x) = 1− (1− e1(x))A(x)

e1(x) =

d∑
i=j

xj .

I The symbolic method shows that [xn1 . . . x
n
d , y

s]W (x, y)
counts words with n occurrences of each letter and s snaps.
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Example (snaps continued)

We extract as usual. Note the first order cancellation in the
variance computation. For d = 3,

E(ψn) =
[xn1]∂W∂y (x, 1)

[xn1]W (x, 1)

= (3/4)n− 15/32 +O(n−1)

E(ψ2
n) =

[xn1]
(
∂2W
∂y2

(x, 1) + ∂W
∂y (x, 1)

)
[xn1]W (x, 1)

= (9/16)n2 − (27/64)n+O(1)

σ2(ψn) = E(ψ2
n)− E(ψn)2 = (9/32)n+O(1).
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Example (vanishing numerator)

I Let

F (x, y) =
∑
rs

arsx
rys =

y(1− 2y)

1− x− y
.

I Here

ars = 2

(
r + s− 2

r − 1

)
−
(
r + s− 1

r

)
.

I When r = s, this simplifies to 1
r

(
2r−2
r−1
)
, a shifted Catalan

number. The dominant point is (1/2, 1/2) by symmetry.

I We know the asymptotics of these are of order n−3/2. This is
consistent, because the numerator of F vanishes at (1/2, 1/2).

I Our general formula yields

ann ∼ 4n
(

1

4
√
π
n−3/2 +

3

32
√
π
n−5/2

)
.
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Higher order terms

Computing numerical approximations

I Alex Raichev’s Sage implementation computes higher order
expansions for smooth and multiple points.

I The error from truncating at the kth term is of order 1/n1+k.

I The current implementation is not very sophisticated, and
when k ≥ 3 and d ≥ 4, for example, usually fails to halt in
reasonable time.

I To compute the kth term naively using Hörmander requires at
least d3k d× d matrix computations.

I There is surely a lot of room for improvement here.
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least d3k d× d matrix computations.

I There is surely a lot of room for improvement here.



ACSV summary Hagenberg

Higher order terms

Example (Snaps with d = 3)

n 1 2 4 8
E(ψ) 0 1.000 2.509 5.521
(3/4)n 0.7500 1.500 3 6
(3/4)n− 15/32 0.2813 1.031 2.531 5.531
one-term relative error undefined 0.5000 0.1957 0.08685
two-term relative error undefined 0.03125 0.008832 0.001936
E(ψ2) 0 1.8000 7.496 32.80
(9/16)n2 0.5625 2.250 9 36
(9/16)n2 − (27/64)n 0.1406 1.406 7.312 32.63
one-term relative error undefined 0.2500 0.2006 0.09768
two-term relative error undefined 0.2188 0.02449 0.005220
σ2(ψ) 0 0.8000 1.201 2.320
(9/32)n 0.2813 0.5625 1.125 2.250
relative error undefined 0.2969 0.06294 0.03001
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Higher order terms

Example (2 planes in 3-space)

Using the formula we obtain

a3t,3t,2t =
1√
3π

(
1

4
t−1/2 − 25

1152
t−3/2 +

1633

663552
t−5/2

)
+O(t−7/2).

The relative errors are:
rel. err. vs t 1 2 4 8 16 32

k = 1 -0.660 -0.315 -0.114 -0.0270 -0.00612 -0.00271
k = 2 -0.516 -0.258 -0.0899 -0.0158 -0.000664 0.00000780
k = 3 -0.532 -0.261 -0.0906 -0.0160 -0.000703 -0.00000184
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Computations in polynomial rings

I In order to apply our formulae, we need to, at least:

I find the critical point z∗(r);
I compute a rational function of derivatives of H, evaluated at

z∗.

I The first can be solved by, for example, Gröbner basis
methods.

I The second can cause big problems if done naively, leading to
a symbolic mess, and loss of numerical precision. It is best to
deal with annihilating ideals.
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methods.

I The second can cause big problems if done naively, leading to
a symbolic mess, and loss of numerical precision. It is best to
deal with annihilating ideals.



ACSV summary Hagenberg

Computations in rings

Computations in polynomial rings

I In order to apply our formulae, we need to, at least:
I find the critical point z∗(r);
I compute a rational function of derivatives of H, evaluated at

z∗.

I The first can be solved by, for example, Gröbner basis
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Computations in rings

Example (Why ideals are better)

I Suppose x is the positive root of p(x) := x3 − x2 + 11x− 2,
and we want to compute g(x) := x5/(867x4 − 1).

I If we compute x symbolically and then substitute into g, we
obtain a huge mess involving radicals, which evaluates
numerically to 0.193543073868354.

I If we compute x numerically and then substitute, we obtain
0.193543073867096.

I Instead we can compute the minimal polynomial of y := g(x)
by Gröbner methods. This gives

11454803y3 − 2227774y2 + 2251y − 32 = 0

and evaluating numerically yields 0.193543073868734.
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Example (Polyomino computation)

I Recall the GF for horizontally convex polyominoes is

F (x, y) =
xy(1− x)3

(1− x4)− xy(1− x− x2 + x3 + x2y)
.

I Solving {H = 0,∇H = 0} yields only the point (1, 0). Thus
dominant points in direction λ := s/r, 0 < λ < 1, are all
smooth.

I The ideal in C[x, y] defined by {sxHx − ryHy, H} has a
Gröbner basis giving a quartic minimal polynomial for x∗(λ),
and y∗(λ) is a linear function of x∗(λ) (also satisfies a
quartic).

I Specifically, the elimination polynomial for x is

(1+λ)x4+4(1+λ)2x3+10(λ2+λ−1)x2+4(2λ−1)2x+(1−λ)(1−2λ).
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Computations in rings

Example (Polyomino computation continued)

I The leading coefficient in the asymptotic expansion has the
form (2π)−1/2C where C is algebraic.

I For generic λ, the minimal polynomial of C has degree 8.

I However, for example when r = 2s there is major
simplification: the minimal polynomials for x and y
respectively are 3x2 + 18x− 5 and 75y2 − 288y + 256, etc.

I Now given (r, s), solving numerically for C as a root gives a
more accurate answer than if we had solved for x∗, y∗ above
and substituted.
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Computations in rings

Local factorizations

Computations in local rings

I In order to apply our smooth/multiple point formulae, we
need to, at least:

I classify the local geometry at point z∗;
I compute (derivatives of) the factors Hi near z∗.

I Unfortunately, computations in the local ring are not effective
(as far as we know). If a polynomial factors as an analytic
function, but the factors are not polynomial, we can’t deal
with it algorithmically (yet).

I Smooth points are easily detected. There are some sufficient
conditions, and some necessary conditions, for z∗ to be a
multiple point. But in general we don’t know how to classify
singularities algorithmically.
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Computations in rings

Local factorizations

Example (local factorization of lemniscate)

I Let H(x, y) =
19− 20x− 20y + 5x2 + 14xy + 5y2 − 2x2y − 2xy2 + x2y2,
and analyse 1/H.

I Here V is smooth at every point except (1, 1), which we see
by solving the system {H = 0,∇H = 0}.

I At (1, 1), changing variables to h(u, v) := H(1 + u, 1 + v), we
see that h(u, v) = 4u2 + 10uv + 4v2 + C(u, v) where C has
no terms of degree less than 3.

I The quadratic part factors into distinct factors, showing that
(1, 1) is a transverse multiple point.

I Note that our double point formula does not require details of
the individual factors. However this is not the case for general
multiple points.
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Computations in rings

Local factorizations

Reduction of multiple points

I If we have n > d transverse smooth factors meeting at a point
p, we can reduce to the case n ≤ d at the cost of increasing
the number of summands.

I If we have repeated factors, we can reduce to the case of
distinct factors using exactly the same idea.

I If this is not done, we arrive at Fourier-Laplace integrals with
non-isolated stationary points, which are hard to analyse.

I However after doing the above we always reduce to the case
of an isolated point, which we can handle.
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Computations in rings

Local factorizations

Example (Algebraic reduction, sketch)

I Let H = H1H2H3 := (1− x)(1− y)(1− xy).

I In the local ring at (1, 1), each factor should be in the ideal
generated by the other two (Nullstellensatz).

I In fact it is true globally, since H3 = H1 +H2 −H1H2.
(Nullstellensatz certificate).

I Thus eventually we obtain

F =
1

H1H2H3
= · · · = 2− y

(1− y)(1− xy)2)
+

1

(1− x)(1− xy)2
.

I The next step, reducing the multiplicity of factors can be done
at the residue stage (residue for higher order pole) or by other
methods, and is both easy and algorithmic.

I Thus we can reduce to a (possibly large) sum of (polynomial
multiples of) transverse double point asymptotic series.
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Exercises

Exercises

A computer algebra system will help for some of these.

I Use Hörmander’s formula to compute L0, L1, L2 for
F (x, y) = (1− x− y)−1, at the minimal point (1/2, 1/2).
This gives asymptotics for the main diagonal coefficients

(
2n
n

)
.

I The small change from y(1− 2y)/(1− x− y) to
(1− 2y)/(1− x− y) should make no difference to our basic
computational procedure. Show that, nevertheless, the results
are very different. Explain.

I Compute the expectation and variance of the number of snaps
in a standard deck of cards (no asymptotics required).

I Carry out the polyomino computation in detail.



ACSV summary Hagenberg

Exercises

Exercises

A computer algebra system will help for some of these.
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Removing the combinatorial assumption
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Overview

I We first look in turn at some of our standard assumptions in
force over the last few lectures, and discuss what happens
when each is weakened.

I Removing the combinatorial assumption leads to topological
issues which we address in the framework of stratified Morse
theory.

I The Fourier-Laplace integrals arising from the reductions can
be more complicated that those previously studied.

I We then look at going beyond the class of rational
(meromorphic) singularities.
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Easy generalizations

Assumption: unique smooth dominant simple pole

I If there is periodicity, we typically obtain a finite number of
contributing points whose contributions must be summed.
This leads to the appropriate cancellation. A routine
modification.

I A toral point is one for which every point on its torus is a
minimal singularity (such as 1/(1− x2y3). These occur in
quantum random walks. A routine modification.

I If the dominant point is smooth but H is not locally
squarefree, then we obtain polynomial corrections that are
easily computed. A routine modification.



ACSV summary Hagenberg

Easy generalizations

Assumption: unique smooth dominant simple pole

I If there is periodicity, we typically obtain a finite number of
contributing points whose contributions must be summed.
This leads to the appropriate cancellation. A routine
modification.

I A toral point is one for which every point on its torus is a
minimal singularity (such as 1/(1− x2y3). These occur in
quantum random walks. A routine modification.

I If the dominant point is smooth but H is not locally
squarefree, then we obtain polynomial corrections that are
easily computed. A routine modification.



ACSV summary Hagenberg

Easy generalizations

Assumption: unique smooth dominant simple pole

I If there is periodicity, we typically obtain a finite number of
contributing points whose contributions must be summed.
This leads to the appropriate cancellation. A routine
modification.

I A toral point is one for which every point on its torus is a
minimal singularity (such as 1/(1− x2y3). These occur in
quantum random walks. A routine modification.

I If the dominant point is smooth but H is not locally
squarefree, then we obtain polynomial corrections that are
easily computed. A routine modification.



ACSV summary Hagenberg

Easy generalizations

Example (Periodicity)

I Let F (z, w) = 1/(1− 2zw + w2) be the generating function
for Chebyshev polynomials of the second kind.

I For directions (r, s) with 0 < s/r < 1, there is a dominant
point at

p =

(
r√

r2 − s2
,

√
r − s
r + s

)
.

I There is also a dominant point at −p. Adding the
contributions yields

ars ∼
√

2

π
(−1)(s−r)/2

(
2r√
s2 − r2

)−r (√
s− r
s+ r

)−s√
s+ r

r(s− r)

when r + s is even and zero otherwise.
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I For directions (r, s) with 0 < s/r < 1, there is a dominant
point at
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Easy generalizations

Assumption: transversality

I If sheets at a multiple point are not transversal, the phase of
the Fourier-Laplace integral vanishes on a set of positive
dimension.

I If this occurs because there are too many sheets, the
reduction from Lecture 4 works.

I If it occurs because the dimension of the space spanned by
normals is just too small, then it is a little harder to deal with.

I Each term in our expansions depends on finitely many
derivatives of G and H, so if sheets have contact to
sufficiently high order, the results are the same as if they
coincided. Thus if we can reduce in the local ring, all is well.
Otherwise we may need to attack the F-L integral directly.
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Easy generalizations

Example (tangential curves)

I Suppose that V looks like two curves intersecting at a strictly
minimal point (1, 1), with branches y = gj(x).

I Suppose further that the first derivatives are equal and
f ′′j (θ) = −djθ2 + . . . .

I Then the cone K of directions is a single ray and

ars ∼
2G(1, 1)

√
s√

2π
(√
d1 +

√
d2
) .

I When d0 = d1 this gives the same result as a single repeated
smooth factor.
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Easy generalizations

Assumption: no change in local geometry

I If the phase of the Fourier-Laplace integral vanishes to order
more than 2, more complicated behaviour ensues.

I If the order of vanishing is 2 everywhere except for 3 at a
certain direction, for example, we obtain a phase transition
and Airy phenomena.
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Easy generalizations

Example (Airy phenomena)

I The core of a rooted planar map is the largest 2-connected
subgraph containing the root edge.

I The probability distribution of the size k of the core in a
random planar map with size n is described by

p(n, k) =
k

n
[xkynzn]

xzψ′(z)

(1− xψ(z))(1− yφ(z))
.

where ψ(z) = (z/3)(1− z/3)2 and φ(z) = 3(1 + z)2.

I In directions away from n = 3k, our ordinary smooth point
analysis holds. When n = 3k we can redo the F-L integral
easily and obtain asymptotics of order n−1/3.

I Determining the behaviour as we approach this diagonal at a
moderate rate is harder (Manuel Lladser PhD thesis), and
recovers the results of Banderier-Flajolet-Schaeffer-Soria 2001.



ACSV summary Hagenberg

Easy generalizations

Example (Airy phenomena)

I The core of a rooted planar map is the largest 2-connected
subgraph containing the root edge.

I The probability distribution of the size k of the core in a
random planar map with size n is described by

p(n, k) =
k

n
[xkynzn]

xzψ′(z)

(1− xψ(z))(1− yφ(z))
.

where ψ(z) = (z/3)(1− z/3)2 and φ(z) = 3(1 + z)2.

I In directions away from n = 3k, our ordinary smooth point
analysis holds. When n = 3k we can redo the F-L integral
easily and obtain asymptotics of order n−1/3.

I Determining the behaviour as we approach this diagonal at a
moderate rate is harder (Manuel Lladser PhD thesis), and
recovers the results of Banderier-Flajolet-Schaeffer-Soria 2001.



ACSV summary Hagenberg

Easy generalizations

Example (Airy phenomena)

I The core of a rooted planar map is the largest 2-connected
subgraph containing the root edge.

I The probability distribution of the size k of the core in a
random planar map with size n is described by

p(n, k) =
k

n
[xkynzn]

xzψ′(z)

(1− xψ(z))(1− yφ(z))
.

where ψ(z) = (z/3)(1− z/3)2 and φ(z) = 3(1 + z)2.

I In directions away from n = 3k, our ordinary smooth point
analysis holds. When n = 3k we can redo the F-L integral
easily and obtain asymptotics of order n−1/3.

I Determining the behaviour as we approach this diagonal at a
moderate rate is harder (Manuel Lladser PhD thesis), and
recovers the results of Banderier-Flajolet-Schaeffer-Soria 2001.



ACSV summary Hagenberg

Easy generalizations

Example (Airy phenomena)

I The core of a rooted planar map is the largest 2-connected
subgraph containing the root edge.

I The probability distribution of the size k of the core in a
random planar map with size n is described by

p(n, k) =
k

n
[xkynzn]

xzψ′(z)

(1− xψ(z))(1− yφ(z))
.

where ψ(z) = (z/3)(1− z/3)2 and φ(z) = 3(1 + z)2.

I In directions away from n = 3k, our ordinary smooth point
analysis holds. When n = 3k we can redo the F-L integral
easily and obtain asymptotics of order n−1/3.

I Determining the behaviour as we approach this diagonal at a
moderate rate is harder (Manuel Lladser PhD thesis), and
recovers the results of Banderier-Flajolet-Schaeffer-Soria 2001.



ACSV summary Hagenberg

Removing the combinatorial assumption

Table of Contents

Easy generalizations

Removing the combinatorial assumption

Algebraic singularities



ACSV summary Hagenberg

Removing the combinatorial assumption

Non-combinatorial case: Overview
I Some applications require us to consider more general GFs,

with coefficients that may not be nonnegative. Finding
dominant points is now much harder.

I Going back to Cauchy’s integral, we use homology rather than
homotopy to compute its asymptotics. Using the method of
steepest descent as formalized by Morse theory, we can do
this almost algorithmically in the smooth case. The integral is
determined by critical points which are the same as the
critical points we saw previously.

I When d = 2, this has been implemented algorithmically, but
not for higher d.

I There is a lesser known version of Morse theory due to
Whitney, called stratified Morse theory, which deals with
singularities. There is substantial discussion of this in the
book.
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Removing the combinatorial assumption

Cauchy integral formula is homological

I We have

ar = (2πi)−d
∫
T
z−r−1F (z)dz

where dz = dz1 ∧ · · · ∧ dzd and T is a small torus around the
origin.

I We aim to replace T by a contour that is more suitable for
explicit computation. This may involve additional residue
terms.

I The homology of Cd \ V is the key to decomposing the
integral.

I It is natural to try a saddle point/steepest descent approach.
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Stratified Morse theory

I Consider hr(z) = r · <log(z) as a height function; try to
choose contour to minimize maxh.

I Variety V decomposes nicely into finitely many cells, each of
which is a complex manifold of dimension k ≤ d− 1. The top
dimensional stratum is the set of smooth points.

I The critical points are those where the restriction of h to a
stratum has derivative zero. Generically, there are finite many.

I The Cauchy integral decomposes into a sum∑
ni

∫
Ci

z−r−1F(z)dz

where Ci is a quasi-local cycle for z∗
(i) ∈ crit(r).

I Key problem: find the highest critical points with nonzero ni.
These are the dominant ones.
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Bicolored supertrees

Example

I Consider

F (x, y) =
2x2y(2x5y2 − 3x3y + x+ 2x2y − 1)

x5y2 + 2x2y − 2x3y + 4y + x− 2
.

for which we want asymptotics on the main diagonal.

I The critical points are, listed in increasing height,
(1 +

√
5, (3−

√
5)/16), (2, 18), (1−

√
5, (3 +

√
5)/16).

I In fact (2, 1/8) dominates. The analysis is a substantial part
of the PhD thesis of Tim DeVries (U. Pennsylvania).

I The answer:

ann ∼
4n
√

2Γ(5/4)

4π
n−5/4.
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Algebraic singularities

Inverting diagonalization

I Recall the diagonal method shows that the diagonal of a
rational bivariate GF is algebraic.

I Conversely, every univariate algebraic GF is the diagonal of
some rational bivariate GF (next slide).

I The latter result does not generalize strictly to higher
dimensions, but something close to it is true. Our multivariate
framework means that increasing dimension causes no
difficulties in principle, so we can reduce to the rational case.

I The elementary diagonal of F (z0, . . . , zd) =
∑

r0,...,rd
arz

r is

diagF := f(z1, . . . , zd) =
∑

r1,...,rd

ar1,r1,...,rdz
r1
1 . . . zrdd .
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Algebraic singularities

Safonov’s basic construction
I Suppose that F is algebraic and its defining polynomial P

satisfies
P (w, z) = (w − F (z))ku(w, z)

where u(0, 0
¯
) 6= 0 and 1 ≤ k ∈ N.

I Define

R(z0, z) =
z20P1(z0, z0z1, z2, . . . )

kP (z0, z0z1, z2, . . . )

R̃(w, z) = R(w, z1/w, z2, . . . zd).

I The Argument Principle shows that F = diagR:

1

2πi

∫
C
R̃(w, z)

dw

w
=
∑

Res R̃(w, z) = F (z).

I Higher order terms are essential: the numerator of R̃ always
vanishes at the dominant point. The Catalan example from
Lecture 4 was created using this method.
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Lecture 4 was created using this method.
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Algebraic singularities

Safonov’s general construction
I In general, apply a sequence of blowups (monomial

substitutions) to reduce to the case above.

I This is a standard idea from algebraic geometry: resolution of
singularities.

I Definition: Let F (z) =
∑

r arz
r have d+ 1 variables and let

M be a d× d matrix with nonnegative entries. The
M -diagonal of F is the formal power series in d variables
whose coefficients are given by br2,...rd = as1,s1,s2,...sd and
(s1, . . . , sd) = (r1, . . . , rd)M .

I Theorem: Let f be an algebraic function of d variables. Then
there is a unimodular integer matrix M with positive entries
and a rational function F in d+ 1 variables such that f is the
M -diagonal of F .

I The example x
√

1− x− y shows that the elementary
diagonal cannot always be used.
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Example (Narayana numbers)

I The bivariate GF F (x, y) for the Narayana numbers

ars =
1

r

(
r

s

)(
r − 1

s− 1

)
satisfies P (F (x, y), x, y) = 0, where

P (w, x, y) = w2 − w [1 + x(y − 1)] + xy

= [w − F (x, y)]
[
w − F (x, y)

]
.

where F is the algebraic conjugate.

I Using the above construction we obtain the lifting

G(u, x, y) =
u(1− 2u− ux(1− y))

1− u− xy − ux(1− y)
.

with brrs = ars.
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Example (Narayana numbers continued)

I The above lifting yields asymptotics by smooth point analysis
in the usual way. The critical point equations yield

u = s/r, x =
(r − s)2

rs
, y =

s2

(r − s)2
.

and we obtain asymptotics starting with s−2. For example

a2s,s ∼
16s

8πs2
.

I Interestingly, specializing y = 1 commutes with lifting (and
yields the shifted Catalan numbers as in Lecture 4). Is this
always true?
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Technical issues

I Safonov’s lifting often takes us away from the combinatorial
case. Therefore the Morse theory approach will probably be
needed.

I Dominant singularities can be at infinity.

I There are other lifting procedures, some of which go from
dimension d to 2d. They seem complicated, and we have not
yet tried them in detail.

I However in some cases they work better - for example
2xy/(2 + x+ y) is a lifting of x

√
1− x, whereas Safonov’s

method appears not to work easily.
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Algebraic singularities

Further work

Possible research projects

I Systematically compare the diagonal method and our
methods.

I Systematically generate sums of squares identities and include
them in OEIS.

I Develop a good theory for algebraic singularities (using
resolution of singularities somehow).

I Improve efficiency of algorithms for computing higher order
terms in expansions. Implement them in Sage.

I Develop better computational methods for computing
symbolically with symmetric functions.

I Make the computation of dominant points algorithmic in the
noncombinatorial case.



ACSV summary Hagenberg

Algebraic singularities

Further work

Possible research projects

I Systematically compare the diagonal method and our
methods.

I Systematically generate sums of squares identities and include
them in OEIS.

I Develop a good theory for algebraic singularities (using
resolution of singularities somehow).

I Improve efficiency of algorithms for computing higher order
terms in expansions. Implement them in Sage.

I Develop better computational methods for computing
symbolically with symmetric functions.

I Make the computation of dominant points algorithmic in the
noncombinatorial case.



ACSV summary Hagenberg

Algebraic singularities

Further work

Possible research projects

I Systematically compare the diagonal method and our
methods.

I Systematically generate sums of squares identities and include
them in OEIS.

I Develop a good theory for algebraic singularities (using
resolution of singularities somehow).

I Improve efficiency of algorithms for computing higher order
terms in expansions. Implement them in Sage.

I Develop better computational methods for computing
symbolically with symmetric functions.

I Make the computation of dominant points algorithmic in the
noncombinatorial case.



ACSV summary Hagenberg

Algebraic singularities

Further work

Possible research projects

I Systematically compare the diagonal method and our
methods.

I Systematically generate sums of squares identities and include
them in OEIS.

I Develop a good theory for algebraic singularities (using
resolution of singularities somehow).

I Improve efficiency of algorithms for computing higher order
terms in expansions. Implement them in Sage.

I Develop better computational methods for computing
symbolically with symmetric functions.

I Make the computation of dominant points algorithmic in the
noncombinatorial case.



ACSV summary Hagenberg

Algebraic singularities

Further work

Possible research projects

I Systematically compare the diagonal method and our
methods.

I Systematically generate sums of squares identities and include
them in OEIS.

I Develop a good theory for algebraic singularities (using
resolution of singularities somehow).

I Improve efficiency of algorithms for computing higher order
terms in expansions. Implement them in Sage.

I Develop better computational methods for computing
symbolically with symmetric functions.

I Make the computation of dominant points algorithmic in the
noncombinatorial case.



ACSV summary Hagenberg

Algebraic singularities

Further work

Possible research projects

I Systematically compare the diagonal method and our
methods.

I Systematically generate sums of squares identities and include
them in OEIS.

I Develop a good theory for algebraic singularities (using
resolution of singularities somehow).

I Improve efficiency of algorithms for computing higher order
terms in expansions. Implement them in Sage.

I Develop better computational methods for computing
symbolically with symmetric functions.

I Make the computation of dominant points algorithmic in the
noncombinatorial case.



ACSV summary Hagenberg

Exercises

Exercises

I Prove that the numerator of Safonov’s lifting must vanish at
the dominant point, as claimed above.

I Show that x
√

1− x− y cannot occur as the elementary
diagonal of a rational function in 3 variables, as claimed
above.

I Derive asymptotics for the following GF (Vince and Bóna
2012)

F (x, y) = 1−
√

(1− x)2 + (1− y)2 − 1

I In the Cauchy integral for
√

1− x, make a substitution to
convert to an integral of a rational function. How general is
this procedure?
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