
Lecture I

Motivation, review, overview

1 Preliminaries

Recommended books for univariate asymptotics

• H. Wilf, generatingfunctionology, http://www.math.upenn.edu/~wilf/

DownldGF.html

• M. Kauers and P. Paule, The Concrete Tetrahedron, www.risc.jku.at/
people/mkauers/publications/kauers11h.pdf.

• P. Flajolet and R. Sedgewick, Analytic Combinatorics, http://algo.

inria.fr/flajolet/Publications/AnaCombi/anacombi.html

• A. Odlyzko, Asymptotic Enumeration Methods, www.dtc.umn.edu/~odlyzko/
doc/enumeration.html..

Main references for all lectures

• R. Pemantle and M.C. Wilson, Analytic Combinatorics in Several Vari-
ables, Cambridge University Press 2013. https://www.cs.auckland.ac.
nz/~mcw/Research/mvGF/asymultseq/ACSVbook/

• R. Pemantle and M.C. Wilson, Twenty Combinatorial Examples of Asymp-
totics Derived from Multivariate Generating Functions, SIAM Review 2008.

• Sage implementations by Alex Raichev: https://github.com/araichev/
amgf.

Lecture plan

• These lectures discuss results obtained over more than 10 years of work
with Robin Pemantle and others, explained in detail in our book.

• Outline of lectures:

(i) Motivation, review of univariate case, overview of results.

(ii) Smooth points in dimension 2.

(iii) Higher dimensions, multiple points.

(iv) Computational issues.

(v) Extensions and open problems.

• Exercises are of varying levels of difficulty. We can discuss some in the
problem sessions. Those marked (C) involve probably publishable re-
search, for which I am seeking collaborators, should be accessible to PhD
students.
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2 Introduction and motivation

Lecture 1: Overview

• In one variable, starting with a sequence ar of interest, we form its gen-
erating function F (z). Cauchy’s integral theorem allows us to express ar
as an integral. The exponential growth rate of ar is determined by the
location of a dominant singularity z∗ of F . More precise estimates depend
on the local geometry of the singular set V of F near z∗.

• In the multivariate case, all the above is still true. However, we need
to specify the direction in which we want asymptotics; we then need to
worry about uniformity; the definition of “dominant” is a little different;
the local geometry of V can be much nastier; the local analysis is more
complicated.

Standing assumptions

• Unless otherwise specified, the following hold throughout.

• We use boldface to denote a multi-index: z = (z1, . . . , zd), r = (r1, . . . , rd).
Similarly zr = zr11 . . . zrdd .

• A (multivariate) sequence is a function a : Nd → C for some fixed d.
Usually write ar instead of a(r).

• The generating function (GF) is the formal power series F (z) =
∑

r∈Nd arz
r.

• The combinatorial case: all ar ≥ 0.

• The aperiodic case: ar is not supported on a proper sublattice of Nd.

2.1 Univariate case

From sequence to generating function and back

• Most sequences of interest satisfy recurrences. We analyse them using
the GF. Sequence operations correspond to algebraic operations on power
series (e.g. an ↔ F (z) implies nan ↔ zF ′(z)).

• The GF can often be determined by translating the recurrence into a
functional equation for F , then solving it.

• Example: (Fibonacci)

ar = ar−1 + ar−2 if r ≥ 2

a0 = 0, a1 = 1

automatically yields F (z) = z/(1− z − z2).

• Our focus this week is on the next step: deriving a formula (usually asymp-
totic approximation) for ar, given a nice representation of F . This is
coefficient extraction.
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Univariate case: exponential growth rate

• Let U be the open disc of convergence of F , having radius ρ, ∂U its
boundary.

• Let CR denote the circle of radius R centred at 0. If R < ρ then by
Cauchy’s Integral Formula

an =
1

2πi

∫
C

z−n−1F (z) dz.

• This directly yields |an| ≤ (2πiR)KR−n−1/(2πi) = KR−n.

• Letting R→ ρ− shows that the exponential growth rate is 1/ρ:

lim sup
1

n
log |an| = − log ρ.

• Suppose that ρ <∞. Then (Vivanti-Pringsheim) z = ρ is a singularity of
F , and is the only singularity of F on ∂U.

• Further analysis depends on the type of singularity.

From singularities to asymptotic expansions
There are standard methods for dealing with each type of singularity, all

relying on choosing appropriate contours of integration. The most common:

• if ρ is a pole, use the residue theorem;

• if F is rational, can also use partial fraction decomposition;

• if ρ is algebraic/logarithmic, use singularity analysis (Flajolet-Odlyzko
1990);

• if ρ is essential, use the saddle point method.

Example 1 (Univariate pole example: derangements). • Consider F (z) = e−z/(1−
z), the GF for derangements. There is a single pole, at z = 1, so ar = O(1).

• Using a circle of radius 1 + ε we obtain, by Cauchy’s residue theorem,

ar =
1

2πi

∫
C1+ε

z−r−1F (z) dz − Res(z−r−1F (z); z = 1).

• The integral is O((1 + ε)−r) while the residue equals −e−1.

• Thus [zr]F (z) ∼ e−1 as r →∞.

• Since there are no more poles, we can push the contour of integration to
∞ in this case, so the error in the approximation decays faster than any
exponential function of r.
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Univariate rational functions: general solution

• Given a rational function p(z)/q(z) with q(0) = 1, factor it as q(z) =∏
i(1− φiz)ni with all φi distinct.

• Use partial fractions to expand

F (z) =
∑
i

ni∑
j=1

cij
(1− φiz)j

.

• This allows for an exact formula, and restricting to the largest φi (corre-
sponding to the minimal zeros of q) gives the asymptotic expansion.

• For example, Fibonacci yields ar ∼ 5−1/2[(1 +
√

5)/2]r.

• Repeated roots provide polynomial correction to the exponential factor.
For example, 1/(1− 2z)3 =

∑
r

(
r+2
2

)
2rzr.

Example 2 (Essential singularity: saddle point method). • Here F (z) = exp(z).
The Cauchy integral formula on a circle CR of radius R gives an ≤
F (R)/Rn.

• Consider the “height function” logF (R) − n logR and try to minimize
over R. In this example, R = n is the minimum.

• The integral over Cn has most mass near z = n, so that

an =
F (n)

2πnn

∫ 2π

0

exp(−inθ)F (neiθ)

F (n)
dθ

≈ en

2πnn

∫ ε

−ε
exp

(
−inθ + logF (neiθ)− logF (n)

)
dθ.

Example 3 (Saddle point example continued). • The Maclaurin expansion
yields

−inθ + logF (neiθ)− logF (n) = −nθ2/2 +O(nθ3).

• This gives, with bn = 2πnne−nan,

bn ≈
∫ ε

−ε
exp(−nθ2/2) dθ ≈

∫ ∞
−∞

exp(−nθ2/2) dθ =
√

2π/n.

• This recaptures Stirling’s approximation, since n! = 1/an:

n! ∼ nne−n
√

2πn.
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2.2 Multivariate case

Multivariate asymptotics — some quotations

• (Bender 1974) “Practically nothing is known about asymptotics for re-
cursions in two variables even when a GF is available. Techniques for
obtaining asymptotics from bivariate GFs would be quite useful.”

• (Odlyzko 1995) “A major difficulty in estimating the coefficients of mvGFs
is that the geometry of the problem is far more difficult. . . . Even rational
multivariate functions are not easy to deal with.”

• (Flajolet/Sedgewick 2009) “Roughly, we regard here a bivariate GF as a
collection of univariate GFs . . . .”

Finding multivariate GFs

• Unlike the univariate case, a constant coefficient linear recursion need not
yield a rational function. This occurs, for example, in lattice walks where
steps go forward in some dimensions and backward in others.

• The kernel method (see Chapter 2.3) is often useful for dealing with these
cases.

• Linear recursions with polynomial coefficients yield linear PDEs, which
can be hard to solve, certainly harder than the ODEs in the univariate
case.

• We will not deal with this issue in these lectures - we assume that the
GF is given in explicit form (say rational or algebraic) and concentrate on
extraction of Maclaurin coefficients.

Diagonal method

• Suppose that d = 2 and we want asymptotics from F (z, w) on the diagonal
r = s.

• The diagonal GF is F1,1(x) =
∑
n annx

n.

• We can compute, for some circle γx around t = 0,

F1,1(x) = [t0]F (x/t, t)

=
1

2πi

∫
γx

F (x/t, t)

t
dt

=
∑
k

Res(F (x/t, t)/t; t = sk(x))

where the sk(x) are the singularities satisfying limx→0 sk(x) = 0.

5



• If F is rational, then F1,1 is algebraic.

Example 4 (Delannoy lattice walks). • Consider walks in Z2, starting from
(0, 0), with steps in {(1, 0), (0, 1), (1, 1)} (Delannoy walks).

• Here F (x, y) = (1− x− y − xy)−1.

• This corresponds to the recurrence ars = ar,s−1 + ar−1,s + ar−1,s−1.

• How to compute ars for large r, s?

• For example, what does a7n,5n look like as n→∞?

Use the diagonal method?

• We could try to compute the diagonal GF Fpq(z) :=
∑
n≥0 apn,qnz

n as
above.

• This would work fairly well for p = q = 1, but is generally a bad idea (see
Chapter 13.1):

– The computational complexity increases rapidly with p+ q.

– We can’t handle irrational diagonals, or derive uniform asymptotics
(if p/q changes slightly, what do we do?).

– If d > 2, diagonals will not be algebraic in general, even if F is
rational.

– Fancier methods exist (based on holonomic or D-finite theory), but
again computational complexity is a major obstacle.

Our plan

• Thoroughly investigate asymptotic coefficient extraction, starting with
meromorphic F (z) := F (z1, . . . , zd) (pole singularities).

• Directly generalize the d = 1 analysis for poles.

• Use the Cauchy Integral Formula in dimension d.

• Use residue analysis to derive asymptotics.

• Amazingly little was known even about rational F in 2 variables. We
aimed to create a general theory.
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Some difficulties when d > 1

• Asymptotics:

– many more ways for r to go to infinity;

– asymptotics of multivariate integrals are harder to compute.

• Algebra: rational functions no longer have a partial fraction decomposi-
tion.

• Geometry: the singular variety V is more complicated.

– it does not consist of isolated points, and may self-intersect;

– real dimension of contour is d, that of V is 2d − 2, so less room to
avoid each other;

– topology of Cd \ V is much more complicated;

• Analysis: the (Leray) residue formula is much harder to use.

Outline of results

• Asymptotics in the direction r are determined by the geometry of V near
a (finite) set, crit(r), of critical points.

• For computing asymptotics in direction r, we may restrict to a dominant
point z∗(r) lying in the positive orthant. (*)

• There is an asymptotic expansion formula(z∗) for ar, where formula(z∗)
is an asymptotic series that depends on the type of geometry of V near
z∗, and each term is computable from finitely many derivatives of G and
H at z∗.

• This yields
ar ∼ formula(z∗)

where the expansion is uniform on compact subsets of directions, provided
the geometry does not change.

• The set crit(r) is computable via symbolic algebra.

• To determine the dominant point requires a little more work, but usually
not much. (*)
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Obvious questions

• Can we always find asymptotics in a given direction in this way?

• How do we find the dominant point?

• How easy is it to carry out all the computations?

• What about higher order terms in the expansions?

• How does our method compare with others?

• How does it all work? (I want to see the details)

Exercises

Exercises: finding GFs

• Find (a defining equation for) the GF for the sequence (an) defined by
a0 = 0; an = n+ (2/n)

∑
0≤k<n ak for n ≥ 1.

• (C) Find an explicit form for the GF of the sequence given by

p(n, j) =
2n− 1− j

2n− 1
p(n− 1, j) +

j − 1

2n− 1
p(n− 1, j − 1)

with initial condition p(1, 2) = 1.

• Express the GF for the sequence given by the recursion

f(r, s) = f(r − 1, s) + f(r, s− 1)− (r + s− 1)

(r + s)
f(r − 1, s− 1)

f(0, s) = 1, f(r, 0) = 1

as explicitly as you can.

Exercises: diagonal method

• Find (by hand) a closed form for the GF for the leading diagonal in the
Delannoy case (that is, compute F1,1).

• Repeat this for F2,1.

• Challenge for D-finiteness experts: for Delannoy walks, what is the largest
p + q (where gcd{p, q} = 1) for which you can compute an asymptotic
approximation of apn,qn, with an error of less than 0.01% when n = 10?
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Lecture II

Smooth points in dimension 2
Lecture 2: Overview

• If the dominant singularity is a smooth point of V, the local geometry is
simple. In the generic case, the local analysis is also straightforward. We
can derive explicit results that apply to a huge number of applications. In
dimension 2, these are even more explicit.

• We first consider the case where the dominant singularity is strictly min-
imal, meaning that F is analytic on the open polydisc D defined by z∗,
which is the only singularity on D. In this case we can use univariate
residue theory accompanied by elementary deformations of the contour of
integration.

3 Basic smooth point formula in dimension 2

Proof of generic smooth point formula — overview

• A point z of V is smooth if ∇H(z) 6= 0 (z is a simple pole).

• At a smooth point, we can reduce to an iterated integral where the inner
integral is 1-dimensional.

• We can use univariate residue theory to approximate the inner integral.

• It remains then to integrate over the remaining d− 1 variables.

• The first and last steps are unnecessary in the univariate case.

• We focus here on the d − 1 = 1 case but everything works in general
dimension.

Reduction step 1: localization

• Suppose that (z∗, w∗) is a smooth strictly minimal pole with nonzero co-
ordinates, and let ρ = |z∗|, σ = |w∗|. Let Ca denote the circle of radius a
centred at 0.

• By Cauchy, for small δ > 0,

ars = (2πi)−2
∫
Cρ

z−r
∫
Cσ−δ

w−sF (z, w)
dw

w

dz

z
.
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• The inner integral is small away from z∗, so that for some small neigh-
bourhood N of z∗ in Cρ,

ars ≈ I := (2πi)−2
∫
N

z−r
∫
Cσ−δ

w−sF (z, w)
dw

w

dz

z
.

• Note that this is because of strict minimality: off N , the function F (z, ·)
has radius of convergence greater than σ, and compactness allows us to
do everything uniformly.

Reduction step 2: residue

• By smoothness, there is a local parametrization w = g(z) := 1/v(z) near
z∗.

• If δ is small enough, the function w 7→ F (z, w)/w has a unique pole in the
annulus σ − ∂ ≤ |w| ≤ σ + δ. Let Ψ(z) be the residue there.

• By Cauchy,
I = I ′ + (2πi)−1v(z)sΨ(z),

where

I ′ := (2πi)−2
∫
N

z−r
∫
Cσ+δ

w−sF (z, w)
dw

w

dz

z
.

• Clearly |zr∗I ′| → 0, and hence

ars ≈ (2πi)−1
∫
N

z−rv(z)sΨ(z) dz.

Reduction step 3: Fourier-Laplace integral

• We make the substitution

f(θ) = − log
v(z∗e

iθ)

v(z∗)
+ i

rθ

s

A(θ) = Ψ(z∗ exp(iθ)).

• This yields

ars ∼
1

2π
z−r∗ w−s∗

∫
D

exp(−sf(θ))A(θ) dθ

where D is a small neighbourhood of 0 ∈ R.
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Fourier-Laplace integrals

• We have been led to asymptotic (λ >> 0) analysis of integrals of the form

I(λ) =

∫
D

e−λf(θ)A(θ) dθ

where:

– 0 ∈ D, f(0) = 0.

– Re f ≥ 0; the phase f and amplitude A are analytic.

– D is a neighbourhood of 0.

• Such integrals are well known in many areas including mathematical physics.
Potential difficulties in analysis: interplay between exponential and oscil-
latory decay of f , degeneracy of f , boundary issues.

Laplace approximation to Fourier-Laplace integrals

• Integration by parts shows that unless f ′(0) = 0, I(λ) is rapidly decreasing
(except for boundary terms).

• If 0 is an isolated stationary point and the boundary terms can be ne-
glected, then we have a good chance of computing an asymptotic expan-
sion for the integral.

• If furthermore f ′′(0) 6= 0 (the nondegeneracy condition), we have the nicest
formula: the standard Laplace approximation for the leading term is

I(λ) ∼ A(0)

√
2π

λf ′′(0)
.

Our specific F-L integral

• Note that

f ′(0) = −i
(
z∗v
′(z∗)

v(z∗)
− r

s

)
.

• Thus if α := r/s and α 6= zv′(z∗)/v(z∗), our “reduction” is of no use,
whereas when α = zv′(z∗)/v(z∗) (critical point equation), we definitely
get a result of order |z∗|−r|w∗|−s as r →∞ with r/s = α.

• Furthermore

f ′′(0) =
z2∗v
′′(z∗)

v(z∗)
+
z∗v
′(z∗)

v(z∗)
−
(
z∗v
′(z∗)

v(z∗)

)2

.

• So given (z∗, w∗), for this value of α we can derive asymptotics using the
Laplace approximation as above.
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Converting back to the original data

• We have made several reductions and obtained an asymptotic approxima-
tion for ars, in terms of derived data.

• The derivatives of f can be be expressed in terms of derivatives of H by
using the chain rule and solving equations.

• Substituting at the point θ = 0 and solving yields

f ′(0) = i
r

s
− i zHz

wHw

f ′′(0) = Q := −(wHw)2zHz − wHw(zHz)
2 − (wHw)2z2Hzz

− (zHz)
2w2Hww + zwHzHwHzw.

where these are evaluated at (z∗, w∗).

• The residue can also be computed in terms of H. We can now put every-
thing together to give an explicit formula in terms of original data.

Generic smooth point asymptotics in dimension 2

• Suppose that F = G/H has a strictly minimal simple pole at p = (z∗, w∗).

If Q(p) 6= 0, then when s→∞ with (rwHw − szHz)|p = 0 ,

ars = (z∗)−r(w∗)−s

[
G(p)√

2π

√
−wHw(p)

sQ(p)
+O(s−3/2)

]
.

The apparent lack of symmetry is illusory, since wHw/s = zHz/r at p.

• This, the simplest multivariate case, already covers hugely many applica-
tions.

• Here p is given, which specifies the only direction in which we can say
anything useful. But we can vary p and obtain asymptotics that are
uniform in the direction.

4 Illustrative examples

Important special case: Riordan arrays

• A Riordan array is a bivariate sequence with GF of the form

F (x, y) =
φ(x)

1− yv(x)
.

• Examples include: Pascal, Catalan, Motzkin, Schröder, etc, triangles;
sums of IID random variables; many plane lattice walk models.
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• In this case, if we define

µ(x) := xv′(x)/v(x)

σ2(x) := x2v′′(x)/v(x) + µ(x)− µ(x)2

the previous formula boils down (under extra assumptions) to

ars ∼ (x∗)
−rv(x∗)

s φ(x∗)√
2πsσ2(x∗)

where x∗ satisfies µ(x∗) = r/s.

Example 5 (Delannoy walks). • Recall that F (x, y) = (1 − x − y − xy)−1.
This is Riordan with φ(x) = (1−x)−1 and v(x) = (1+x)/(1−x). Here V is
globally smooth and for each (r, s) there is a unique solution to µ(x) = r/s.

• Solving, and using the formula above we obtain (uniformly for r/s, s/r
away from 0)

ars ∼
[

r

∆− s

]r [
s

∆− r

]s√
rs

2π∆(r + s−∆)2
.

where ∆ =
√
r2 + s2.

• Extracting the diagonal is now easy: a7n,5n ∼ ACnn−1/2 where A ≈
0.236839621050264, C ≈ 30952.9770838817.

• Compare Panholzer-Prodinger, Bull. Aust. Math. Soc. 2012.

Example 6 (Equal numbers of parts). • What is the probability that two
independently and uniformly chosen elements of a combinatorial class have
the same number of parts, k, given that they have the same total size n?

• Compare Banderier-Hitczenko, Discrete Mathematics 2012.

• If (ank) is Riordan defined by φ, v, then the numerator is

bn :=
∑
k

a2nk = [tnun]
φ(t)φ(u)

1− v(t)v(u)

• Aside: this formula gives interesting sum of squares identities..

Example 7 (Equal numbers of parts continued). • The smooth point formula
applies, provided limx→ρ− v(x) > 1, where ρ is the radius of convergence
of v. This is the supercritical case.

• In the supercritical case, let c be the positive root of v(x) = 1. Then

bn ∼ c−2n
φ(c)2√

4πµv(c)σ2
v(c)

n−1/2.
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• Aside: we can proceed analogously for arbitrary d ≥ 2.

• See M.C. Wilson, Diagonal asymptotics for products of combinatorial classes,
Combinatorics, Probability and Computing (Flajolet memorial issue).

Example 8 (Polyominoes). • A horizontally convex polyomino (HCP) is a
union of cells [a, a + 1] × [b, b + 1] in the two-dimensional integer lattice
such that the interior of the figure is connected and every row is connected.

• The GF for horizontally convex polyominoes (k = rows, n = squares) is

F (x, y) =
∑
n,k

ankx
nyk

=
xy(1− x)3

(1− x)4 − xy(1− x− x2 + x3 + x2y)
.

Example 9 (Polyominoes continued). • Here V is smooth everywhere except
(1, 0), which cannot contribute to asymptotics except when s = 0, so we
ignore that.

• For each direction with 0 < λ := k/n ≤ 1, there are 4 critical points.
Finding the dominant one symbolically is a little tricky. It lies in the first
quadrant and there is a unique such point.

• The x and y-coordinates of the dominant point are each given by a quartic
(with coefficients that are polynomial in λ). Thus they are algebraic, but
complicated to express.

• For each λ we can solve numerically if desired. The general asymptotic
shape is clear from the smooth point formula.

• More on this example in Lecture 4.

Example 10 (Symmetric Eulerian numbers). • Let ars/(r!s!) be the num-
ber of permutations of the set [r + s + 1] := {1, 2, . . . , r + s + 1} with
precisely r descents.

• The exponential GF is

F (x, y) =
ex − ey

xey − yex
=

(ex − ey)/(x− y)

(xey − yex)/(x− y)

• Here V is globally smooth. The dominant point for r = s is (1, 1) and for
other directions it is given by

(1− x)s = (y − 1)r

xey = yex.

• The smooth point formula gives the asymptotic form, and for a fixed
direction we can solve numerically.
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Exercises

Exercises: 2D smooth points

• Write down explicitly the Fourier-Laplace integral for the Delannoy ex-
ample. Is it obvious that f ′(0) = 0 from this representation?

• What extra assumptions on φ and v are required in order for the smooth
point analysis to apply to a Riordan array, and for which directions does
our method yield asymptotics?

• Given an equation of the form f(z) = zφ(f(z)) where f(x) =
∑
n anz

n,
use the Lagrange Inversion Formula to show that

nan = [xnyn]
y

1− xφ(y)
.

and hence derive first order asymptotics for an. When is the approxima-
tion valid?

• (C) Use the formula for bn above to systematically derive identities in-
volving sums of squares that are not in OEIS.

Lecture III

Higher dimensions, other
geometries
Lecture 3: Overview

• We can generalize the smooth point analysis to the case of multiple points.
In higher dimensions, there is a nice geometric interpretation in terms of
convex geometry of the logarithmic domain of convergence.

• We derive explicit formulae for multiple points. The residue computations
can be done in terms of residue forms, which enables us to derive stronger
results.

5 Higher dimensional smooth points

Higher dimensions

• The smooth point argument from the previous lecture generalizes directly
to dimension d.

• The difference is that the ensuing Fourier-Laplace integral is in dimension
d− 1.
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• There is a generalization of the Laplace approximation, namely

I(λ) ∼ A(0)

√
1

λ det Q
2π

.

• There are technical issues involved in proving this, because the phase f is
neither purely real nor purely imaginary. See Chapter 5.

Smooth formulae for general d

• z is a critical point for r iff

∇logH(z) := (z1H1, . . . , zdHd) is parallel to r.

• When z∗ is a critical point for r, then, with Q denoting the Hessian of
the derived function f in the Fourier-Laplace integral, k any coordinate
where Hk := ∂H/∂zk 6= 0:

ar ∼ z∗
−r 1√

det 2πQ(r)

G(z)

zkHk(z∗)
r
(1−d)/2
k .

• This specializes when d = 2 to the previous formula.

Example 11 (Alignments). • A (d, r1, . . . , rd)-alignment is a d-row binary
matrix with jth row sum rj and no zero columns.

• These have applications to bioinformatics.

• The generating function for the number of (d, ·)-alignments is

F (z) =
∑

a(r1, . . . , rd)z
r =

1

2−
∏d
i=1(1 + zi)

.

• Our hypotheses are satisfied: smooth, combinatorial, aperiodic. For each
r, there is a dominant point in the positive orthant.

Example 12 (Alignments continued). • For the diagonal direction we have
z∗(1̄) = (21/d−1)1 (by symmetry), so the number of “square” alignments
satisfies

a(n, n . . . , n) ∼ (21/d − 1)−dn
1

(21/d − 1)2(d2−1)/2d
√
d(πn)d−1

• Confirms a result of Griggs, Hanlon, Odlyzko & Waterman, Graphs and
Combinatorics 1990, with less work, and extends to generalized align-
ments.
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6 Geometric interpretation

Logarithmic domain

• Recall U is the domain of convergence of the power series F (z). We write
log U = {x ∈ Rd | ex ∈ U}, the logarithmic domain of convergence.

• This is convex with boundary logV = {x ∈ Rd | ex ∈ V}.

• Each point x∗ of logV yields a minimal point z∗ := exp(x∗) of V, lying in
the positive orthant.

• The cone spanned by normals to supporting hyperplanes at x∗ ∈ logV we
denote by K(z∗).

• If z∗ is smooth, this is a single ray determined by the image of z∗ under
the logarithmic Gauss map ∇logH.

log U for smooth Delannoy and polyomino examples

log U for nonsmooth example
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Interpretation of smooth asymptotic formula

• The stationary point of the F-L integral for direction r corresponds to a
critical point of V that lies on ∂U.

• The dominant point z in the first orthant is exp(x), where the outward
normal to log U at x is parallel to r.

• If V is smooth everywhere, then asymptotics in all directions are supplied
by such points.

• The quantity Q is essentially the Gaussian curvature of logV.

Alternative smooth point formula

•

ar ∼ z∗
−r

√
1

(2π|r|)(d−1)/2κ(z∗)

G(z∗)

| ∇logH(z∗)|

where |r| =
∑
i ri and κ is the Gaussian curvature of logV at log z∗.

Nonsmooth points

• Arbitrarily complicated singularities are possible. We should be satisfied
with a general procedure rather than a formula. Today we discuss multiple
points.

• The point z ∈ V is a multiple point if every small neighbourhood of z in
V is the union of finitely many smooth hypersurfaces.
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• We have good results when the intersection of these sheets is transverse.

• For multiple points that are not transverse, we also have results.

• We also have some results for cone points (Chapter 11, very difficult, not
presented this week).

7 Multiple points

A generalization of the smooth argument works

• We can follow the same reduction steps as in the smooth case. Step 1
(localization) is the same.

• Step 2 (residue): there are n poles in the annulus, and we need to express
the residue sum somehow (the individual residues are not integrable). A
trick allows us to do this via an integral over a simplex.

• Step 3 (Fourier-Laplace integral): the resulting integral is more compli-
cated, with a nastier domain and more complicated phase function.

• However in the generic (transverse) case we automatically obtain a nonde-
generate stationary point in dimension n+d−2, and can use a modification
of the Laplace approximation (which deals with boundary terms).

Generic double point in dimension 2

• Suppose that F = G/H has a strictly minimal pole at p = (z∗, w∗), which
is a double point of V such that G(p) 6= 0. Then as s → ∞ for r/s in
K(p),

ars ∼ (z∗)
−r(w∗)

−s

[
G(p)√

(z∗w∗)2 Q(p)
+O(e−c(r+s))

]
where Q is the Hessian of H.

• Note that

– the expansion holds uniformly over compact subcones of K;

– the hypothesis G(p) 6= 0 is necessary; when d > 1, can have G(p) =
H(p) = 0 even if G,H are relatively prime.

Example 13 (Queueing network). • Consider

F (x, y) =
exp(x+ y)

(1− 2x
3 −

y
3 )(1− 2y

3 −
x
3 )

which is the “grand partition function” for a very simple queueing network.
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• Most of the points of V are smooth, and we can apply the smooth point
results to derive asymptotics in directions outside the cone 1/2 ≤ r/s ≤ 2.

• The point (1, 1) is a double point satisfying the above. In the cone 1/2 <
r/s < 2, we have ars ∼ 3e2.

• Note we say nothing here about the boundary of the cone.

log U for queueing example

Example 14 (lemniscate). • Consider F = 1/H where

H(x, y) = x2y2 − 2xy(x+ y) + 5 (x2 + y2) + 14xy − 20(x+ y) + 19.

This is combinatorial, and H is an irreducible polynomial.

• All points except (1, 1) are smooth, and (1, 1) is a transverse double point.
Showing it is strictly minimal takes a little work.

• In the cone 1/2 < r/s < 2 we have ars ∼ 6, outside we use the smooth
point formula.

• Note that H factors locally at (1, 1) but not globally.

V and log U for lemniscate
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Multiple points: generic shape of formula(z∗)

• (smooth point, or multiple point with n ≤ d)

z∗
−r
∑
k

ak|r|−(d−n)/2−k.

– (smooth/multiple point n < d)

a0 = G(z∗)C(z∗)

where C depends on the derivatives to order 2 of H;

– (multiple point, n = d)

a0 = G(z∗)(det J)−1

where J is the Jacobian matrix (∂Hi/∂zj), other ak are zero;

• (multiple point, n ≥ d)

z∗
−rG(z∗)P

(
r1
z∗1
, . . . ,

rd
z∗d

)
,

P a piecewise polynomial of degree n− d.

Aside: residue forms

• Instead of computing a residue and then integrating it directly, we can
often repeat this process.

• The best way to understand this is via differential forms, in a coordinate-
free way.

• This reduces the computation from d dimensions to d− n where n is the
number of sheets.

21



• When n = d, this is the only way we know to get the exponential decay
beyond the leading term.

• When n > d, we first preprocess (see Lecture 4) to reduce to the case
n ≤ d.

Example 15 (2 planes in 3-space). • The GF is

F (x, y, z) =
1

(4− 2x− y − z)(4− x− 2y − z)
.

• The critical points for some directions lie on one of the two sheets where
a single factor vanishes, and smooth point analysis works. These occur
when min{r, s} < (r + s)/3.

• The curve of intersection of the two sheets supplies the other directions.
Each point on the line {(1, 1, 1) + λ(−1,−1,−3) | −1/3 < λ < 1} gives
asymptotics in a 2-D cone.

• For example, a3t,3t,2t ∼ (48πt)−1/2 with relative error less than 0.3% when
n = 30.

Exercises

Exercise: binomial coefficient power sums

• The dth Franel number is f
(d)
n :=

∑
k

(
n
k

)d
.

• For odd d ≥ 3, the GF is not algebraic (and probably for even d?)

• The supercritical Riordan case holds as above.

• Derive the formula mentioned in Lecture 2 for the GF of f
(d)
n , for arbitrary

d.

• Compare with the exact result when d = 6, n = 10.

Exercise: double point asymptotics

• For the queueing example, compute the asymptotics in the cone 1/2 <
r/s < 2 by an iterated residue computation, rather than using the formula
given above.

• Compute asymptotics for the queueing example in the cone 1/2 < r/s < 2
by reducing to Fourier-Laplace integral as mentioned above.

• Which method do you prefer?

• Which method can say something about asymptotics on the boundary of
the cone?
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Exercise: biased coin flips

• A coin has probability of heads p, which can be changed. The coin will
be biased so that p = 2/3 for the first n flips, and p = 1/3 thereafter. A
player desires to get r heads and s tails and is allowed to choose n. On
average, how many choices of n ≤ r + s will be winning choices?

• The answer is given by the convolution

ars =
∑

a+b=n

(
n

a

)
(2/3)a(1/3)b

(
r + s− n
r − a

)
(1/3)r−a(2/3)s−b

• Derive asymptotics for ars when 1/2 < r/s < 2.

Lecture IV

Computational aspects
Lecture 4: Overview

• All our asymptotics are ultimately computed via Fourier-Laplace integrals.
All standard references make simplifying assumptions that do not always
hold in GF applications. In some cases, we needed to extend what is
known.

• Once the asymptotics have been derived, in order to apply them in terms
of original data we require substantial algebraic computation. We have
implemented some of this in Sage. Higher order terms in the expansions
are particularly tricky.

• The algebraic computations are usually best carried out using defining
ideals, rather than explicit formulae.

8 Asymptotics of Fourier-Laplace integrals

Low-dimensional examples of F-L integrals

• Typical smooth point example looks like∫ 1

−1
e−λ(1+i)x

2

dx.

Isolated nondegenerate critical point, exponential decay
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• Simplest double point example looks roughly like∫ 1

−1

∫ 1

0

e−λ(x
2+2ixy) dy dx.

Note Re f = 0 on x = 0, so rely on oscillation for smallness.

• Multiple point with n = 2, d = 1 gives integral like∫ 1

−1

∫ 1

0

∫ x

−x
e−λ(z

2+2izy) dy dx dz.

Simplex corners now intrude, continuum of critical points.

Difficulties with F-L asymptotics

• All authors assume at least one of the following:

– exponential decay on the boundary;

– vanishing of amplitude on the boundary;

– smooth boundary;

– purely real phase;

– purely imaginary phase;

– isolated stationary point of phase, usually quadratically nondegener-
ate.

• Many of our applications to generating function asymptotics do not fit
into this framework. In some cases, we needed to extend what is known.

Example 16. • Consider

I(λ) =

∫ ε

−ε

∫ 1

0

e−λφ(p,t) dp dt

where φ(p, t) = iλt+ log
[
(1− p)v1(eit) + pv2(eit)

]
.

• This arises in the simplest strictly minimal double point situation. Recall
the vi are the inverse poles near the double point.

• The answer is

I(λ) ∼ 2π

|v′1(1)− v′2(1)|λ

• This doesn’t satisfy the hypotheses of the last slide, and so we needed to
derive the analogue of the Laplace approximation.
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9 Higher order terms

Higher order terms

• We can in principle differentiate implicitly and solve a system of equations
for each term in the asymptotic expansion.

• Hörmander has a completely explicit formula that proved useful. There
may be other ways.

• Applications of higher order terms:

– When leading term cancels in deriving other formulae.

– When leading term is zero because of numerator.

– Better numerical approximations for smaller indices.

Hörmander’s explicit formula
For an isolated nondegenerate stationary point in dimension d,

I(λ) ∼
(

det

(
λf ′′(0)

2π

))−1/2∑
k≥0

λ−kLk(A, f)

where

f(t) = f(t)− (1/2)tf ′′(0)tT

D =
∑
a,b

(f ′′(0)−1)a,b(−i∂a)(−i∂b)

L̃k(A, f) =
∑
l≤2k

Dl+k(Af l)(0)

(−1)k2l+kl!(l + k)!
.

L̃k is a differential operator of order 2k acting on A at 0 (considering the or-
der 3m zero of fm), whose coefficients are rational functions of f ′′(0), . . . , f (2k+2)(0).

Example 17 (nonoverlapping patterns). • Given a word over alphabet {a1, . . . , ad},
players alternate reading letters. If the last two letters are the same, we
erase the letters seen so far, and continue.

• For example, in abaabbba, there are two occurrences.

• How many such snaps are there, for random words?

• Answer: let ψn be the random variable counting snaps in words of length
n. Then as n→∞,

E(ψn) = (3/4)n− 15/32 +O(n−1)

σ2(ψn) = (9/32)n+O(1).
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Example 18 (snaps continued). • The details are as follows. Consider W
given by

W (x1, . . . , xd, y) =
A(x)

1− yB(x)

A(x) = 1/[1−
d∑
j=1

xj/(xj + 1)]

B(x) = 1− (1− e1(x))A(x)

e1(x) =

d∑
i=j

xj .

• The symbolic method shows that [xn1 . . . x
n
d , y

s]W (x, y) counts words with
n occurrences of each letter and s snaps.

Example 19 (snaps continued). We extract as usual. Note the first order can-
cellation in the variance computation. For d = 3,

E(ψn) =
[xn1]∂W∂y (x, 1)

[xn1]W (x, 1)

= (3/4)n− 15/32 +O(n−1)

E(ψ2
n) =

[xn1]
(
∂2W
∂y2 (x, 1) + ∂W

∂y (x, 1)
)

[xn1]W (x, 1)

= (9/16)n2 − (27/64)n+O(1)

σ2(ψn) = E(ψ2
n)− E(ψn)2 = (9/32)n+O(1).

Example 20 (vanishing numerator). • Let

F (x, y) =
∑
rs

arsx
rys =

y(1− 2y)

1− x− y
.

• Here

ars = 2

(
r + s− 2

r − 1

)
−
(
r + s− 1

r

)
.

• When r = s, this simplifies to 1
r

(
2r−2
r−1

)
, a shifted Catalan number. The

dominant point is (1/2, 1/2) by symmetry.

• We know the asymptotics of these are of order n−3/2. This is consistent,
because the numerator of F vanishes at (1/2, 1/2).

• Our general formula yields

ann ∼ 4n
(

1

4
√
π
n−3/2 +

3

32
√
π
n−5/2

)
.
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Computing numerical approximations

• Alex Raichev’s Sage implementation computes higher order expansions for
smooth and multiple points.

• The error from truncating at the kth term is of order 1/n1+k.

• The current implementation is not very sophisticated, and when k ≥ 3
and d ≥ 4, for example, usually fails to halt in reasonable time.

• To compute the kth term naively using Hörmander requires at least d3k

d× d matrix computations.

• There is surely a lot of room for improvement here.

Example 21 (Snaps with d = 3).
n 1 2 4 8

E(ψ) 0 1.000 2.509 5.521
(3/4)n 0.7500 1.500 3 6
(3/4)n− 15/32 0.2813 1.031 2.531 5.531
one-term relative error undefined 0.5000 0.1957 0.08685
two-term relative error undefined 0.03125 0.008832 0.001936

E(ψ2) 0 1.8000 7.496 32.80
(9/16)n2 0.5625 2.250 9 36
(9/16)n2 − (27/64)n 0.1406 1.406 7.312 32.63
one-term relative error undefined 0.2500 0.2006 0.09768
two-term relative error undefined 0.2188 0.02449 0.005220

σ2(ψ) 0 0.8000 1.201 2.320
(9/32)n 0.2813 0.5625 1.125 2.250
relative error undefined 0.2969 0.06294 0.03001

Example 22 (2 planes in 3-space). Using the formula we obtain

a3t,3t,2t =
1√
3π

(
1

4
t−1/2 − 25

1152
t−3/2 +

1633

663552
t−5/2

)
+O(t−7/2).

The relative errors are:

rel. err. vs t 1 2 4 8 16 32
k = 1 -0.660 -0.315 -0.114 -0.0270 -0.00612 -0.00271
k = 2 -0.516 -0.258 -0.0899 -0.0158 -0.000664 0.00000780
k = 3 -0.532 -0.261 -0.0906 -0.0160 -0.000703 -0.00000184

10 Computations in rings

Computations in polynomial rings

• In order to apply our formulae, we need to, at least:

– find the critical point z∗(r);

– compute a rational function of derivatives of H, evaluated at z∗.

• The first can be solved by, for example, Gröbner basis methods.
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• The second can cause big problems if done naively, leading to a symbolic
mess, and loss of numerical precision. It is best to deal with annihilating
ideals.

Example 23 (Why ideals are better). • Suppose x is the positive root of
p(x) := x3−x2+11x−2, and we want to compute g(x) := x5/(867x4−1).

• If we compute x symbolically and then substitute into g, we obtain a huge
mess involving radicals, which evaluates numerically to 0.193543073868354.

• If we compute x numerically and then substitute, we obtain 0.193543073867096.

• Instead we can compute the minimal polynomial of y := g(x) by Gröbner
methods. This gives

11454803y3 − 2227774y2 + 2251y − 32 = 0

and evaluating numerically yields 0.193543073868734.

Example 24 (Polyomino computation). • Recall the GF for horizontally con-
vex polyominoes is

F (x, y) =
xy(1− x)3

(1− x4)− xy(1− x− x2 + x3 + x2y)
.

• Solving {H = 0,∇H = 0} yields only the point (1, 0). Thus dominant
points in direction λ := s/r, 0 < λ < 1, are all smooth.

• The ideal in C[x, y] defined by {sxHx−ryHy, H} has a Gröbner basis giv-
ing a quartic minimal polynomial for x∗(λ), and y∗(λ) is a linear function
of x∗(λ) (also satisfies a quartic).

• Specifically, the elimination polynomial for x is

(1 +λ)x4 + 4(1 +λ)2x3 + 10(λ2 +λ− 1)x2 + 4(2λ− 1)2x+ (1−λ)(1− 2λ).

Example 25 (Polyomino computation continued). • The leading coefficient
in the asymptotic expansion has the form (2π)−1/2C where C is algebraic.

• For generic λ, the minimal polynomial of C has degree 8.

• However, for example when r = 2s there is major simplification: the
minimal polynomials for x and y respectively are 3x2 +18x−5 and 75y2−
288y + 256, etc.

• Now given (r, s), solving numerically for C as a root gives a more accurate
answer than if we had solved for x∗, y∗ above and substituted.
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10.1 Local factorizations

Computations in local rings

• In order to apply our smooth/multiple point formulae, we need to, at least:

– classify the local geometry at point z∗;

– compute (derivatives of) the factors Hi near z∗.

• Unfortunately, computations in the local ring are not effective (as far as
we know). If a polynomial factors as an analytic function, but the factors
are not polynomial, we can’t deal with it algorithmically (yet).

• Smooth points are easily detected. There are some sufficient conditions,
and some necessary conditions, for z∗ to be a multiple point. But in
general we don’t know how to classify singularities algorithmically.

Example 26 (local factorization of lemniscate). • Let H(x, y) = 19− 20x−
20y + 5x2 + 14xy + 5y2 − 2x2y − 2xy2 + x2y2, and analyse 1/H.

• Here V is smooth at every point except (1, 1), which we see by solving the
system {H = 0,∇H = 0}.

• At (1, 1), changing variables to h(u, v) := H(1 + u, 1 + v), we see that
h(u, v) = 4u2 + 10uv + 4v2 +C(u, v) where C has no terms of degree less
than 3.

• The quadratic part factors into distinct factors, showing that (1, 1) is a
transverse multiple point.

• Note that our double point formula does not require details of the indi-
vidual factors. However this is not the case for general multiple points.

Reduction of multiple points

• If we have n > d transverse smooth factors meeting at a point p, we can
reduce to the case n ≤ d at the cost of increasing the number of summands.

• If we have repeated factors, we can reduce to the case of distinct factors
using exactly the same idea.

• If this is not done, we arrive at Fourier-Laplace integrals with non-isolated
stationary points, which are hard to analyse.

• However after doing the above we always reduce to the case of an isolated
point, which we can handle.

Example 27 (Algebraic reduction, sketch). • Let H = H1H2H3 := (1 −
x)(1− y)(1− xy).
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• In the local ring at (1, 1), each factor should be in the ideal generated by
the other two (Nullstellensatz).

• In fact it is true globally, since H3 = H1 + H2 −H1H2. (Nullstellensatz
certificate).

• Thus eventually we obtain

F =
1

H1H2H3
= · · · = 2− y

(1− y)(1− xy)2)
+

1

(1− x)(1− xy)2
.

• The next step, reducing the multiplicity of factors can be done at the
residue stage (residue for higher order pole) or by other methods, and is
both easy and algorithmic.

• Thus we can reduce to a (possibly large) sum of (polynomial multiples of)
transverse double point asymptotic series.

Exercises

Exercises
A computer algebra system will help for some of these.

• Use Hörmander’s formula to compute L0, L1, L2 for F (x, y) = (1−x−y)−1,
at the minimal point (1/2, 1/2). This gives asymptotics for the main
diagonal coefficients

(
2n
n

)
.

• The small change from y(1 − 2y)/(1 − x − y) to (1 − 2y)/(1 − x − y)
should make no difference to our basic computational procedure. Show
that, nevertheless, the results are very different. Explain.

• Compute the expectation and variance of the number of snaps in a stan-
dard deck of cards (no asymptotics required).

• Carry out the polyomino computation in detail.

Lecture V

Extensions
Overview

• We first look in turn at some of our standard assumptions in force over
the last few lectures, and discuss what happens when each is weakened.

• Removing the combinatorial assumption leads to topological issues which
we address in the framework of stratified Morse theory.
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• The Fourier-Laplace integrals arising from the reductions can be more
complicated that those previously studied.

• We then look at going beyond the class of rational (meromorphic) singu-
larities.

11 Easy generalizations

Assumption: unique smooth dominant simple pole

• If there is periodicity, we typically obtain a finite number of contributing
points whose contributions must be summed. This leads to the appropriate
cancellation. A routine modification.

• A toral point is one for which every point on its torus is a minimal singu-
larity (such as 1/(1 − x2y3). These occur in quantum random walks. A
routine modification.

• If the dominant point is smooth but H is not locally squarefree, then
we obtain polynomial corrections that are easily computed. A routine
modification.

Example 28 (Periodicity). • Let F (z, w) = 1/(1− 2zw + w2) be the gener-
ating function for Chebyshev polynomials of the second kind.

• For directions (r, s) with 0 < s/r < 1, there is a dominant point at

p =

(
r√

r2 − s2
,

√
r − s
r + s

)
.

• There is also a dominant point at −p. Adding the contributions yields

ars ∼
√

2

π
(−1)(s−r)/2

(
2r

√
s2 − r2

)−r (√ s− r
s+ r

)−s
√

s+ r

r(s− r)

when r + s is even and zero otherwise.

Assumption: transversality

• If sheets at a multiple point are not transversal, the phase of the Fourier-
Laplace integral vanishes on a set of positive dimension.

• If this occurs because there are too many sheets, the reduction from Lec-
ture 4 works.

• If it occurs because the dimension of the space spanned by normals is just
too small, then it is a little harder to deal with.
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• Each term in our expansions depends on finitely many derivatives of G
and H, so if sheets have contact to sufficiently high order, the results are
the same as if they coincided. Thus if we can reduce in the local ring, all
is well. Otherwise we may need to attack the F-L integral directly.

Example 29 (tangential curves). • Suppose that V looks like two curves in-
tersecting at a strictly minimal point (1, 1), with branches y = gj(x).

• Suppose further that the first derivatives are equal and f ′′j (θ) = −djθ2 +
. . . .

• Then the cone K of directions is a single ray and

ars ∼
2G(1, 1)

√
s√

2π
(√
d1 +

√
d2
) .

• When d0 = d1 this gives the same result as a single repeated smooth
factor.

Assumption: no change in local geometry

• If the phase of the Fourier-Laplace integral vanishes to order more than
2, more complicated behaviour ensues.

• If the order of vanishing is 2 everywhere except for 3 at a certain direction,
for example, we obtain a phase transition and Airy phenomena.

Example 30 (Airy phenomena). • The core of a rooted planar map is the
largest 2-connected subgraph containing the root edge.

• The probability distribution of the size k of the core in a random planar
map with size n is described by

p(n, k) =
k

n
[xkynzn]

xzψ′(z)

(1− xψ(z))(1− yφ(z))
.

where ψ(z) = (z/3)(1− z/3)2 and φ(z) = 3(1 + z)2.

• In directions away from n = 3k, our ordinary smooth point analysis holds.
When n = 3k we can redo the F-L integral easily and obtain asymptotics
of order n−1/3.

• Determining the behaviour as we approach this diagonal at a moderate
rate is harder (Manuel Lladser PhD thesis), and recovers the results of
Banderier-Flajolet-Schaeffer-Soria 2001.
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12 Removing the combinatorial assumption

Non-combinatorial case: Overview

• Some applications require us to consider more general GFs, with coeffi-
cients that may not be nonnegative. Finding dominant points is now much
harder.

• Going back to Cauchy’s integral, we use homology rather than homotopy
to compute its asymptotics. Using the method of steepest descent as for-
malized by Morse theory, we can do this almost algorithmically in the
smooth case. The integral is determined by critical points which are the
same as the critical points we saw previously.

• When d = 2, this has been implemented algorithmically, but not for higher
d.

• There is a lesser known version of Morse theory due to Whitney, called
stratified Morse theory, which deals with singularities. There is substantial
discussion of this in the book.

Cauchy integral formula is homological

• We have

ar = (2πi)−d
∫
T

z−r−1F (z) dz

where dz = dz1 ∧ · · · ∧ dzd and T is a small torus around the origin.

• We aim to replace T by a contour that is more suitable for explicit com-
putation. This may involve additional residue terms.

• The homology of Cd \ V is the key to decomposing the integral.

• It is natural to try a saddle point/steepest descent approach.

Stratified Morse theory

• Consider hr(z) = r · Log(z) as a height function; try to choose contour to
minimize maxh.

• Variety V decomposes nicely into finitely many cells, each of which is a
complex manifold of dimension k ≤ d − 1. The top dimensional stratum
is the set of smooth points.

• The critical points are those where the restriction of h to a stratum has
derivative zero. Generically, there are finite many.
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• The Cauchy integral decomposes into a sum∑
ni

∫
Ci

z−r−1F(z) dz

where Ci is a quasi-local cycle for z∗
(i) ∈ crit(r).

• Key problem: find the highest critical points with nonzero ni. These are
the dominant ones.

Bicolored supertrees

Example 31. • Consider

F (x, y) =
2x2y(2x5y2 − 3x3y + x+ 2x2y − 1)

x5y2 + 2x2y − 2x3y + 4y + x− 2
.

for which we want asymptotics on the main diagonal.

• The critical points are, listed in increasing height, (1+
√

5, (3−
√

5)/16), (2, 18 ), (1−√
5, (3 +

√
5)/16).

• In fact (2, 1/8) dominates. The analysis is a substantial part of the PhD
thesis of Tim DeVries (U. Pennsylvania).

• The answer:

ann ∼
4n
√

2Γ(5/4)

4π
n−5/4.

13 Algebraic singularities

Inverting diagonalization

• Recall the diagonal method shows that the diagonal of a rational bivariate
GF is algebraic.

• Conversely, every univariate algebraic GF is the diagonal of some rational
bivariate GF.

• The latter result does not generalize strictly to higher dimensions, but
something close to it is true.

• Our multivariate framework means that increasing dimension causes no
difficulties in principle, so we can reduce to the rational case.

• The mathematical idea behind this is resolution of singularities.
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Safonov’s basic construction

• Suppose that F is algebraic and its defining polynomial P satisfies

P (w, z) = (w − F (z))ku(w, z)

where u(0, 0
¯
) 6= 0 and 1 ≤ k ∈ N.

• Define

R(z0, z) =
z20P1(z0, z0z1, z2, . . . )

kP (z0, z0z1, z2, . . . )

R̃(w, z) = R(w, z1/w, z2, . . . zd).

• By the Argument Principle

1

2πi

∫
C

R̃(w, z)
dw

w
=
∑

Res R̃(w, z) = F (z).

• Higher order terms are essential: the numerator of R̃ always vanishes at
the dominant point. The Catalan example from Lecture 4 was created
using this method.

Safonov’s general construction

• In general, apply a sequence of blowups (monomial substitutions) to reduce
to the case above.

• This is a standard idea from algebraic geometry: resolution of singularities.

• Definition: Let F (z) =
∑

r arz
r have d+ 1 variables and let M be a d× d

matrix with nonnegative entries. The M -diagonal of F is the formal power
series in d variables whose coefficients are given by br2,...rd = as1,s1,s2,...sd
and (s1, . . . , sd) = (r1, . . . , rd)M .

• Theorem: Let f be an algebraic function of d variables. Then there is a
unimodular integer matrix M with positive entries and a rational function
F in d+ 1 variables such that f is the M -diagonal of F .

• The example x
√

1− x− y shows that the main diagonal cannot always be
used.

Example 32 (Narayana numbers). • The bivariate GF F (x, y) for the Narayana
numbers

ars =
1

r

(
r

s

)(
r − 1

s− 1

)
satisfies P (F (x, y), x, y) = 0, where

P (w, x, y) = w2 − w [1 + x(y − 1)] + xy

= [w − F (x, y)]
[
w − F (x, y)

]
.

where F is the algebraic conjugate.
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• Using the above construction we obtain the lifting

G(u, x, y) =
u(1− 2u− ux(1− y))

1− u− xy − ux(1− y)
.

with brrs = ars.

Example 33 (Narayana numbers continued). • The above lifting yields asymp-
totics by smooth point analysis in the usual way. The critical point equa-
tions yield

u = s/r, x =
(r − s)2

rs
, y =

s2

(r − s)2
.

and we obtain asymptotics starting with s−2. For example

a2s,s ∼
16s

8πs2
.

• Interestingly, specializing y = 1 commutes with lifting (and yields the
shifted Catalan numbers as in Lecture 4). Is this always true?

Technical issues

• Safonov’s lifting often takes us away from the combinatorial case. There-
fore the Morse theory approach will probably be needed.

• Dominant singularities can be at infinity.

• There are other lifting procedures, some of which go from dimension d to
2d. They seem complicated, and we have not yet tried them in detail.

• However in some cases they work better - for example 2xy/(2 +x+y) is a
lifting of x

√
1− x, whereas Safonov’s method appears not to work easily.

13.1 Further work

Possible research projects

• Systematically compare the diagonal method and our methods.

• Systematically generate sums of squares identities and include them in
OEIS.

• Develop a good theory for algebraic singularities (using resolution of sin-
gularities somehow).

• Improve efficiency of algorithms for computing higher order terms in ex-
pansions. Implement them in Sage.

• Develop better computational methods for computing symbolically with
symmetric functions.

• Make the computation of dominant points algorithmic in the noncombi-
natorial case.
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Exercises

Exercises

• Prove that the numerator of Safonov’s lifting must vanish at the dominant
point, as claimed above.

• Show that x
√

1− x− y cannot occur as the leading diagonal of a rational
function in 3 variables, as claimed above.

• Derive asymptotics for the following GF (Vince and Bóna 2012)

F (x, y) = 1−
√

(1− x)2 + (1− y)2 − 1

• In the Cauchy integral for
√

1− x, make a substitution to convert to an
integral of a rational function. How general is this procedure?
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