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Example (A test problem)

» How many n-step nearest neighbour walks are there, if walks
start from the origin, are confined to the first quadrant, and

take steps in {(0,—1),(—1,1),(1,1)}? Call this a,,.
» Conjectured by Bostan & Kauers:

n | 3
an~3 m
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Overview

» Consider nearest-neighbour walks in Z%, defined by a set
S C {~1,0,1}%\ {0} of allowed steps. Define

S;=1{i:(i,j) € S} for each j € {—1,0,1}.

» We can consider unrestricted walks, walks restricted to a
halfspace, and walks restricted to the positive orthant. The
last is the most challenging, and we concentrate on it today.

» We can keep track of the endpoint, and also the length. This
gives a d + l-variate sequence a, , with generating function
Znn Ar X"t

» Summing over r gives a univariate series > f(n)t".

» We seek in particular the asymptotics of f(n).
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Previous work, |

» Bousquet-Mélou & Mishna (2010) showed that for d = 2
there are 79 inequivalent nontrivial cases.

» They introduced the symmetry group G(.S) and showed that
this is finite in exactly 23 cases.

» They used this to show for 22 cases that F' is D-finite. For 19
of these, used the orbit sum method and for 3 more, the half
orbit sum method.
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Previous work, [l

» Bostan & Kauers (2009): for d = 2, conjectured asymptotics
for f(n) in the 23 cases.

» Bostan & Kauers (2010): for d = 2, explicitly showed the
23rd case (Gessel walks) has algebraic f.

» Melczer & Mishna (2014): for arbitrary d, G maximal, derived
asymptotics for f(n).

» Bostan, Chyzak, van Hoeij, Kauers & Pech: for d = 2,
expressed f in terms of hypergeometric integrals in the 23
cases. We use their numbering of the cases.

» Open: proof of asymptotics of f(n) for cases 5-16. We solve
that here.
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>

Robin Pemantle and | derived general formulae for
asymptotics of coefficients of rational functions F' = G/H in
dimension d (see the book).

Analysis is based on the geometry of the singular variety
(zero-set of H) near contributing critical points z, depending
on the direction r.

The ultimate justification involves Morse theory, but this can
be mostly ignored in the aperiodic combinatorial case.

We deal in particular with multiple points (locally a transverse
intersection of k smooth factors). If 1 < k < d, formulae are
of the form

ar ~z 1Y by|[r|| TR
l
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Diagonals
» The orbit sum approach yields F' as the positive part of a
rational series.
» This is the leading diagonal of a closely related series F'.
» The GF for walks restricted to the quarter plane has the form

zyP(z !,y 1)
(1 —toyS(z=Ly=1)) (1 —z)(1 —y)

f = diag
where
S(a,y)= Y a'y
(3,7)€S

P(z,y) = Z sign(o)o(zy).

oceG
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and thus this factor is everywhere smooth.
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Singularities

» The factor Hy := 1 — tzyS(z~!, y~1) is a polynomial. Its
gradient simplifies to (—1 4 ty0S/0x, —1 + tx0dS/dy, —1)
and thus this factor is everywhere smooth.

» Other singularities come from factors of (1 — z), (1 —y) and
possibly from clearing denominators of zyP(x~1,y~1).

» When F' is combinatorial, there is a dominant singularity for
direction 1 lying in the positive orthant.
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» H; contains a smooth critical point for the direction (1,1,1)
if and only if V S(z~1,y71) = 0.

» This occurs if and only if

S -2y =0
i=—1,j

=1,
SRS Sy
1€S5_1 1€851
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Critical points

» H; contains a smooth critical point for the direction (1,1,1)
if and only if V S(z~1,y71) = 0.
» This occurs if and only if

S oy a3 =0

i=—1,j i=1j
E a:’—y_Qg z'=0.
€51 1€S51

» If S has a vertical axis of symmetry, then (22 — 1) > Y =0.
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Structure of GG

» Write

S(z,y) =y A 1(x) + Ao(z) + yAi (z)

=27 B_i(y) + Bo(y) + zBi(y).
» G is generated by the involutions (considered as algebra
homomorphisms)

(33, y) s (x—lB—l(y)

Bi(y) y)
s (e

1A-1(z)
Ai(z) )
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Structure of GG
» Write

S(x,y) =y "A_1(x) + Ao(z) + yAi(z)
=2 "B_1(y) + Bo(y) + 2B1(y).

» G is generated by the involutions (considered as algebra
homomorphisms)

o (22100 )

Bi(y)

e (o )

> If S has vertical symmetry then By = B_1, these maps
commute, and G has order 4.
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Vertical axis of symmetry, |

>

This covers Cases 1-16. The possible denominators from P
are z2 + 1,22 + x + 1. Neither can contribute because the
problem is combinatorial and aperiodic. The dominant point
has x = 1.

The numerator vanishes iff S| = [S_;|. In that case
cancellation occurs and k = 1. This solves Cases 1-4: leading
term C|S|"n~1/2.

Otherwise, there is a double point (k = 2) at (1,1,]S]). Its
contribution is nonzero if and only if the numerator does not
vanish and the direction (1,1,1) lies in a certain cone.

The direction lies in the cone iff 95/0x(1,1) > 0, iff

|S1] > |S=1| (happens in Cases 1-10).

Thus for Cases 5-10 we have leading term C|S|"n~!.
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» There is a smooth critical point where y? = |S1|/|S_1], so y is
a quadratic irrational at worst.

» . The exponential rate is

S(Ly™") = |So| +y S1| + y|S-1| = |So| + 2v/|S1][S-1].

» The arithmetic-geometric mean inequality shows that this is
smaller than |S|, with equality if and only if |S1| = |S_1].
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Vertical axis of symmetry, Il

v

There is a smooth critical point where y? = |S1|/|S_1], so y is
a quadratic irrational at worst.

» . The exponential rate is
S(Ly™) = [Sol +y~'[S1] + ylS-1] = |So| + 2V/[S1[[S-1].
» The arithmetic-geometric mean inequality shows that this is

smaller than |S|, with equality if and only if |S1| = |S_1].
This holds in Cases 11-16.

v
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Interesting smooth point situation

» Normally the polynomial correction starts with n~!, since
(3 —1)/2 = 1. The Ith term is of order n~".

» If the numerator vanishes at the dominant point, the [ =1
term vanishes.

» This happens in all cases 11-16. The numerator simplifies at
the smooth point to (1 + z)(1 — y?|S_1]/|S1|, which is zero
from the critical point equation for y.

» The leading term asymptotic is C(|So| + 2+/]S1]]S_1])"n 2.
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Explanation

» The key quantity for walks with vertical symmetry is the
difference between the upward and downward steps.

» If this is positive, there are more possible walks that don't
cross the boundary, so the quarter plane restriction is
encountered less often. Asymptotics come from the point
(1,1,1/]S)).

> If negative, asymptotics come from the highest smooth point.

> This explains Cases 1-16 in a unified way.
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Other cases

» Cases 17-19 also follow as above, with slightly different
formulae and more work.

> Cases 2023 are harder. We don't have a nice diagonal
expression, and the conjectured asymptotics show that
analysis will be trickier.
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Possible future work

» Higher dimensions: d = 3 has been studied empirically by
Bostan, Bousquet-Mélou, Kauers & Melczer. The orbit sum
method appears to work rather rarely, however.

» Higher dimensions: weaken the condition of MM2014, but
keep it nice enough that results for general dimension can be
derived.
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Appendix: why not use the diagonal method?

» For general ay, gn,rn We could try to compute the diagonal GF
Fogr(2) := 2,50 Gpn,gn,rnz" using the diagonal method as in
Stanley.

» However the diagonal is D-finite and there are major
computational challenges in computing asymptotics.

» See Raichev & Wilson (2007), “A new diagonal method ...".
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