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Example

I How many n-step lattice walks are there, if walks start from
the origin, are confined to the first quadrant, and take steps in
{S,NE,NW}? Call this an.

I Now reverse the steps to get {N,SE, SW}, call analogous
quantity bn.

I Conjectured by Bostan & Kauers (2009):

an ∼ 3n
√

3

4πn

bn ∼ (2
√

2)n
θ(n)

πn2

θ(n) =

{
24
√

2 if n is even

32 if n is odd.

I Such constrained walk questions have been very actively
studied in the last decade. They yield many natural examples
of D-finite sequences.
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Overview — walks

I Consider nearest-neighbour walks in Z2, defined by a set
S ⊆ {−1, 0, 1}2 \ {0} of short steps.

I We can consider restrictions, e.g. halfspace, nonnegative
quadrant, return to x or y-axis, return to the origin.

I We keep track of the endpoint, and also the length. This gives
a trivariate sequence ar,s,n with generating function (GF)

C(x, y, t) :=
∑
r,s,n

ar,s,nx
rystn.

I Summing over r, s gives a univariate series
C(1, 1, t) := f(t) =

∑
n fnt

n.

I We seek in particular the asymptotics of fn.
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A hierarchy of generating functions from lattice walks

I Unrestricted walks — rational functions — have been
understood “forever”.

I Walks confined to a halfspace — algebraic functions —
understood since Bousquet-Mélou & Petkovšek (2000), using
the kernel method.

I 23 classes of walks confined to a quadrant — D-finite
functions — satisfy a linear ODE with polynomial coefficients
— reasonably well understood.

I 56 quadrant classes, steps that are not small — non D-finite
functions — poorly understood.
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the kernel method.

I 23 classes of walks confined to a quadrant — D-finite
functions — satisfy a linear ODE with polynomial coefficients
— reasonably well understood.

I 56 quadrant classes, steps that are not small — non D-finite
functions — poorly understood.



A hierarchy of generating functions from lattice walks

I Unrestricted walks — rational functions — have been
understood “forever”.

I Walks confined to a halfspace — algebraic functions —
understood since Bousquet-Mélou & Petkovšek (2000), using
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Previous work on walks in the quadrant, I

I Bousquet-Mélou & Mishna (2010): there are 79 inequivalent
nontrivial cases.

I They introduced a symmetry group G(S) and showed that
this is finite in exactly 23 cases.

I They used finiteness to show for 22 cases that C(x, y, t) is
D-finite. For 19 of these, used the orbit sum method and for 3
more, the half orbit sum method.

I Bostan & Kauers (2010) explicitly showed that for the 23rd
case (Gessel walks), f(t) is algebraic (and hence D-finite).

I In the other 56 cases, f(t) is indeed apparently not D-finite.
So there are 23 nice inequivalent cases to discuss now.
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Previous work on walks in the quadrant, II

I Bostan & Kauers (2009): conjectured asymptotics for fn in
the 23 nice cases. Four of these were dealt with by direct
attack.

I Bostan, Chyzak, van Hoeij, Kauers & Pech (2016): expressed
f(t) in terms of hypergeometric integrals in 19 of these cases.

I Melczer & Mishna (2014): derived rigorous asymptotics for fn
in 4 cases.

I Open: proof of asymptotics of fn for 15 cases. We solve that
here via a unified approach.
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Outline of approach

I Can in fact get results for weighted walks in general
dimension.

I Express fn as diagonal coefficients of d+ 1-variable rational
GF F , using the kernel method, orbit sum method, and series
manipulations.

I Use mvGF theory of Pemantle and Wilson to extract
asymptotics.

I Difficulty 1: singular set of F causes problems and F may
have nonpositive coefficients.

I Difficulty 2: numerator often vanishes at points contributing
to asymptotics, making general formulae hard to derive.

I Solution 1: ask Mireille Bousquet-Mélou!

I Solution 2: work hard.
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General dimension

I Melczer-Mishna analysed the case where S is symmetric over
all d axes.

I We analyse the case with d− 1 axes of symmetry (with
weights having the same symmetry).

I Examples show that with fewer than d− 1 symmetries, the GF
is not D-finite, so such an approach must fail.

I We write S(z) =
∑

i∈S wiz
i = zdB +Q+ zdA where z = z−1

and A,B,Q are independent of zd.

I The drift is the difference B(1)−A(1) between the weight of
positive and negative steps in the asymmetric direction.
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Theorem

F (1, t) = ∆

(
G(z, t)

H(z, t)

)
,

where

G(z, t) = (1 + z1) · · · (1 + zd−1) (1− tz1 · · · zd (Q+ 2zdA))

H(z, t) = (1− zd)
(

1− tz1 · · · zdS(z)
)(

1− tz1 · · · zd (Q+ zdA)
)
,

and

S(z) = S(zd̂, zd) = zdB
(
zd̂
)

+Q
(
zd̂
)

+ zdA
(
zd̂
)
.



Theorem (Positive Drift Asymptotics)

Let
bk =

∑
i∈S,ik=1

wi =
∑

i∈S,ik=−1
wi.

for 1 ≤ k < d. Then

fn ∼ S(1)n · n
−(d−1)

2 ·

[(
1− A(1)

B(1)

)(
S(1)

π

) d−1
2 1√

b1 · · · bd−1

]
.



Theorem (Negative Drift Asymptotics)

Let ρ =
√

A(1)
B(1) , let bk(zk̂) := [zk]S(z) = [z−1k ]S(z) and let

Cρ :=
S(1, ρ) ρ

2πd/2A(1)(1− 1/ρ)2
·

√
S(1, ρ)d

ρ b1(1, ρ) · · · bd−1(1, ρ) ·B(1)
.

I If Q 6= 0 then

fn ∼ S(1, ρ)n · n−d/2−1 · Cρ.

I If Q = 0 then

fn ∼ n−d/2−1 ·
[
S(1, ρ)n · Cρ + S(1,−ρ)n · C−ρ

]
.



Example

Consider the model defined by S = {(1, 0), (−1, 0), (0, 1), (0,−1)},
where the south step (0,−1) has weight a > 0 and the north step
(0, 1) has weight b > 0 (when a and b are integers we can think of
having multiple copies of each step with different colours). Then

A(x) = a Q(x) = x+ x B(x) = b

and

sn ∼



(
2 + 2

√
ab
)n
· n−2 · 2a1/4(1+

√
ab)

2

πb3/4(
√
a−
√
b)

2 : b < a

(2 + 2a)n · n−1 · 2(1+a)√
a π

: b = a

(2 + a+ b)n · n−1/2 · (a+b)
√
2+a+b

b
√
π

: b > a

with the different cases corresponding to negative drift, zero drift,
and positive drift.



S Asymptotics S Asymptotics S Asymptotics

4
π ·

4n

n

√
3

2
√
π
· 3n√

n
An
π ·

(2
√

2)n

n2

2
π ·

4n

n
4

3
√
π
· 4n√

n
Bn
π ·

(2
√

3)n

n2

√
6
π ·

6n

n

√
5

3
√

2π
· 5n√

n
Cn
π ·

(2
√

6)n

n2

8
3π ·

8n

n

√
5

2
√

2π
· 5n√

n

√
8(1+

√
2)7/2

π · (2+2
√

2)n

n2

2
√

2
Γ(1/4)

· 3n

n3/4
2
√

3
3
√
π
· 6n√

n

√
3(1+

√
3)7/2

2π · (2+2
√

3)n

n2

3
√

3√
2Γ(1/4)

· 3n

n3/4

√
7

3
√

3π
· 7n√

n

√
570−114

√
6(24
√

6+59)
19π

· (2+2
√

6)n

n2

√
6
√

3
Γ(1/4)

· 6n

n3/4
3
√

3
2
√
π
· 3n

n3/2
8
π ·

4n

n2

4
√

3
3Γ(1/3)

· 4n

n2/3
3
√

3
2
√
π
· 6n

n3/2

Table: Asymptotics for the 23 D-finite models.

An =

{
24
√
2 : n even

32 : n odd
, Bn =

{
12
√
3 : n even

18 : n odd
, Cn =

{
12
√
30 : n even

144/
√
5 : n odd



Extensions

I Small modifications yield results for walks constrained to
return to an axis or the origin.

I Walks in Weyl chambers can be treated in this way.



Publication reform

I Pressure is building for complete conversion of the journal
system to open access (e.g. Plan S from European research
funders)

I Large commercial publishers have incentives not aligned with
scholarship or the interests of readers and authors, and
provide overall low quality service for very high prices.

I The journal market is dysfunctional (not properly
competitive).

I I am associated with several organizations aiming to improve
this: MathOA, Free Journal Network, Publishing Reform
Forum. If you would like to help or learn more, please contact
me.
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