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Recent results

Basic setup

I We consider a voting rule (social choice function) that
aggregates preferences of a set V of n voters.

I Each voter submits a total order of the m candidates.

I We break ties symmetrically: choose a tied winner uniformly
at random. This is not an essential assumption but makes
computation somewhat easier.

I We can describe the individual votes by a profile, an ordered
list of the individual votes. There are (m!)n of these.

I For anonymous voting rules there is symmetry between
candidates, so we need only the succinct input (voting
situation). List the m! possible votes in some way, and then
list the number ni of voters with ordering i. There are(
n+m!−1

n

)
of these.
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Recent results

Manipulation

I Suppose that some subset S of voters each submit a vote that
differs from their sincere preference, and thereby achieve a
better result than if they had voted sincerely (assuming all
other voters vote sincerely each time). We say that the profile
is manipulable by S.

I A profile is manipulable by some S if and only if the sincere
strategy does not give a strong Nash equilibrium of the
associated game.

I Gibbard-Satterthwaite theorem says that if m ≥ 3 and the
rule is fair to voters and candidates, then it is manipulable in
some situation.

I Since manipulation is essentially unavoidable, how can we
minimize its impact?
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Recent results

Manipulation example

I Candidates a, b, c and Borda rule (each voter gives his 1st
choice 2 points, 2nd gets 1 point, 3rd gets 0).

I Voting situation: 2 bac, 2 abc, 2 acb, 3 cba. Sincere scores are
10, 9, 8 for a, b, c.

I If a cba changes vote to bca, then a and b tie, while if 2 cba
change in that way, b wins clearly.

I If both bac changed to bca, then c would win, and this goes
against the preferences of such voters, so they can’t
manipulate by so voting (nor in any other way).

I Manipulability can be described by systems of integer linear
(in)equalities for most commonly used rules, including all
scoring rules, Copeland’s rule, etc.
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Recent results

Linear system example: Borda, m = 3
I Suppose that the sincere election result is |a| > |b| ≥ |c|, and

we want to manipulate in favour of b.

I Assuming other voters vote naively, an optimal strategy is for
some bac voters (say y) and all cba to vote bca.

I Let |a|′ denote a’s score after a strategic attempt as above.
Then the attempt is successful if and only if |b|′ > |a|′, |c|′.
We can express |a|′ as a linear combination of the ni and y,
and also eliminate y. This yields ni ≥ 0,

∑
i ni = n, and

0 ≤ n1 + n2 − n3 − n4

0 ≤ n3 + n4 − n5 − n6

0 ≤ −n1 − n2 + n3 + n4 + n6

0 ≤ −n1 − n2 + 2n3 + 2n4 − n5 + 2n2.

I Can do this for any coalition X (above is X = V ).

Mark C. Wilson
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Recent results

IAC culture computations

I Each voting situation is equally likely. A special case of a
Polya-Eggenberger distribution, used to model contagion.

I Computations reduce to counting lattice points in polytopes,
since each point has the same probability.

I There is a large theory of such counting (e.g. Ehrhart
polynomials), with nice algorithms e.g. (Barvinok), and
software available (e.g. LattE).

I Sample result: let P (n) be the probability that manipulation
by some coalition is possible, for Borda with m = 3 under
IAC. Then P (n) is the ration of quasipolynomials in n with
leading coefficient 132953/264600 ≈ 0.5024678760.

I PrWi2007 explains this kind of result in detail.
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Recent results

IC culture computations

I Each voter chooses a profile uniformly at random.

I Computations generally reduce to central limit approximations.

I Sample results: for fixed m and every positional rule except
antiplurality, a random profile is manipulable with probability
that approaches 1 exponentially fast as n→∞.

I Such results are “classical”.
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Recent results

Some measures of manipulability

I Indicator: is the situation manipulable by some coalition, of
unspecified size? Used in the vast majority of papers until the
last few years. Does not discriminate between large and small
coalitions.

I Size of smallest manipulating coalition for the given situation.
Used in our papers and introduced by Chamberlin (1985).
Better than previous one, but doesn’t take into account the
prevalence of coalitions of small size.

I Is the situation manipulable by k or fewer voters?

I Averages of these over all situations according to the culture.
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Recent results

A new measure of manipulability (RPW201x)

I For a fixed situation, choose voters randomly without
replacement, until our set first contains a manipulating
coalition.

I We can think of an instigator of manipulation, who does not
know the preferences of the voters, but wants to disrupt the
election by manipulating. This agent interviews voters one by
one until a coalition is found.

I Let Q be the (defective) random variable thus obtained.
I It is easy to show that Pr(Q ≤ k) equals the probability that

a randomly chosen k-subset of V contains a manipulating
coalition.

I Thus Q measures both the size and prevalence of
manipulating coalitions. It contains more information than
many other measures.
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Recent results

Results for scoring rules

I Exact computation of distribution function of M (resp. Q) for
m = 3 up to n = 150 (resp. n = 25) for 6 rules, under 2
probability distributions. (PrWi2007, RPW201x)

I Under uniform distribution (IC culture), an analytic description
of asymptotic (in n) size of M for any fixed m. (PrWi2009)

I A heuristic argument as to why we should have Q ≤ CM
with high probability (under IC), where C depends on the rule
and m. (Future work by PhD student)
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Recent results

Asymptotics of M under IC for positional rules: results

I For fixed m, and fixed weight vector w, M/
√
n converges in

distribution to a random variable Aw.

I The form of Aw is C(m,w)B for some absolute random
variable B (except for antiplurality).

I Hence we can compare rules according to the constants C.

I The plurality rule is always dominated.

I The Borda rule is the most resistant to very small coalitions.

I For most m, the m/2-approval rule dominates the others.

I There is approximate symmetry between plurality and
antiplurality for m ≥ 6, contrary to the situation for m = 3.
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Recent results

Asymptotics of M under IC for positional rules: proof
sketch

I The scores obey a multivariate central limit theorem, with
mean and covariances of order n.

I Manipulation is relatively easy because much weight is placed
on situations where scores are nearly tied.

I The integer linear program describing manipulability can be
relaxed by removing integrality.

I We may simplify much more by restricting to manipulations
where b overtakes a, and ignoring other candidates.

I Linear programming duality leads to a problem we can solve
explicitly.
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Recent results

Extensions

I Numerical results indicate that Copeland’s rule M and Q are
(much?) larger than for positional rules. What are the
asymptotics, for example under IC?

I Prove or disprove conjecture on Q ≤ CM .

I Extend results on positional rules to the class of Conitzer and
Xia.
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Assumptions

Standard assumptions in the COMSOC literature

I Computational complexity theory provides a good measure of
manipulability.

I Manipulation is something to be minimized.

In my opinion, both of these are wrong, especially the second.
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Assumptions

Computational complexity: pro and con

I Under weak assumptions, (unweighted) voting rules seem to
be easy to manipulate on average (Conitzer-Sandholm,
Friedgut-Kalai-Nisan, Dobzinski-Procaccia, Conitzer-Xia).

I When m is small, as in many human applications, then almost
all rules are manipulable in polynomial time.

I When m is large, as for search engines, then some rules are
NP-hard to manipulate even for small n.

I Results can be quite crude. For example, for fixed m under
IC, there is a threshold around k =

√
n where manipulability

switches from almost impossible to almost inevitable, but
complexity results say nothing about this.
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Assumptions

Implementing voting rules

I Assume that all voters have common knowledge and are
rational with no limit on computational power. Try to design a
voting rule such that everyone has incentive to vote sincerely.

I By Gibbard-Satterthwaite this is a vain hope. One idea is to
choose a voting rule, then hope to design a mechanism (a
“game form”) such that the equilibrium outcomes of the game
are the same as the sincere outcome of the given voting rule.

I If we use Nash equilibrium, this again implies dictatorship
(Maskin). However other solution concepts exist that can be
implemented in this way. They may require enormous
computational power.

I The mechanism announced to players must be just a voting
rule. Using one to implement another still leaves the question:
which one are we trying to implement, and why?
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Assumptions

Manipulability: why it can be a good thing

I A dictatorship is not manipulable, and Gibbard-Satterthwaite
says essentially nothing else is. So minimizing manipulability
has major welfare consequences and should not be the only
goal.

I Allowing manipulation can give voters more expressivity by
restoring information lost in the voting rule (for example, full
preference order, intensity of preference). Lehtinen (Public
Choice, 2007; European J. Political Economy, 2008) argues
via simulations that strategic voting can improve overall social
welfare.

I Dowding and van Hees (British J. Politics, 2008) argue that
encouraging strategic voting has many benefits for democracy.
Buchanan and Yeo (Public Choice, 2006) argue that in fact all
voting is strategic.
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Mechanism design

The main problem

I Find a measure of social welfare.

I Design a voting mechanism to maximize this measure when
all voters are strategic.

I There are only m outcomes so for a fixed voting situation
each measure won’t differentiate much between rules, but
averaged over all voting situations it might.

I This requires some way of dealing with multiple equilibria,
since there are very many in such situations.

I One candidate: price of anarchy — ratio of best case welfare
by central planner to worst case welfare in an equilibrium.

Mark C. Wilson



Mechanism design

The main problem

I Find a measure of social welfare.

I Design a voting mechanism to maximize this measure when
all voters are strategic.

I There are only m outcomes so for a fixed voting situation
each measure won’t differentiate much between rules, but
averaged over all voting situations it might.

I This requires some way of dealing with multiple equilibria,
since there are very many in such situations.

I One candidate: price of anarchy — ratio of best case welfare
by central planner to worst case welfare in an equilibrium.

Mark C. Wilson



Mechanism design

The main problem

I Find a measure of social welfare.

I Design a voting mechanism to maximize this measure when
all voters are strategic.

I There are only m outcomes so for a fixed voting situation
each measure won’t differentiate much between rules, but
averaged over all voting situations it might.

I This requires some way of dealing with multiple equilibria,
since there are very many in such situations.

I One candidate: price of anarchy — ratio of best case welfare
by central planner to worst case welfare in an equilibrium.

Mark C. Wilson



Mechanism design

The main problem

I Find a measure of social welfare.

I Design a voting mechanism to maximize this measure when
all voters are strategic.

I There are only m outcomes so for a fixed voting situation
each measure won’t differentiate much between rules, but
averaged over all voting situations it might.

I This requires some way of dealing with multiple equilibria,
since there are very many in such situations.

I One candidate: price of anarchy — ratio of best case welfare
by central planner to worst case welfare in an equilibrium.

Mark C. Wilson



Mechanism design

The main problem

I Find a measure of social welfare.

I Design a voting mechanism to maximize this measure when
all voters are strategic.

I There are only m outcomes so for a fixed voting situation
each measure won’t differentiate much between rules, but
averaged over all voting situations it might.

I This requires some way of dealing with multiple equilibria,
since there are very many in such situations.

I One candidate: price of anarchy — ratio of best case welfare
by central planner to worst case welfare in an equilibrium.

Mark C. Wilson


	Outline
	Background on speaker
	Recent results in standard framework
	Discussion of assumptions
	Mechanism design

