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Preliminaries

Speaker background

I PhD from Wisconsin (Mathematics), worked in Computer
Science Department for 15 years. Main research is now in
mathematical/computational social sciences.

I Frequent visitor to UCI: seminar talks 2013, 2015, 2016.

I Relevant interests: voting rules, electoral systems, matching
algorithms, learning on networks, wisdom of crowds.

I Here until 14 October (SSPA 2117), happy to talk to anyone
about research!
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Too many voting rules, yet in some sense not enough
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Distance rationalization

A unifying principle

I Think of a voting rule quite generally, as a mapping from a
profile of preferences to an outcome.

I Some subsets of the profile space yield an uncontroversial
(consensus) outcome.

I For other input profiles, we minimize their distance to a
consensus set and choose the corresponding outcome.

I This allows us to derive properties of the rule R(K, d) from
properties of the consensus K and distance d. Of course, we
still need to agree on those!
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Distance rationalization

Commonly used inputs and outputs

I Assume we have n voters and m alternatives.

I Input preferences:

I L: linear orders of the form c1 � c2 � · · · � cm
I weak orders c1 � c2 � · · · � cm
I pairwise preferences ci � cj for each fixed i, j
I T : top orders ci � c for all other c
I dichotomous (approval) orders {c1, . . . , ck} � {ck−1, . . . , cm}
I k-approval orders (as above but k is fixed and given in

advance).

I Outcomes:

I top order (single winner, social choice function)
I linear order (full ranking, social welfare function)
I k-approval order (committee of size k)
I any valid input could also be an output, and vice versa.
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Distance rationalization

Examples: consensus sets

I strong unanimity S - every voter has the same preference.
Works for any inputs.

I weak unanimity W - every voter has the same top choice.
Works for linear orders, top orders.

I Condorcet winner C - some candidate beats all others in
pairwise comparisons. Works for linear and pairwise inputs.

I Condorcet order C∗ - the pairwise majority relation is a total
order. Works for linear and pairwise inputs.
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Distance rationalization

Examples: distance

I Define a graph by stipulating edges between some pairs of
inputs. Then define d(E,E′) to be the length of a shortest
path in this graph. This includes:

distance create an edge when we

Hamming dH change one preference order
Kemeny dK swap two candidates in a pref. order
insertion dins add a preference order
deletion ddel delete a preference order
tournament dRT reverse arrow in majority tournament

I Votewise distances can be formed by using any distance d on
individual orders and combining the components with a norm
on Rn. The most common is `1, yielding d1.
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Distance rationalization

A concrete example

I Inputs: linear orders. Output: a winner.

I Consensus: weak unanimity (everyone agrees on the winner).

I Distance: Kemeny.

I Name of rule: Borda.

I For an input with 5 voters with preferences
abc, acb, bac, bca, cab, the distance to the consensus sets where
a, b, c wins are respectively 3, 5, 6. The unique winner is a.

I Changing the distance to Hamming yields plurality rule. There
is a tie between a and b.
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Distance rationalization

Examples: some DR rules R(K, d), input L, output L/T

K d dH dK dRT dins ddel
S MR Kemeny Copeland undef MR
W plurality Borda Copeland undef plurality
C VRR Dodgson Copeland maximin Young
C∗ Slater

I Here
I VRR = “voter replacement rule” (Elkind, Faliszewski, Slinko;

Soc Choice Welf 2012)
I MR = “modal ranking rule” (Caragiannis, Procaccia, Shah;

AAAI 2014).



Distance rationalization

Mathematical notes

I The distance need not be a metric — in fact pseudometrics,
quasimetrics and in general hemimetrics all arise in
applications.

I The norm could be replaced by a seminorm (need not
distinguish points).
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The usual setup: inputs L, outputs L or T

Putting together nice components to make nice rules

I If K and d satisfy the following, then so does R(K, d)

I anonymity (voter identities don’t matter)
I neutrality (candidate identities don’t matter)
I consistency (combining voter sets makes no difference if they

agree on the result)
I continuity (small changes in inputs don’t usually matter)
I reversal symmetry (turning input orders upside down reverses

the output)

I Interestingly, homogeneity does not extend in this way.
Monotonicity is also tricky.
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Simplex rules

Compressing the input

I Most rules we study are anonymous and homogeneous. Thus
they depend only on the (probability) distribution of voter
preferences.

I In this case we can compress the input. For example with m
candidates and n voters there are (m!)n profiles, but only(
n+m!−1

n

)
equivalence classes under anonymity. The number

of voters with each preference order is all we need to know for
an anonymous rule, not who has which order.

I We can then describe consensus sets quite efficiently in the
quotient space, which is a simplex of dimension m!− 1. For
example, strong unanimity consensus ↔ vertices of simplex.

I The law of conservation of difficulty applies: the distance can
be harder to understand.
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Simplex rules

New results

I A votewise distance d on profiles corresponds to a Wasserstein
distance dW on anonymous and homogeneous profiles
(preference distributions). This is related to the theory of
optimal transportation.

I If the votewise distance uses `1, then dW is induced by a
norm, so we have a Minkowski space.

I This gives a geometric interpretation not seen before in the
voting literature, and connects it to well-developed areas of
mathematics.

I All rules using the strong unanimity consensus and neutral
votewise distances are anonymous, homogeneous, neutral,
consistent, and continuous, and have tied sets lying in
hyperplanes. If the distance satisfies reversal symmetry, so
does the rule.
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Simplex rules

Optimal transportation picture

How to make this change with minimal effort?



Simplex rules

The strange case of `1

I In the context of distances, `1 norm corresponds to adding the
contribution to the distance (or error) from each voter. It is
very natural, and no votewise rule in the literature uses
anything else, including `2, the Euclidean norm.

I However the geometry of the Minkowski space `1 is much less
nice than `2. For example, Voronoi cells are not convex,
bisectors can be large (see below).

I Despite all these possibly negative consequences for
decisiveness, we don’t see rules with such bad behaviour.
Why?

I The answer lies in subtle choices of consensus and distance.
We have recently shown how such rules can be very indecisive
if the choice is not made well.
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Voronoi diagram

Figure: Voronoi diagram for points in `1. Source: Wikipedia.
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`1 large bisector

Figure: Large bisector in `1. Source:
http://www.ams.org/samplings/feature-column/fcarc-taxi.
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Bad things can happen even with `2

a

bc

Such a rule would be very indecisive.
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Consensus sets

I Based on our geometric analysis, in order to create voting
rules with good behaviour, we should require our consensus to
be:

I anonymous
I consistent
I neutral
I touching the boundary of the simplex
I separated

I The last condition rules out the Condorcet consensus.
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A family of nice rules

I Suppose that d is a neutral distance (like dK , dH) on
rankings, and K is the strong or weak unanimity consensus.

I The rule that uses K and the votewise version of d with an `p

norm is:

I anonymous
I neutral
I consistent
I continuous

I These rules have not been studied in detail. In the case of
weak consensus they must be scoring rules by Young’s
characterization (1975), but this must be made explicit.

I For the strong unanimity consensus, the class includes
Kemeny rule; such rules are all maximum likelihood estimators
for various noise models.
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Strong unanimity: maximum likelihood estimation

I When using the strong unanimity consensus, we can interpret
the above procedure as maximizing the likelihood of a real
underlying ranking, given the voters’ observations.

I This idea of “wisdom of crowds” is related to Condorcet’s
Jury Theorem — we use voting as statistical estimation, not
preference aggregation. There is renewed interest because of
internet-based crowdsourcing applications.

I The key is that the distance can be interpreted as a noise
model. The basic (Mallows) model for rankings boils down to

Pr(ρ|P ) = C
n∏
k=1

q−d(Pk,ρ
∗
k) = Cq−d

1(P,Sρ).

Here ρ is an input, P a profile of inputs, and 0 < q < 1. Thus
the MLE is found by computing R(S, d1).
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Example: MLE

I Suppose the profile is P := {abc, acb, cab, bca, bac} and we
use the Kemeny noise model (voters make small independent
errors in ranking adjacent candidates).

I The likelihood function for each of the 6 possible rankings is
maximized when the Kemeny distance is minimized.

I For example, d(P,Sabc) = 0 + 1 + 2 + 2 + 1 = 6. The
distances to acb, bac, bca, cab, cba are respectively 7, 8, 8, 7, 9.

I Thus abc is the best estimate by Kemeny’s rule.

I If we use the Hamming noise model (voters make independent
large errors, randomly choosing a wrong vote with probability
q) then the MLE instead chooses the most common ranking
from the input.
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Strong unanimity: universal rule

I Zwicker (2014) used the characteristic function encoding of a
binary relation to give a universal approach that yields Borda
and Kemeny in special cases.

I It also yields other rules with an “inversion-counting” `1

flavour for different input-output pairs.

I The characteristic function encodes pairwise information in a
matrix: the usual tournament matrix is just the sum of these
over all voters.

I Thus the rationalization of Kemeny’s rule via `1 and the
hypercube from Saari & Merlin (2000) is an isomorphic
representation of the usual one via S and dK .

I Presumably this gives a unified maximum likelihood
interpretation.

I Are there other universal rules with different encodings?
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Interesting questions

I What does the quotient distance corresponding to dK look
like on the simplex?

I There are other geometric interpretations (using the
permutahedron) of distance rationalization, which are
obviously special cases of our approach under change of
variables. But what about explicit formulae?

I There are many commonly used statistical distances on the
simplex, which as far as I know have not been used for voting
(the simplest case is total variation which corresponds to the
`1-Hamming distance). Similarly, other distances on pairwise
tournament matrices could be used.

I How many of our results extend easily to general input/output
cases?
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Conclusion

I Distance rationalization offers a way to navigate the jungle of
aggregation rules.

I Very little has been done beyond linear orders. The idea of
universal rules is quite attractive.

I There are many new rules waiting to be discovered
(invented?). Using distances that are not votewise, and
compressed input, allows for more complex and interesting
ones.

I Some of the “new” rules are actually old ones in disguise. We
need to make these alternate representations explicit.
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