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Lattice path asymptotics

Introduction and motivation

Some lattice walks

Lattice walks have many applications: modelling physical and
chemical structures, encoding trees, statistical inference. Their
random analogues are important in queueing theory.
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Introduction and motivation

Example (A harder problem)

I How many n-step lattice walks are there, if walks start from
the origin, are confined to the first quadrant, and take steps in
{S,NE,NW}? Call this an.

I This has both forward and back steps in each dimension, and
it is not so easy to derive an explicit formula.

I Conjectured by Bostan & Kauers:

an ∼ 3n
√

3

4πn
.
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Introduction and motivation

Overview — walks
I Consider nearest-neighbour walks in Z2, defined by a set
S ⊆ {−1, 0, 1}2 \ {0} of short steps.

I We can consider unrestricted walks, walks restricted to a
halfspace, and walks restricted to the nonnegative quadrant.
We concentrate on the last case, the most challenging. We
can also restrict so the endpoint is on the x or y-axis, or the
origin.

I We keep track of the endpoint, and also the length. This gives
a trivariate sequence ar,s,n with generating function (GF)

C(x, y, t) :=
∑

r,s,n

ar,s,nx
rystn.

I Summing over r, s gives a univariate series
C(1, 1, t) := f(t) =

∑
n fnt

n.
I We seek in particular the asymptotics of fn.
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Introduction and motivation

A hierarchy of generating functions from lattice walks

I Unrestricted walks — rational functions — have been
understood “forever”.

I Walks confined to a halfspace — algebraic functions —
understood since Bousquet-Mélou & Petkovšek (2000), using
the kernel method.

I 23 classes of walks confined to a quadrant — D-finite
functions — satisfy a linear ODE with polynomial coefficients
— reasonably well understood.

I 56 quadrant classes, steps that are not small — non D-finite
functions — poorly understood.
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Previous results on quadrant walks

Previous work on walks in the quadrant, I

I Bousquet-Mélou & Mishna (2010): there are 79 inequivalent
nontrivial cases.

I They introduced a symmetry group G(S) and showed that
this is finite in exactly 23 cases.

I They used finiteness to show for 22 cases that C(x, y, t) is
D-finite. For 19 of these, used the orbit sum method and for 3
more, the half orbit sum method.

I Bostan & Kauers (2010) explicitly showed that for the 23rd
case (Gessel walks), f(t) is algebraic (and hence D-finite).

I In the other 56 cases, f(t) is indeed not D-finite. So there are
23 nice inequivalent cases to discuss now.
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Previous results on quadrant walks

Previous work on walks in the quadrant, II

I Bostan & Kauers (2009): conjectured asymptotics for fn in
the 23 nice cases. Four of these were dealt with by direct
attack. We borrow their table below.

I Bostan, Chyzak, van Hoeij, Kauers & Pech (2016): expressed
f(t) in terms of hypergeometric integrals in 19 of these cases.

I Melczer & Mishna (2014): derived rigorous asymptotics for fn
in 4 cases.

I Open: proof of asymptotics of fn for 15 cases. We solve that
here via a unified approach.
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Table of All Conjectured D-Finite F(t; 1, 1) [Bostan & Kauers 2009]

OEIS S alg equiv OEIS S alg equiv

1 A005566 N 4
p

4n

n 13 A151275 N 12
p

30
p

(2
p

6)n

n2

2 A018224 N 2
p

4n

n 14 A151314 N
p

6lµC5/2

5p
(2C)n

n2

3 A151312 N
p

6
p

6n

n 15 A151255 N 24
p

2
p

(2
p

2)n

n2

4 A151331 N 8
3p

8n

n 16 A151287 N 2
p

2A7/2

p
(2A)n

n2

5 A151266 N 1
2

q
3
p

3n

n1/2 17 A001006 Y 3
2

q
3
p

3n

n3/2

6 A151307 N 1
2

q
5

2p
5n

n1/2 18 A129400 Y 3
2

q
3
p

6n

n3/2

7 A151291 N 4
3
p

p
4n

n1/2 19 A005558 N 8
p

4n

n2

8 A151326 N 2p
3p

6n

n1/2

9 A151302 N 1
3

q
5

2p
5n

n1/2 20 A151265 Y 2
p

2
G(1/4)

3n

n3/4

10 A151329 N 1
3

q
7

3p
7n

n1/2 21 A151278 Y 3
p

3p
2G(1/4)

3n

n3/4

11 A151261 N 12
p

3
p

(2
p

3)n

n2 22 A151323 Y
p

233/4

G(1/4)
6n

n3/4

12 A151297 N
p

3B7/2

2p
(2B)n

n2 23 A060900 Y 4
p

3
3G(1/3)

4n

n2/3

A = 1 +
p

2, B = 1 +
p

3, C = 1 +
p

6, l = 7 + 3
p

6, µ =

q
4
p

6�1
19

. Computerized discovery by enumeration + Hermite–Padé + LLL/PSLQ.

Frédéric Chyzak Small-Step Walks
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Previous results on quadrant walks

Plan of attack

I The standard idea is to analyse singularities of f(t), and use
complex analysis.

I Pros: f(t) is a univariate function, and asymptotic theory will
be easier. We may be able to use f(t) for other purposes.

I Cons: f(t) may be nasty to describe (not algebraic). We
don’t need to compute it if we only want the asymptotics of
its coefficients. The computational effort can be enormous.

I Our idea: there is a tradeoff between niceness of generating
function and dimension. We use recently developed tools for
asymptotics of higher dimensional rational GFs.
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Previous results on quadrant walks

Univariate approaches don’t work well yet

I We can find a linear ODE with polynomial coefficients
satisfied by f(t). The polynomials may have large degree and
coefficients, and take gigabytes of storage.

I We can use results of Birkhoff-Trjitinsky which give a basis for
the asymptotic formulae. This is believed not to be fully
rigorous. We encounter the connection problem: it can be
surprisingly hard to compute the coefficients or tell whether
they are nonzero.

I Another approach uses hypergeometric integrals. This requires
computation of integrals which have not yet been done
explicitly.
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Deriving the multivariate GF

Diagonals
I The orbit sum approach yields f as the positive part of a

rational series. This is the leading diagonal of a closely related
series. Thus we have f = diagF where

F (x, y, t) =
xyP (x−1, y−1)

(1− txyS(x−1, y−1)) (1− x)(1− y)
and S and P are Laurent polynomials:

S(x, y) =
∑

(i,j)∈S

xiyj (step enumerator )

P (x, y) =
∑

σ∈G
sign(σ)σ(xy).

I The trivariate GF is rational but the diagonal is only D-finite
and can’t be easily described. We instead compute
asymptotics of [xnyntn]f(x, y, t).



Lattice path asymptotics

Deriving the multivariate GF

Diagonals
I The orbit sum approach yields f as the positive part of a

rational series. This is the leading diagonal of a closely related
series. Thus we have f = diagF where

F (x, y, t) =
xyP (x−1, y−1)

(1− txyS(x−1, y−1)) (1− x)(1− y)
and S and P are Laurent polynomials:

S(x, y) =
∑

(i,j)∈S

xiyj (step enumerator )

P (x, y) =
∑

σ∈G
sign(σ)σ(xy).

I The trivariate GF is rational but the diagonal is only D-finite
and can’t be easily described. We instead compute
asymptotics of [xnyntn]f(x, y, t).



Lattice path asymptotics

Summary of ACSV results

ACSV

I Robin Pemantle and I derived general formulae for
asymptotics of coefficients of rational functions F = G/H in
dimension d (see our book).

I Analysis is based on the geometry of the singular variety
(zero-set of H) near contributing critical points z∗ depending
on the direction r.

I The ultimate justification involves Morse theory, but convex
analysis often suffices in the combinatorial case.

I We deal in particular with multiple points (locally a transverse
intersection of k smooth factors). If 1 ≤ k ≤ d, formulae look
like

ar ∼ z∗
−r
∑

l≥0
bl||r||−(d−k)/2−l.
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Summary of ACSV results

Univariate case

Example (Univariate pole: Fibonacci)

I Consider F (z) = z/(1− z − z2), the GF for Fibonacci
numbers. There are two poles, at φ := 2/(1 +

√
5) and −φ−1.

Using a circle of radius φ− ε yields, by Cauchy’s theorem

ar =
1

2πi

∫

Cφ−ε

z−r−1F (z) dz

so that ar has exponential rate at least (1 +
√
5)/2.

I By Cauchy’s residue theorem,

ar =
1

2πi

∫

Cφ+ε

z−r−1F (z) dz − Res(z−r−1F (z); z = 1).

I The integral is O((φ+ ε)−r) while the residue is order
φ−r/

√
5. Thus [zr]F (z) ∼ φ−r/

√
5 as r →∞.
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Summary of ACSV results

Univariate case

Example (Essential singularity: saddle point method)

I Here F (z) = exp(z). The Cauchy integral formula on a circle
CR of radius R gives an ≤ F (R)/Rn.

I Consider the “height function” logF (R)− n logR and try to
minimize over R. In this example, R = n is the minimum.

I The integral over Cn has most mass near z = n, so that

an =
F (n)

2πnn

∫ 2π

0
exp(−inθ)F (ne

iθ)

F (n)
dθ

≈ en

2πnn

∫ ε

−ε
exp

(
−inθ + logF (neiθ)− logF (n)

)
dθ.
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Example (Saddle point example continued)

I The Maclaurin expansion yields

−inθ + logF (neiθ)− logF (n) = −nθ2/2 +O(nθ3).

I This gives, with bn = 2πnne−nan, Laplace’s approximation:

bn ≈
∫ ε

−ε
exp(−nθ2/2) dθ ≈

∫ ∞

−∞
exp(−nθ2/2) dθ =

√
2π/n.

I This recaptures Stirling’s approximation, since n! = 1/an:

n! ∼ nne−n
√
2πn.
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Summary of ACSV results

Multivariate case

Multivariate asymptotics — some quotations

I (Bender 1974) “Practically nothing is known about
asymptotics for recursions in two variables even when a GF is
available. Techniques for obtaining asymptotics from bivariate
GFs would be quite useful.”

I (Odlyzko 1995) “A major difficulty in estimating the
coefficients of mvGFs is that the geometry of the problem is
far more difficult. . . . Even rational multivariate functions are
not easy to deal with.”

I (Flajolet/Sedgewick 2009) “Roughly, we regard here a
bivariate GF as a collection of univariate GFs . . . .”

I We aimed to improve the multivariate situation.
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Summary of ACSV results

Multivariate case

Outline of results (generic case)

I Asymptotics in the direction r are determined by the
geometry of V near a (finite) set of critical points, computable
via symbolic algebra.

I For computing asymptotics in direction r, we may restrict to a
dominant point z∗(r) lying in the positive orthant.

I There is an expansion ar ∼ formula(z∗) where formula(z∗) is
an asymptotic series that depends on the type of geometry of
V near z∗, and each term is computable from finitely many
derivatives of G and H at z∗.

I This yields
ar ∼ formula(z∗)

where the expansion is uniform on compact subsets of
directions, provided the geometry does not change.
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Lattice path asymptotics

Summary of ACSV results

Multivariate case

Non-generic features

I Several dominant points can occur (linked to periodicity of
coefficients).

I Dominant point may not be in first orthant (linked to negative
coefficients).

I Initial terms can vanish in expansion, higher ones harder to
compute explicitly.

I Geometry of V near z∗ can be strange.

I All of these occur in applications, the first three in our lattice
point analysis.
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Multivariate case

Results for multiple points: generic shape of formula(z∗)
I (smooth point, or multiple point with n ≤ d)

z∗
−r
∑

k≥0
ak|r|−(d−n)/2−k.

I (smooth/multiple point n < d)

a0 = G(z∗)C(z∗)

where C depends on the derivatives to order 2 of H;
I (multiple point, n = d)

a0 = G(z∗)(det J)
−1

where J is the Jacobian matrix (∂Hi/∂zj), other ak are zero;
I (multiple point, n ≥ d)

z∗
−rG(z∗)P

(
r1
z∗1
, . . . ,

rd
z∗d

)
,

P a piecewise polynomial of degree n− d.
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Lattice path asymptotics

Application of general methods to lattice paths

Back to lattice paths

I We seek asymptotics on the leading diagonal of a trivariate
GF.

I Pros:

I The functional form of F is simple, a product of 3 smooth
factors that are easy to understand. We can compute formulae
for everything in terms of the step enumerator.

I Cons: non-generic behaviour occurs.

I In the following, we use notation

Sj = {i : (i, j) ∈ S} for each j ∈ {−1, 0, 1}.
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Application of general methods to lattice paths

Singularities

I The factor H1 := 1− txyS(x−1, y−1) is a polynomial. Then

∇logH1 := (x∂H1/∂x, y∂H1/∂y, t∂H1/∂t)

= (−1 + ty∂S/∂x,−1 + tx∂S/∂y,−1)

and thus this factor is everywhere smooth.

I Other singularities come from factors of (1− x), (1− y) and
possibly from clearing denominators of xyP (x−1, y−1).

I When F is combinatorial, there is a dominant singularity for
direction 1 lying in the positive orthant.
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Application of general methods to lattice paths

Critical points

I H1 contains a smooth critical point (x, y, t) for the direction
(1, 1, 1) if and only if ∇S(x−1, y−1) = 0.

I This occurs if and only if

∑

i=−1,j
yj − x−2

∑

i=1,j

yj = 0

∑

i∈S−1

xi − y−2
∑

i∈S1

xi = 0.

I If S has a vertical axis of symmetry, then (x2 − 1)
∑

j y
j = 0.
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Application of general methods to lattice paths

Structure of G

I Write

S(x, y) = y−1A−1(x) +A0(x) + yA1(x)

= x−1B−1(y) +B0(y) + xB1(y).

I G is dihedral, generated by the involutions (considered as
algebra homomorphisms)

(x, y) 7→
(
x−1

B−1(y)

B1(y)
, y

)

(x, y) 7→
(
x, y−1

A−1(x)

A1(x)

)

I If S has vertical symmetry then B1 = B−1, these maps
commute, and G has order 4.
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Application of general methods to lattice paths

Vertical axis of symmetry, I

I This covers Cases 1–16. The possible denominators from P
are x2 + 1, x2 + x+ 1. Neither can contribute because the
problem is combinatorial and aperiodic. The dominant point
has x = 1.

I The numerator vanishes iff |S1| = |S−1| (symmetry on both
axes). In that case cancellation occurs and there is a smooth
point at (1, 1, 1/|S|)). This solves Cases 1–4: leading term
C|S|nn−1/2.

I Otherwise, there is a double point at (1, 1, 1/|S|). Its
contribution is nonzero if and only if the numerator does not
vanish and the direction (1, 1, 1) lies in a certain cone.

I The direction lies in the cone iff ∂S/∂x(1, 1) ≥ 0, iff
|S1| ≥ |S−1| (happens in Cases 1–10).

I Thus for Cases 5–10 we have leading term C|S|nn−1.
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Application of general methods to lattice paths

Vertical axis of symmetry, II

I There is a smooth critical point where y2 = |S1|/|S−1|, so y is
a quadratic irrational at worst.

I The exponential rate is

S(1, y−1) = |S0|+ y−1|S1|+ y|S−1| = |S0|+ 2
√
|S1||S−1|.

I The arithmetic-geometric mean inequality shows that this is
smaller than |S|, with equality if and only if |S1| = |S−1|.

I This holds in Cases 11–16.
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Interesting smooth point situation

I Normally the polynomial correction starts with n−1, since
(3− 1)/2 = 1. The lth term is of order n−l.

I If the numerator vanishes at the dominant point, the l = 1
term vanishes.

I This happens in all cases 11–16. The numerator simplifies at
the smooth point to (1 + x)(1− y2|S−1|/|S1|), which is zero
from the critical point equation for y.

I The leading term asymptotic is C(|S0|+ 2
√
|S1||S−1|)nn−2.
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Explanation

I The key quantity for walks with vertical symmetry is the
difference between the upward and downward steps (the drift).

I If this is positive, there are more possible walks that don’t
cross the boundary, so the quarter plane restriction is
encountered less often. Asymptotics come from the double
point (1, 1, 1/|S|).

I If the drift is nonpositive, asymptotics come from the highest
smooth point.

I This explains Cases 1–16 in a unified way. We could derive
higher order asymptotics too (e.g. using Sage package
implementing Raichev & Wilson papers).
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Other cases

I Cases 17–19 also follow as above, with slightly different
formulae and more work.

I Cases 20–23 are harder. We don’t have a nice diagonal
expression, and the conjectured asymptotics show that
analysis will be trickier. However the GFs are known to be
algebraic and 1-dimensional methods can be used.
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Extensions

I We can derive similar expressions for the number of walks
returning to the x-axis, the y-axis, or the origin. A very
similar analysis proves recently conjectured asymptotics of
Bostan, Chyzak, van Hoeij, Kauers, and Pech.

I Usually, the asymptotics are changed by a factor of n or
√
n.

Sometimes the exponential rate changes, depending on the
shape of the step set.

I Our approach allows for unified analysis of rational trivariate
GFs, which provides results and insight, rather than ad hoc
analysis of complicated univariate GFs, which provides results
sometimes and no insight.
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Possible future work

I Higher dimensions: d = 3 has been studied empirically by
Bostan, Bousquet-Mélou, Kauers & Melczer. The orbit sum
method appears to work relatively rarely, however.

I Special families in arbitrary dimension: for example, if each
element of S has the same d− 1 axial symmetries, similar
results hold to above with some technical problems (in
progress with S. Melczer).

I Random walk variants can be treated by simply scaling the
variables by probabilities. We anticipate few changes to the
overall analysis.

I Walks in a Weyl chamber (Gessel & Zeilberger) yield very
similar generating functions, analysable in the same way.
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Closing remarks

I The methods in the ACSV book are still under-utilized by
other researchers. This problem was a fairly straightforward
application of general theory.

I Many researchers in enumeration use extra (“catalytic”)
variables and then throw them away; they ought to keep them
and use multivariate methods more often.
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General references

I S. Melczer & M. C. Wilson, Asymptotics of lattice walks via
analytic combinatorics in several variables.
http://arxiv.org/abs/1511.02527.

I R. Pemantle & M.C. Wilson, Analytic Combinatorics in
Several Variables, Cambridge University Press 2013. Draft
available on my website.

I Sage implementations by Alex Raichev:
https://github.com/araichev/amgf.

I S. Melczer & M. Mishna, Asymptotic Lattice Path
Enumeration Using Diagonals, 2014.

I G. Fayolle, R. Iasnogorodski, V. Malyshev, Random Walks in
the Quarter Plane, 1999.

http://arxiv.org/abs/1511.02527
https://github.com/araichev/amgf
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