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Basics

Background

I The number of possible social choice rules is huge, but most
are arbitrary and hard to understand.

I Researchers have tried many different axioms in order to
classify and characterize these rules, sometimes leading to
impossibility theorems.

I New rules are still being introduced, and the subject is far
from tidy. “We have barely scratched the surface of the space
of social choice rules.” (W. Zwicker, 2009).

I Distance rationalizability is a promising unifying framework
that may allow us to find new rules with good properties.
Studied in particular detail recently by Elkind, Faliszewski and
Slinko.
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Basic social choice setup

I A finite set V of voters, n := |V |, and a finite set A of
alternatives, m := |A|.

I L(A) := set of linear orders on A, representing the possible
strict preference orders. A profile is a map V → L(A) giving
each voter’s preference order.

I Let E denote the set of elections — triples (V,A, π) where π
is a profile. A social choice rule is a mapping E → 2A \ ∅.

I Voting situation: orbit of action of permutations of voters on
set of profiles. Can be represented as a composition (ordered
partition) of n with m! parts. We usually normalize by
dividing by n, yielding the preference simplex ∆.

I There are m!n profiles and
(
n+m!−1

n

)
voting situations.
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Some social choice rules

I The scoring rule defined by a fixed weight vector (w1, . . . , wm)
gives wi points to each candidate for each voter listing it in
ith position. Highest total score wins. Special cases:

I plurality (1, 0, 0, . . . , 0);
I Borda (m− 1,m− 2, . . . , 1, 0);
I veto (1, 1, . . . , 1, 0).

I Condorcet rules: if there is a Condorcet winner (preferred to
each other alternative by some majority of voters), choose it.
Otherwise choose something else. Most famous is Copeland
rule (chess scoring).
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Consensus

I We define a set of profiles for which the result is “obvious”.

I Example: if every voter has the same preference, this is the
social preference.

I We define a consensus to be a mapping K defined on a subset
D of profiles, which always returns a unique social choice. We
denote by Ka the subset on which a is that choice.

I This is strongly related to various axioms (e.g. unanimity) and
to the topic of domain restrictions.
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Examples: consensus

I The strong unanimity consensus S: all voters have the same
preference order; (the top of) this order is chosen.

I Weak unanimity consensus W: all voters have the same
top-ranked candidate; it is chosen.

I Condorcet consensus C: there is a Condorcet winner (majority
tournament has a source node); it is chosen. This is more
controversial than the previous ones.

I Condorcet ranking consensus C∗: the majority tournament is
transitive.

I Many other choices are possible, e.g. single peaked
preferences, Lorenz consensus.



Basics

Examples: consensus

I The strong unanimity consensus S: all voters have the same
preference order; (the top of) this order is chosen.

I Weak unanimity consensus W: all voters have the same
top-ranked candidate; it is chosen.

I Condorcet consensus C: there is a Condorcet winner (majority
tournament has a source node); it is chosen. This is more
controversial than the previous ones.

I Condorcet ranking consensus C∗: the majority tournament is
transitive.

I Many other choices are possible, e.g. single peaked
preferences, Lorenz consensus.



Basics

Examples: consensus

I The strong unanimity consensus S: all voters have the same
preference order; (the top of) this order is chosen.

I Weak unanimity consensus W: all voters have the same
top-ranked candidate; it is chosen.

I Condorcet consensus C: there is a Condorcet winner (majority
tournament has a source node); it is chosen. This is more
controversial than the previous ones.

I Condorcet ranking consensus C∗: the majority tournament is
transitive.

I Many other choices are possible, e.g. single peaked
preferences, Lorenz consensus.



Basics

Examples: consensus

I The strong unanimity consensus S: all voters have the same
preference order; (the top of) this order is chosen.

I Weak unanimity consensus W: all voters have the same
top-ranked candidate; it is chosen.

I Condorcet consensus C: there is a Condorcet winner (majority
tournament has a source node); it is chosen. This is more
controversial than the previous ones.

I Condorcet ranking consensus C∗: the majority tournament is
transitive.

I Many other choices are possible, e.g. single peaked
preferences, Lorenz consensus.



Basics

Examples: consensus

I The strong unanimity consensus S: all voters have the same
preference order; (the top of) this order is chosen.

I Weak unanimity consensus W: all voters have the same
top-ranked candidate; it is chosen.

I Condorcet consensus C: there is a Condorcet winner (majority
tournament has a source node); it is chosen. This is more
controversial than the previous ones.

I Condorcet ranking consensus C∗: the majority tournament is
transitive.

I Many other choices are possible, e.g. single peaked
preferences, Lorenz consensus.



Basics

Distances

I By a distance (or hemimetric) on E we mean a function
d : E × E → R ∪ {+∞} that satisfies the following identities.

I d(x, y) ≥ 0
I d(x, x) = 0
I d(x, z) ≤ d(x, y) + d(x, z)

I A distance that distinguishes points (d(x, y) = 0⇒ x = y) is
called a quasimetric. If it is also symmetric (d(x, y) = d(y, x))
it is a metric.

I A distance d is standard if d(E,E′) =∞ whenever E and E′

have different sets of voters or candidates.
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Examples: distance

I Define a graph by stipulating edges between some pairs of
elections. Then define d(E,E′) to be the length of a shortest
path (geodesic) in this graph. This includes:

distance create an edge when we

Hamming dH change one preference order
Kemeny dK swap two candidates in a pref. order
insertion dins add a preference order
deletion ddel delete a preference order
tournament dRT reverse arrow in majority tournament

I Votewise distances can be formed by using any distance on
L(A) and combining the distances of each component with a
norm on Rn, such as the `p norm.
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Distance rationalizability

I Let K be a consensus and d a distance on E . The rule
R := R(K, d) is defined by

R(E) := {R(C) | C ∈ arg min
E′∈D(K)

d(E,E′)}.

I In other words, the set of winners consists of the consensus
choice from each consensus election that minimizes the
distance to E. We say that R is distance rationalizable (DR)
with respect to (K, d).

I Every non-imposed rule can be represented in this way, so the
point is to choose “good” K and d.
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Examples: DR rules

K d dH dK dRT dins ddel
S MR Kemeny Copeland undef MR
W plurality Borda Copeland undef plurality
C VRR Dodgson Copeland maximin Young
C∗ Slater

Table: some rules in the DR framework:

Here

I VRR = “voter replacement rule” (Elkind, Faliszewski, Slinko;
Soc Choice Welf 2012)

I MR = “modal ranking rule” (Caragiannis, Procaccia, Shah;
AAAI 2014).
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Anonymity

I A rule is anonymous if it is symmetric under permutations of
the voter set. On each profile representing the same voting
situation, R makes the same social choice, so R naturally
yields a (quotient) rule R on V.

I Similarly a consensus is anonymous if and only if it yields a
consensus on V. How can we represent R directly on V? We
want something like R(K, d) = R(K, d).

I Abstractly, we want the quotient distance induced by the map
from profiles to voting situations. In general quotient
distances are counterintuitive and don’t have a simple formula.
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Example: anonymous distance

I Let x be a voting situation with 2 abc voters and 3 bac voters,
while y has 2 bac voters and 3 cba voters.

I Consider the Hamming distance d := dH , which is anonymous.

I Different choices of representing profiles E,E′ for x and y
yield different answers for d(E,E′). For example, choosing
profiles (abc, abc, bac, bac, bac) and (bac, bac, cba, cba, cba)
yields Hamming distance 5, while choosing
(abc, abc, bac, bac, bac) and (cba, cba, cba, bac, bac) yields
Hamming distance 3.

I In this example we can check that 3 is the minimum possible
value over all representing profiles.
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DR for anonymous rules

Theorem
Suppose that K is anonymous and d is standard and anonymous.
Then

I R := R(K, d) is anonymous.

I The quotient distance is given by

d(x, y) := min
E 7→x,E′ 7→y

d(E,E′).

I R(K, d) = R(K, d).
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Connection with optimal transportation

I The problem of optimal transportation originated with Monge
in the 19th century and was generalized by Kantorovich.

I In the discrete case, it amounts to minimizing the cost of
transferring mass from one histogram to another while
incurring the minimal cost.

I The minimum can be computed via a linear program.

I In the anonymous and standard case, the distance d is the
solution of an optimal transportation problem, because we
must move voter mass between types of voters while incurring
the minimal cost (distance). The assumption that d is
standard is equivalent to saying that conservation of mass
(number of voters) holds.
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Optimal transportation picture

earthmover.png

How to make this change with minimal effort?
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Homogeneity

I A rule is homogeneous if it gives the same result when we
replicate each voter the same number of times.

I An anonymous homogeneous rule can therefore by described
by how it acts on the simplex ∆.

I There is an obvious quotient map from V to ∆ (“divide by n”)
and we want results analogous to the ones for the anonymous
case above. However it is a bit trickier because we don’t have
such nice sufficient conditions for homogeneity of R(K, d).

I If we assume that R(K, d) is homogeneous, everything works
as above and we can operate only on ∆.
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Connection with Wasserstein distance

The simplex ∆ can be identified with the space of probability
distributions on the finite set L(A). There is a famous family of
distances on such spaces (for not necessarily finite underlying sets),
called the Wasserstein distances, defined by

dpW (x, y) = inf E[d(X,Y )p]

where the infimum is over all couplings (pairs of random variables
X,Y with marginal distributions x, y).

Theorem
Let d be an lp-votewise distance. Then d = dpW , the p-Wasserstein
distance based on d.
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Connection with Minkowski geometry

I When p = 1 the Wasserstein distance is called the earth
mover distance. It is widely used in image processing.

I The earth mover distance is induced by a norm. Thus in this
case we are looking at a Minkowski space.

I The simplest special case is when d = dH , when d1W is half
the `1 distance on ∆.

I For p > 1 it is not induced by a norm, but by something that
is probably geometrically fairly nice.
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Decisiveness of DR rules

I Ideally a voting rule has few profiles where it does not give a
unique result (otherwise it is just “passing the buck” to the
tiebreaking rule).

I The definition shows that rules defined in the DR framework
can have many tied profiles. This is because the minimum
distance may not be uniquely attained.

I Sometimes this happens just because the distance does not
distinguish points well. For example, Copeland’s rule has a
large tied region in ∆.

I More interestingly, sometimes it happens because of geometric
properties of the unit ball of the distance.
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Geometric background

I Choose finitely many sites (subsets of the ambient space).

I The bisector of sites a and b is the set of points equidistant
from a and b: d(x, a) = d(x, b). Here we use the usual
definition of distance to a set: d(x, S) = infs∈S d(x, s).

I The Voronoi region associated to a site a is the set of points
for whom a is the closest site: d(x, a) ≤ d(x, b) for all b ∈ S.
The boundary of a Voronoi region is contained in a union of
bisectors.

I In our situation, the sets Ka are the sites. A point x ∈ ∆ lies
on a bisector if and only if R(K, d) does not have a unique
winner at x. The interiors of the Voronoi regions are those
places where a unique winner is defined.

I Voronoi theory has hugely many applications in science.
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Minkowski geometry: `2 vs `1

Euclidean_Voronoi_Diagram.pngManhattan_Voronoi_Diagram.png

Figure: `2 (left) vs `1 (right) Voronoi diagram. Source: Wikipedia.
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Minkowski geometry: `1 vs `2

I The unit ball of `2 is strictly convex, which implies that (if
sites are isolated points) bisectors are hyperplanes and
Voronoi regions are convex polyhedra.

I The unit ball of `1 is not strictly convex. The bisector of two
points can have nonempty interior, and Voronoi regions can
be nonconvex.

I It is NP-hard to determine whether the bisector under `1 of
two points of ∆ contains an open ball. We suspect this is also
the case for every `1-votewise metric.
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`1 large bisector

bisector-l1.jpg

Figure: Large bisector in `1. Source:
http://www.ams.org/samplings/feature-column/fcarc-taxi.
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Dichotomy: `1-votewise distance

I Let d be an l1-votewise metric and let K be an anonymous
and homogeneous consensus (alternatively K is a consensus in
∆).

I Thm: There exists such a K, consisting of finitely many
points, such that R(K, d) has a tied region with nonempty
interior.

I Thm: However, if K lies on the boundary of ∆, then R(K, d)
is a hyperplane rule.
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Hyperplane rules

I Mossel-Procaccia-Racz (JAIR 2013) defined hyperplane rules
as rules defined on the voting simplex (hence all are
anonymous and homogeneous).

I The winner is constant on each chamber of the preference
simplex, the chambers being defined by (removal of) a finite
set of hyperplanes.

I These are the same as the generalized scoring rules of Xia and
Conitzer, and can be characterized axiomatically by finite
local consistency.

I Most known rules are hyperplane rules. MPR define
Copeland’s rule to be one, but this is not convincing. In fact
Copeland has a very large tied region.

I The connection between hyperplane rules and distance
rationalization is not yet clear.
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Votewise minimizer property

I Sometimes the minimum distance is attained in a nice way.
For example, the Kemeny distance of E to Wa is found by
pushing up a in each preference order in the profile until it
reaches the top.

I However, this doesn’t always work. For example with C, the
Kemeny distance is not minimized in this way.

I Positive result: if K ∈ {S,W} and d is `p-votewise then
R(K, d) is a hyperplane rule.

I This recaptures scoring rules and Kemeny’s rule, for example,
and it shows that Dodgson’s rule cannot be distance
rationalized in this way.



Basics

Votewise minimizer property

I Sometimes the minimum distance is attained in a nice way.
For example, the Kemeny distance of E to Wa is found by
pushing up a in each preference order in the profile until it
reaches the top.

I However, this doesn’t always work. For example with C, the
Kemeny distance is not minimized in this way.

I Positive result: if K ∈ {S,W} and d is `p-votewise then
R(K, d) is a hyperplane rule.

I This recaptures scoring rules and Kemeny’s rule, for example,
and it shows that Dodgson’s rule cannot be distance
rationalized in this way.



Basics

Votewise minimizer property

I Sometimes the minimum distance is attained in a nice way.
For example, the Kemeny distance of E to Wa is found by
pushing up a in each preference order in the profile until it
reaches the top.

I However, this doesn’t always work. For example with C, the
Kemeny distance is not minimized in this way.

I Positive result: if K ∈ {S,W} and d is `p-votewise then
R(K, d) is a hyperplane rule.

I This recaptures scoring rules and Kemeny’s rule, for example,
and it shows that Dodgson’s rule cannot be distance
rationalized in this way.



Basics

Votewise minimizer property

I Sometimes the minimum distance is attained in a nice way.
For example, the Kemeny distance of E to Wa is found by
pushing up a in each preference order in the profile until it
reaches the top.

I However, this doesn’t always work. For example with C, the
Kemeny distance is not minimized in this way.

I Positive result: if K ∈ {S,W} and d is `p-votewise then
R(K, d) is a hyperplane rule.

I This recaptures scoring rules and Kemeny’s rule, for example,
and it shows that Dodgson’s rule cannot be distance
rationalized in this way.



Basics

Conclusions

I If we want a rule that is decisive and defined in the
(anonymous and homogeneous) DR framework, we should
restrict to quasimetrics. How to restrict the consensus?

I The Condorcet consensus is less compelling than the weak
unanimity consensus. This is reflected in the large tied sets
obtained above.

I If K ∈ {S,W} and d is `p-votewise, many good things
happen. Is this class big enough to be interesting? Are there
interesting examples with p > 1?
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Future work

I Is the homogenized version of Dodgson’s rule a hyperplane
rule? If not, is its tied region small in some sense?

I Find better sufficient conditions for homogeneity of R. The
best we have so far is essentially that K ∈ {S,W} and d is
`p-votewise.

I Can we obtain nice results for important subclasses of the set
of anonymous and homogeneous DR rules? For example,
maximum likelihood estimators (simple rank scoring functions)
and mean proximity rules have been recently studied in detail.

I What interesting rules are obtained by using arbitrary metrics
on ∆ (not necessarily derived in a natural way from a metric
on E)? There are many such statistical distances such as
Kullback-Liebler.
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