
Some probabilistic questions in social choice

Mark C. Wilson
www.cs.auckland.ac.nz/˜mcw/

Department of Computer Science
University of Auckland

Probability Seminar, UC Berkeley, 2013-04-03



Basics

Motivation

I I am not a probabilist, but am interested in probabilistic
analysis of combinatorial situations.

I This year I am co-authoring a monograph with Robin
Pemantle, Analytic Combinatorics in Several Variables. It
contains several interesting probabilistic topics.

I Today, will talk about something different. I am visiting UCB
(Elchanan Mossel) and focusing on social choice, “the theory
of collective decision-making without money”.

I Social choice theory gives rise to many interesting questions.
There is still much scope for probabilists, in my opinion.

I “Computational” social choice is very active, and is related to
algorithmic mechanism design and multiagent systems.
Complexity-theoretic results dominate the recent literature,
and probability techniques used so far are fairly basic.
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Basic social choice setup

I A finite set V of voters, n := |V |. Without loss of generality,
V = [n] := {1, . . . , n}.

I A finite set A of alternatives, m := |A|. Wlog, A = [m].

I L(A) := set of linear orders on A, representing the possible
strict preference orders. Identified with the set Sm of
permutations on [m].

I Profile: map V → L(A) giving each voter’s preference order.
The set of profiles is identified with (Sm)n.

I Voting situation: an orbit on profile space of the symmetric
group on the voters. Can be represented as a composition
(ordered partition) of n with m! parts. We usually normalize
by dividing by n, yielding the preference simplex.

I There are m!n profiles and
(
n+m!−1

n

)
voting situations.
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Basics

IC distribution

I Fix m and n. The IC distribution is the uniform distribution
on Snm (generated by choosing each component independently
and uniformly from Sm).

I This is a very special (α = 0) case of the Polyà-Eggenberger
distribution.

I Not surprisingly, central limit theorems figure prominently in
IC analyses. Other distributions in which each voter picks a
preference order IID are similar in many ways.

I This is by far the most common distribution used in social
choice. It has a relatively high probability of a very close
election. Not usually a realistic model, but a useful extreme
case, and fairly tractable.
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Some other distributions

I The Polya-Eggenberger distribution with α = 1 is the IAC
distribution. This turns out to be the uniform distribution on
voting situations: each configuration of anonymous voters is
equally likely. Computations involve Ehrhart theory, volumes
of polytopes, etc.

I Mallows model: probability of a permutation π is proportional
to qi(π) where 0 < q < 1 and i is the number of inversions.

I Spatial model: each voter has an ideal point in some
Euclidean space, and prefers candidates in inverse relation to
their distance from this point. In dimension 1, this gives
single-peaked preferences.
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Basics

Some social choice rules

I The scoring rule defined by a fixed weight vector
(w1, . . . , wm) gives wi points to each candidate for each voter
listing it in ith position. Highest total score wins. Special
cases: plurality (1, 0, 0, . . . , 0); Borda wi = (m− i)/(m− 1),
veto (1, 1, . . . , 1, 0).

I Condorcet rules: if there is a Condorcet winner (preferred by
some majority of voters to each other alternative), choose it.
Otherwise choose something else. Most famous is Copeland
rule (chess scoring).

I A huge generalization, including all rules used in practice, is
hyperplane rules (generalized scoring rules). These are all
anonymous, and the winner is constant on each chamber of
the preference simplex, the chambers being defined by a finite
set of hyperplanes.
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Changing the result of an election

Some key problems

I Fix a profile π, let S ⊆ V , let a be the winner under sincere
voting and let c ∈ A \ {a}. Suppose that the members of S
can change the winner to c by changing their votes.

I If all members of S prefer c to a, this is coalitional
manipulation; otherwise it is bribery. When c is specified, the
problem is constructive, otherwise destructive.

I When S is specified, we have a decision problem: can they do
it? When S is not specified, we have an optimization problem:
minimize |S| so that they can. We call S a winning coalition
in general.

I Many old results compute the (asymptotic) probability that a
winning coalition exists, under IC or IAC, at least for m = 3.
Other distributions could be tried.
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Changing the result of an election

Unifying result for optimization problems

I Xia (2012) defines a class of optimization problems which
includes several shown below.

I He proves that in the IID case, for hyperplane rules, the
optimal value is always one of: 0, ∞, Θ(

√
n), Θ(n).

I For smaller classes of rules and for IC, more specific results
can be derived.
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Changing the result of an election

Margin of victory

I The Hamming metric dH on Snm measures how many of the n
components differ. Induced by the discrete metric on Sm.

I For each profile π, the minimum Hamming distance to a
profile with a different winner we denote by ∆H(π). Xia
(2012) calls this the margin of victory.

I This is the optimization version of destructive bribery.
Application: if ∆H(π) is large, an election recount is likely not
needed.

I Xia (2012): In the IID case, ∆H has order
√
n or n. Pritchard

& Wilson (2009): For scoring rules under IC, it is
√
n and

very explicit formulae exist in terms of the weight vector.
Mossel, Procaccia, & Racz (2013): for hyperplane rules under
IC, the phase transition near

√
n is smooth.
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Changing the result of an election

Swap robustness

I The Kemeny metric dK on Snm measures the minimum
number of single-voter adjacent transpositions needed to
convert one permutation to the other. Induced by the
bubblesort metric (Kendall’s tau) on Sm.

I For each profile π, define ∆K(π) as before, with K replacing
H. Shiryaev, Lu, & Elkind (2013) call this the robustness
radius at π.

I This is the optimization version of destructive swap bribery.
Application: if this is large, then small errors by voters are
unlikely to change the outcome.

I Note that minπ ∆H(π) = 1 = minπ ∆K(π) for most common
rules. Shiryaev et al. compute maxπ ∆K(π) for several
common rules.
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Changing the result of an election

Manipulability

I So far we have looked at sensitivity of a voting rule to
changes in the input (bribery model). We can consider the
same results under the manipulation model.

I Denote the analogue of ∆ in this model by ∆∗.

I The Gibbard-Satterthwaite theorem says that unless the rule
is degenerate, when m ≥ 3 and n ≥ 2 then minπ ∆∗

H(π) = 1.
That is, a single voter can manipulate the outcome.
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Changing the result of an election

Minimum manipulating coalition size
I Another name for ∆∗

H(π) is the minimum manipulating
coalition size.

I Pritchard & Wilson (2009): for each scoring rule under IC,
∆∗
H/
√
n converges in distribution to an explicit distribution

depending on the weight vector,

Pr(n−1/2∆∗
H ≤ v)→ Pr(Vw ≤ w).

I The limiting distribution can be explicitly computed as the
minimum of a linear program in dimension 2 defined by m
constraints, where the objective function involves Gaussian
random variables.

I For example, the asymptotically least manipulable scoring rule
is “vote for your top half of the list” (m/2-approval), for
m ≥ 5.

I The phase transition near
√
n is smooth.
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m ≥ 5.
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A note on “coalitional manipulability”

I Computational social choice literature is dominated by results
on the computational complexity of the “coalitional
manipulation” decision problem.

I Strangely, the term “coalitional manipulation” is used for a
problem where S 6⊆ V and members of S have no preferences.
The correct term is “control by adding voters”. Denote the
optimal value by Γ.

I Xia (2012): For a large class of rules, Γ and ∆H are of the
same asymptotic order (any distribution, fixed m), so we will
ignore Γ today. However, there may be some point in
studying it probabilistically.
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The probability of making a change

I For each metric (Hamming or Kemeny), each model (bribery
or manipulation), and each k ≥ 1, we can consider the
probability P that a uniformly randomly chosen profile at
distance k makes the appropriate change.

I Procaccia & Rosenschein (2007): compute maxπ PK;1(π) for
several common rules. Application: if small, we can
successfully aggregate preferences in noisy environments.

I The Gibbard-Satterthwaite theorem says that unless the rule is
very degenerate, maxπ P

∗
H;1(π) > 0 when m ≥ 3 and n ≥ 2.

I Mossel & Racz (2012): a general lower bound for Prπ P
∗
H;1(π)

as a polynomial in n−1,m−1, ε where ε is the distance to the
set of degenerate rules.
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Changing the result of an election

A query model for manipulation

I Query voters in turn by sampling uniformly without
replacement.

I Let Q be the number of queries required before we have found
a manipulating coalition. For anonymous rules, this has the
flavour of a coupon-collecting problem, where any of several
minimal sub-multisets must be collected. Note that Q ≥ ∆∗

H

and Q is random even when π is given.

I Can show that Pr(Q ≤ k) is the probability of choosing a
winning coalition if we first choose size uniformly, then a
coalition uniformly.

I Conjecture: for some class of rules including scoring rules, for
some distributions including IC, there is a positive constant K
such that Q ≤ K∆∗

H with high probability (as n→∞).

I The analogous problem for other models also makes sense.
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Changing the result of an election

Aside: who cares about manipulation?

I Manipulability is often attacked on grounds of fairness,
informational efficiency, etc.

I From a consequentialist viewpoint, it is hard to understand
why manipulation should be considered harmful. My opinion:
the obsession with measuring (and minimizing) success of
strategic voting has distracted from the main issue, welfare.

I For reasonable rules, in order for a manipulation by few voters
to succeed, c must be close to a in overall support. Thus
changing the winner to c might not be particularly bad for
overall social welfare. I don’t know of any quantitative work
on this.
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The quality of solution

Social welfare measures

I Social choice theory usually deals only with rankings, not
cardinal utilities.

I For scoring rules, can use the score of the winner as the
measure of social welfare.

I Suppose that we do know the utility for each voter of each
candidate being chosen by the rule, uv(c). We can then look
at utilitarian: U(c) :=

∑
v uv(c) or egalitarian:

E(c) := minv uv(c) welfare measures.

I Distortion (Price of anarchy): ratio of social welfare of
optimal winner to social welfare of decentralized winner.
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The quality of solution

Socially optimal rules - sincere voting

I Consider randomized voting rules, where a profile is mapped
to a probability distribution over A (a point in the m-simplex).

I A rule is average-case optimal if it maximizes expected social
welfare on every profile.

I Boutilier et al. (2012): if utilities are drawn IID, from a
distribution symmetric on alternatives, and we use U , then
the average-case optimal rule is a scoring rule. In particular,
the Borda rule arises from the uniform distribution on [0, 1].

I They also study worst-case optimality and show that
randomized rules are qualitatively better than deterministic
ones.

I Problem: what can be said about other utility distributions?
other welfare measures? commonly used rules?
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The quality of solution

Choosing a parliament
I We want to allocate seats to parties in a “proportional

representation” system. Ignoring roundoff, this can be
thought of as a randomized voting rule, where probability
corresponds to fraction of seats. This gives more justification
for randomized voting rules.

I Rules used in practice only look at first preferences (plurality).
However, many more general methods are possible, e.g.
optimal voting rules as in Boutilier et al.

I Voters likely have preferences over parliaments, not just
parties. Expected utility doesn’t seem right in this case.

I There are general methods for “optimal proportional
representation” by Monroe (1995) and Chamberlin & Courant
(1983). These use Borda score as a welfare measure and are a
slightly different model. I know of no analytic results about
their average-case behaviour, nor other welfare measures.
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The quality of solution

Socially optimal rules - strategic voting

I Once we consider manipulation in this context, we enter the
realm of game theory. In full generality this is very hard,
because there are (too) many equilibria under strategic voting,
some of which have very bad social welfare.

I Restrictions on allowed strategic behaviour are commonly
made (sequential voting, asynchronous best-reply voting, . . . ).
Thompson, Lev, Leyton-Brown & Rosenschein (2012) have a
nice equilibrium refinement.

I Simulation results (Lehtinen 2006, Xia & Conitzer 2010, some
of my students, Thompson et al.) so far show that widespread
strategic voting generally increases overall social welfare.

I It would be very desirable to have some analytic results even
for IC. I don’t see to make progress. Any ideas?
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Other topics of interest (to me)

I Efficient aggregation of information: Condorcet Jury
Theorem, wisdom of crowds, voting rules as maximum
likelihood estimators.

I Extension of the above to social networks (e.g. Mossel,
Tamuz & Neeman 2012).

I Asymptotic probabilities of interesting events: Condorcet
efficiency, no-show paradox, etc.

I Fair division algorithms, divisible and indivisible case.
Average-case analysis and randomized algorithms.

I Disaggregation of a global probability distribution into local
distributions - models of changes in party support.

I Relation of Q to semivalues, probabilistic models of coalition
formation, power indices.
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