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Balance theory

I In social networks, if A,B,C are mutually related, and A and
B are friends, A and C are friends, but B and C are not
friends, there is social tension.

I Heider (1940s) postulated that such situations tend to
become balanced, so that two friends have a common enemy,
or all three become friends.

I This idea of balance in a network has been used in statistical
physics (spin glass models), biology, finance, knot theory,
coding theory, international relations (alliance and enmity),
chemistry, materials science, electronics.

I Despite many papers on this topic, there is no standard
measure of partial balance. In previous work we axiomatized
various measures of balance and recommended the frustration
index, arising in physics.



Balance theory

I In social networks, if A,B,C are mutually related, and A and
B are friends, A and C are friends, but B and C are not
friends, there is social tension.

I Heider (1940s) postulated that such situations tend to
become balanced, so that two friends have a common enemy,
or all three become friends.

I This idea of balance in a network has been used in statistical
physics (spin glass models), biology, finance, knot theory,
coding theory, international relations (alliance and enmity),
chemistry, materials science, electronics.

I Despite many papers on this topic, there is no standard
measure of partial balance. In previous work we axiomatized
various measures of balance and recommended the frustration
index, arising in physics.



Balance theory

I In social networks, if A,B,C are mutually related, and A and
B are friends, A and C are friends, but B and C are not
friends, there is social tension.

I Heider (1940s) postulated that such situations tend to
become balanced, so that two friends have a common enemy,
or all three become friends.

I This idea of balance in a network has been used in statistical
physics (spin glass models), biology, finance, knot theory,
coding theory, international relations (alliance and enmity),
chemistry, materials science, electronics.

I Despite many papers on this topic, there is no standard
measure of partial balance. In previous work we axiomatized
various measures of balance and recommended the frustration
index, arising in physics.



Balance theory

I In social networks, if A,B,C are mutually related, and A and
B are friends, A and C are friends, but B and C are not
friends, there is social tension.

I Heider (1940s) postulated that such situations tend to
become balanced, so that two friends have a common enemy,
or all three become friends.

I This idea of balance in a network has been used in statistical
physics (spin glass models), biology, finance, knot theory,
coding theory, international relations (alliance and enmity),
chemistry, materials science, electronics.

I Despite many papers on this topic, there is no standard
measure of partial balance. In previous work we axiomatized
various measures of balance and recommended the frustration
index, arising in physics.



31/10/2016
52

Middle East signed network

[9
]

Figure: D. McCandless, Information is Beautiful by Univers Labs, source: multiple news reports



The basic graph problem

I Consider a finite undirected graph G = (V,E) equipped with
an edge weight function σ : E → {±1}. This is a signed
graph, with positive edges E+ and negative edges E−.

I Let m− = |E−| denote the number of negative edges, and
A = (aij) the signed adjacency matrix (each entry is ±1).

I If we can colour each vertex 0 or 1, then a positive edge is
frustrated if its endpoints have different colours, while a
negative edge is frustrated if its endpoints have the same
colour. A graph is balanced if it has a colouring with no
frustration.

I We aim to compute the frustration index, the minimum
number of frustrated edges over all colourings. Alternatively,
the minimum number of edges which must be negated (or
deleted) in order to make the graph balanced.
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Example — signed graph



Previous work

I Determining whether the frustration index is less than k is
NP-complete by reduction from MAX-CUT. It can be solved
in polynomial time for planar graphs.

I Many authors have discussed heuristic methods, based on
local search for example.

I Some authors have presented polynomial-time approximation
algorithms.

I Apparently, no one has seriously attempted to solve the
problem exactly on decent sized graphs. (!)

I This is precisely what we do in the paper. We obtain good
performance results, and also find errors in previous work.
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Basic model

I For each edge e, define variable fe to indicate whether the
edge is frustrated by a given colouring.

I The frustration index is then computed by

min
x

∑
e∈E

fe

where x : V → {0, 1} is a colouring.

I All our models use this skeleton, with different expressions for
fe, which necessitate different constraints.



Basic model

I For each edge e, define variable fe to indicate whether the
edge is frustrated by a given colouring.

I The frustration index is then computed by

min
x

∑
e∈E

fe

where x : V → {0, 1} is a colouring.

I All our models use this skeleton, with different expressions for
fe, which necessitate different constraints.



Basic model

I For each edge e, define variable fe to indicate whether the
edge is frustrated by a given colouring.

I The frustration index is then computed by

min
x

∑
e∈E

fe

where x : V → {0, 1} is a colouring.

I All our models use this skeleton, with different expressions for
fe, which necessitate different constraints.



Frustrated edges

I An edge is frustrated if and only if it is positive and links
nodes with a different colour, or negative and links nodes of
the same colour.

I Thus

f{u,v} =


0, if xu = xv and (u, v) ∈ E+

1, if xu = xv and (u, v) ∈ E−

0, if xu 6= xv and (u, v) ∈ E−

1, if xu 6= xv and (u, v) ∈ E+

I Note that for a fixed colouring, fe = 1− f(−e), where −e
denotes the negated edge, so we only need to specify the
formulae below for e ∈ E+.
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First model - quadratic

Here we represent f directly as follows, with e = {u, v} ∈ E+.

fe = XOR (xu, xv) = (xu ∧ ¬xv) ∨ (xv ∧ ¬xu).

Replacing each edge by two directed edges of the form e′ = (u, v)
we can consider the simpler formula fe′ = xu ∧ ¬xv = xu − xuxv.
This gives a quadratic 0-1 integer programming model.

min
∑

(u,v)∈E+

xu(1− xv) +
∑

(u,v)∈E−
1− xu(1− xv)

s/t xu ∈ {0, 1}, u ∈ V



Second model - AND

We simply replace xuxv with a new variable xuv and include extra
constraints to enforce this equality.

min
∑

(u,v)∈E+

xu − xuv +
∑

(u,v)∈E−
1− xu + xuv

xuv ≤ (xu + xv)/2 (u, v) ∈ E+

xuv ≥ xu + xv − 1 (u, v) ∈ E−

xu, xuv ∈ {0, 1}

We use the pressure of the objective function to remove
non-binding constraints.



Third model - XOR

We make the change of variable wuv = XOR(xu, xv) and enforce
this with extra constraints.

min
∑

{u,v}∈E+

wuv +
∑

{u,v}∈E−
1− wuv

wuv ≥ xu − xv {u, v} ∈ E+

wuv ≥ xv − xu {u, v} ∈ E+

wuv ≤ 2− xu − xv {u, v} ∈ E−

wuv ≤ xu + xv {u, v} ∈ E−

xu, wuv ∈ {0, 1}



Fourth model - ABS

We instead express f via f{u,v} = |xu − xv| for {u, v} ∈ E+. With
2auv = |xu − xv|+ (xu − xv), 2buv = |xu − xv| − (xu − xv) we
obtain

min
∑
uv∈E

auv + buv

xu − xv = auv − buv {u, v} ∈ E+

xu + xv − 1 = auv − buv {u, v} ∈ E−

xu, auv, buv ∈ {0, 1}



Summary of models

Table: Comparison of the variables and constraints in the models

First Second Third Fourth

Variables n n+m n+m n+ 2m
Constraints 0 m 2m m

Variable type binary binary binary binary
Constraint type - linear≤ linear≤ linear=

Objective quadratic linear linear linear



Additional details

I There are several conditions that must be satisfied by feasible
solutions.

I We implement them in Gurobi using lazy constraints. Upon
violation by a solution, lazy constraints are efficiently pulled
into the model in order to cut a part of the feasible space.

I The various models incorporate known valid inequalities such
as:

I in the optimal solution, the signed degree of each vertex is
nonnegative;

I every unbalanced cycle of the graph contains an odd number
of frustrated edges, so in particular

∑
e fe ≥ 1 for every

unbalanced triangle.

I We also break symmetry by colouring the root node 1, and
use heuristics for the branching priority (decreasing order of
unsigned degree).
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Test problems
I We used some standard social network examples: Read’s

dataset for New Guinean highland tribes (G1); Sampson’s
dataset for monastery interactions (G2); graphs inferred from
datasets of students’ choice and rejection by Newcomb and
Lemann (G3 and G4). Network G5 is inferred by Neal through
implementing a stochastic degree sequence model on Fowler’s
data on Senate bill co-sponsorship.

I We used four examples from biology: Epidermal growth factor
receptor pathway (G6); represents the molecular interaction
map of a macrophage (G7); gene regulatory networks of the
yeast Saccharomyces cerevisiae (G8) and the bacterium
(Escherichia coli (G9).

I We implemented the models using Gurobi Python interface
and a desktop computer with an Intel Corei5 4670 @ 3.40 GHz
and 8.00 GB of RAM running 64-bit Microsoft Windows 7.



Test problems
I We used some standard social network examples: Read’s

dataset for New Guinean highland tribes (G1); Sampson’s
dataset for monastery interactions (G2); graphs inferred from
datasets of students’ choice and rejection by Newcomb and
Lemann (G3 and G4). Network G5 is inferred by Neal through
implementing a stochastic degree sequence model on Fowler’s
data on Senate bill co-sponsorship.

I We used four examples from biology: Epidermal growth factor
receptor pathway (G6); represents the molecular interaction
map of a macrophage (G7); gene regulatory networks of the
yeast Saccharomyces cerevisiae (G8) and the bacterium
(Escherichia coli (G9).

I We implemented the models using Gurobi Python interface
and a desktop computer with an Intel Corei5 4670 @ 3.40 GHz
and 8.00 GB of RAM running 64-bit Microsoft Windows 7.



Test problems
I We used some standard social network examples: Read’s

dataset for New Guinean highland tribes (G1); Sampson’s
dataset for monastery interactions (G2); graphs inferred from
datasets of students’ choice and rejection by Newcomb and
Lemann (G3 and G4). Network G5 is inferred by Neal through
implementing a stochastic degree sequence model on Fowler’s
data on Senate bill co-sponsorship.

I We used four examples from biology: Epidermal growth factor
receptor pathway (G6); represents the molecular interaction
map of a macrophage (G7); gene regulatory networks of the
yeast Saccharomyces cerevisiae (G8) and the bacterium
(Escherichia coli (G9).

I We implemented the models using Gurobi Python interface
and a desktop computer with an Intel Corei5 4670 @ 3.40 GHz
and 8.00 GB of RAM running 64-bit Microsoft Windows 7.



Results - solve time

Table: Comparison of solve time

G6 G7 G8 G9

HBN2010 15h 1d 5h

IRSA2010 few min few min few min few min
AND 2.7s 2.4s 0.9s 44s
XOR 6.2s 20s 0.7s 1.6s
ABS 0.5s 0.5s 0.3s 1.3s
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Results -solution quality

Table: Best solution values found

G6 G7 G8 G9

optimum 193 332 41 371

HBN2010 [196, 219], 210 [218,383], 374 [0, 43], 41
IRSA2010 [186, 193] [302, 332] 41 [365, 371]
AND 193 332 41 371
XOR 193 332 41 371
ABS 193 332 41 371
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Results - balance

Graph n m m− L(G) L(Gr)± SD Z score

G1 16 58 29 7 14.80± 1.25 -6.25
G2 18 49 12 5 10.02± 1.22 -4.10
G3 17 40 17 4 8.02± 0.88 -4.55
G4 17 36 16 6 7.04± 1.00 -1.04
G5 100 2461 1047 331 973.83± 9.30 -69.13
G6 329 779 264 193 148.82± 5.11 8.65
G7 678 1425 478 332 253.16± 6.48 12.16
G8 690 1080 220 41 114.90± 5.52 -13.39
G9 1461 3212 1336 371 651.58± 6.92 -40.55



Conclusions

I Our algorithms work much better in practice than the
previously used heuristics.

I This will allow serious tests of balance theory on dynamically
changing graphs.

I Note that 7 of the 9 test cases were more balanced than we
would expect by randomly assigning signs.

I It is still possible to improve performance by better use of
structural properties and lazy constraints.
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