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Basic setup

The house allocation problem

I Given a set A = {a1, . . . , an} of items and a set
V = {v1, . . . , vn} of agents having preferences over the items,
we want to allocate items to agents.

I This is the house allocation problem formalised by Hylland &
Zeckhauser (1979).

I The allocation can be done using a discrete assignment (no
item may be divided) or a random assignment.

I A random assignment can be interpreted in several ways:

I divide the objects;
I time-sharing of objects;
I a lottery over the objects.

I As usual one can consider this as a decentralized mechanism
(allowing for strategic behaviour) or simply study the
behaviour when preferences are given sincerely.

Mark C. Wilson



Basic setup

The house allocation problem

I Given a set A = {a1, . . . , an} of items and a set
V = {v1, . . . , vn} of agents having preferences over the items,
we want to allocate items to agents.

I This is the house allocation problem formalised by Hylland &
Zeckhauser (1979).

I The allocation can be done using a discrete assignment (no
item may be divided) or a random assignment.

I A random assignment can be interpreted in several ways:

I divide the objects;
I time-sharing of objects;
I a lottery over the objects.

I As usual one can consider this as a decentralized mechanism
(allowing for strategic behaviour) or simply study the
behaviour when preferences are given sincerely.

Mark C. Wilson



Basic setup

The house allocation problem

I Given a set A = {a1, . . . , an} of items and a set
V = {v1, . . . , vn} of agents having preferences over the items,
we want to allocate items to agents.

I This is the house allocation problem formalised by Hylland &
Zeckhauser (1979).

I The allocation can be done using a discrete assignment (no
item may be divided) or a random assignment.

I A random assignment can be interpreted in several ways:

I divide the objects;
I time-sharing of objects;
I a lottery over the objects.

I As usual one can consider this as a decentralized mechanism
(allowing for strategic behaviour) or simply study the
behaviour when preferences are given sincerely.

Mark C. Wilson



Basic setup

The house allocation problem

I Given a set A = {a1, . . . , an} of items and a set
V = {v1, . . . , vn} of agents having preferences over the items,
we want to allocate items to agents.

I This is the house allocation problem formalised by Hylland &
Zeckhauser (1979).

I The allocation can be done using a discrete assignment (no
item may be divided) or a random assignment.

I A random assignment can be interpreted in several ways:

I divide the objects;
I time-sharing of objects;
I a lottery over the objects.

I As usual one can consider this as a decentralized mechanism
(allowing for strategic behaviour) or simply study the
behaviour when preferences are given sincerely.

Mark C. Wilson



Basic setup

The house allocation problem

I Given a set A = {a1, . . . , an} of items and a set
V = {v1, . . . , vn} of agents having preferences over the items,
we want to allocate items to agents.

I This is the house allocation problem formalised by Hylland &
Zeckhauser (1979).

I The allocation can be done using a discrete assignment (no
item may be divided) or a random assignment.

I A random assignment can be interpreted in several ways:
I divide the objects;

I time-sharing of objects;
I a lottery over the objects.

I As usual one can consider this as a decentralized mechanism
(allowing for strategic behaviour) or simply study the
behaviour when preferences are given sincerely.

Mark C. Wilson



Basic setup

The house allocation problem

I Given a set A = {a1, . . . , an} of items and a set
V = {v1, . . . , vn} of agents having preferences over the items,
we want to allocate items to agents.

I This is the house allocation problem formalised by Hylland &
Zeckhauser (1979).

I The allocation can be done using a discrete assignment (no
item may be divided) or a random assignment.

I A random assignment can be interpreted in several ways:
I divide the objects;
I time-sharing of objects;

I a lottery over the objects.

I As usual one can consider this as a decentralized mechanism
(allowing for strategic behaviour) or simply study the
behaviour when preferences are given sincerely.

Mark C. Wilson



Basic setup

The house allocation problem

I Given a set A = {a1, . . . , an} of items and a set
V = {v1, . . . , vn} of agents having preferences over the items,
we want to allocate items to agents.

I This is the house allocation problem formalised by Hylland &
Zeckhauser (1979).

I The allocation can be done using a discrete assignment (no
item may be divided) or a random assignment.

I A random assignment can be interpreted in several ways:
I divide the objects;
I time-sharing of objects;
I a lottery over the objects.

I As usual one can consider this as a decentralized mechanism
(allowing for strategic behaviour) or simply study the
behaviour when preferences are given sincerely.

Mark C. Wilson



Basic setup

The house allocation problem

I Given a set A = {a1, . . . , an} of items and a set
V = {v1, . . . , vn} of agents having preferences over the items,
we want to allocate items to agents.

I This is the house allocation problem formalised by Hylland &
Zeckhauser (1979).

I The allocation can be done using a discrete assignment (no
item may be divided) or a random assignment.

I A random assignment can be interpreted in several ways:
I divide the objects;
I time-sharing of objects;
I a lottery over the objects.

I As usual one can consider this as a decentralized mechanism
(allowing for strategic behaviour) or simply study the
behaviour when preferences are given sincerely.

Mark C. Wilson



Basic setup

Axioms — discrete assignments

I A discrete assignment is (Pareto) efficient if it is not possible
to improve any agent’s outcome without worsening another
agent’s outcome.

I A discrete assignment is envy-free if there do not exist agents
i and j so that i prefers j’s allocation to her own.

I If agents have identical preferences, then no discrete
assignment can be envy-free.
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Basic setup

Axioms — random assignments

I When comparing random assignments, there are 3 main ideas:

I ex post: after realisation of the random choices;
I SD: stochastic dominance of probability distributions;
I ex ante: expected utility dominance of probability distributions.

I Ex ante efficiency is stronger than SD, which is stronger than
ex post.

I The reverse is true for envy-freeness.

I There are new fairness concepts (weak envy-freeness,
proportionality) that have no analogue in the discrete case.
We do not discuss them here.
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Basic setup

Example — comparing random assignments

I Suppose we have two agents of type abcd and two of type
badc.

I Consider the random assignments (agents are rows, items are
columns)

A =


5
12

1
12

5
12

1
12

5
12

1
12

5
12

1
12

1
12

5
12

1
12

5
12

1
12

5
12

1
12

5
12

 B =



1
2 0 1

2 0

1
2 0 1

2 0

0 1
2 0 1

2

0 1
2 0 1

2

 .

I Then each row of B stochastically dominates its counterpart
in A. Thus A is not SD-efficient.
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Basic setup

The housing market problem
I This is similar to house allocation, but we assume each agent

starts with a house. We seek a decentralised mechanism
which gives an efficient outcome, and is strategyproof (no
agent has incentive to lie about preferences if all other agents
are truthful; everyone being truthful is a Nash equilibrium).

I The answer is given by Gale’s Top Trading Cycle mechanism
(Scarf & Shapley 1974).

I Each agent i points to the agent currently owning i’s top
choice. The resulting directed graph has cycles, and we
reallocate along the cycle. If cycles remain, repeat with
second choices, etc.

I If we start with an initial allocation of items and then apply
TTC, this gives an algorithm for housing allocation.

I Another general method for constructing algorithms: form a
convex combination of the outputs of known algorithms.
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Basic setup

Famous algorithms - RP

I The Serial Dictatorship (SD) algorithm (with respect to a
given fixed order of agents) simply lets them choose one item
at a time until items are exhausted. It is always efficient.

I The Random Serial Dictatorship (or Random Priority) chooses
a random permutation of the agents, then applies SD. It is
equivalent to choosing a random assignment, then doing TTC.

I RP satisfies some nice axiomatic properties: ex-post efficiency,
ex-ante strategyproofness, symmetry.

I SD runs in polynomial time; RP is super-exponential owing to
the n! permutations, and there is unlikely to be a way around
this, because determining whether agent i gets item j with
positive probability is an NP-hard problem.
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Basic setup

Famous algorithms - PS

I The Probabilistic Serial algorithm constructs a random
assignment as follows. Each agent starts to consume its most
preferred item, all agents “eating” at unit speed. Whenever
an item is completely consumed, each agent currently
consuming it moves to its next most preferred item. Stop
when all items are consumed.

I PS satisfies some nice axiomatic properties:

I SD-efficiency
I SD-strategyproofness
I symmetry

I PS runs in polynomial time.
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Basic setup

New algorithms — Yankee Swap

I This is based on the party game also known as “White
Elephant”.

I Fix an order on the agents (randomize as for RP to get a
fairer method). At each round, the next agent i without an
item chooses her most preferred one. If that had previously
been allocated to another agent j, then i steals it, and j can
proceed to choose her most preferred item, etc. We prevent
cycling during a round by requiring, for example, that no item
can be held by any agent more than once per round.

I YS does not satisfy efficiency, strategyproofness or any kind of
envy-freeness.

I YS runs in polynomial time for a fixed order of agents.
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Basic setup

New algorithms — Boston mechanism

I This is based on the school assignment algorithm, in which
items have priorities (weak preferences) over agents.

I Fix an order on the agents (randomize as for RP to get a
fairer method). Assignments are final and agents are removed
from consideration once they receive an item. At the first
round, each item is assigned to the first remaining agent who
ranks it first, if such agent exists. At the next round, second
preferences are considered, etc.

I NB does not satisfy efficiency, strategyproofness or any kind
of envy-freeness.

I NB runs in polynomial time for a fixed order of agents.
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Basic setup

Example

I Profile E: 3 agents 1, 2, 3, with preferences abc, abc, bac.
Profile E′: same agents, preferences abc, abc, abc.

I YS proceeds as follows on E given order 1, 2, 3 on agents:
1 : a; 2 : a, 1 : b; 3 : b, 1 : a, 2 : b, 3 : a, 1 : c. However on E′ it
yields 1 : a; 2 : a, 1 : b; 3 : a, 2 : b, 1 : a, 3 : b, 2 : c.

I If E′ describes sincere preferences then agent 3 is incentivized
to pretend bac, so YS is not strategyproof.

I NB proceeds as follows on E given order 1, 2, 3 on agents:
a : 1, 3 : b; 2 : c. However on E′ it yields a : 1; b : 2; c : 3.

I If E′ describes sincere preferences then agent 3 is incentivized
to pretend bac, so NB is not strategyproof.
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Basic setup

Example - TTC

I Profile E: 3 agents 1, 2, 3, with preferences abc, abc, bac.

I Initial allocation 1 : c, 2 : b, 3 : a.

I Agents 1 and 2 point to 3 and 3 points to 2. A trade between
2 and 3 is mutually beneficial and removes all cycles.

I Thus TTC output the allocation 1 : c, 2 : a, 3 : b.
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Example continued
Averaging over all 6 orders of agents, we obtain the random
assignment matrices. Note that YS is stochastically dominated by
NB for every agent.0 1/2 1/2

0 1/2 1/2
1 0 0

 (YS)

1/2 0 1/2
1/2 0 1/2
0 1 0

 (NB and YS+TTC)

1/2 1/6 1/3
1/2 1/6 1/3
0 2/3 1/3

 (RP and PS)
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Another example

I Profile E: 3 agents 1, 2, 3, with preferences abc, cba, acb.

I SD yields 1 : a, 2 : c, 3 : b, as does NB.

I YS yields 1 : b, 2 : c, 3 : a.

I Note that it is possible for everyone to obtain one of their top
two choices (1 : b, 2 : c, 3 : a), but only YS actually does that.
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Basic setup

Our idea

I The literature is dominated by RP and PS. Other algorithms
may be good on average but fail only occasionally to satisfy
various axioms.

I For artificial agents, axioms involving envy are often not
relevant; strategy and efficiency are also less important.
Perhaps overall welfare is a better design criterion.

I We perform exhaustive computation for small n = m and
measure welfare, violations of envy-freeness, violations of
SD-efficiency and violations of SD-proportionality. We also do
some simulation for larger n.

I Overall results show that (if we run TTC on the output of YS
and NB) that YS gives clearly better welfare than the other
algorithms, with increased probability of violating
envy-freeness and efficiency.
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Summary of results

I PS is best for envy-freeness and efficiency.

I YS+TTC is best for utilitarian and Nash welfare when Borda
utilities are used.

I NB is best for welfare when “plurality utilities” are used.
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Sample results: efficiency and welfare

Algo Util Egal Nash Eff

PS 0.950 3.909 4.256 1
RP 0.946 3.818 4.234 0.428
NB 0.958 3.400 4.247 0.892
YS+TTC 0.980 3.833 4.380 0.906

Table: IANC5
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Sample results: fairness

Algo %EF #EF w%EF w#EF %Prop #Prop w%Prop w#Prop

PS 1 1 1 1 1 1 1 1
RP 0.0919 0.840 1 1 1 1 1 1
NB 0.0774 0.828 0.731 0.982 0.253 0.778 1 1
YS+TTC 0.0796 0.818 0.620 0.975 0.288 0.807 0.998 0.999

Table: IANC5fair
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Algo size 10 15 20 25 30 35 40 45 50

PS 0.952 0.959 0.964 0.968 0.972 0.974 0.977 0.978 0.980
RP 0.937 0.941 0.946 0.950 0.953 0.956 0.959 0.961 0.964
NB 0.949 0.951 0.954 0.957 0.960 0.963 0.965 0.967 0.968
YS+TTC 0.977 0.979 0.981 0.983 0.984 0.986 0.987 0.988 0.989

Table: Borda utilitarian efficiency for larger n under IC
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Future work

I Use preference distributions with more correlation between
agents: in particular the IC (IID uniform) distribution for large
n yields few conflicts, allowing each agent to get one of her
top few choices with high probability.

I Analytic results under IC distribution?

I Investigate Yankee Swap in more detail. Is it somehow related
to the Gale-Shapley algorithm for two-sided matching? Could
it be useful for school choice?
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