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Wisdom of crowds

Overview

Main research questions

I How do agents update their beliefs in the context of a social
network?

I Do they change directly from “believing X” to “believing
not-X” directly, or do they first become undecided?

I Is the change of belief better modelled as a simple contagion
or a complex contagion?

I Are threshold models appropriate?

I Which classes of diffusion models definitely don’t work, and
which are promising?
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Wisdom of crowds

I Has been studied since 1907 when Galton analysed the
estimates of 787 people of the weight of an ox.

I Key finding: the mean of estimates is usually more accurate
than any single estimate: the crowd is wiser than any of its
members, including “experts”.

I Theoretical justification for this comes from the Law of Large
Numbers, with appropriate assumptions on distribution of the
errors made by individuals.

I Independence of estimates (or even negative correlation) gives
good results, but positively correlated estimates can give bad
ones, in theory.

I When estimates can be revised and information about others’
estimates is available, herding can occur.
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Overview

Decision-making in groups

I There is a large body of work in social psychology and
experimental economics involving decision-making in groups.

I Sometimes there are strategic incentives for conformity rather
than correctness. We focus on the case where individual
performance is incentivized and answers are objective.

I Group performance depends greatly on protocols used (for
example, discussion can often hinder rather than help). The
Delphi technique is a generally successful method for
combining estimates allowing for iterative guesses based on
feedback from the group, conveyed via a central controller.
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Our problem

I We focus on the iterative distributed jury situation (our term):

I truth is incentivized
I multiple choice answers
I discussion is not possible or allowed
I participants iteratively revise estimates based on polls
I information flow is controlled by a network

I We found little literature on this situation. Without the
iteration and network, Condorcet’s Jury Theorem and its
descendants show that crowds are often wiser than their
experts.

I We seek to investigate this experimentally with a view to
developing more realistic models that we can analyse. In
particular, we want to model undecidedness.
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Our experiment

I A standard behavioral lab experiment with randomly selected
undergraduate participants.

I Allowed third option (“I am not sure”) and incentivized
choosing this over randomly guessing one of the two provided
answers.

I This allows us to see more detail on how beliefs are updated.
I It also allows us to focus on three subgroups:

I those who know they know;
I those who know they don’t know;
I those who don’t know they don’t know.
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Our experiment

Types of questions

I We chose a variety of questions. In particular:

I Two were purely logical (“intellective”)in nature (one from
Frederick’s Cognitive Reflection Test and a variant of the
Wason task).

I Two required knowledge of facts about the world (movie
actors, a common misconception about geography).

I One was essentially impossible without being given the correct
answer (which we gave to a few subjects).

I Let C,U, I be the fraction of correct, undecided, incorrect
answers given at the first iteration, so 1 = C + U + I. A key
property of questions seems to be trickiness, which we define
as I. This is distinct from difficulty, which we define as U + I.



Wisdom of crowds

Our experiment

Types of questions

I We chose a variety of questions. In particular:
I Two were purely logical (“intellective”)in nature (one from

Frederick’s Cognitive Reflection Test and a variant of the
Wason task).

I Two required knowledge of facts about the world (movie
actors, a common misconception about geography).

I One was essentially impossible without being given the correct
answer (which we gave to a few subjects).

I Let C,U, I be the fraction of correct, undecided, incorrect
answers given at the first iteration, so 1 = C + U + I. A key
property of questions seems to be trickiness, which we define
as I. This is distinct from difficulty, which we define as U + I.



Wisdom of crowds

Our experiment

Types of questions

I We chose a variety of questions. In particular:
I Two were purely logical (“intellective”)in nature (one from

Frederick’s Cognitive Reflection Test and a variant of the
Wason task).

I Two required knowledge of facts about the world (movie
actors, a common misconception about geography).

I One was essentially impossible without being given the correct
answer (which we gave to a few subjects).

I Let C,U, I be the fraction of correct, undecided, incorrect
answers given at the first iteration, so 1 = C + U + I. A key
property of questions seems to be trickiness, which we define
as I. This is distinct from difficulty, which we define as U + I.



Wisdom of crowds

Our experiment

Types of questions

I We chose a variety of questions. In particular:
I Two were purely logical (“intellective”)in nature (one from

Frederick’s Cognitive Reflection Test and a variant of the
Wason task).

I Two required knowledge of facts about the world (movie
actors, a common misconception about geography).

I One was essentially impossible without being given the correct
answer (which we gave to a few subjects).

I Let C,U, I be the fraction of correct, undecided, incorrect
answers given at the first iteration, so 1 = C + U + I. A key
property of questions seems to be trickiness, which we define
as I. This is distinct from difficulty, which we define as U + I.



Wisdom of crowds

Our experiment

Types of questions

I We chose a variety of questions. In particular:
I Two were purely logical (“intellective”)in nature (one from

Frederick’s Cognitive Reflection Test and a variant of the
Wason task).

I Two required knowledge of facts about the world (movie
actors, a common misconception about geography).

I One was essentially impossible without being given the correct
answer (which we gave to a few subjects).

I Let C,U, I be the fraction of correct, undecided, incorrect
answers given at the first iteration, so 1 = C + U + I. A key
property of questions seems to be trickiness, which we define
as I. This is distinct from difficulty, which we define as U + I.



Wisdom of crowds

Our experiment

Difficulty and trickiness of questions



Wisdom of crowds

Our experiment

Strong asymmetry between ”I am not sure” and others
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Our experiment

Participants changed their answer rather often
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Our experiment

About 80% were tricked on some question
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Our experiment

The effect of question type

Finding — importance of question type

I There are large differences in answer patterns between
questions.

I The higher the trickiness of the question, the worse the social
learning.

I Difficulty is not as important as trickiness. Learning can occur
well on difficult questions.

I Logical questions elicit more changes but worse social learning.



Wisdom of crowds

Our experiment

The effect of question type

Finding — importance of question type

I There are large differences in answer patterns between
questions.

I The higher the trickiness of the question, the worse the social
learning.

I Difficulty is not as important as trickiness. Learning can occur
well on difficult questions.

I Logical questions elicit more changes but worse social learning.



Wisdom of crowds

Our experiment

The effect of question type

Finding — importance of question type

I There are large differences in answer patterns between
questions.

I The higher the trickiness of the question, the worse the social
learning.

I Difficulty is not as important as trickiness. Learning can occur
well on difficult questions.

I Logical questions elicit more changes but worse social learning.



Wisdom of crowds

Our experiment

The effect of question type

Finding — importance of question type

I There are large differences in answer patterns between
questions.

I The higher the trickiness of the question, the worse the social
learning.

I Difficulty is not as important as trickiness. Learning can occur
well on difficult questions.

I Logical questions elicit more changes but worse social learning.



Wisdom of crowds

Our experiment

The effect of question type

Aggregate learning by question
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The effect of question type

Aggregate learning by question type
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Wisdom of crowds

Our experiment

Where does the wisdom lie in the crowd?

Finding — self-awareness promotes learning

I There is a clear difference in learning between those who are
correct at the first iteration, those who answer wrongly, and
those who admit to being undecided.

I This effect even occurred (to a lesser extent) in the complete
topology, where everyone has the same information.

I It does not seem that the members of these groups are the
same for each question, but more work is needed.
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Where does the wisdom lie in the crowd?

Those who (know that they) know
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Where does the wisdom lie in the crowd?

Those who know that they don’t know
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Where does the wisdom lie in the crowd?

Those who don’t know that they don’t know
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Where does the wisdom lie in the crowd?

Learning according to first answer
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Our experiment

The interaction of question type and topology

Finding — effect of topology

I For the high-trickiness Question 2, there is a huge difference
in dynamics between the two network topologies we used,
otherwise moderate difference.

I In the “spiral” topology, convergence is slow or nonexistent.
Convergence is much faster in the complete topology.

I For the less tricky questions, convergence to truth occurs in
the complete topology, but in the high-trickiness question,
convergence to the wrong answer occurs.

I Our results, in quite a different setting, seem to agree with
those of Lazer & Friedman (2007) on exploration vs
exploitation in optimization problems.

I Topologies promoting easy information-sharing tend to yield
worse social learning for hard questions, as too little
exploration occurs owing to herding.
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The interaction of question type and topology

Learning by question and topology
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Our experiment

The interaction of question type and topology

Implications for modelling

I Condorcet Jury Theorem-type results where individual
correctness probability is replaced by incorrectness.

I Models predicting convergence to unanimity are inconsistent
with our data.

I Data shows that simple (epidemic-like) contagion typical of
information models do not fit the data as well as complex
(threshold-type) models of behavioral change.

I Threshold-type models for opinion change won’t work directly:
any model with zero weight on agent’s own opinion is strongly
refuted by our data.

I If p1, p2, p3 are fractions of neighbours with opinions 1, 2 or “I
am not sure”, then threshold models use p1 to predict answer
1 by agent. However we find that p1 − p2 and p3 are much
better predictors.
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Appendix

Experimental setup I

I Used DECIDE behavioral laboratory at University of Auckland
(http://hfbeltran.wix.com/decide) run by A.
Chaudhuri, Pavlov and H. Beltran.

I A standard setup with participants sitting at networked
computers, no communication except via the experimenters.
Subjects randomly assigned, topology determined by us (one
of two types), nodes randomly permuted between questions.

I Standard software ORSEE used to recruit from a pool of
students, zTree used to perform the experiment.

http://hfbeltran.wix.com/decide
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Experimental setup II

I Several multiple choice questions are answered, one at a time
— other studies mostly use free-form answers.

I Each question has 10 iterations, and subjects can change their
answer each time if desired. They receive summary feedback
on their neighbours’ answers after each iteration.

I The first iteration is allotted 2 minutes, each subsequent one
30 seconds.

I There are 3 possible answers: option 1, option 2 and “I am
not sure”. This we think is novel.

I Subjects are paid for answering correctly at the last iteration
and a randomly chosen other one. They are paid 1 for correct,
0 for wrong, 0.6 for “I am not sure”.
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Data

I Each data point is an answer to a fixed question at a specific
iteration by a specific subject. We also measure time to
answer and the summary of answers of the neighbours in the
previous iteration.

I We have 52 subjects over 4 sessions, so 2600 data points. In
only 72 of these was no answer made. We discard those
points for most of the analysis, leaving 2528.
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Key references

I How social influence can undermine the wisdom of crowd
effect: Lorenz, Rauhut, Schweitzer, Helbing, PNAS 2011.

I Analytical reasoning task reveals limits of social learning in
networks: Rahwan, Krasnoshtan, Shariff, Bonnefon. J. R.
Soc. Interface 2014.

I The Network Structure of Exploration and Exploitation:
Lazer, Friedman. Administrative Science Quarterly 2007.
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