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Univariate background

Sequences

I In combinatorics and probability we very often encounter
special sequences of numbers (usually rational or integer).

I Simple examples:
I an = number of binary trees with n nodes
I an = expected height of a random binary tree with n nodes
I an,k = number of binary trees with n nodes having k leaves
I ar = number of paths by a d-dimensional rook from the origin

to r ∈ Nd.

I A (d-variate) sequence is just a function Nd → C. We use
subscript notation, ar := a(r).



Univariate background

Generating functions

I The best all-round tool for studying ar is a d-variate formal
power series called the generating function

F (z) =
∑
r

arz
r.

I This is analogous to the Fourier or Laplace transform, but it
converts a discrete problem into a continuous one.

I A recurrence relation for ar corresponds to a functional
equation for F .

I Introduced by Euler in 1753 to count diagonals in polygons
(Catalan numbers).



Univariate background

Good reasons to use generating functions

I We can use the machinery of complex analysis to attack
discrete problems (provided the radius of convergence is
nonzero).

I There is a “dictionary”: combinatorial, algebraic, statistical
operations on sequences usually transform to nice operations
on GFs.

I For many naturally occurring problems, much of the
computation can be algorithmically implemented in a
computer algebra system.

I Versatility: GFs yield recurrences, identities, congruences,
unimodality results, asymptotics.
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Univariate background

Concrete univariate example: Fibonacci numbers

I Fibonacci: a0 = 0, a1 = 1, an = an−1 + an−2 for n ≥ 2. This
is the simplest interesting linear homogeneous difference
equation, and is ubiquitous.

I Let F (z) =
∑
anz

n, θ := (1 +
√
5)/2 (golden ratio). Then

the recurrence above yields (1− z − z2)F (z) = z and by
partial fractions

F (z) =
z

1− z − z2 =
1√
5

[
1

1− θz −
1

1 + θ−1z

]
.

I Can now extract coefficients easily:

an =
1√
5
[θn − (−θ)−n].

I Asymptotically, the θn term dominates.
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Univariate background

Fibonacci numbers: more details of finding the GF

F (z) :=
∑
n≥0

anz
n

an = an−1 + an−2 for n ≥ 2

anz
n = an−1z

n + an−2z
n for n ≥ 2∑

n≥2
anz

n =
∑
n≥2

an−1z
n +

∑
n≥2

an−2z
n

∑
n≥2

anz
n = z

∑
n≥1

anz
n + z2

∑
n≥0

anz
n

F (z)− a0 − a1z = z(F (z)− a0) + z2F (z)

F (z) =
a0 + a1z

1− z − z2 =
z

1− z − z2 .



Univariate background

Univariate example: autocorrelation

I How many binary words of length n do not contain a fixed
bitstring σ of length 11, say 10111000110? Many applications
to gambling, compression algorithms, genetics, etc.

I The GF is given by

F (z) =
c(z)

z11 + (1− 2z)c(z)

Here c is the autocorrelation polynomial of σ, with degree 10.

I The dominant pole of F is at ρ where 1/2 < ρ < 1 (by
Pringsheim’s theorem). Using Rouché’s theorem we can show
it is a simple pole and all other poles have |z| > 0.6.

I This method works for any regular language, which covers
vastly many problems involving sequences/strings/words and
unconstrained lattice walks.
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Univariate background

Univariate example: autocorrelation continued

I By Cauchy’s theorem, if C is a small circle around 0 then

an =
1

2πi

∫
C

F (z)

zn+1
dz.

I Expanding C past ρ a little, we have by the residue theorem

an =
1

2πi

∫
C′

F (z)

zn+1
dz − Res(z−n−1F (z); z = ρ).

I The integral is exponentially smaller than the residue as
n→∞, O(ρ+ ε)−n) as opposed to Cρ−n.

I Thus the exponential rate is 1/ρ, and

an ∼
c(ρ)

ρ(11ρ10 + (1− 2ρ)c′(ρ)− 2c(ρ))
ρ−n.
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Multivariate setup

Bivariate example 1: Delannoy numbers
I Delannoy paths: Let ars be the number of increasing paths by

a chess king, walks in Z2 from (0, 0) to (r, s) which go only to
the north, east, or northeast neighbour at each step.

I We have a nice recurrence:

ars = ar,s−1 + ar−1,s + ar−1,s−1

and nice generating function:

F (x, y) =
1

1− x− y − xy =
1

1−x
1− y 1+x

1−x
.

I However there is no simple explicit formula – the best is
probably

ars =
∑
i

2i
(
r

i

)(
s

i

)
.

I How to approximate ars?
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Multivariate setup

Bivariate example 2: queueing network

I Consider

F (x, y) =
1

(1− 2x
3 −

y
3 )(1−

2y
3 − x

3 )

which is the “grand partition function” for a very simple
queueing network.

I This corresponds to the recurrence (with appropriate
boundary conditions)

9ars = 9ar−1,s + 9ar,s−1 − 2ar−2,s − 5ar−1,s−1 − 2ar,s−2.
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Multivariate setup

Naive attempts to generalize univariate methods fail badly

I Fix s and solve the problem for all r. In Delannoy example,
need to compute

[xr]
(1 + x)s

(1− x)s+1
.

Can you do this easily?

I Fix the diagonal and reduce to a univariate problem. For
d = 2, this always leads to an algebraic GF. For d ≥ 3, the
diagonal will usually not even be algebraic.

I Even if we can understand the diagonal GF, its complexity
grows with r + s. Also we can’t derive asymptotics uniform in
the slope, etc. Even the simplest examples (Delannoy, main
diagonal gives (1− 6x+ x2)−1/2 are not so easy.
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Our programme

The mvGF project

I Robin Pemantle (U. Penn.) and I have a major project on
mvGF coefficient extraction, started 15 years ago.

I Thoroughly investigate coefficient extraction for meromorphic
(e.g. rational) F (z) := F (z1, . . . , zd) (pole singularities).
Amazingly little was known even about rational F in 2
variables.

I Goal 1: improve over all previous work in generality, ease of
use, symmetry, computational effectiveness, uniformity of
asymptotics. Create a theory!

I Goal 2: establish mvGFs as an area worth studying in its own
right, a meeting place for many different areas, a common
language.

I See our book: Analytic Combinatorics in Several Variables,
Cambridge Studies in Advanced Mathematics 140, 2013.
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Our programme

Challenges

I We use multivariate methods based on Cauchy Integral
Formula. However everything is harder in dimension > 1:
geometry and topology of singular set, computing residues,
asymptotics of the residue.

I Mathematical background in Chapters 4–7 and Appendix:
Fourier-Laplace integrals, Gröbner bases, D-modules,
amoebas, stratified Morse theory. Further progress will require
better knowledge of Morse theory and algebraic geometry.

I These are not in the toolbox of the standard
combinatorics/probability researcher. They are not really in
the toolbox of any single researcher. A team approach is
needed.

I There are many areas in which to contribute. More
(hu)manpower is needed!
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Recent papers by others, using our methods

I Scaling BPS solutions and pure-Higgs states. Journal of High
Energy Physics.

I An adic dynamical system related to the Delannoy numbers.
Ergodic Theory and Dynamical Systems.

I Enumerating Rook and Queen Paths, Bulletin of the Institute
for Combinatorics and Its Applications.

I Asymptotics of a family of binomial sums. Journal of Number
Theory.

I Entropy calculation for a toy black hole. Classical and
Quantum Gravity.

I Asymptotics of the monomer-dimer model on two-dimensional
semi-infinite lattices. Physical Review E.
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Our programme

The basic approach

I Given F = G/H (say rational) in d ≥ 2 variables, we
concentrate on the singular variety V given by H = 0.

I This is an analytic variety of complex dimension d− 1.

I We expect the singularities closest to the origin to play an
important role. We use the Cauchy Integral Formula and
adjust the contour near the boundary of the domain of
convergence. This usually provides an exponential rate
estimate.

I More detailed asymptotics requires detailed analysis of
singularities of V. Unlike the univariate case, rational
functions can have nasty singularities. We have successfully
analysed several important classes, but much work remains.
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Example: V for “Arctic circle” dimer tiling model

pole divisor
Let us look at A near the point (1, 1, 1). Here is the pole varieties:

for the Aztec diamond

1.5

1.0 y

0.5
0.5

0.75

x

0.75

1.0

z 1.0

1.25 1.5

1.25

0.5

1.5

and for the random groves
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In both cases there are two components near (1, 1, 1): a smooth one
({yz = 1} in the Aztec diamond case; {z = 1} for groves), and a
quadratic singularity, intersecting the smooth component in the real
domain.



Our programme

Outline of results

I Asymptotics in the direction r are determined by the geometry
of V near a (usually finite) set crit(r) of critical points.

I For computing asymptotics in direction r, we may restrict to a
subset contrib(r) ⊆ crit(r) of dominant points.

I We can determine crit and contrib by a combination of
algebraic and geometric criteria.

I For each z∗ ∈ contrib, there is an asymptotic expansion
F(z∗) for ar, computable via derivatives of G and H.

I This yields

ar ∼
∑

z∗∈contrib
z∗−rF(z∗)

where F(z∗) is an asymptotic series that depends on the type
of geometry of V near z∗, and is uniform on compact subsets
of directions provided the geometry does not change.
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Our programme

Logarithmic domain

I Let U be the domain of convergence of the power series F (z).

I Consider log U = {x ∈ Rd | ex ∈ U}. This is known to be
convex.

I (Combinatorial case) Each point x∗ of ∂ log U yields a
minimal point z∗ = exp(x∗) of V that lies in the positive
orthant.

I The cone spanned by normals to supporting hyperplanes at
x∗ ∈ ∂ log U we denote by K(z∗). If z∗ is smooth, this is a
single ray determined by dir(z∗), the image of z∗ under the
logarithmic Gauss map.
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Picture of log U for Delannoy and queueing examples



Our programme

Generic shape of F(z∗)

I (smooth point, or multiple point with n ≤ d)∑
k

ak|r|−(d−1)/2−k.

I (multiple point, n ≥ d)

z∗−rG(z∗)P

(
r1
z∗1
, . . . ,

rd
z∗d

)
,

P a piecewise polynomial of degree n− d.

I We also have results for quadratic cone singularities.
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Formulae for the leading term

I (smooth/multiple point n < d)

a0 = G(z∗)C(z∗)

where C depends on the derivatives to order 2 of H;

I (multiple point, n = d)

a0 = G(z∗)(det J)−1

where J is the Jacobian matrix (∂Hi/∂zj), other ak are zero;

I (smooth point)

a0 =
G(z∗)

||dir(z∗)||
√
(2π||r||)dK(z∗)

where K is the Gaussian curvature of logV.
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Our programme

Summary: the generic combinatorial case
I There are many interesting exceptions to almost every result,

so we assume that all ar ≥ 0 and there is no periodicity (the
“generic combinatorial case”).

I There is an onto map r 7→ z∗ taking each admissible direction
to a minimal point of V lying in the positive orthant. If V is
smooth, this is a bijection.

I z∗(r) is the unique element of contrib(r) and is precisely the
element of crit(r) that is also a minimal point of V.

I Thus it suffices to: solve a system H(z) = 0, r ∈ K(z) for z∗;
classify local geometry, check for minimality. The first two are
straightforward polynomial algebra for rational F ; the last is
harder but usually doable.

I We can now use F(z∗) to compute asymptotics in direction r.
Provided the geometry does not change, the above expansion
is uniform (over compact subsets) in r.



Our programme

Summary: the generic combinatorial case
I There are many interesting exceptions to almost every result,

so we assume that all ar ≥ 0 and there is no periodicity (the
“generic combinatorial case”).

I There is an onto map r 7→ z∗ taking each admissible direction
to a minimal point of V lying in the positive orthant. If V is
smooth, this is a bijection.

I z∗(r) is the unique element of contrib(r) and is precisely the
element of crit(r) that is also a minimal point of V.

I Thus it suffices to: solve a system H(z) = 0, r ∈ K(z) for z∗;
classify local geometry, check for minimality. The first two are
straightforward polynomial algebra for rational F ; the last is
harder but usually doable.

I We can now use F(z∗) to compute asymptotics in direction r.
Provided the geometry does not change, the above expansion
is uniform (over compact subsets) in r.



Our programme

Summary: the generic combinatorial case
I There are many interesting exceptions to almost every result,

so we assume that all ar ≥ 0 and there is no periodicity (the
“generic combinatorial case”).

I There is an onto map r 7→ z∗ taking each admissible direction
to a minimal point of V lying in the positive orthant. If V is
smooth, this is a bijection.

I z∗(r) is the unique element of contrib(r) and is precisely the
element of crit(r) that is also a minimal point of V.

I Thus it suffices to: solve a system H(z) = 0, r ∈ K(z) for z∗;
classify local geometry, check for minimality. The first two are
straightforward polynomial algebra for rational F ; the last is
harder but usually doable.

I We can now use F(z∗) to compute asymptotics in direction r.
Provided the geometry does not change, the above expansion
is uniform (over compact subsets) in r.



Our programme

Summary: the generic combinatorial case
I There are many interesting exceptions to almost every result,

so we assume that all ar ≥ 0 and there is no periodicity (the
“generic combinatorial case”).

I There is an onto map r 7→ z∗ taking each admissible direction
to a minimal point of V lying in the positive orthant. If V is
smooth, this is a bijection.

I z∗(r) is the unique element of contrib(r) and is precisely the
element of crit(r) that is also a minimal point of V.

I Thus it suffices to: solve a system H(z) = 0, r ∈ K(z) for z∗;
classify local geometry, check for minimality. The first two are
straightforward polynomial algebra for rational F ; the last is
harder but usually doable.

I We can now use F(z∗) to compute asymptotics in direction r.
Provided the geometry does not change, the above expansion
is uniform (over compact subsets) in r.



Our programme

Summary: the generic combinatorial case
I There are many interesting exceptions to almost every result,

so we assume that all ar ≥ 0 and there is no periodicity (the
“generic combinatorial case”).

I There is an onto map r 7→ z∗ taking each admissible direction
to a minimal point of V lying in the positive orthant. If V is
smooth, this is a bijection.

I z∗(r) is the unique element of contrib(r) and is precisely the
element of crit(r) that is also a minimal point of V.

I Thus it suffices to: solve a system H(z) = 0, r ∈ K(z) for z∗;
classify local geometry, check for minimality. The first two are
straightforward polynomial algebra for rational F ; the last is
harder but usually doable.

I We can now use F(z∗) to compute asymptotics in direction r.
Provided the geometry does not change, the above expansion
is uniform (over compact subsets) in r.



Our programme

Examples: crit and contrib

I (Delannoy) Here V is globally smooth and crit is given by
1− x− y − xy = 0 and x(1 + y)s = y(1 + x)r. There is a
unique solution (d−sr , d−rs ) (where d :=

√
r2 + s2) for each

r, s, where the outward normal to log U is parallel to (r, s).

I (queueing) Here (1, 1) is a double point. If 1/2 < r/s < 2,
then asymptotics are controlled by (1, 1). For other directions,
a smooth minimal point on the relevant sheet of logV
controls asymptotics.
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Smooth point examples

Generic case in dimension 2: explicit formula
I Suppose that F = G/H has a simple pole at P = (z∗, w∗)

and F (z, w) is otherwise analytic for |z| ≤ |z∗|, |w| ≤ |w∗|.
Define

Q(z, w) = −A2B −AB2 −A2z2Hzz −B2w2Hww +ABHzw

where A = wHw, B = zHz, all computed at P . Then when
s→∞ with r/s = B/A,

ars = (z∗)−r(w∗)−s

[
G(z∗, w∗)√

2π

√
−A

sQ(z∗, w∗)
+O(s−3/2)

]
.

The apparent lack of symmetry is illusory, since A/s = B/r.

I This simplest case already covers Pascal, Catalan, Motzkin,
Schröder, . . . triangles, generalized Dyck paths, ordered
forests, sums of IID random variables, Lagrange inversion,
. . . most published applications.
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Smooth point examples

Example: Delannoy numbers
Recall

I Find rate of growth of ar,s as d :=
√
r2 + s2 →∞

ar,s ∼
[
d− s
r

]−r [d− r
s

]−s√ rs

2πd(r + s− d)2 .

I What about a particular diagonal, say r = s?

arr ∼ (3 + 2
√
2)r

1

4
√
2(3− 2

√
2)
r−1/2.

I Estimate a100,100.

a100,100 ∼=
(1 +

√
2)201

10 · 25/4√π (accurate to within 0.1%.)
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Smooth point examples

Example: queueing network

I Recall

F (x, y) =
1

(1− 2x
3 −

y
3 )(1−

2y
3 − x

3 )
.

I In the cone 1/2 < r/s < 2, we have ars ∼ 3 (note the error
terms are exponentially small). Outside, the smooth formula
holds.
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Methods

Cauchy integral formula

I We have

ar = (2πi)−d
∫
T
z−r−1F (z)dz

where dz = dz1 ∧ · · · ∧ dzd and T is a small torus around the
origin.

I We aim to use homotopy/homology to replace T by a contour
that is more suitable for explicit computation.

I This may involve additional residue terms.

I The homology of Cd \ V is the key to decomposing the
integral.

I It is natural to try a saddle point/steepest descent approach.
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Methods

The basic reductions

I We reduce the Cauchy integral by stratified Morse theory to
iterated integrals over quasi-local cycles (up to exponentially
smaller terms). This can all be done very concretely for
smooth and multiple points.

I The inner integrals can be evaluated using residue forms (at
least for the cases we have dealt with so far). For
smooth/multiple points, these can be explicitly written down.

I The outer integral is now a Fourier-Laplace integral (after
trigonometric substitution (z = exp(iθ)).

I We derive asymptotics of the F-L integral by a version of the
saddle point method (we needed to extend published results in
some areas).
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Methods

Example: Delannoy numbers
I The relevant integral is∫

D
exp

[
irθ − s log

(
1 + z∗eiθ

1 + z∗
1− z∗

1− z∗eiθ
)]

1

1− z∗eiθ dθ.

I Note that the argument f(θ) of the exponential has
Maclaurin expansion

i

(
r(z∗)2 + 2sz∗ − r

(z∗)2 − 1

)
θ +

sz∗(1 + (z∗)2)

(1− (z∗)2)2)
θ2 + . . .

I Recall that crit((r, s)) is defined by 1− z − w − zw = 0 and
s(1 + w)z = r(1 + z)w. Eliminating w yields
rz2 + 2sz − r = 0.

I Thus f(0) = 0, and f ′(0) = 0 because (z∗, w∗) is a critical
point for direction (r, s). This allows us to derive asymptotics
of the right order.
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Extensions and future work

Extensions
I (Ch 9.2) crit is sometimes an entire torus (e.g. applications to

quantum random walks). Treated by a variant of above
analysis.

I Periodicity is not a major problem — we must sum
contributions from several dominant points, and some
cancellation occurs.

I (Ch 13.3) We can efficiently compute higher order terms in
the expansions. Important in several situations including
numerical approximation for small ||r|| (hyperasymptotics).

I Dominant singularities that are not multiple points require
more work. So far we have dealt with quadratic cone points
reasonably well (Ch 11).

I If ar is not nonnegative, then the elements of contrib need
not be minimal points, and computing them is much harder.
We have only looked at special examples (Ch 9.4).
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Extensions and future work

Higher order asymptotics: Delannoy numbers a3n,2n

n 1 2 4 8 16
exact 25 1289 4.6733·106 8.5276·1013 3.9780·1028
1-term approx 26.263 1321.5 4.7322·106 8.5811·1013 3.9904·1028
2-term approx 24.944 1288.4 4.6728·106 8.5273·1013 3.9780·1028
1-term rel error 0.050525 0.025246 0.012597 0.0062895 0.0031420
2-term rel error 0.0022371 0.00050044 0.00011673 0.000028104 0.0000068844



Extensions and future work

Future work
I Moving to more complicated singularities, we would like a

more systematic approach. The quadratic cone analysis is very
complicated, and algebraic singularities occur often.

I Resolution of singularities has not been used in this subject,
but seems reasonable.

I Safonov showed how to partially resolve singularities and
match ar to brM where

∑
r brz

r is rational and M is a fixed
unimodular matrix.

I Note that this approach would never occur to someone living
only in the univariate world.

I There are some problems: the leading term for br vanishes
(can deal with); not all br need be nonnegative, so dominant
singularities are not necessarily minimal and may even lie at
∞ (don’t know how to deal with in general). An interesting
project and I am looking for collaborators.
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Extensions and future work

Algebraic GF example via Safonov
I The Narayana numbers are generated by

F (x, y) =
1

2

(
1 + x(y − 1)−

√
1− 2x(y + 1) + x2(y − 1)2

)
.

I Safonov’s procedure shows that if

G(u, x, y) :=
u(1− 2u− ux(1− y))
1− u− xy − ux(1− y)

then
[xn,k]F (x, y) = [unxnyk]G(u, x, y).

I The dominant point in question is
(k/n, (n− k)2/nk, k2/(n− k)2). Note that the numerator of
G vanishes there, so we need to compute higher order terms.
We can do this routinely (formulae omitted).

I This case was relatively easy because there was only one
branch of the algebraic function passing through the origin.
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