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Basic setup

TU games

I A transferable utility (TU) game G = (X, v) is specified by a
finite set X (the players) and a characteristic function
v : 2X → R.

I Usually, v(∅) = 0 is required - we do here.

I For each S ⊆ X, v(S) is supposed to represent the total
payoff to the coalition S.

I Notation:

I G: collection of all TU games - a real vector space
I G(X): collection of all TU games with underlying set X - a

real vector space
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Basic setup

Simple games

I A simple game is a TU game with v(S) ∈ {0, 1} for all
S ⊆ X.

I Alternatively, it can be specified by X and the set of winning
coalitions, W := {S ⊆ X | v(S) = 1}.

I Often, ∅ 6∈W is required - we do here. Often W 6= ∅ is
required - we don’t.

I Notation:

I SG: collection of all simple games - a lattice
I SG(X): collection of all simple games with underlying set X -

a lattice
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Basic setup

Key motivating examples of simple games

I Unanimity games: choose S ⊆ X and let v(T ) = 1 if and only
if S ⊆ T . Every member of S has a veto.

I Weighted majority games [q;w1, w2, . . . wn]. Player i has
weight wi; choose a quota q and let v(S) = 1 iff∑

i∈S wi ≥ q. Used to model yes-no voting in committees.
Examples: stockholder elections, EU Council of Ministers,
ordinary majority voting in Parliament.

I Disequilibrium games: for a given noncooperative game and
fixed profile of actions, declare a subset to be winning if is a
witness to the profile not being a strong Nash equilibrium.
Examples: voting rules with the sincere profile.
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Basic setup

Basic concepts of TU games and simple games

monotonicity S ⊆ T =⇒ v(S) ≤ v(T ).

dummy i ∈ X is a dummy if for all S ⊆ X,
v(S) = v(S \ {i}).

proper simple game S ∈W,T ∈W =⇒ S ∩ T 6= ∅.

We usually assume monotonicity for simple games, in which case
we need only specify the minimal winning coalitions in order to
specify the game. A dummy is not an element of any minimal
winning coalition.
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Basic setup

Example: voting in the EU Council of Ministers
I From 1958 to 2003 various weighted majority games were

used. Such games are proper if the quota is large enough
(more than half the sum of all weights).

I In first version (Treaty of Rome), game was [12; 4, 4, 4, 2, 2, 1].
Luxembourg was a dummy!

I Last version (1995–2003) had
[62; 10, 10, 10, 10, 8, 5, 5, 5, 5, 4, 4, 3, 3, 3, 2].

I Treaty of Nice (currently in force) uses weights (totalling 345)
but has more conditions. A coalition is winning iff it has at
least 50% of the countries, 74% of the weights, 62% of the
population.

I Treaty of Lisbon (from 2014): coalition wins iff it has at least
55% of countries and 65% of population. This method is
easily implemented if new members join, and avoids complex
negotiations over weights.
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The sequential query process

The basic model

I Let (X,W ) be a simple game, where |X| = n.

I Choose (query) elements one at a time uniformly without
replacement, until a winning coalition is found.

I This is the same process considered by Shapley and Shubik in
defining their famous power index.

I Let Q be the random variable equal to the number of queries
in this process, and Q its expectation.

I If no winning coalition exists, let Q take the value n+ 1.
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The sequential query process

Another interpretation of Q
I For k ∈ N, define the probability measure mk to be the

uniform measure on the set of all subsets of X of size k, and
let Wk be the set of winning coalitions of size k.

I For each k with 0 ≤ k ≤ n,

Pr(Q ≤ k) = Pr(Wk)

where the latter probability is with respect to mk.
I In other words, the probability that we require at most k

queries to find a winning coalition equals the probability that
a uniformly randomly chosen k-subset is a winning coalition.

I By a standard computation involving tail probabilities, we have

Q = n+ 1−
n∑

k=0

|Wk|(
n
k

) .
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The sequential query process

Changing variables
I Let F : N2 → R. Say F is an admissible change of variables if
F (n, ·) is decreasing, F (n, 0) = 1 and F (n, k) = 0 whenever
k > n.

I There is a bijection F ↔ f given by

f(n, k) =
F (n, k)− F (n, k + 1)(

n
k

)
Note that F is admissible if and only if f is nonnegative and∑n

k=0 f(n, k)
(
n
k

)
= 1.

I There is a bijection F ↔ µ given by

µ(n, j) = F (n, k)− F (n, k + 1)

Note that F is admissible if and only if for each n, µ(n, ·) is a
probability measure on {0, . . . , n}.
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The sequential query process

Q∗F

I Define Q∗F : SG → R by

Q∗F (G) = E[F (Q)]

where the expectation is taken as above.

I We have

Q∗F =
n∑

k=0

f(n, k)|Wk|

I There is an obvious generalization to TU-games:

Q∗F (G) =
n∑

k=0

f(n, k)
∑

|S|=k,S⊆X

v(S) =
∑
S⊆X

f(n, |S|)v(S).
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The sequential query process

Properties of Q∗F

I Q∗F is a decisiveness index on SG(X). It satisfies:

I Anonymity: depends only on the isomorphism class of the
game.

I Positivity: is nonnegative on monotone games.
I Dummy: adding a null player (not a member of any winning

coalition) has no effect.
I Regularity: is strictly positive unless the game has no winning

coalitions.

I Special cases:

I Choosing f(n, k) = 2−n yields the Coleman index.
I For self-dual (strong and proper) games, Q∗

F = 1/2.
I For the weighted majority game with quota q, Q∗

F = F (n, q).
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Semivalues

Values and semivalues
I A value is a function G → AG. Those satisfying Anonymity,

Dummy, Positivity and Linearity are called semivalues.

I Dubey, Neyman and Weber (1981) showed that a value is a
semivalue if and only if it has the form

ξi(G) =
n∑

k=0

p(n, k)
∑

|S|=k,S⊆X

[v(S)− v(S \ {i})]

where p(n, k) ≥ 0 and the following identities hold∑
k

(
n− 1

k − 1

)
p(n, k) = 1

p(n, k) = p(n− 1, k − 1)− p(n, k − 1)

I If all p(n, k) 6= 0, the semivalue is called regular.
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Semivalues

Semivalues

I Famous semivalues include the Shapley and Banzhaf values,
corresponding to p(n, k) = [k

(
n
k

)
]−1 and p(n, k) = 21−n

respectively.

I Every semivalue is uniquely determined by its value on
unanimity games.

I Regular semivalues satisfy many nice properties, such as
Young sensibility: if the marginal contribution to each S is
strictly higher in one game than another, then the ξi have the
same relation.

I Almost all “power measures” in the literature are semivalues.
The class of probabilistic values is even more general - the
coefficients p can depend on S and not just on |S|.
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Semivalues

Semivalues and coalition formation models

I Consider the following model of coalition formation: fix a
probability distribution on 2X , assume that each possible
coalition (subset S of X) forms with probability p(S), and
that only one coalition S will form.

I The ex ante expected marginal contribution of i to S is

E[Di(S)] := E[v(S)−v(S\{i})] =
∑
S:i∈S

p(S) (v(S)− v(S \ {i})) .

I The ex interim expected marginal contribution of i to S,
conditional on i ∈ S, is

Φi(v, p) := E[Di(S) | S 3 i] =
E[Di(S)]

Pr(S 3 i)
.

I There is a bijection p↔ Φ(·, p).
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Semivalues

Potential
I Mas-Colell and Hart (1988) introduced the idea of potential,

borrowed from physics.

I Let ξ be a value. A potential for ξ is a mapping Φ : G → R
such that

Φ(G)− Φ(G−{i}) = ξi(G)

for all G = (X, v) ∈ G such that X 6= ∅. Here G−{i} is the
game with player set X \ {i} and the same v.

I The initial condition Φ(∅, v) = 0 is usually assumed.
I There is a unique efficient value having a potential function,

and it is the Shapley value. Explicitly, the potential looks like

Φ(G) =

n∑
k=1

1

k
(
n
k

) ∑
|S|=k,S⊆X

v(S).
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Semivalues

Potential without efficiency

I Calvo and Santos (2000) described exactly which values
possess a potential function.

I The answer: ξ has a potential if and only if it satisfies
Myerson’s balanced contributions axiom:

ξi(G)− ξi(G \ {j}) = ξj(G)− ξj(G \ {i})

and if and only if it is path-independent.

I In particular, every semivalue has a potential function.
Explicitly:

Φ(G) =
∑
k

p(n, k)
∑
|S|=k

v(S)
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Semivalues

The marginal function

I It is readily shown that Q∗F is the potential function of a
function q∗F , given by

q∗F,i =
∑
S:i∈S

f(n, |S|)Di(S)

I Such a function is a weighted semivalue (satisfies all
properties except the normalization condition).

I There is a bijection between probability measures on
{0, 1, . . . , n} and weighted semivalues on Gn given by
µn ↔ q∗F .

I Under the coalition formation model above, q∗F,i describes the
ex ante expected contribution of i to S, while the semivalue
obtained by normalizing gives the ex interim expected
marginal contribution of i to S, conditional on i ∈ S.
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Semivalues

The simplest functional form

I The choice F (n, k) = 1− k
n+1 is the simplest form for F . It

corresponds to f(n, k) = 1
(n+1)(nk)

.

I This corresponds to the coalition formation model in which we
choose a coalition size uniformly, and then a coalition of that
size uniformly.

I It yields a new decisiveness index, which we call Q∗0.

I The sequential interpretation is that we query elements one by
one until we find a winning coalition, and score 1 for each
query.

Mark C. Wilson
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Application to manipulation measures

Manipulability measures

I Gibbard-Satterthwaite implies that (almost) every social
choice function allows a nonempty simple manipulation game
for some preference profile.

I The simple game describing manipulability is complicated:
can fail to be weighted, strong, proper, or nonempty.

I Social choice theorists have tried to measure manipulability in
many ways, most of them rather crude. There has been no
definition of what such a measure should be, and no desirable
axioms listed.

I Measures found in the literature include: indicator of winning
coalition of size 1; number of winning coalitions of size 1;
minimum size of a manipulating coalition.
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Application to manipulation measures

Manipulation measures and query model

I Idea: use a collective decisiveness measure on the associated
disequilibrium game to measure the ease of manipulation of a
given profile. This allows a principled choice of measure for a
given situation, each rooted in a model of coalition formation.

I Using the query model as above, by choosing a suitable F we
can have any decisiveness index we like.

I We think that Q0 is a good candidate, because of its
simplicity in terms of the sequential query model.

I If each voter can have a different cost to recruit (as in
bribery), a TU (cost) game is more appropriate than a simple
game, but similar ideas should work.

I Bachrach, Elkind and Faliszewski have used a closely related
TU framework to study manipulation of voting rules.
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Application to manipulation measures

Open problems

I Unify recent results on complexity and power indices (e.g.
Faliszewski and coauthors) and generalize them to the case of
(regular) semivalues.
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