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Computational microeconomics

A new field is emerging

I In the last decade, computer science and game theory have
collided, and a new interdisciplinary field is forming.

I Big philosophical idea: explore the fundamental tension
between efficiency (economic or algorithmic) and compatibility
with self-interest.

I “A trend has emerged towards interdisciplinary research
involving all of decision theory, game theory, social choice
theory, and welfare economics on the one hand, and computer
science, artificial intelligence, multiagent systems, operations
research, and computational logic on the other.”

I Commercial problems have dominated research on the CS
side, but a shift toward a broader viewpoint is evident.

I No official name: “computational (micro)economics”,
“algorithmic game theory”, “algorithmic mechanism design”?
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Computational microeconomics

Where did it come from?

I The enormous growth in the use of the Internet as a major
platform for social and economic interactions.

I Strategic behaviour and distributed information aggregation in
computer and communications networks.

I Many modern computer science applications involve
multiagent systems of autonomous decision-makers (robots,
artificial life, bidding agents, . . . ).

I Formerly, they were considered in isolation or as cooperating in
a distributed system.

I More recently, there are many situations where they have their
own “selfish” preferences, which may conflict with those of
other agents.

I They cooperate/compete by playing a strategic game.
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Computational microeconomics

Internet applications

I Auctions (e.g. Google AdWords). This is the most-studied
application and has had the biggest financial impact. Yahoo,
Google and Microsoft employ big-name researchers just to
study such problems.

I Recommender systems, collaborative filtering (e.g. Amazon,
Netflix , . . . )

I Prediction markets.

I Peer-to-peer networks, network routing.

I Social networking sites, reputation.

I Electronic voting?
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Computational microeconomics

Some phrases to give the flavour of the field

I ACM Conference on Electronic Commerce, Symposium on
Algorithmic Game Theory, Workshop on Computational Social
Choice

I Papers: The Complexity of Computing Nash Equilibria, Selfish
Routing and the Price of Anarchy, Approximate Mechanism
Design without Money, Truthful Fair Division, Combinatorial
Auctions
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Computational microeconomics

Contributions flow both ways

I Econ → CS: distributed computing and networking protocols
(such as TCP-IP) have traditionally assumed that components
cooperate. However incentives and selfish preferences cannot
be ignored. Rational behaviour can lead to suboptimal
outcomes if not controlled.

I CS → Econ: traditional models use mathematical existence
results such as fixed point theorems. However computational
and communication complexity cannot be ignored. Strategies
and solutions may not be practically computable.
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Social choice

Basic setup of social choice

I A finite set of m alternatives and n voters. Each voter has a
preference over alternatives.

I A social choice correspondence aggregates the preferences and
outputs a set of alternatives, the winners; a social welfare
function outputs a full ranking.

I Used for millenia in human political decision-making (voting,
elections, planning, where to build an airport, allocation of
objects to people, . . . ).

I Very often we require only a single winner (social choice
function), and tiebreaking procedures are almost always
needed. Randomized tiebreaking leads to objects that are not
strictly speaking social choice functions.
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Social choice

Some social choice functions

I Scoring rules: fix a vector 1 = w1 ≥ w2 ≥ · · · ≥ wm = 0.
Voter awards w1 points to its most preferred alternative, w2

to second, etc. Highest total score wins. Famous examples:
plurality (wi = 0 for i > 1); Borda (weights are equally
spaced); veto (wi = 1 for i < m).

I Condorcet rules: if the majority relation has a clear winner,
choose it. Otherwise choose something else. Example:
Copeland rule: award ±1 for each pairwise majority
victory/defeat, highest total wins.

I Dictatorship: one voter decides the result, irrespective of the
preferences of others.

Mark C. Wilson



Social choice

Some social choice functions

I Scoring rules: fix a vector 1 = w1 ≥ w2 ≥ · · · ≥ wm = 0.
Voter awards w1 points to its most preferred alternative, w2

to second, etc. Highest total score wins. Famous examples:
plurality (wi = 0 for i > 1); Borda (weights are equally
spaced); veto (wi = 1 for i < m).

I Condorcet rules: if the majority relation has a clear winner,
choose it. Otherwise choose something else. Example:
Copeland rule: award ±1 for each pairwise majority
victory/defeat, highest total wins.

I Dictatorship: one voter decides the result, irrespective of the
preferences of others.

Mark C. Wilson



Social choice

Some social choice functions

I Scoring rules: fix a vector 1 = w1 ≥ w2 ≥ · · · ≥ wm = 0.
Voter awards w1 points to its most preferred alternative, w2

to second, etc. Highest total score wins. Famous examples:
plurality (wi = 0 for i > 1); Borda (weights are equally
spaced); veto (wi = 1 for i < m).

I Condorcet rules: if the majority relation has a clear winner,
choose it. Otherwise choose something else. Example:
Copeland rule: award ±1 for each pairwise majority
victory/defeat, highest total wins.

I Dictatorship: one voter decides the result, irrespective of the
preferences of others.

Mark C. Wilson



Social choice

Classic paradoxes of social choice theory

I Condorcet: the pairwise majority relation can be cyclic.

I Arrow: a few simple axioms lead to dictatorship.

I Simpson: the winner in each of two subgroups of voters may
not win in the whole group.

I Participation: the winner may not remain the winner when
extra voters rank it first.

None is devastating although some may have uncomfortable
political implications.
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Game theory and mechanism design

(Noncooperative) game theory

I Founded by von Neumann, Nash, et al. in 1940s and 1950s.

I Each player has a finite number of actions; a profile is a
choice of one for each player. The utility gained by each
player depends only on the profile.

I Very influential in economics, evolutionary biology,
international relations, political sciences, . . . .

I Classic examples: Chicken, Battle of the Sexes, Prisoners’
Dilemma. Suboptimal outcomes can occur because of
misalignment of individual incentives, but sometimes don’t. It
depends on the structure of the game.
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Game theory and mechanism design

Example: load balancing

I We have n players each with one ball, and n bins. Each player
must throw its ball into a bin. Moves are simultaneous. The
cost to each player is the number of balls in its bin.

I One possible outcome: each ball goes in a unique bin, every
player incurs cost 1.

I The obvious strategy of uniformly randomly choosing a bin
has the same expected cost for each player, but the worst-off
player has cost of order log n/ log log n.

I Each of these strategy profiles is a Nash equilibrium: given
that all other players play the strategy, no player has incentive
to deviate. However it is not a dominant strategy equilibrium:
if some players deviate, sticking with the strategy may be bad.
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Game theory and mechanism design

Mechanism design

I “Reverse-engineering” in game theory. Sveriges Riksbank
(“Nobel”) prize to Hurwicz, Myerson, Maskin in 2007.
Applied to raise billions of euros in electromagnetic spectrum
auctions.

I A mechanism is a game with a special player, the designer.
The designer’s goal is to implement some fixed allocation rule
R1.

I Each other player has private utility information called its type
θ, and must report some type θ̂. Let Θ be the profile of all
players types. If designer knew Θ or players always report Θ,
the job is easy. However, players can strategically lie, Θ̂ 6= Θ.

I The designer announces an allocation rule R2 (including
transfer payments), and uses this on the reported types.
Designer aims for R2(Θ̂) = R1(Θ).
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Game theory and mechanism design

Truthful mechanisms

I Some mechanisms have the property that each player has a
dominant strategy to truthfully reveal its type. In other words,
there are really no strategic considerations. Each player has a
best move no matter what the other players do.

I Classic example: second-price (Vickrey) auction. The winner
pays the second-highest bid.

I Classic nonexample: first-price auction. The winner pays its
own bid.

I Important nonexample: (later) nondictatorial social choice
functions.
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Game theory and mechanism design

Example: sealed-bid second price auction

I Player i has a private utility vi (in common currency) for a
fixed object to be auctioned. Players bid simultaneously, once.

I The allocation rule R1 is “give the object to the player with
highest vi, and charge him vi”.

I If we announce this then players have an incentive to bid
lower than vi (how much depends on their perception of the
bids of other players - the game is complicated).

I However, if we announce R2: “give the object to the highest
bidder, and charge him the second-highest bid”, there is no
incentive to bid untruthfully and players may as well report vi.

Mark C. Wilson
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Game theory and mechanism design

Example: buying a path in a network

I We aim to route a message from node s to node t in a
digraph.

I Players are arcs of a digraph, and player e incurs cost ce if the
message path uses e. They will be paid.

I If players are truthful, standard shortest path algorithms will
optimize social welfare (minimize total cost). However, they
have clear incentive to report a higher cost than they actually
incur.

I The general Vickrey-Clarke-Groves mechanism yields a nice
solution. We pay e zero if e is not in the cheapest path, and
otherwise pay its reported cost plus a “bonus” equal to its
“contribution”: the increase in cost of the cheapest path if e
were deleted.
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Game theory and mechanism design

More on VCG mechanism

I The payment “internalizes the externality”, and reporting the
true cost is a dominant strategy for all players, each of whom
is guaranteed to cover its cost.

I The total of payments may be very much larger than is
optimal under truthful reporting. This can be a major
difficulty.

I Another problem: in combinatorial auctions players bid on
bundles of goods (such as spectrum licences), and the
underlying optimization problem can be NP-hard.

I VCG only works when we want to maximize the total utility of
the players, not for other measures of welfare.

I There is much research on how to get around these difficulties
using approximations.
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Game theory and mechanism design

The CS contribution

I Computational complexity: mechanisms may be arbitrarily
complex. Strategies, equilibria, . . . may be NP-hard (or worse)
to compute. In fact they often are.

I Approximation algorithms: the standard response to hard
optimization problems. Concepts such as approximation ratio.

I Worst-case (non-Bayesian) analysis.
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Game theory and mechanism design

Beyond truthful mechanisms

I Perhaps sincerity is overrated: if the designer cares only about
the final allocation, and this can be achieved by untruthful
behaviour, then why worry about players telling the truth?

I The main problem is that the outcome of the game is easily
predicted only when there is a unique dominant strategy
(truthtelling) for all players.

I In general there will be many reasonable “predictions”
(usually these are Nash equilibria). Problems: in the worst
case Nash equilibria are likely not computable in polynomial
time [DGP2009]; there are far too many of them.

I Which equilibrium do we look at in order to measure the
overall welfare? This leads to ideas such as price of anarchy.
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Social choice mechanisms

Social choice mechanisms

I The type of a player (voter) is its preference order over the
alternatives.

I The designer chooses the social choice function R1 for
aggregating the individual preferences, and reports another
one R2.

I The strategic action of each voter is to report a preference
order (possibly untruthful).

I There are no payments.

I The outcome is a single alternative and this determines the
allocation rule (each player receives some “payoff” from that
alternative winning).
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Social choice mechanisms

Impossibility result

I Gibbard and Satterthwaite proved around 1973 that truthful
social choice mechanisms are essentially impossible. Long
suspected, and widely considered to be devastating.

I Formally, if f is a social choice function, m ≥ 3, n ≥ 2, and
each alternative can win for some preference profile, then f is
a dictatorship or it is sometimes desirable to vote untruthfully.

I The main problem is that in this model we have no way of
measuring utility, or of comparing utilities between players.
Money is a convenient way of getting past this problem, which
is why interesting truthful mechanisms can exist in
commercial settings.

I Manipulation by coalitions is sometimes possible where
individual manipulation is not.
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Social choice mechanisms

Coalitional manipulation example

I Consider a voting situation with 3 alternatives a, b, c and
having 4 abc, 3 bca and 2 cab voters. Under the plurality rule,
he sincere winner is a.

I No coalition can manipulate so that b wins.

I However, if the bca voters all vote strategically as cba, then c
wins.

I This is an example of a mechanism that is individually
truthful, but not jointly - a group has an incentive to deviate.
Voting sincerely is a Nash equilibrium, but not a strong Nash
equilibrium.
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Social choice mechanisms

Computational response to Gibbard-Satterthwaite

I If it is NP-hard to compute a manipulating strategy, perhaps
voters will be truthful in practice, even if in theory it is in their
interest to deviate.

I Successes: Instant Runoff Voting is NP-hard to manipulate by
a single voter [BO1991]; weighted voting rules are almost
always NP-hard to manipulate by a coalition, even for a fixed
number of alternatives [CSL2007].

I Problems: NP-hardness is only a worst-case guarantee. Most
rules seem easy to manipulate in practice (based on simulation
and some analytic results, e.g. [RPW2010]).
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Social choice mechanisms

Some topics of current interest to me

I Complexity of safe manipulation of voting rules (Egor
Ianovski)

I Best-reply dynamics in voting games (Reyhaneh Reyhani)

I Convergence to equilibria via polling with incomplete
information (Reyhaneh Reyhani)

I Asymptotic probabilistic measures of manipulability (Geoffrey
Pritchard)

I Implementation of social choice rules using different solution
concepts.
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Social choice mechanisms

Dynamics in voting games

I Suppose agents can communicate only with a central node.

I Agents vote sequentially using the plurality rule. After each
vote all agents know the current state of the election.

I Each tries to obtain its best possible result assuming that its
vote will be the last.

I A (pure strategy) Nash equilibrium is always reached in
O(m2n2) iterations.

I Small changes to hypotheses lead to a failure to coordinate.

I Above results are [MPJR2010]. What happens for other
voting rules?
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Social choice mechanisms

Convergence via polling

I Consider the previous model, but each agent has inertia, a
new measure of its risk attitude and available information.
Also, instead of sequentially, agents vote simultaneously, and
they repeat this procedure. Can interpret as a sequence of
opinion polls, and agents strategize based on the incomplete
information gleaned from polls.

I For some inertia distributions, convergence to an equilibrium
where only two candidates get votes (Duverger’s law). For
others, no convergence.

I In the zero inertia case, announcing Plurality leads to Instant
Runoff.

I Idea of Reyhaneh Reyhani (PhD student), explored in her
thesis work.
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Social choice mechanisms

Safe manipulation
I Manipulation by a coalition raises hard questions: how do

they coordinate?

I Slinko and White (2008) introduced safe manipulation. A
voter (interpreted as a party leader) issues a call to members
to cast a named strategic vote but has no control over how
many will follow and how many will remain sincere.

I The manipulation is safe if no matter how many follow the
call, a worse result is never obtained, and for some number of
followers, a better result occurs. A strong incentive to
manipulate!

I S & W proved an analogue of Gibbard-Satterthwaite, so we
can’t avoid safe manipulation.

I Can complexity help? Can a safe manipulation be found in
polynomial time? Egor Ianovski (CS380 project) has solved
this open problem for the Borda rule.
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