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Basic setup
◮ We consider a voting rule (social choice correspondence) that

aggregates preferences of a set V of n voters.
◮ We concentrate on scoring rules, each given by a weight

vector w.
◮ Each voter v has a sincere preference (a total order Sv of the

m candidates) and expresses a preference order Ev.
◮ We break ties symmetrically: choose a tied winner uniformly

at random. This is not an essential assumption but makes
computation somewhat easier.

◮ We can describe the individual votes by a profile, an ordered
list of the individual votes. There are (m!)n of these. For
anonymous voting rules we need only the succinct input
(voting situation) which lists numbers of voters of each
preference. There are

(

n+m!−1

n

)

of these.
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◮ Let X ⊆ V . If Ev 6= Sv for some v ∈ X, yet Ev = Sv for all

v ∈ V \ X, and each member of X prefers this to the sincere
outcome, we say the profile is manipulable by X.

◮ A profile is manipulable by some X if and only if the common
strategy “always vote sincerely” does not give a strong Nash
equilibrium of the associated game.

◮ Gibbard-Satterthwaite theorem says that if m ≥ 3 and the
rule is fair to voters and candidates, then it is manipulable in
some situation.

◮ Note for experts: our random tie-breaking means G-S does
not strictly apply, but a variant does. Our definition of
manipulation does deal with ties.

◮ Key theme in most research literature: since manipulation is
essentially unavoidable, how can we minimize its impact? In
order to do this, we need to quantify manipulability.
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◮ Consider the voting situation with with x bac and y cab

voters, x, y > 0. Under antiplurality (veto rule) given by
w = (1, 1, 0), the sincere scores are (x + y, x, y) and a wins.

◮ Manipulation in favour of c is impossible (the only voters with
power have no incentive).

◮ Manipulation in favour of b is possible, if t bac voters switch
to bca. We must satisfy y ≤ t, y + t < x. For example if
x = 6, y = 2, then 2 ≤ t < 4.

◮ Manipulability can be similarly described by more complicated
systems of integer linear (in)equalities for most commonly
used rules, including all scoring rules, Copeland’s rule, etc.
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Some measures of manipulability

◮ Indicator I: is the situation manipulable by some coalition, of
unspecified size? Used in the vast majority of social choice
papers until the last few years. Does not discriminate between
large and small coalitions.

◮ Size M of smallest manipulating coalition for the given
situation. Used in our papers and introduced by Chamberlin
(1985). More information than previous one, but doesn’t take
into account the prevalence of coalitions of small size.

◮ “Lifted” random variables I,M formed from these by
sampling from the preference distribution. Note they can be
defective.

◮ Distribution function of M: probability that the situation is
manipulable by k or fewer voters. More information than
previous one, but still doesn’t consider number of coalitions.
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A new measure of manipulability (RPW201x)
◮ For a fixed situation, choose voters randomly without

replacement and add to initially empty set, until the set first
contains a manipulating coalition.

◮ We can think of an instigator of manipulation, who does not
know the preferences of the voters, but wants to disrupt the
election by manipulating. This agent interviews voters one by
one until a coalition is found.

◮ Let Q be the random variable thus obtained, Q its lifting.
◮ It is easy to show that Pr(Q ≤ k) equals the probability that

a randomly chosen k-subset of V contains a manipulating
coalition.

◮ Thus Q measures both the size and prevalence of
manipulating coalitions. It is an average-case analogue of the
best-case M, and contains more information than the other
measures.
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Example: comparing rules

◮ Consider the voting situation with with 6 bac and 2 cab voters
as above. Here M = 2, via two bac 7→ bca switches.

◮ If our first two queries discover bac voters, then Q = 2.
Otherwise Q = 3 or 4. Expected value of Q is 2.57.

◮ Using the rule w = (3, 2, 0) for the same situation, the sincere
result is (16, 18, 6) and b wins. Again M = 2, via two
cab 7→ acb switches.

◮ Q can have any value between 2 and 8. Expected value of Q

is 6.
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Computation of Q

◮ We are solving a variant of the coupon collector problem
where the types of coupons are the different possible
preference orders.

◮ Differences from classical case: sampling without replacement,
union not intersection.

◮ For rules amenable to linear system description, we are
looking at a type of random walk and want the time to hit
one of several polytopes.

◮ Can compute exactly in polynomial time in n for fixed m, but
the obvious algorithm is Ω(n5) even for m = 3.
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◮ Exact computation of distribution function of M (resp. Q)
for m = 3 up to n = 150 (resp. n = 25) for 6 rules, under 2
probability distributions [PrWi2007, RPW201x].
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Results for scoring rules

◮ Exact computation of distribution function of M (resp. Q)
for m = 3 up to n = 150 (resp. n = 25) for 6 rules, under 2
probability distributions [PrWi2007, RPW201x].

◮ For IC (uniform profile distribution), an analytic description of
asymptotic (in n) size of M for any fixed m [PrWi2009].

◮ We expect a similar result for Q (current work by PhD
student Reyhaneh Reyhani).

See the next talk for the last two points.
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Pr(Q ≤ k) for n = 25 under IC, m = 3
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◮ Average-case arguments have recently become more common,

as the weakness of the worst-case computational complexity
approach has become more apparent.

◮ Friedgut, Kalai, Nisan, Dobinski, Isaakson, Kindler, Mossel
have considered random manipulations by individuals. Under
mild conditions they obtain a lower bound on Pr(Q ≤ 1)
under IC that decays polynomially in n and m.

◮ Slinko, Xia, Conitzer, Procaccia, Rosenschein, Zuckerman
have discussed the phase transition under IC for Pr(Q ≤ k) as
k increases past

√
n, for classes of rules including scoring

rules. They often focus on weighted voting but the definition
of manipulation is not always the same.

◮ Walsh has discussed this phase transition in detail for specific
rules, mostly using simulation and considering weighted
voting.
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Manipulability: are we measuring the wrong thing?

◮ Gibbard-Satterthwaite says that minimizing manipulability
implies dictatorship. This has major welfare consequences and
should not be the only goal.

◮ Allowing manipulation can give voters more expressivity by
restoring information lost in the voting rule (for example, full
preference order, intensity of preference). Lehtinen (Public
Choice, 2007; European J. Political Economy, 2008) argues
via simulations that strategic voting can improve overall social
welfare.

◮ Dowding and van Hees (British J. Politics, 2008) argue that
encouraging strategic voting has many benefits for democracy.
Buchanan and Yeo (Public Choice, 2006) argue that in fact all
voting is strategic.
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