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Network science

Introduction and motivation

Basics

I A network is a finite graph (sometimes directed) G = (V,E).

I Network science deals with real-world networks, often varying
with time.

I The main questions relate to network structure and evolution
over time.

I Networks are ubiquitous. A possible pitfall is not to consider
the meaning of the relation being graphed.

I Will discuss 3 examples today, exemplifying:

I Construction of a network from real data, some basic network
science tools.

I Social learning and “wisdom of crowds”.
I Structural balance in signed networks.



Network science

Introduction and motivation

Basics

I A network is a finite graph (sometimes directed) G = (V,E).

I Network science deals with real-world networks, often varying
with time.

I The main questions relate to network structure and evolution
over time.

I Networks are ubiquitous. A possible pitfall is not to consider
the meaning of the relation being graphed.

I Will discuss 3 examples today, exemplifying:

I Construction of a network from real data, some basic network
science tools.

I Social learning and “wisdom of crowds”.
I Structural balance in signed networks.



Network science

Introduction and motivation

Basics

I A network is a finite graph (sometimes directed) G = (V,E).

I Network science deals with real-world networks, often varying
with time.

I The main questions relate to network structure and evolution
over time.

I Networks are ubiquitous. A possible pitfall is not to consider
the meaning of the relation being graphed.

I Will discuss 3 examples today, exemplifying:

I Construction of a network from real data, some basic network
science tools.

I Social learning and “wisdom of crowds”.
I Structural balance in signed networks.



Network science

Introduction and motivation

Basics

I A network is a finite graph (sometimes directed) G = (V,E).

I Network science deals with real-world networks, often varying
with time.

I The main questions relate to network structure and evolution
over time.

I Networks are ubiquitous. A possible pitfall is not to consider
the meaning of the relation being graphed.

I Will discuss 3 examples today, exemplifying:

I Construction of a network from real data, some basic network
science tools.

I Social learning and “wisdom of crowds”.
I Structural balance in signed networks.



Network science

Introduction and motivation

Basics

I A network is a finite graph (sometimes directed) G = (V,E).

I Network science deals with real-world networks, often varying
with time.

I The main questions relate to network structure and evolution
over time.

I Networks are ubiquitous. A possible pitfall is not to consider
the meaning of the relation being graphed.

I Will discuss 3 examples today, exemplifying:

I Construction of a network from real data, some basic network
science tools.

I Social learning and “wisdom of crowds”.
I Structural balance in signed networks.



Network science

Introduction and motivation

Basics

I A network is a finite graph (sometimes directed) G = (V,E).

I Network science deals with real-world networks, often varying
with time.

I The main questions relate to network structure and evolution
over time.

I Networks are ubiquitous. A possible pitfall is not to consider
the meaning of the relation being graphed.

I Will discuss 3 examples today, exemplifying:
I Construction of a network from real data, some basic network

science tools.

I Social learning and “wisdom of crowds”.
I Structural balance in signed networks.



Network science

Introduction and motivation

Basics

I A network is a finite graph (sometimes directed) G = (V,E).

I Network science deals with real-world networks, often varying
with time.

I The main questions relate to network structure and evolution
over time.

I Networks are ubiquitous. A possible pitfall is not to consider
the meaning of the relation being graphed.

I Will discuss 3 examples today, exemplifying:
I Construction of a network from real data, some basic network

science tools.
I Social learning and “wisdom of crowds”.

I Structural balance in signed networks.



Network science

Introduction and motivation

Basics

I A network is a finite graph (sometimes directed) G = (V,E).

I Network science deals with real-world networks, often varying
with time.

I The main questions relate to network structure and evolution
over time.

I Networks are ubiquitous. A possible pitfall is not to consider
the meaning of the relation being graphed.

I Will discuss 3 examples today, exemplifying:
I Construction of a network from real data, some basic network

science tools.
I Social learning and “wisdom of crowds”.
I Structural balance in signed networks.



Network science

Legislative citations

Citation networks

I Here nodes are documents and (directed) edges are formed
when one cites another.

I We are all familiar with the citation network of scientific
papers.

I The citation network of Supreme Court (USA) opinions has
been analysed.

I A relatively new example is the corpus of legislative documents
(acts, regulations, case law). My PhD student Neda Sakhaee
and I looked at New Zealand Acts of Parliament (in progress).

I Basic questions: what is the network structure? how does it
evolve? which are the “most important/influential”
documents? do they cluster?



Network science

Legislative citations

Citation networks

I Here nodes are documents and (directed) edges are formed
when one cites another.

I We are all familiar with the citation network of scientific
papers.

I The citation network of Supreme Court (USA) opinions has
been analysed.

I A relatively new example is the corpus of legislative documents
(acts, regulations, case law). My PhD student Neda Sakhaee
and I looked at New Zealand Acts of Parliament (in progress).

I Basic questions: what is the network structure? how does it
evolve? which are the “most important/influential”
documents? do they cluster?



Network science

Legislative citations

Citation networks

I Here nodes are documents and (directed) edges are formed
when one cites another.

I We are all familiar with the citation network of scientific
papers.

I The citation network of Supreme Court (USA) opinions has
been analysed.

I A relatively new example is the corpus of legislative documents
(acts, regulations, case law). My PhD student Neda Sakhaee
and I looked at New Zealand Acts of Parliament (in progress).

I Basic questions: what is the network structure? how does it
evolve? which are the “most important/influential”
documents? do they cluster?



Network science

Legislative citations

Citation networks

I Here nodes are documents and (directed) edges are formed
when one cites another.

I We are all familiar with the citation network of scientific
papers.

I The citation network of Supreme Court (USA) opinions has
been analysed.

I A relatively new example is the corpus of legislative documents
(acts, regulations, case law). My PhD student Neda Sakhaee
and I looked at New Zealand Acts of Parliament (in progress).

I Basic questions: what is the network structure? how does it
evolve? which are the “most important/influential”
documents? do they cluster?



Network science

Legislative citations

Citation networks

I Here nodes are documents and (directed) edges are formed
when one cites another.

I We are all familiar with the citation network of scientific
papers.

I The citation network of Supreme Court (USA) opinions has
been analysed.

I A relatively new example is the corpus of legislative documents
(acts, regulations, case law). My PhD student Neda Sakhaee
and I looked at New Zealand Acts of Parliament (in progress).

I Basic questions: what is the network structure? how does it
evolve? which are the “most important/influential”
documents? do they cluster?



Network science

Legislative citations

Notes on real data

I Network analyses can be sensitive to missing data, because we
consider not only direct connections, but those at greater
distance. Errors can propagate.

I Getting hold of real data can be very hard. For scientific
citations, the for-profit companies will not share it reasonably.
Luckily all NZ laws are available online.

I Even if it is open, it may not be machine-readable. We have
spent much time processing data automatically and manually.
This involves large-scale OCR of documents, which is noisy.

I Luckily there is a master title list of laws, and the NZ
government makes current laws available in XML format.
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NEW ZEALAND. 

'fRICESIMO NON 0 

No. LXXIV. 

***f**************.**************************************** 
ANALYSIS. 

Title. 
1. Short Title. 
2. Repeal. 
3. Governor may :fix time for bringing Act into 

operation in any Department. 
4. Governor may make Regulations. 
5. Stamps to be impressed or adhesive as Governor 

directs. 

6. Stamps to be affixed to or impressed upon the 
document in respect of which the fee is 

, payable. 
7. Document invalid until properly stamped. 
8. Duties of Officer who receives payment in stamps. 
9. Penalties. 

10. Part I. of "Stamp Act, 1875," to be read al part 
of this Act. ' 

AN ACT to provide for the Collection by means of Titlo. 

Stamps of Fees payable in the various Depart-
ments of the Public Service. 

[21St October, 1875.] 

BE IT ENACTED by the General Assembly of New Zealand in 
Parliament assembled, and by the a:uthority of the same, as 
follows:-

1. The Short Title of this Act shall be "The Stamp Fee Act, SIJOl't Title. 
1875." 

2. "The Supreme Court and Registration Offices Fees Act, 1866," Repeal. 
is hereby repealed. 

3. The Governor in Council may, by notice published in the New Governor may fix 
Zealand Gazette, direct that after the time specified in such notice Atimte,f°tor 

f h d t ' f fi l' .c th t' b . C lD opera Ion all or any 0 t e u les ees nes or pena tIes J.or e Ime emg in any Department. 
payable in money in any Public Department or office connected with 
the public service, or to the officers thereof, shall be collected by 
means of stamps; and after the time so specified, the duties fees 
fines or penalties therein mentioned shall be received by stamps de-
noting the sums payable and not in money. 

4. The Governor in Council may make alter or repeal Regula- Governor may make 
Hons not contrary to this Act for the due administration thereof. Regulations. 

to the New Zealand Gazette, No. 59, oftlte 2ht OcfollFr, I8i5. 
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Part of the network – color:community, node size:centrality

There are 10000s of nodes,100000s of edges.
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Legislative citations

Importance of nodes
I The value-neutral term is centrality. There are many

measures.

I Let A be the adjacency matrix of G. Then the centrality
vector satisfies

I CI , indegree centrality (more citations, more important) is
given by CI = AT1.

I CE , eigenvalue centrality (similar to Google PageRank, being
cited by important nodes makes you important) is given by
ATCE = λCE where λ is the largest eigenvalue of A.

I CK , Katz centrality (weighted sum of paths to the node,
weights decrease exponentially by length) is given by
CK = ((I − αAT )−1 − I)1 for small α.

I We found broad agreement between measures on the most
important nodes and on the least important, without any
analysis of the content of documents. This has been
corroborated by expert opinion.



Network science

Legislative citations

Importance of nodes
I The value-neutral term is centrality. There are many

measures.
I Let A be the adjacency matrix of G. Then the centrality

vector satisfies

I CI , indegree centrality (more citations, more important) is
given by CI = AT1.

I CE , eigenvalue centrality (similar to Google PageRank, being
cited by important nodes makes you important) is given by
ATCE = λCE where λ is the largest eigenvalue of A.

I CK , Katz centrality (weighted sum of paths to the node,
weights decrease exponentially by length) is given by
CK = ((I − αAT )−1 − I)1 for small α.

I We found broad agreement between measures on the most
important nodes and on the least important, without any
analysis of the content of documents. This has been
corroborated by expert opinion.



Network science

Legislative citations

Importance of nodes
I The value-neutral term is centrality. There are many

measures.
I Let A be the adjacency matrix of G. Then the centrality

vector satisfies
I CI , indegree centrality (more citations, more important) is

given by CI = AT1.

I CE , eigenvalue centrality (similar to Google PageRank, being
cited by important nodes makes you important) is given by
ATCE = λCE where λ is the largest eigenvalue of A.

I CK , Katz centrality (weighted sum of paths to the node,
weights decrease exponentially by length) is given by
CK = ((I − αAT )−1 − I)1 for small α.

I We found broad agreement between measures on the most
important nodes and on the least important, without any
analysis of the content of documents. This has been
corroborated by expert opinion.



Network science

Legislative citations

Importance of nodes
I The value-neutral term is centrality. There are many

measures.
I Let A be the adjacency matrix of G. Then the centrality

vector satisfies
I CI , indegree centrality (more citations, more important) is

given by CI = AT1.
I CE , eigenvalue centrality (similar to Google PageRank, being

cited by important nodes makes you important) is given by
ATCE = λCE where λ is the largest eigenvalue of A.

I CK , Katz centrality (weighted sum of paths to the node,
weights decrease exponentially by length) is given by
CK = ((I − αAT )−1 − I)1 for small α.

I We found broad agreement between measures on the most
important nodes and on the least important, without any
analysis of the content of documents. This has been
corroborated by expert opinion.



Network science

Legislative citations

Importance of nodes
I The value-neutral term is centrality. There are many

measures.
I Let A be the adjacency matrix of G. Then the centrality

vector satisfies
I CI , indegree centrality (more citations, more important) is

given by CI = AT1.
I CE , eigenvalue centrality (similar to Google PageRank, being

cited by important nodes makes you important) is given by
ATCE = λCE where λ is the largest eigenvalue of A.

I CK , Katz centrality (weighted sum of paths to the node,
weights decrease exponentially by length) is given by
CK = ((I − αAT )−1 − I)1 for small α.

I We found broad agreement between measures on the most
important nodes and on the least important, without any
analysis of the content of documents. This has been
corroborated by expert opinion.



Network science

Legislative citations

Importance of nodes
I The value-neutral term is centrality. There are many

measures.
I Let A be the adjacency matrix of G. Then the centrality

vector satisfies
I CI , indegree centrality (more citations, more important) is

given by CI = AT1.
I CE , eigenvalue centrality (similar to Google PageRank, being

cited by important nodes makes you important) is given by
ATCE = λCE where λ is the largest eigenvalue of A.

I CK , Katz centrality (weighted sum of paths to the node,
weights decrease exponentially by length) is given by
CK = ((I − αAT )−1 − I)1 for small α.

I We found broad agreement between measures on the most
important nodes and on the least important, without any
analysis of the content of documents. This has been
corroborated by expert opinion.



Network science

Legislative citations



Network science

Legislative citations

Act Rank CK

Public Finance Act 1989 1 10.37

Criminal Procedure Act 2011 2 9.65

Summary Proceedings Act 1957 3 9.28

State Sector Act 1988 4 8.85

District Courts Act 1947 5 7.96

Crimes Act 1961 6 7.47

Companies Act 1993 7 7.43

Local Government Act 1974 8 7.4

Judicature Act 1908 9 7.1

Privacy Act 1993 10 6.79

Resource Management Act 1991 11 6.71

Official Information Act 1982 12 6.58
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Future work

I We aim to study and model evolution of the network over
time, but the further back we go, the noisier the data is. The
network is becoming denser over time.

I Interpretation of results is tricky. What is the underlying
reason for citation? We aim to correlate changes in network
structure with external political and economic events.

I Detect communities (unusually dense subgraphs) - challenging
because network is directed.

I Comparative studies with other jurisdictions — how much can
be read off just from the citation network?

I Other layers (regulations, case law) of the network.
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Network science

Diffusion

Basic setup for discrete time diffusion models

I We focus on learning and beliefs (relevant for psychology, for
example). Other applications (e.g. political science, public
health) focus on other interpretations (e.g. preferences,
disease).

I Abstractly, each node has a state (color). The state can be
discrete or continuous.

I At each discrete time step, update a node by a fixed function
of the colors of its neighboring nodes.

I We study dynamics of the profile of node states. Analytic
results are hard for all but the easiest models.
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Diffusion

Fundamental questions

I (equilibrium) Does the process converge in finite time on a
given finite G? at what rate?

I (unanimity) If it converges, do all nodes have the same color?

I (wisdom of crowds) If unanimity is achieved, is it the “correct”
color? if not, does the “correct” color win a plurality vote?

I (homophily) Describe the effect on the process of assuming
that nodes of same color are more likely to be connected.

I (cascades) When do arbitrary changes to some nodes
propagate to a large fraction of the network?
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Some discrete time belief change models

I DeGroot (1974): state is subjective probability, each agent
simultaneously averages neighboring states (and own) with
some fixed weights. Typically converges via standard Markov
chain results.

I Each agent has a reported 0/1 belief, and a threshold
0 ≤ t ≤ 1, and changes to the other state if fraction at least t
of its neighbors have that state.

I The last two can easily oscillate depending on topology and
initial coloring. Note that these differ markedly from standard
probabilistic contagion models for disease.
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Iterative distributed jury model

I each participant aims to find the true answer to each question
asked;

I anonymity of participants is preserved;

I participants iteratively and simultaneously revise answers;

I feedback to participants is controlled (in particular, open
discussion is not allowed);

I at each iteration, each participant is given statistical feedback
about the answers of other participants.

I Although this is a very restricted environment, I think it has
some relevance to online social networks and political
discussion. It is relevant to multiagent intelligent systems.
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Our work

I We had a new threshold-type model based on the theory of
belief revision in logic.

I We wanted to see whether the model made any sense before
investing a lot of resources into analysing it. Unfortunately we
invested more resources in experiments ...

I We performed exploratory laboratory experiments where
undergraduates answered “true”, “false” or “don’t know” to
objective questions, both famous logical puzzles from
psychology and our own experiential questions.

I Examples:

I (From Frederick’s Cognitive Reflection Test) A bat and ball
together cost $1.10 and the bat costs $1 more than the ball,
so the ball costs $0.10.

I The name of the character played by Paul Walker in “The Fast
and the Furious” is “Dominic”.
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Findings so far

I Subjects answer “don’t know” much less often than expected.

I Subjects admitting “don’t know” at first iteration learned
much more often than those who answer wrongly.

I There is much more apparent social influence than we
expected on logical questions.

I Difficult questions may lead to good social learning, but
“tricky” questions (where subjects don’t know they don’t
know) lead to really bad social learning.

I Promising new model to study: switching probability from
“yes” to “no” is proportional to (p2B − p2W ).



Network science

Diffusion

Findings so far

I Subjects answer “don’t know” much less often than expected.

I Subjects admitting “don’t know” at first iteration learned
much more often than those who answer wrongly.

I There is much more apparent social influence than we
expected on logical questions.

I Difficult questions may lead to good social learning, but
“tricky” questions (where subjects don’t know they don’t
know) lead to really bad social learning.

I Promising new model to study: switching probability from
“yes” to “no” is proportional to (p2B − p2W ).



Network science

Diffusion

Findings so far

I Subjects answer “don’t know” much less often than expected.

I Subjects admitting “don’t know” at first iteration learned
much more often than those who answer wrongly.

I There is much more apparent social influence than we
expected on logical questions.

I Difficult questions may lead to good social learning, but
“tricky” questions (where subjects don’t know they don’t
know) lead to really bad social learning.

I Promising new model to study: switching probability from
“yes” to “no” is proportional to (p2B − p2W ).



Network science

Diffusion

Findings so far

I Subjects answer “don’t know” much less often than expected.

I Subjects admitting “don’t know” at first iteration learned
much more often than those who answer wrongly.

I There is much more apparent social influence than we
expected on logical questions.

I Difficult questions may lead to good social learning, but
“tricky” questions (where subjects don’t know they don’t
know) lead to really bad social learning.

I Promising new model to study: switching probability from
“yes” to “no” is proportional to (p2B − p2W ).



Network science

Diffusion

Findings so far

I Subjects answer “don’t know” much less often than expected.

I Subjects admitting “don’t know” at first iteration learned
much more often than those who answer wrongly.

I There is much more apparent social influence than we
expected on logical questions.

I Difficult questions may lead to good social learning, but
“tricky” questions (where subjects don’t know they don’t
know) lead to really bad social learning.

I Promising new model to study: switching probability from
“yes” to “no” is proportional to (p2B − p2W ).



Network science

Diffusion

References

I P. Girard, V. Pavlov, M.C. Wilson. Networked crowds answer
tricky questions poorly. Preprint 2016.

I P. Girard, V. Pavlov, M.C. Wilson. Belief diffusion in social
networks. Preprint 2015.

I Could use help on methodology: how do we falsify a model?
how do we get enough data to test a model? what techniques
of statistical inference are appropriate?



Network science

Diffusion

References

I P. Girard, V. Pavlov, M.C. Wilson. Networked crowds answer
tricky questions poorly. Preprint 2016.

I P. Girard, V. Pavlov, M.C. Wilson. Belief diffusion in social
networks. Preprint 2015.

I Could use help on methodology: how do we falsify a model?
how do we get enough data to test a model? what techniques
of statistical inference are appropriate?



Network science

Diffusion

References

I P. Girard, V. Pavlov, M.C. Wilson. Networked crowds answer
tricky questions poorly. Preprint 2016.

I P. Girard, V. Pavlov, M.C. Wilson. Belief diffusion in social
networks. Preprint 2015.

I Could use help on methodology: how do we falsify a model?
how do we get enough data to test a model? what techniques
of statistical inference are appropriate?



Network science

Signed networks

Balance in signed networks

I A signed network is an undirected network G = (V,E)
together with a map σ : E → {±1}; write E− = σ−1(−1). A
signed graph has a signed adjacency matrix A.

I A cycle is balanced if the product of signs of edges in every
cycle is +1.

I G is balanced iff all its cycles are balanced.

I Real-world networks are rarely balanced.
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Properties equivalent to balance

I V = V0 ∪ V1 such that (x, y) ∈ E− implies x ∈ Vi, y ∈ V1−i
(polarization).

I (V,E−) is bipartite.

I G is switching equivalent to a graph with all positive edges.

I The smallest eigenvalue of the Laplacian D −A (where D is
the diagonal matrix of degrees) of G is 0.
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Switching
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Examples of real world signed networks
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31/10/2016
52

Middle East signed network

[9
]

Figure: D. McCandless, Information is Beautiful by Univers Labs, source: multiple news reports



Network science

Signed networks

How to measure partial balance?

I Real networks are not usually balanced, but there are theories
that they become more balanced over time.

I There is no standard measure of partial balance. This has not
stopped several papers being written arguing that the above
theory is correct or incorrect (!)

I We reviewed several measures, introduced axioms and
desirable properties, and studied them thoroughly on synthetic
and real data.

I One of the best performing measures: the frustration index, a
normalization of the minimum number of edges we must
flip/delete in order to achieve perfect balance.

I We show that well known and commonly used measures such
as the fraction of balanced cycles have serious drawbacks.
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Axioms

A1 0 ≤ µ(G) ≤ 1.

A2 µ(G) = 1 if and only if G is balanced.

A3 If µ(G) ≤ µ(H), then µ(G) ≤ µ(G⊕H) ≤ µ(H).

A4 µ(Gg(X)) = µ(G).

B1 If µ(G) 6= 1, then µ(G⊕ C+
3 ) > µ(G).

B2 If µ(G) 6= 0, then µ(G⊕ C−3 ) < µ(G)

B3 If e ∈ E∗, then µ(G	 e) ≥ µ(G).
B4 If µ(G) 6= 0 and µ(G	 E∗ ⊕ e) 6= 1, then

µ(G⊕ e) ≤ µ(G).
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Axiomatic behavior of measures

D(G) C(G) W (G) Dk(G) A(G) F (G)

A1 3 3 3 3 3 3

A2 3 3 3 7 7 3

A3 3 3 3 3 7 3

A4 3 3 3 3 3 3

B1 3 3 3 7 3 3

B2 3 3 7 7 7 7

B3 7 7 7 7 7 3

B4 7 7 7 7 7 3
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Balance in minimally and maximally unbalanced Kn

µ(G) µ(Gmin) µ(Gmax)

D(G) ∼ 1− 2/n ∼ 1
2 + (−1)ne−2

C(G) ∼ 1− 1/n ∼ 1
2 −

3n logn
2n

Dk(G) 1− 2k/n(n− 1) 0, 1

W (G) ∼ 1− 2/n ∼ 1+e2−2n

2
A(G) ∼ 1− 4/n2 0
F (G) 1− 4/n(n− 1) 1

n ,
1

n−1
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How to compute the frustration index?

I It is known that computing the frustration index is NP-hard in
general (by reduction from MAX-CUT). It is equivalent to
minimizing edges between vertices of the same color, over all
possible vertex colorings.

I However we still need to compute it. We started with a basic
integer programming model and now have 3 models:

I using data reduction (preprocessing)
I reformulating our original nonlinear model as a linear one
I using the structure of the problem to create nonobvious

constraints
I using IP techniques (“lazy cuts”)
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XOR model

min
xi:i∈V,fij :(i,j)∈E

Z =
∑

(i,j)∈E

fij

s.t. fij ≥ xi − xj ∀(i, j) ∈ E+

fij ≥ xj − xi ∀(i, j) ∈ E+

fij ≥ xi + xj − 1 ∀(i, j) ∈ E−

fij ≥ 1− xi − xj ∀(i, j) ∈ E−

xi ∈ {0, 1} ∀i ∈ V
fij ∈ {0, 1} ∀(i, j) ∈ E

(1)
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Some additional constraints

Feasible:
fij + fik + fjk ≥ 1 ∀(i, j, k) ∈ T−

Optimal: ∑
j:(i,j)∈E or (j,i)∈E

fij ≤ (di/2) ∀i ∈ V
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Results

I The current implementations are at least 10 times faster than
the original and allow computation in networks with
thousands of nodes and edges.

I They are the best we know of by quite some distance (several
orders of magnitude faster on test problems).

I We show that many previously computed results are incorrect.
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Sample results

Graph D2007 H2010 I2010 XOR

Q
u

al
it

y

EGFR [196, 219] 210 [186, 193] 193
macrophage [218,383] 374 [302, 332] 332
yeast [0, 43] 41 41 41
E.coli [0, 385] fail [365, 371] 371

T
im

e

EGFR 420 s 6480 s >60 s 0.28 s
macrophage 2640 s 60 s >60 s 0.56 s
yeast 4620 s 60 s >60 s 0.13 s
E.coli - fail >60 s 2.21 s
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Are real-world networks more balanced than random ones?

I Using the normalized frustration index shows that many are.

I Social and political networks (e.g. New Guinea highland
tribes, social relations in a monastery, Senate bill
co-sponsorship) and some biological networks (e.g. gene
regulatory networks) are much more balanced than expected
by chance.

I However certain biological networks are much less balanced
than expected.

I International alliances network seems to become (slowly) more
balanced over time.
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