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Introduction and motivation

Basic example

I How many positive king walks are there?

I Let ars be the number of nearest-neighbor walks from (0, 0)
to (r, s) using steps ↑,→,↗ (Delannoy numbers).

I The best overall representation of such a sequence is via its
bivariate generating function

F (x, y) =
∑

r≥0,s≥0
arsx

rys.

I Using a recursion for ars we can show by routine methods that

F (x, y) =
1

1− x− y − xy .

I How to extract information about ars as r + s→∞?



AMGF

Introduction and motivation

Basic example

I How many positive king walks are there?

I Let ars be the number of nearest-neighbor walks from (0, 0)
to (r, s) using steps ↑,→,↗ (Delannoy numbers).

I The best overall representation of such a sequence is via its
bivariate generating function

F (x, y) =
∑

r≥0,s≥0
arsx

rys.

I Using a recursion for ars we can show by routine methods that

F (x, y) =
1

1− x− y − xy .

I How to extract information about ars as r + s→∞?



AMGF

Introduction and motivation

Basic example

I How many positive king walks are there?

I Let ars be the number of nearest-neighbor walks from (0, 0)
to (r, s) using steps ↑,→,↗ (Delannoy numbers).

I The best overall representation of such a sequence is via its
bivariate generating function

F (x, y) =
∑

r≥0,s≥0
arsx

rys.

I Using a recursion for ars we can show by routine methods that

F (x, y) =
1

1− x− y − xy .

I How to extract information about ars as r + s→∞?



AMGF

Introduction and motivation

Basic example

I How many positive king walks are there?

I Let ars be the number of nearest-neighbor walks from (0, 0)
to (r, s) using steps ↑,→,↗ (Delannoy numbers).

I The best overall representation of such a sequence is via its
bivariate generating function

F (x, y) =
∑

r≥0,s≥0
arsx

rys.

I Using a recursion for ars we can show by routine methods that

F (x, y) =
1

1− x− y − xy .

I How to extract information about ars as r + s→∞?



AMGF

Introduction and motivation

Basic example

I How many positive king walks are there?

I Let ars be the number of nearest-neighbor walks from (0, 0)
to (r, s) using steps ↑,→,↗ (Delannoy numbers).

I The best overall representation of such a sequence is via its
bivariate generating function

F (x, y) =
∑

r≥0,s≥0
arsx

rys.

I Using a recursion for ars we can show by routine methods that

F (x, y) =
1

1− x− y − xy .

I How to extract information about ars as r + s→∞?



AMGF

Introduction and motivation

Standing assumptions

I We use boldface to denote a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd). Similarly zr = zr11 . . . zrdd .

I A (multivariate) sequence is a function a : Nd → C for some
fixed d. Usually write ar instead of a(r).

I The generating function (GF) is the formal power series

F (z) =
∑

r∈Nd
arz

r.

I Assume F (z) = G(z)/H(z) where G,H are analytic (e.g.
polynomials). The singular variety V := {z : H(z) = 0}
consists of poles.
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Introduction and motivation

Review: univariate case

Overview - univariate case

I Cauchy’s integral theorem expresses ar as an integral.

I The exponential growth rate of ar is determined by the
location of a dominant singularity z∗ ∈ V, while the local
geometry of F near z∗ determines subexponential factors.

I A residue computation yields the result.
I In the multivariate case, all the above is still true. However

I we must specify the direction in which we want asymptotics —
we then need to worry about uniformity;

I the definition of “dominant” is a little different;
I the local geometry of V can be much nastier;
I residue computations are harder and residues must still be

integrated.
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Introduction and motivation

Review: univariate case

Example (Univariate pole: derangements)

I Consider F (z) = e−z/(1− z), the GF for derangements.
There is a single pole, at z = 1. Using a circle of radius 1− ε
yields, by Cauchy’s theorem

ar =
1

2πi

∫

C1−ε

z−r−1F (z) dz.

I By Cauchy’s residue theorem,

ar =
1

2πi

∫

C1+ε

z−r−1F (z) dz − Res(z−r−1F (z); z = 1).

I The integral is O((1 + ε)−r) while the residue equals −e−1.

I Thus [zr]F (z) ∼ e−1 as r →∞.
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Review: univariate case

Example (Essential singularity: saddle point method)

I Here F (z) = exp(z). The Cauchy integral formula on a circle
CR of radius R gives |an| ≤ F (R)/Rn := exp(hn(R)).

I Now minimize the height function hn(R) over R. In this
example, R = n is the minimizer.

I The integral over Cn has most mass near z = n, so that

an =
F (n)

2πnn

∫ 2π

0
exp(−inθ)F (neiθ)

F (n)
dθ

≈ en

2πnn

∫ ε

−ε
exp

(
−inθ + logF (neiθ)− logF (n)

)
dθ.
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Review: univariate case

Example (Saddle point example continued)

I The Maclaurin expansion yields

−inθ + logF (neiθ)− logF (n) = −nθ2/2 +O(nθ3).

I This gives, with bn = 2πnne−nan, Laplace’s approximation:

bn ≈
∫ ε

−ε
exp(−nθ2/2) dθ ≈

∫ ∞

−∞
exp(−nθ2/2) dθ =

√
2π/n.

I This recaptures Stirling’s approximation, since n! = 1/an:

n! ∼ nne−n
√

2πn.
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Multivariate case

Multivariate asymptotics — some quotations

I (Bender 1974) “Practically nothing is known about
asymptotics for recursions in two variables even when a GF is
available. Techniques for obtaining asymptotics from bivariate
GFs would be quite useful.”

I (Odlyzko 1995) “A major difficulty in estimating the
coefficients of mvGFs is that the geometry of the problem is
far more difficult. . . . Even rational multivariate functions are
not easy to deal with.”

I (Flajolet/Sedgewick 2009) “Roughly, we regard here a
bivariate GF as a collection of univariate GFs . . . .”

I We aimed to improve the multivariate situation.
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Pemantle-Wilson approach

Generic case

I We first investigate the generic case:

I ∇H 6= 0 at relevant points.
I Positive: all ar ≥ 0.
I Aperiodic: ar is not supported on a proper sublattice of Nd.
I Each dominant point is strictly minimal.
I G does not vanish at relevant points.
I The Hessian of H does not vanish at relevant points.

I We relax several of these assumptions later.
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Pemantle-Wilson approach

Outline of results

I Asymptotics in the direction r are determined by a (finite) set,
crit(r), of critical points.

I We may restrict to a dominant point z∗(r) lying in the
positive orthant, which determines the exponential rate.

I For subexponential factors, there is an asymptotic series A(z∗)
that depends on the geometry of V near z∗, and each term is
computable from finitely many derivatives of G and H at z∗.

I This yields an asymptotic expansion

ar ∼ z∗(r)−rA(z∗)

that is uniform on compact subsets of directions, provided the
geometry does not change.

I The set crit(r) is computable via symbolic algebra.

I To determine the dominant point requires a little more work.



AMGF

Pemantle-Wilson approach

Outline of results

I Asymptotics in the direction r are determined by a (finite) set,
crit(r), of critical points.

I We may restrict to a dominant point z∗(r) lying in the
positive orthant, which determines the exponential rate.

I For subexponential factors, there is an asymptotic series A(z∗)
that depends on the geometry of V near z∗, and each term is
computable from finitely many derivatives of G and H at z∗.

I This yields an asymptotic expansion

ar ∼ z∗(r)−rA(z∗)

that is uniform on compact subsets of directions, provided the
geometry does not change.

I The set crit(r) is computable via symbolic algebra.

I To determine the dominant point requires a little more work.



AMGF

Pemantle-Wilson approach

Outline of results

I Asymptotics in the direction r are determined by a (finite) set,
crit(r), of critical points.

I We may restrict to a dominant point z∗(r) lying in the
positive orthant, which determines the exponential rate.

I For subexponential factors, there is an asymptotic series A(z∗)
that depends on the geometry of V near z∗, and each term is
computable from finitely many derivatives of G and H at z∗.

I This yields an asymptotic expansion

ar ∼ z∗(r)−rA(z∗)

that is uniform on compact subsets of directions, provided the
geometry does not change.

I The set crit(r) is computable via symbolic algebra.

I To determine the dominant point requires a little more work.



AMGF

Pemantle-Wilson approach

Outline of results

I Asymptotics in the direction r are determined by a (finite) set,
crit(r), of critical points.

I We may restrict to a dominant point z∗(r) lying in the
positive orthant, which determines the exponential rate.

I For subexponential factors, there is an asymptotic series A(z∗)
that depends on the geometry of V near z∗, and each term is
computable from finitely many derivatives of G and H at z∗.

I This yields an asymptotic expansion

ar ∼ z∗(r)−rA(z∗)

that is uniform on compact subsets of directions, provided the
geometry does not change.

I The set crit(r) is computable via symbolic algebra.

I To determine the dominant point requires a little more work.



AMGF

Pemantle-Wilson approach

Outline of results

I Asymptotics in the direction r are determined by a (finite) set,
crit(r), of critical points.

I We may restrict to a dominant point z∗(r) lying in the
positive orthant, which determines the exponential rate.

I For subexponential factors, there is an asymptotic series A(z∗)
that depends on the geometry of V near z∗, and each term is
computable from finitely many derivatives of G and H at z∗.

I This yields an asymptotic expansion

ar ∼ z∗(r)−rA(z∗)

that is uniform on compact subsets of directions, provided the
geometry does not change.

I The set crit(r) is computable via symbolic algebra.

I To determine the dominant point requires a little more work.



AMGF

Pemantle-Wilson approach

Outline of results

I Asymptotics in the direction r are determined by a (finite) set,
crit(r), of critical points.

I We may restrict to a dominant point z∗(r) lying in the
positive orthant, which determines the exponential rate.

I For subexponential factors, there is an asymptotic series A(z∗)
that depends on the geometry of V near z∗, and each term is
computable from finitely many derivatives of G and H at z∗.

I This yields an asymptotic expansion

ar ∼ z∗(r)−rA(z∗)

that is uniform on compact subsets of directions, provided the
geometry does not change.

I The set crit(r) is computable via symbolic algebra.

I To determine the dominant point requires a little more work.



AMGF

Big picture of derivation - details omitted for lack of time

Cauchy integral formula

I We have

ar = (2πi)−d
∫

T
z−r−1F (z)dz

where dz = dz1 ∧ · · · ∧ dzd and T is a small torus around the
origin.

I We aim to replace T by a contour that is more suitable for
explicit computation. This may involve additional residue
terms.

I The homology of Cd \ V is the key to decomposing the
integral.

I To derive asymptotics, it is natural to try a saddle
point/steepest descent approach.
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Big picture of derivation - details omitted for lack of time

Topological overview - stratified Morse theory

I Consider height function hr(z) = r · Re log(z), choose the
contour to minimize maxh.

I The Cauchy integral decomposes into a sum

ar =
∑

i

ni

∫

Ci

z−r−1F(z)dz + exponentially smaller stuff

where Ci is a quasi-local cycle near some critical point z∗
(i).

I Variety V has a Whitney stratification into finitely many cells,
each of which is a complex manifold of dimension k ≤ d− 1.
The top dimensional stratum is the set of smooth points.

I The critical points are those where the restriction of h to a
stratum has derivative zero.

I Key problem: find the highest critical points with nonzero ni.
These are the dominant ones.
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Big picture of derivation - details omitted for lack of time

Computing the integral over Ci

I For each direction r in which we want asymptotics, the
dominant point depends on r.

I This point is generically a smooth point of V. We can also
handle multiple points and some other geometries.

I We write
∫
Ci

=
∫
A

∫
B and approximate the inner integral by a

residue.

I To compute
∫
A Res, convert to a Fourier-Laplace integral and

using a version of Laplace’s method to derive an asymptotic
expansion. The dominant point corresponds exactly to a
stationary point of the F-L integral.

I We can (with some effort) convert quantities in our formula
back to the original data.
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Asymptotics of Fourier-Laplace integrals

Fourier-Laplace integrals

I We ultimately reduce to asymptotics for large λ of

I(λ) =

∫

D
exp(−λf(x))A(x) dx

where D ⊂ Rd.

I All authors assume at least one of the following:

I the phase f is either purely real or purely imaginary;
I ∂D is smooth;
I f decays exponentially on ∂D, or the amplitude A vanishes

there;
I f has an isolated quadratically nondegenerate stationary point.

I Many of our applications to generating function asymptotics
do not fit into this framework, and we needed to extend what
is known — for this analyticity was very useful.
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Asymptotics of Fourier-Laplace integrals

Low-dimensional examples of F-L integrals
I Typical smooth point example looks like

∫ 1

−1
e−λ(1+i)x

2
dx.

Isolated nondegenerate critical point, exponential decay

I Simplest double point example looks roughly like
∫ 1

−1

∫ 1

0
e−λ(x

2+2ixy) dy dx.

Note Re f = 0 on x = 0, so rely on oscillation for smallness.
I Multiple point with n = 2, d = 1 gives integral like

∫ 1

−1

∫ 1

0

∫ x

−x
e−λ(z

2+2izy) dy dx dz.

Simplex corners now intrude, continuum of critical points.
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Putting it together — general formulae

Logarithmic domain

I Let U be the domain of convergence of the power series F (z).
We write log U = {x ∈ Rd | ex ∈ U}, the logarithmic domain
of convergence. This is known to be convex.

I For each r we can find z∗(r) = exp(x∗), on the boundary of
V and in the positive orthant of Rd, that controls asymptotics
in direction r.

I We denote by K(z∗) the cone spanned by normals to
supporting hyperplanes at x∗. If z∗ is smooth, this is a single
ray determined by the image of z∗ under the logarithmic
Gauss map ∇logH.
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Putting it together — general formulae

log U for queueing example
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Putting it together — general formulae

Generic case — smooth point formula for general d

I z∗(r) turns out to be a critical point for r iff the outward
normal to logV is parallel to r. In other words, for some
λ ∈ C, z∗ solves

∇logH(z) := (z1∂H/∂z1, . . . , zd∂H/∂Hd) = λr, H(z) = 0.

I Then

ar ∼ z∗(r)−r

√
1

(2π|r|)(d−1)/2κ(z∗)

G(z∗)

| ∇logH(z∗)|

where |r| = ∑i ri and κ is the Gaussian curvature of logV at
log z∗.

I The Gaussian curvature can be computed explicitly in terms
of derivatives of H to second order.
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Putting it together — general formulae

Example (Delannoy walks)

I Recall that F (x, y) = (1− x− y − xy)−1. Here V is globally
smooth.

I Using the formula above we obtain (uniformly for r/s, s/r
away from 0)

ars ∼
[

r

∆− s

]r [ s

∆− r

]s√ rs

2π∆(r + s−∆)2
.

where ∆ =
√
r2 + s2.

I Extracting any diagonal is now easy: a7n,5n ∼ ACnn−1/2
where A ≈ 0.236839621050264, C ≈ 30952.9770838817.

I Compare Panholzer-Prodinger, Bull. Aust. Math. Soc. 2012.
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Multiple points

Multiple points: generic shape of A(z∗)
I (smooth point, or multiple point with n ≤ d)

∑
ak|r|−(d−n)/2−k

I (smooth/multiple point n < d)

a0 = G(z∗)C(z∗)

where C depends on the derivatives to order 2 of H;
I (multiple point, n = d)

a0 = G(z∗)(det J)−1

where J is the Jacobian matrix (∂Hi/∂zj), other ak are zero;
I (multiple point, n ≥ d)

G(z∗)P

(
r1
z∗1
, . . . ,

rd
z∗d

)
,

P a piecewise polynomial of degree n− d.
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Multiple points

Example (Queueing network)

I Consider

F (x, y) =
exp(x+ y)

(1− 2x
3 −

y
3 )(1− 2y

3 − x
3 )

which is the “grand partition function” for a very simple
queueing network.

I Most of the points of V are smooth, and we can apply the
smooth point results to derive asymptotics in directions
outside the cone 1/2 ≤ r/s ≤ 2.

I The point (1, 1) is a double point satisfying the above. In the
cone 1/2 < r/s < 2, we have ars ∼ 3e2.

I Note we say nothing here about the boundary of the cone.
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Multiple points

Enumerating lattice walks confined to the first quadrant

I Bousquet-Mélou & Mishna (2010): there are 79 inequivalent
nontrivial cases, of which 23 may have nice asymptotics (the
GF is D-finite — satisfies a linear ODE with polynomial
coefficients).

I Bostan & Kauers (2009): conjectured asymptotics in the 23
nice cases. Four of these were dealt with by direct attack. We
borrow their table below.

I Stephen Melczer & MCW (2016): confirmation of asymptotics
of 19 remaining cases (correcting constants in some cases).
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Table of All Conjectured D-Finite F(t; 1, 1) [Bostan & Kauers 2009]

OEIS S alg equiv OEIS S alg equiv

1 A005566 N 4
p

4n

n 13 A151275 N 12
p

30
p

(2
p

6)n

n2

2 A018224 N 2
p

4n

n 14 A151314 N
p

6lµC5/2

5p
(2C)n

n2

3 A151312 N
p

6
p

6n

n 15 A151255 N 24
p

2
p

(2
p

2)n

n2

4 A151331 N 8
3p

8n

n 16 A151287 N 2
p

2A7/2

p
(2A)n

n2

5 A151266 N 1
2

q
3
p

3n

n1/2 17 A001006 Y 3
2

q
3
p

3n

n3/2

6 A151307 N 1
2

q
5

2p
5n

n1/2 18 A129400 Y 3
2

q
3
p

6n

n3/2

7 A151291 N 4
3
p

p
4n

n1/2 19 A005558 N 8
p

4n

n2

8 A151326 N 2p
3p

6n

n1/2

9 A151302 N 1
3

q
5

2p
5n

n1/2 20 A151265 Y 2
p

2
G(1/4)

3n

n3/4

10 A151329 N 1
3

q
7

3p
7n

n1/2 21 A151278 Y 3
p

3p
2G(1/4)

3n

n3/4

11 A151261 N 12
p

3
p

(2
p

3)n

n2 22 A151323 Y
p

233/4

G(1/4)
6n

n3/4

12 A151297 N
p

3B7/2

2p
(2B)n

n2 23 A060900 Y 4
p

3
3G(1/3)

4n

n2/3

A = 1 +
p

2, B = 1 +
p

3, C = 1 +
p

6, l = 7 + 3
p

6, µ =

q
4
p

6�1
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. Computerized discovery by enumeration + Hermite–Padé + LLL/PSLQ.

Frédéric Chyzak Small-Step Walks
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Extensions

Easy generalizations

I If there is periodicity, we typically obtain a finite number of
contributing points whose contributions must be summed.
This leads to the appropriate cancellation.

I A toral point is one for which every point on its torus is a
minimal singularity, such as 1/(1− x2y3). We deal with this
by an easy modification of the reduction to the F-L integral.

I If the dominant point is smooth but H is not locally
squarefree, then we obtain polynomial corrections that are
easily computed (take higher derivative when computing the
residue).
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Extensions

Example (Periodicity)

I Let F (x, y) = 1/(1− 2xy + y2) be the generating function for
Chebyshev polynomials of the second kind.

I For directions (r, s) with 0 < s/r < 1, there is a dominant
point at

p =

(
r√

r2 − s2
,

√
r − s
r + s

)

.
I There is also a dominant point at −p. Adding the

contributions yields the correct asymptotic:

ars ∼
√

2

π
(−1)(s−r)/2

(
2r√
s2 − r2

)−r (√
s− r
s+ r

)−s√
s+ r

r(s− r)

when r + s is even, and zero otherwise.
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Extensions

Example (Torality)

I The amplitude spacetime GF for a quantum random walk has
the form

G(x, y)

det(I − yM(x)U)

where M is a matrix of monomials and U is a unitary matrix.

I Simplest case is Hadamard QRS in 1-D:

F (x, y) =
1 + xy/

√
2

1− (1− x)y/
√

2− xy2
,

I On V, |xi| = 1 for all i implies |y| = 1, so we get more poles
than expected.

I The set of feasible velocities is the region of non-exponential
decay of amplitudes, which we can approximate very well –
see next slide.
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Feasible region for 2-D QRW (L: theory, R: time 200)
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Extensions

Harder extensions

I If sheets at a multiple point are not transversal, the phase of
the Fourier-Laplace integral vanishes on a set of positive
dimension. If we can reduce H in the local ring, all is well.
Otherwise we may need to attack the F-L integral directly.

I If F is not positive, finding the dominant point can be hard.
There is an algorithm in dimension 2.

I We have dealt with a class of cone singularities arising in
statistical physics problems, but the analysis is much harder.

I If the geometry changes, we typically encounter a phase
transition.
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Extensions

Example (nonpositive case - PhD thesis Tim DeVries)

I Consider bicolored supertrees

F (x, y) =
2x2y(2x5y2 − 3x3y + x+ 2x2y − 1)

x5y2 + 2x2y − 2x3y + 4y + x− 2
.

for which we want asymptotics on the main diagonal. The
diagonal GF is combinatorial, but F is not.

I The critical points are, listed in increasing height,
(1 +

√
5, (3−

√
5)/16), (2, 18), (1−

√
5, (3 +

√
5)/16).

I In fact (2, 1/8) dominates.

I The answer:

ann ∼
4n
√

2Γ(5/4)

4π
n−5/4.



AMGF

Extensions

Example (nonpositive case - PhD thesis Tim DeVries)

I Consider bicolored supertrees

F (x, y) =
2x2y(2x5y2 − 3x3y + x+ 2x2y − 1)

x5y2 + 2x2y − 2x3y + 4y + x− 2
.

for which we want asymptotics on the main diagonal. The
diagonal GF is combinatorial, but F is not.

I The critical points are, listed in increasing height,
(1 +

√
5, (3−

√
5)/16), (2, 18), (1−

√
5, (3 +

√
5)/16).

I In fact (2, 1/8) dominates.

I The answer:

ann ∼
4n
√

2Γ(5/4)

4π
n−5/4.



AMGF

Extensions

Example (nonpositive case - PhD thesis Tim DeVries)

I Consider bicolored supertrees

F (x, y) =
2x2y(2x5y2 − 3x3y + x+ 2x2y − 1)

x5y2 + 2x2y − 2x3y + 4y + x− 2
.

for which we want asymptotics on the main diagonal. The
diagonal GF is combinatorial, but F is not.

I The critical points are, listed in increasing height,
(1 +

√
5, (3−

√
5)/16), (2, 18), (1−

√
5, (3 +

√
5)/16).

I In fact (2, 1/8) dominates.

I The answer:

ann ∼
4n
√

2Γ(5/4)

4π
n−5/4.



AMGF

Extensions

Example (nonpositive case - PhD thesis Tim DeVries)

I Consider bicolored supertrees

F (x, y) =
2x2y(2x5y2 − 3x3y + x+ 2x2y − 1)

x5y2 + 2x2y − 2x3y + 4y + x− 2
.

for which we want asymptotics on the main diagonal. The
diagonal GF is combinatorial, but F is not.

I The critical points are, listed in increasing height,
(1 +

√
5, (3−

√
5)/16), (2, 18), (1−

√
5, (3 +

√
5)/16).

I In fact (2, 1/8) dominates.

I The answer:

ann ∼
4n
√

2Γ(5/4)

4π
n−5/4.



AMGF

Extensions

Example (phase transition)

I The core of a rooted planar map is the largest 2-connected
subgraph containing the root edge.

I The probability distribution of the size k of the core in a
random planar map with size n is described by

p(n, k) =
k

n
[xkynzn]

xzψ′(z)

(1− xψ(z))(1− yφ(z))
.

where ψ(z) = (z/3)(1− z/3)2 and φ(z) = 3(1 + z)2.

I In directions away from n = 3k, our ordinary smooth point
analysis holds. When n = 3k we can redo the F-L integral
easily and obtain asymptotics of order n−1/3.

I Determining the behaviour as we approach this diagonal at a
moderate rate is harder (Manuel Lladser PhD thesis), and
recovers the results of Banderier-Flajolet-Schaeffer-Soria 2001.
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Higher order terms

I These are useful when:

I leading term cancels in deriving other formulae;
I leading term is zero because of numerator;
I we want accurate approximations for small n.

I We can in principle differentiate implicitly and solve a system
of equations for each term in the asymptotic expansion.

I Hörmander has a completely explicit formula that proved
useful. There may be other ways.
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Hörmander’s explicit formula
For an isolated nondegenerate stationary point in dimension d,

I(λ) ∼
(

det

(
λf ′′(0)

2π

))−1/2∑

k≥0
λ−kLk(A, f)

where Lk is a differential operator of order 2k evaluated at 0.
Specifically,

f(t) = f(t)− (1/2)tf ′′(0)tT

D =
∑

a,b

(f ′′(0)−1)a,b(−i∂a)(−i∂b)

Lk(A, f) =
∑

l≤2k

Dl+k(Af l)(0)

(−1)k2l+kl!(l + k)!
.
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Example (2 planes in 3-space)

I The GF is

F (x, y, z) =
1

(4− 2x− y − z)(4− x− 2y − z) .

I The critical points for some directions lie on one of the two
planes where a single factor vanishes, and smooth point
analysis works. These occur when min{r, s} < (r + s)/3.

I The line of intersection of the two planes supplies the other
directions. Each point on the line
{(1, 1, 1) + λ(−1,−1,−3) | −1/3 < λ < 1} gives asymptotics
in a 2-D cone.
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Example (2 planes in 3-space, continued)

Using the formula we obtain

a3t,3t,2t =
1√
3π

(
1

4
t−1/2 − 25

1152
t−3/2 +

1633

663552
t−5/2

)
+O(t−7/2).

rel. err. 1 2 4 8 16 32

k = 1 -0.660 -0.315 -0.114 -0.0270 -0.00612 -0.00271
k = 2 -0.516 -0.258 -0.0899 -0.0158 -0.000664 0.00000780
k = 3 -0.532 -0.261 -0.0906 -0.0160 -0.000703 -0.00000184
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Computational aspects

Computations in polynomial rings

I In order to apply our formulae, we need to, at least, compute:

I the critical point z∗(r) (Gröbner basis methods work);
I a rational function of derivatives of H, evaluated at z∗.

I The second can cause big problems if done naively, leading to
a symbolic mess, and loss of numerical precision.

I Example: suppose x3 − x2 + 11x− 2 = 0, x > 0, and we want
g(x) := x5/(867x4 − 1).

method result

compute g(x) symbolically 0.193543073868354
compute x numerically, then g(x) 0.193543073867096
compute minimal polynomial of g(x) 0.193543073868734

I Minimal polynomial is 11454803y3− 2227774y2 + 2251y− 32.
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Local factorizations

Computations in local rings

I In order to apply our smooth/multiple point formulae, we
need to, at least:

I classify the local geometry at point z∗;
I compute (derivatives of) the factors Hi near z∗.

I Unfortunately, computations in the local ring are not effective
(as far as we know). If a polynomial factors as an analytic
function, but the factors are not polynomial, we can’t deal
with it algorithmically (yet).

I Smooth points are easily detected. There are some sufficient
conditions, and some necessary conditions, for z∗ to be a
multiple point. But in general we don’t know how to classify
singularities algorithmically.
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Computational aspects

Local factorizations

Example (Algebraic reduction, sketch)

I If n (number of sheets) exceeds dimension d, F-L integrals
would be much nastier. We reduce to the case n = d by
increasing the number of summands.

I Example: let H = H1H2H3 := (1− x)(1− y)(1− xy). In the
local ring at (1, 1), each factor should be in the ideal
generated by the other two (Nullstellensatz).

I In fact it is true globally, since H3 = H1 +H2 −H1H2.
(Nullstellensatz certificate).

I Thus eventually we obtain

F =
1

H1H2H3
= · · · = 2− y

(1− y)(1− xy)2
+

1

(1− x)(1− xy)2
.

I Reduction to the squarefree case is then easy and algorithmic.



AMGF

Computational aspects

Local factorizations

Example (Algebraic reduction, sketch)

I If n (number of sheets) exceeds dimension d, F-L integrals
would be much nastier. We reduce to the case n = d by
increasing the number of summands.

I Example: let H = H1H2H3 := (1− x)(1− y)(1− xy). In the
local ring at (1, 1), each factor should be in the ideal
generated by the other two (Nullstellensatz).

I In fact it is true globally, since H3 = H1 +H2 −H1H2.
(Nullstellensatz certificate).

I Thus eventually we obtain

F =
1

H1H2H3
= · · · = 2− y

(1− y)(1− xy)2
+

1

(1− x)(1− xy)2
.

I Reduction to the squarefree case is then easy and algorithmic.



AMGF

Computational aspects

Local factorizations

Example (Algebraic reduction, sketch)

I If n (number of sheets) exceeds dimension d, F-L integrals
would be much nastier. We reduce to the case n = d by
increasing the number of summands.

I Example: let H = H1H2H3 := (1− x)(1− y)(1− xy). In the
local ring at (1, 1), each factor should be in the ideal
generated by the other two (Nullstellensatz).

I In fact it is true globally, since H3 = H1 +H2 −H1H2.
(Nullstellensatz certificate).

I Thus eventually we obtain

F =
1

H1H2H3
= · · · = 2− y

(1− y)(1− xy)2
+

1

(1− x)(1− xy)2
.

I Reduction to the squarefree case is then easy and algorithmic.



AMGF

Computational aspects

Local factorizations

Example (Algebraic reduction, sketch)

I If n (number of sheets) exceeds dimension d, F-L integrals
would be much nastier. We reduce to the case n = d by
increasing the number of summands.

I Example: let H = H1H2H3 := (1− x)(1− y)(1− xy). In the
local ring at (1, 1), each factor should be in the ideal
generated by the other two (Nullstellensatz).

I In fact it is true globally, since H3 = H1 +H2 −H1H2.
(Nullstellensatz certificate).

I Thus eventually we obtain

F =
1

H1H2H3
= · · · = 2− y

(1− y)(1− xy)2
+

1

(1− x)(1− xy)2
.

I Reduction to the squarefree case is then easy and algorithmic.



AMGF

Computational aspects

Local factorizations

Example (Algebraic reduction, sketch)

I If n (number of sheets) exceeds dimension d, F-L integrals
would be much nastier. We reduce to the case n = d by
increasing the number of summands.

I Example: let H = H1H2H3 := (1− x)(1− y)(1− xy). In the
local ring at (1, 1), each factor should be in the ideal
generated by the other two (Nullstellensatz).

I In fact it is true globally, since H3 = H1 +H2 −H1H2.
(Nullstellensatz certificate).

I Thus eventually we obtain

F =
1

H1H2H3
= · · · = 2− y

(1− y)(1− xy)2
+

1

(1− x)(1− xy)2
.

I Reduction to the squarefree case is then easy and algorithmic.



AMGF

Computational aspects

Local factorizations

Summary

I We have developed a theory where none existed previously,
with many applications in combinatorics and probability.

I Other authors have also applied it recently in: J.
Approximation Theory, J. Number Theory, Physical Review E,
J. High Energy Physics, Classical & Quantum Gravity.

I The basic smooth and multiple point results have been
incorporated into Sage. There is work to do on better
symbolic algorithms and implementation in software.

I Algebraic GFs are still largely unexplored. We know how to
reduce to the rational case, but at the cost of needing higher
order terms and leaving the positive case.

I Convex analysis suffices for most combinatorial applications so
far, but more geometry and topology will be needed to make
serious progress beyond the positive case.
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Main references
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Several Variables, Cambridge University Press 2013.
https://www.cs.auckland.ac.nz/~mcw/Research/mvGF/
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I R. Pemantle and M.C. Wilson, Twenty Combinatorial
Examples of Asymptotics Derived from Multivariate
Generating Functions, SIAM Review 2008.

I Sage implementation by Alex Raichev: package
asymptotics multivariate generating functions.

https://www.cs.auckland.ac.nz/~mcw/Research/mvGF/asymultseq/ACSVbook/
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Algebraic singularities

Safonov’s basic construction
I Suppose that F is algebraic and its defining polynomial P

satisfies
P (w, z) = (w − F (z))ku(w, z)

where u(0, 0
¯
) 6= 0 and 1 ≤ k ∈ N.

I Define

R(z0, z) =
z20P1(z0, z0z1, z2, . . . )

kP (z0, z0z1, z2, . . . )

R̃(w, z) = R(w, z1/w, z2, . . . zd).

I The Argument Principle shows that F = diagR:

1

2πi

∫

C
R̃(w, z)

dw

w
=
∑

Res R̃(w, z) = F (z).

I Higher order terms are essential: the numerator of R̃ always
vanishes at the dominant point.
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Algebraic singularities

Safonov’s general construction

I In general, apply a sequence of blowups (monomial
substitutions) to reduce to the case above. This is a standard
idea from algebraic geometry: resolution of singularities.

I Definition: Let F (z) =
∑

r arz
r have d+ 1 variables and let

M be a d× d matrix with nonnegative entries. The
M -diagonal of F is the formal power series in d variables
whose coefficients are given by br2,...rd = as1,s1,s2,...sd and
(s1, . . . , sd) = (r1, . . . , rd)M .

I Theorem: Let f be an algebraic function of d variables. Then
there is a unimodular integer matrix M with positive entries
and a rational function F in d+ 1 variables such that f is the
M -diagonal of F .

I The example x
√

1− x− y shows that the elementary
diagonal cannot always be used.



AMGF

Algebraic singularities

Safonov’s general construction

I In general, apply a sequence of blowups (monomial
substitutions) to reduce to the case above. This is a standard
idea from algebraic geometry: resolution of singularities.

I Definition: Let F (z) =
∑

r arz
r have d+ 1 variables and let

M be a d× d matrix with nonnegative entries. The
M -diagonal of F is the formal power series in d variables
whose coefficients are given by br2,...rd = as1,s1,s2,...sd and
(s1, . . . , sd) = (r1, . . . , rd)M .

I Theorem: Let f be an algebraic function of d variables. Then
there is a unimodular integer matrix M with positive entries
and a rational function F in d+ 1 variables such that f is the
M -diagonal of F .

I The example x
√

1− x− y shows that the elementary
diagonal cannot always be used.



AMGF

Algebraic singularities

Safonov’s general construction

I In general, apply a sequence of blowups (monomial
substitutions) to reduce to the case above. This is a standard
idea from algebraic geometry: resolution of singularities.

I Definition: Let F (z) =
∑

r arz
r have d+ 1 variables and let

M be a d× d matrix with nonnegative entries. The
M -diagonal of F is the formal power series in d variables
whose coefficients are given by br2,...rd = as1,s1,s2,...sd and
(s1, . . . , sd) = (r1, . . . , rd)M .

I Theorem: Let f be an algebraic function of d variables. Then
there is a unimodular integer matrix M with positive entries
and a rational function F in d+ 1 variables such that f is the
M -diagonal of F .

I The example x
√

1− x− y shows that the elementary
diagonal cannot always be used.



AMGF

Algebraic singularities

Safonov’s general construction

I In general, apply a sequence of blowups (monomial
substitutions) to reduce to the case above. This is a standard
idea from algebraic geometry: resolution of singularities.

I Definition: Let F (z) =
∑

r arz
r have d+ 1 variables and let

M be a d× d matrix with nonnegative entries. The
M -diagonal of F is the formal power series in d variables
whose coefficients are given by br2,...rd = as1,s1,s2,...sd and
(s1, . . . , sd) = (r1, . . . , rd)M .

I Theorem: Let f be an algebraic function of d variables. Then
there is a unimodular integer matrix M with positive entries
and a rational function F in d+ 1 variables such that f is the
M -diagonal of F .

I The example x
√

1− x− y shows that the elementary
diagonal cannot always be used.



AMGF

Algebraic singularities

Example (Narayana numbers)

I The bivariate GF F (x, y) for the Narayana numbers

ars =
1

r

(
r

s

)(
r − 1

s− 1

)

satisfies P (F (x, y), x, y) = 0, where

P (w, x, y) = w2 − w [1 + x(y − 1)] + xy

= [w − F (x, y)]
[
w − F (x, y)

]
.

where F is the algebraic conjugate.

I Using the above construction we obtain the lifting

G(u, x, y) =
u(1− 2u− ux(1− y))

1− u− xy − ux(1− y)
.

with brrs = ars.
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Algebraic singularities

Example (Narayana numbers continued)

I The above lifting yields asymptotics by smooth point analysis
in the usual way. The critical point equations yield

u = s/r, x =
(r − s)2
rs

, y =
s2

(r − s)2 .

and we obtain asymptotics starting with s−2. For example

a2s,s ∼
16s

8πs2
.

I Interestingly, specializing y = 1 commutes with lifting. Is this
always true?
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Algebraic singularities

Interesting current work

Example (Partition function for BPS operators)

I Consider

F (x, y) =
1∏∞

i=1 (1− xi − yi)
for which we seek diagonal asymptotics. The singular variety
is in fact smooth at the relevant points.

I Although poles accumulate on the unit torus, they are not in
the right place to cause trouble.

I In progress with A. Zahabi (Queen Mary, London).
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Algebraic singularities

Interesting current work

Example (Green’s function for face-centred cubic lattice)

I Consider

F (x, y) =
1

(1− zx1 · · ·xd)
(

1− z
|S|x1 · · ·xdλ(x)

)

where
λ(x) =

∑

r∈S
xr

and
S = {r ∈ {−1, 0, 1}d :

∑

i

|ri| = 2}.

I Here the intersection of the two sheets is not transverse, so
more analysis of Fourier-Laplace integrals is probably needed.

I In progress with H. Huang (Linz).



AMGF

Algebraic singularities

Interesting current work

Example (Green’s function for face-centred cubic lattice)

I Consider

F (x, y) =
1

(1− zx1 · · ·xd)
(

1− z
|S|x1 · · ·xdλ(x)

)

where
λ(x) =

∑

r∈S
xr

and
S = {r ∈ {−1, 0, 1}d :

∑

i

|ri| = 2}.

I Here the intersection of the two sheets is not transverse, so
more analysis of Fourier-Laplace integrals is probably needed.

I In progress with H. Huang (Linz).



AMGF

Algebraic singularities

Interesting current work

Example (Green’s function for face-centred cubic lattice)

I Consider

F (x, y) =
1

(1− zx1 · · ·xd)
(

1− z
|S|x1 · · ·xdλ(x)

)

where
λ(x) =

∑

r∈S
xr

and
S = {r ∈ {−1, 0, 1}d :

∑

i

|ri| = 2}.

I Here the intersection of the two sheets is not transverse, so
more analysis of Fourier-Laplace integrals is probably needed.

I In progress with H. Huang (Linz).



AMGF

Concrete details of reduction to Fourier-Laplace integral

Reduction step 1: localization
I Suppose that (z∗, w∗) is a smooth strictly minimal pole with

nonzero coordinates, and let ρ = |z∗|, σ = |w∗|. Let Ca
denote the circle of radius a centred at 0.

I By Cauchy, for small δ > 0,

ars = (2πi)−2
∫

Cρ

z−r
∫

Cσ−δ

w−sF (z, w)
dw

w

dz

z
.

I The inner integral is small away from z∗, so that for some
small neighbourhood N of z∗ in Cρ,

ars ≈ I := (2πi)−2
∫

N
z−r

∫

Cσ−δ

w−sF (z, w)
dw

w

dz

z
.

I Note that this is because of strict minimality: off N , the
function F (z, ·) has radius of convergence greater than σ, and
compactness allows us to do everything uniformly.
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Concrete details of reduction to Fourier-Laplace integral

Reduction step 2: residue
I By smoothness, there is a local parametrization
w = g(z) := 1/v(z) near z∗.

I If δ is small enough, the function w 7→ F (z, w)/w has a
unique pole in the annulus σ − ∂ ≤ |w| ≤ σ + δ. Let Ψ(z) be
the residue there.

I By Cauchy,
I = I ′ + (2πi)−1v(z)sΨ(z),

where

I ′ := (2πi)−2
∫

N
z−r

∫

Cσ+δ

w−sF (z, w)
dw

w

dz

z
.

I Clearly |zr∗I ′| → 0, and hence

ars ≈ (2πi)−1
∫

N
z−rv(z)sΨ(z) dz.



AMGF

Concrete details of reduction to Fourier-Laplace integral

Reduction step 2: residue
I By smoothness, there is a local parametrization
w = g(z) := 1/v(z) near z∗.

I If δ is small enough, the function w 7→ F (z, w)/w has a
unique pole in the annulus σ − ∂ ≤ |w| ≤ σ + δ. Let Ψ(z) be
the residue there.

I By Cauchy,
I = I ′ + (2πi)−1v(z)sΨ(z),

where

I ′ := (2πi)−2
∫

N
z−r

∫

Cσ+δ

w−sF (z, w)
dw

w

dz

z
.

I Clearly |zr∗I ′| → 0, and hence

ars ≈ (2πi)−1
∫

N
z−rv(z)sΨ(z) dz.



AMGF

Concrete details of reduction to Fourier-Laplace integral

Reduction step 2: residue
I By smoothness, there is a local parametrization
w = g(z) := 1/v(z) near z∗.

I If δ is small enough, the function w 7→ F (z, w)/w has a
unique pole in the annulus σ − ∂ ≤ |w| ≤ σ + δ. Let Ψ(z) be
the residue there.

I By Cauchy,
I = I ′ + (2πi)−1v(z)sΨ(z),

where

I ′ := (2πi)−2
∫

N
z−r

∫

Cσ+δ

w−sF (z, w)
dw

w

dz

z
.

I Clearly |zr∗I ′| → 0, and hence

ars ≈ (2πi)−1
∫

N
z−rv(z)sΨ(z) dz.



AMGF

Concrete details of reduction to Fourier-Laplace integral

Reduction step 2: residue
I By smoothness, there is a local parametrization
w = g(z) := 1/v(z) near z∗.

I If δ is small enough, the function w 7→ F (z, w)/w has a
unique pole in the annulus σ − ∂ ≤ |w| ≤ σ + δ. Let Ψ(z) be
the residue there.

I By Cauchy,
I = I ′ + (2πi)−1v(z)sΨ(z),

where

I ′ := (2πi)−2
∫

N
z−r

∫

Cσ+δ

w−sF (z, w)
dw

w

dz

z
.

I Clearly |zr∗I ′| → 0, and hence

ars ≈ (2πi)−1
∫

N
z−rv(z)sΨ(z) dz.



AMGF

Concrete details of reduction to Fourier-Laplace integral

Reduction step 3: Fourier-Laplace integral

I We make the substitution

f(θ) = − log
v(z∗e

iθ)

v(z∗)
+ i

rθ

s

A(θ) = Ψ(z∗ exp(iθ)).

I This yields

ars ∼
1

2π
z−r∗ w−s∗

∫

D
exp(−sf(θ))A(θ) dθ

where D is a small neighbourhood of 0 ∈ R.
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Concrete details of reduction to Fourier-Laplace integral

Example (local factorization of lemniscate)

I Given F = 1/H where H(x, y) =
19− 20x− 20y + 5x2 + 14xy + 5y2 − 2x2y − 2xy2 + x2y2.

I Here V is smooth at every point except (1, 1), which we see
by solving the system {H = 0,∇H = 0}.

I At (1, 1), changing variables to h(u, v) := H(1 + u, 1 + v), we
see that h(u, v) = 4u2 + 10uv + 4v2 + C(u, v) where C has
no terms of degree less than 3.

I The quadratic part factors into distinct factors, showing that
(1, 1) is a transverse multiple point.

I Note that our double point formula does not require details of
the individual factors. However this is not the case for general
multiple points.
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