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ABSTRACT. We generalize and improve recent results by Bóna and Knopfmacher and by
Banderier and Hitczenko concerning the joint distribution of the sum and number of parts
in tuples of restricted compositions. Specifically, we generalize the problem to general
combinatorial classes and relax the requirement that the sizes of the compositions be
equal. We extend the main explicit results to enumeration problems whose counting se-
quences are Riordan arrays. In this framework, we give an alternative method for com-
puting asymptotics in the supercritical case of Flajolet and Sedgewick, avoiding explicit
diagonal extraction. We claim that this method is more computationally efficient.

1. INTRODUCTION

Let S = (S1, . . . ,Sd ) be a tuple of subsets of N+ := {1,2,3 . . . }. By an S -composition
of n ∈ Nd we mean a representation of n := (n1, . . . ,nd ) via ordered sums ni = ∑ki

j=1 si j

where each si j ∈ Si . This is a straightforward generalization of the usual definition (when
d = 1) of restricted composition of a natural number, and is readily encoded by the matrix
(si j ) once S is fixed. There are associated counting problems involving enumeration of
S -compositions according to size and number of parts, and these translate as usual to
probabilistic questions with respect to the uniform distribution. One particular question
is: what is the probability πn that two n-compositions have the same number of parts in
each component? Bóna and Knopfmacher [3] studied this problem for d = 2,S1 = S2 and
n1 = n2, obtaining exact formulae for a few special choices of S1. Banderier and Hitczenko
[1] generalized the problem to the case where each Si is arbitrary, and from 2 to d-tuples,
still remaining in the case n = n1 where all ni are equal. They obtained an explicit uni-
variate generating function via the usual diagonal extraction method in some cases. They
computed first-order asymptotics for the probability by means of a Gaussian local limit
theorem essentially proved by Bóna and Flajolet [2]. This enables higher order terms to
be computed in principle when combined with the diagonal extraction step, overcoming
some known serious difficulties with the latter approach.

1.1. Our contribution. We generalize and improve the above results in several ways. First,
we have already generalized the problem treated by previous authors by not requiring all
ni to be equal. We generalize from compositions of integers to more general combinato-
rial classes. Next, we derive a generating function representation for two generalizations
of the sequence construction used above, namely the functional composition schema [6]
and Riordan arrays. This yields a whole class of identities involving sums of squares, many
of which are apparently not listed in [8]. Turning to asymptotics in the Riordan array case,
we show how to more efficiently compute full asymptotic expansions by adopting a mul-
tivariate approach, avoiding explicit diagonal extraction and using a small fragment of the
theory of asymptotic multivariate coefficient extraction developed by Pemantle and Wil-
son [12]. This bears out the observation of Raichev and Wilson [14] that the usual diagonal
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extraction method should be avoided in such problems if asymptotics are the main goal.
We also deal with more general (non-Gaussian) limit results and explore the original prob-
lem of restricted compositions in more depth. We list several ideas for future work.

2. S -COMPOSITIONS

Let S ⊆N+ and let p(x) =∑
s∈S xs . As usual, the bivariate generating function enumerat-

ing compositions with parts restricted to S (identified with finite sequences of elements of
S) by total and number of parts is P (x, y) = (1− y p(x))−1. Thus the 2d-variate generating
function for S -compositions is

F (x,y) = 1∏d
i=1

[
1− yi pi (xi )

] .

Here xi marks the size and yi the number of parts in the i th restricted composition (of ni

using parts from Si ).
A pair (α,β) where each element is a restricted composition and α and β have the same

number of parts can be mapped bijectively to a sequence of pairs:

((α1, . . . ,αk ), (β1, . . . ,βk )) ↔ ((α1,β1), . . . (αk ,βk )).

The analogous result also holds by induction for d-tuples for each fixed d ≥ 2. Thus the
generating function for d-tuples of restricted compositions each having the same number
of parts, and where the i th restricted set is Si , is given by

1

1−∏d
i=1 pi (xi )

:= 1

H(x)
.

The coefficient [xn]H(x)−1 yields the number of d-tuples of compositions with each el-
ement having the same number of parts and the sum of the i th composition being ni .
Setting all ni = n yields the only case studied in [3, 1].

3. GENERALIZATION TO COMBINATORIAL CLASSES

We generalize the setup of the previous section by allowing for general weighted com-
binatorial classes. Let Ai be a combinatorial class where each element α ∈ Ai has a non-
negative real weight pi (α). Let Fi (x, y) be the generating function that enumerates Ai with
respect to two integer-valued parameters ηi ,κi :

Fi (x, y) = ∑
n,k

ai ;nk xn yk = ∑
αi∈Ai

pi (α)xηi (αi ) yκi (αi ).

Here ai ;nk is the total weight of the set {α ∈ Ai | n1(α) = n,k1(α) = k}.

Example 3.1. By attaching a weight to each integer in S, we can consider weighted com-
positions. For example if S = {1,2}, and 1 and 2 have respective weights 1/2 and 1/3, the
bivariate generating function for S-compositions is given by

Fi (x, y) = 1

1− y(x/2+x2/3)
.

The compositions with 2 parts are 11,12,21,22 and these have sizes 2,3,3,4 and weight
1/4,5/6,5/6,2/3 respectively.
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The generating function

F (x,y) =
d∏

i=1
Fi (xi , yi ) = ∑

α∈∏
i Ai

p1(α1) · · ·pd (αd )xη1(α1)
1 · · ·xηd (αd )

d yκ1(α1)
1 · · · yκd (αd )

d

:= ∑
α∈∏

i Ai

p(α)xη(α)yκ(α)

enumerates weighted d-tuples of elements where the i th element of each tuple comes
from Ai , xi marks the value of parameter ηi and yi the value of parameterκi onαi . Group-
ing terms with the same values of ηi and κi yields the representation

F (x,y) =∑
n,k

an,kxnyk

where

an,k =
d∏

i=1
ai ;ni ,ki .

The diagonal diagy F is the generating function derived from F by restricting to the case
where all κi (αi ) are equal:

diagy F (x, t ) = ∑
{α|κi (αi )=k}

p(α)xη1(α1)
1 . . . xηd (αd )

d t k :=∑
n,k

bn,k xn1
1 . . . xnd

d t k

where bn,k = an,k1. Setting t = 1 sums over all k. Then we can extract coefficients for any
given choice of n = (n1, . . . ,nd ):

[xn]diagy F (x,1) = ∑
k≥0

an,k1 =
∑
k≥0

d∏
i=1

ai ;ni ,k .

The special case of the leading diagonal n = n1 was studied in [3, 1]. The simplest special
case of this occurs when all Fi are equal, in which case we have the formula

[xn1]diagy F (x,1) = ∑
k≥0

(ank )d .

3.1. Special schemata. The analysis so far has been completely general. If a reasonably
explicit exact formula for the coefficients is desired, we seemingly need to be able to com-
pute diagy F (x,1) explicitly. To that end, we now restrict to the functional composition
schema of [6]. Let g (x) =∑

n≥0 an xn , h(x) be univariate power series such that g (0) = 0 and
consider the bivariate power series F given by

(1) F (x, y) = g (yh(x)) = ∑
k≥0

ak yk h(x)k .

Proposition 3.2. Let Fi (x, y) = gi (yhi (x)) be as in (1). Then

diagy F (x1, x2, . . . , xd , t ) = g∗(th1(x1) · · ·hd (xd ))

where g∗ = g1 ∗ g2 ∗·· ·∗ gd denotes the Hadamard product. Thus

[xn]diagy F (x,1) = ∑
k≥0

d∏
i=1

[xni
i ]ai ;k hi (xi )k = ∑

k≥0

d∏
i=1

[xni ]Fi (x,1).
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Proof. This is a direct computation from the definitions.

diagy F (x, t ) =∑
n,k

xnt k [xnyk1]F (x,y)

=∑
n,k

xnt k [xnyk1]
∏

i
Fi (xi , yi )

=∑
n,k

xnt k
∏

i
[xni

i yk
i ]Fi (xi , yi )

=∑
n,k

xnt k
∏

i
ai ;k [xni

i ]hi (xi )k

=∑
n,k

xnt k
∏

i
ai ;k [xn]

(∏
i

hi (xi )

)k

=∑
n,k

∏
i

ai ;k

(
t
∏

i
hi (xi )

)k

= g∗

(
t
∏

i
hi (xi )

)
.

�

Example 3.3. The special case of weighted compositions studied in [1] occurs when g (x) =
1/(1−x) (the sequence construction) and hi (x) =∑

s∈S pi s xs , with pi s > 0. Thus g∗ = g . Note
that [1] also requires that

∑
s∈S pi s > 1, but this is for convenience in asymptotic analysis,

and need not be assumed yet.
In this special case we obtain

diagy F (x1, . . . , xd , t ) = 1

1− t
∏d

i=1 pi (xi )

as previously seen.

A different generalization of the sequence construction is quite useful. A Riordan array
is defined by a bivariate generating function of the form

(2) F (x, y) =φ(x)/(1− y v(x))

where v(0) = 0. Riordan arrays have many combinatorial and probabilistic interpreta-
tions, intimately tied to sums of independent random variables, certain types of lattice
walk enumeration problems, and to Lagrange inversion. Note that Riordan arrays do not
fall into the functional composition schema above — there is no way in general to write a
generating function of the form (2) as g (yh(x)) for univariate g ,h. Of course when y = 1,
for example, then we can express the specialized Riordan generating function in that form,
with g (x) = φ̃(x)/(1−x), where φ̃(v(x)) =φ(x) (this is possible if v ′(0) 6= 0, in which case we
have a so-called proper Riordan array).

The next result also follows by direct computation from the definitions.

Proposition 3.4. Let Fi (x, y) generate Riordan arrays as in (2). Then

diagy F (x1, x2, . . . , xd , t ) = φ1(x1)φ2(x2) . . .φd (xd )

1− t v1(x1)v2(x2) . . . vd (xd )
:= Φ(x)

1− tV (x)

and

[xn]diagy F (x,1) = ∑
k≥0

d∏
i=1

[xni ]φi (x)vi (x)k .

�
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Riordan arrays arise from many lattice path counting problems.

Example 3.5 (Dyck walks). Let ank be the number of Dyck walks from the origin to (n,k).
Recall that a Dyck walk is a discrete walk which at each time step adds (1,1) or (1,−1) to its
current position vector, and never leaves the positive quadrant. The generating function for
the array ank is of Riordan type with v(x)/x =φ(x) =C (x) := (1−

p
1−4x2)/(2x2). Thus, for

example, the generating function for pairs of Dyck walks whose endpoint y-coordinates are
equal is

(3)
C (x1)C (x2)

1−x1x2C (x1)C (x2)
.

The numbers ank are described in [8, A053131]. Note that ank = 0 unless n and k have the
same parity and 0 ≤ k ≤ n, in which case

ank = k +1

n +1

(
n +1

n−k
2

)
.

Dyck walks are of course identified with many other combinatorial objects. For exam-
ple, the preorder traversal of a binary tree gives a bijection between Dyck walks ending
at (n,k) and binary trees with n internal nodes and n + 1− k leaves. Here each internal
node represents the step (1,1) and each leaf the step (1,−1). Thus the generating function
of (3) also enumerates (by number of internal nodes) pairs of binary trees with the same
number of leaves.

Example 3.6 (generalized Dyck walks). Generalizing the previous example, we consider
plane walks with steps belonging to a finite set E ⊆ Z2, and constrained to lie in the upper
half-plane. We call such walks constrained E-walks or generalized Dyck walks (the ter-
minology meanders is used in [6]). We restrict to the case where elements of E are all of the
form (ai ,bi ), where ai > 0 for all i .

Let p = mini bi . In [4] it was shown that if p ≥ 0 the bivariate generating function F (x, y)
enumerating walks by their endpoint will be rational, while otherwise it will be algebraic
and irrational. We restrict further to the special case where P := maxbi = 1. In this case F
is always of Riordan type where v(x) = xφ(x) (a so-called renewal array, the set of which
forms the Bell subgroup), as explained in [12, Section 7.3].

Note that the bivariate generating functions for unconstrained E-walks is always ratio-
nal.

If ai = 1 for all i , then there is a well-known interpretation in terms of walks on Z,
where the x-coordinate represents time and the y-coordinate the current position. There
is an interpretation in terms of gambling — a constrained E-walk is a history of succes-
sive bets where the gambler starts with stake 0 and never goes bankrupt, and the step
(1,bi ) represents a payoff bi to the gambler. In addition to Dyck walks, another well-
known class of constrained E-walks of this type is that of Motzkin walks, corresponding
to E = {(1,1), (1,−1), (1,0)}. Here

v(x) = xφ(x) = 1−x −
p

1−2x −3x2

2x
.

The corresponding array is described in [8, A026300]. Schröder walks correspond to E =
{(1,1), (1,−1), (2,0)}. The corresponding array is described in [8, A104219].

Dyck paths are sometimes defined in terms of superdiagonal paths, namely walks which
never go below the line y = x. The relation between the two definitions is as follows. The
subgroup ofZ2 generated by (1,1) and (1,−1) is isomorphic toZ2 via the map sending (1,1)
to (0,1) and (1,−1) to (1,0). This map is the composition of rotation by π/2 and dilation
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by 1/
p

2. Each Dyck walk corresponds to a superdiagonal path. For Motzkin paths, (1,1)
maps to (0,1), (1,−1) to (1,0), and hence (1,0) to (1/2,1/2). Schröder paths correspond to
superdiagonal paths using the steps (0,1), (1,0), (1,1), via the same isomorphism, which
takes (2,0) to (1,1).

3.2. Explicit formulae. Explicit formulae for the numbers [xn]diagy F (x,1) involving nested
sums of binomials and related special sequences follow directly from the discussion above.

Example 3.7 (Binomial coefficients). Consider the Pascal triangle, generated by

F (x, y) = 1

(1−x −x y)
= φ(x)

1− y v(x)

where φ(x) = 1/(1−x) and v(x) = x/(1−x). Thus

(4) [xn]diagy F (x,1) =
n∑

k=0

d∏
i=1

(
ni

k

)
.

In the case d = 2, the right side of (4) simplifies to
(n1+n2

n2

)
. However when d ≥ 3, even

when all ni are equal, to n say, the sum (4) for d ≥ 3 has no closed hypergeometric form.
When d = 3 the diagonal sum is known as the nth Franel number. The generating function
of these generalized Franel numbers for all odd d ≥ 3 (and likely for all even d ≥ 4) is not
algebraic, as explained in [1].

The nested sums arising in the formulae for [xn]diagy F (x,1), for example the diagonal

values
∑n

k=0(ank )d , cannot generally be simplified. The generating function, while gener-
ally D-finite, is usually not easy to compute. However when d = 2, simplification is often
possible.

Proposition 3.8. Let E be a step set defining generalized Dyck walks, such that whenever
(a,b) ∈ E, also (a,−b) ∈ E. Then the number of pairs (δ1,δ2) of E-walks such that δi ends at
(ni ,ki ) and k1 = k2 is equal to the number of E-walks ending at (n1 +n2,0).

In particular, letting ank denote the number of E-walks ending at (n,k), the identity

(5)
∑
k≥0

(ank )2 = a2n,0

holds.

Proof. There is a bijection between pairs of E-walks ending at (ni ,k) (for some unspecified
k) and E-walks ending at (n1+n2,0). Given a pair as above, reverse the second by reflecting
in the line x = n1, and append it to the first, giving an E-walk returning to the x-axis at time
n1 +n2. Given an E-walk returning to the axis at time n1 +n2, let k be the height achieved
after time t1, split the walk at this point, and reverse the second half to obtain the second
walk. The symmetry in the step set implies that the reversed walks are themselves E-walks
of the same type. �

Example 3.9. Proposition 3.8 applies in particular to Dyck, Motzkin and Schröder walks.
For Dyck walks, (5) yields

(6)
∑

0≤k≤n
2|(n−k)

[
k +1

n +1

(
n +1

n−k
2

)]2

= 1

n +1

(
2n

n

)
.

The identity 5 leads to many explicit formulae for sums of squares, some of which ap-
pear to be new. For example (6) is mentioned in a comment by Paul D. Hanna at [8,
A053121], but the analogous identities for Motzkin and Schröder walks do not appear to
be mentioned anywhere in [8].
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Explicit formulae for higher values of d may be useful in some situations, for example
when proving congruence properties. However for most applications, we should be satis-
fied with an asymptotic approximation, which is the subject of the next section.

4. ASYMPTOTICS

So far most of the analysis has not required any combinatorial interpretation, but from
now on in order to avoid substantial difficulties and special cases we shall restrict to gen-
erating functions Fi (x, y) that are analytic combinatorial in the sense of the following def-
inition.

Definition 4.1. A generating function F (x) is combinatorial if all its coefficients are non-
negative real numbers. It is analytic combinatorial if it is combinatorial and it is analytic
at 0.

Because we deal with convergent power series and not with formal series, we can relax
the requirement that h(0) = 0 in the functional composition schema, provided that the
resulting composition is analytic at x = 0 when y = 1.

In the case of restricted compositions [1] proceeds from diagy F (x,1) by forming the di-
agonal with respect to x and setting t = 1. The generating function

D(x) := diagx,y F (x,1) := diagx

[
diagy F (x, t )

]
(x,1)

then encodes the desired information, with the coefficient [xn]D(x) being equal to the
number of d-tuples of compositions of n having the same number of parts. First order
asymptotics of these coefficients were determined by a limit theorem from [2], and this
helps to compute the full expansion. See Section 7 for more details.

We present an alternative method based on the multivariate asymptotic coefficient ex-
traction program originated in [11] and explained in detail in [10]. In Section 7 we argue
that this method is superior to the method used in [1]. For our purposes here only a small
fragment of this theory is needed. We recall it here. Each fixed vector with nonzero en-
tries r = (r1, . . . ,rd ) corresponds to a minimal singularity z∗ of the meromorphic function
F (z) = G(z)/H(z) in the positive orthant, which is strictly minimal if there is no periodic-
ity. Suppose that the singular variety given by H(z) = 0 is smooth there, meaning that its
gradient is nonzero.

The point z∗ is the unique solution of the critical point equations which boil down to
the conditions:

H(z) = 0;

zi

ri

∂H

∂zi
is independent of i .

The basic smooth point asymptotic formula is

(7) ar ∼ z−r
∗

∑
k≥0

bl‖r‖−(d−1)/2−l

(where we use the usual multi-index notation zr = ∏
i zri

i , and any fixed norm). Each co-
efficient bl is computable in terms of finitely many derivatives of G and H at z∗. For the
purposes of computation, we may break the symmetry between coordinates and have an
analogous formula with ‖r‖ replaced by rd , in which case we obtain (using b̃k for the co-
efficients)

(8) b̃0 = 1p
det2πQ

G(z∗)

zd∂H/∂zd
.
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Here Q denotes the Hessian of log g where g expresses rd on V in terms of the other coor-
dinates, and the square root must be chosen appropriately to ensure correct sign.

We let ρ(v) denote the radius of convergence of the power series v , and τ(v) the one-
sided limit limx→ρ(v)− v(x). Recall [6, Chapter 9] that F (x, y) = g (yh(x)) is called supercrit-
ical if τ(h) > ρ(g ). Note that in this case g must have a finite radius of convergence, and
then if h has a minimal singularity that is a pole or logarithmic, it automatically holds.

The programme of Pemantle and Wilson deals with generating functions that are mero-
morphic in a polydisk containing the minimal singularity of interest. Supercritical phe-
nomena with g meromorphic can be dealt with readily by these multivariate methods
because they always lead to meromorphic bivariate generating functions. However the
Hadamard product of meromorphic functions need not be meromorphic, so we do not
pursue asymptotics for the supercritical function schema.

In the case of supercritical arrays of Riordan type, the smooth point formulae above do
apply and simplify considerably, as shown in [17]. In order to state the next result cleanly,
we define the following commonly used notation, where as usual the prime ′ denotes dif-
ferentiation with respect to x.

µv (x) := xv ′(x)

v(x)

σ2
v (x) := x2v ′′(x)

v(x)
+µv (x)−µv (x)2.

Theorem 4.2. Let Fi (x, y) be of Riordan type as in (2), and suppose that each Fi is supercrit-
ical, and each vi is aperiodic. Then there is an asymptotic expansion of the form

[xn]diagy F (x,1) ∼ x−n
∗

∑
l≥0

cl (nd )−(d−1)/2−l

where x∗ is chosen so that µvi (xi )/ni is independent of i , and
∏

i vi (xi ) = 1.
The coefficients are algorithmically computable from the Taylor coefficients of the φi and

vi .
In the special case where all Fi are equal and n = n1, the formulae simplify to

[xn]diagx,y F (x,1) ∼ c−nd
∑
l≥0

cl n−(d−1)/2−l

where c is the positive root of the equation v(c) = 1. In this case

(9) c0 = φ(c)d

p
dµv (c)

[
2πσ2

v (c)
µv (c)

] d−1
2

.

Proof. The critical point equations are equivalent to the fact thatµvi (xi )/ni is independent
of i and

∏
i vi (xi ) = 1. The conditions on vi imply that their solution is a smooth strictly

minimal singularity of F . Applying the basic smooth point asymptotic formula (7) and the
leading term formula (8) yields the result. In the special case where all Fi , hence all vi and
all φi , are equal, the critical point is symmetric (all xi are equal, to c say) and v(c)d = 1,
hence v(c) = 1. The Hessian simplifies in the symmetric case [14, Proposition 3.4] to

d

(
1+ c

Hd
(Hdd −Hd1)

)d−1

.

This further simplifies because of the simple form of H . �

Remark. A generating function of Riordan type is supercritical if and only if τ(v) > 1 and
ρ(φ) > c, where c is the positive solution to v(x) = 1. Note that diagx,y F (x,1) is not in general
a Riordan array.
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Theorem 4.2 has a large number of combinatorial applications. We present only a few
examples, each chosen to illustrate a particular feature.

Example 4.3 (higher order terms). Applying (9) to the binomial coefficients of Example 3.7
gives

(10)
n∑

k=0

(
n

k

)d

∼
√

2d−1

d

2dn

(πn)
d−1

2

.

For each fixed value of d, the higher order terms can be algorithmically computed. For
example, when d = 5, we obtain (using the publicly available Sage package amgf [13])

(11)
n∑

k=0

(
n

k

)5

∼ 32n · 4

25

(
5
p

5

π2n2
− 4

p
5

π2n3

)
.

Higher order approximations can be useful for rather small values of n. For example, when
n = 8, the approximation in (11) yields (the nearest integer) 2802448277, while the exact
value is 2816649826, so that the relative error in the approximation is slightly over 0.5%.
The relative error isΘ(1/n) as n →∞.

Example 4.4 (off the main diagonal). Consider again binomial coefficients, but where we
compute asymptotics for arbitrary directions n. Provided that all ratios ni /n j remain bounded,
the asymptotics are uniform in the direction, and the leading term of the polynomial cor-

rection is of order ‖n‖ 1−d
2 . Because v(x) = x/(1−x), µv (x) = 1/(1−x) and so the constant C is

defined by the degree d equation
∏

i (C ni −1) = 1. On the main diagonal, all ni are equal, to
n say, and C = 2/n, so that all xi = 1/2. Away from the main diagonal we must resort to real
root-finding in general. However some special values yield rational solutions. For example,
when d = 3 and n1 = 2n2 = 3n3, we obtain C n1 = 4,C n2 = 2,C n3 = 4/3. Thus the critical
point coordinates are x1 = 3/4, x2 = 1/2, x3 = 1/4. This yields∑

k≥0

(
6n

k

)(
3n

k

)(
2n

k

)
∼

(
524288

729

)n
[

4
p

11

33πn
− 5446

395307

p
11

πn2

]
.

Example 4.5 (infinite sums). Consider the sequence ank = 2−k
(n+k

k

)
. The bivariate generat-

ing function for this array is (1−x−y/2)−1. This is of Riordan type withφ(x) = 1/(1−x) and
v(x) = (1/2)/(1−x), and is not strictly speaking a Riordan array, because v(0) 6= 0. However,
although the formulae of Section 3 do not make sense as formal power series, they do as
convergent power series. The relevant smooth point has all coordinates equal to 1/2, and
we obtain

an1,1 =
∑
k≥0

2−dk

(
n +k

k

)d

∼ 2dn

(πn)
d−1

2

2

√
2d

d
.

When d = 2 the coefficient is expressible exactly in terms of Legendre polynomials, but pre-
sumably there is no closed form for d ≥ 3.

Example 4.6 (family of binomial sums). In [9] the following family of binomial sums was
studied, where ε ∈ {0,1} and a,d ∈N.

u(ε,a,d)
r :=

r∑
k=0

(−1)εk

(
r

k

)(
ar

k

)
d k .

As noted in [9], these are the diagonal terms of

ũr s :=
r∑

k=0
(−1)εk

(
r

k

)(
as

k

)
d k .
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In [9], asymptotics for these were derived by applying methods of [12]. We can give a slightly
cleaner analysis using our results above. First define the slightly simpler bivariate sequence

ūr s :=
r∑

k=0

(
r

k

)(
s

k

)
ck .

Setting c = (−1)εd and seeking asymptotics in the direction s = ar will yield the original
problem.

The bivariate generating function for
(r

k

)
and

(s
k

)
ck are respectively

∑
r,k

(
r

k

)
xr yk = 1

1−x −x y)
=

1
1−x

1− y x
1−x∑

r,k

(
s

k

)
(−1)εk d k xr yk = 1

1−x −xc y
=

1
1−x

1− y cx
1−x

Each of these is a Riordan array. By Proposition 3.4

diagy F (x,1) = (1−x1)−1(1−x2)−1

1− x1
1−x1

cx2
1−x2

= 1

(1−x1)(1−x2)− cx1x2
= 1

1−x1 −x2 + (1− c)x1x2
.

For example, when c = 1, which corresponds to ε = 0,d = 1, we are in the situation of Ex-
ample 4.4, whereas when c = 2, we have a well-known expression for the central Delannoy
numbers. The trivial case c = 0 gives all coefficients ūr s = 1 as expected.

The supercritical asymptotic result Theorem 4.2 holds provided the coefficients are non-
negative, which is guaranteed when c ≥ 1 (so that d ≥ 1 and ε = 0). The alternating case
where c is a negative integer leads to multiple contributing singularities and hence period-
icity. We omit further details: the positive case is very similar to a special case of Example 4.4
and will result in something similar to [9, Proposition 3] while the alternating case requires
considerably more work, as seen in [9].

Several important subclasses of Riordan arrays have been studied. For each, φ is ex-
pressible in terms of v . For example, renewal arrays are defined by v(x) = xφ(x). This
allows us to express the coefficient c0 in (9) in terms of v only. The computations required
to calculate c0 in (9) can be difficult if we insist on solving for v explicitly. Even simple
problems can lead to unpleasant computations with radicals. Computation is simplified
in such cases by using an appropriate automorphism of the formal power series algebra.
For a proper Riordan array we always have v(x) = x A(v(x)) for some formal power series
A. For example, for Dyck walks A(v) = 1+ v2, while for Motzkin walks A(v) = 1+ v + v2.

Proposition 4.7. Let v define a supercritical renewal array and let A be defined by v(x) =
x A(v(x)). The coefficient c0 in (9) is given by

(12) c0 =
(
d(2π)d−1

)−1/2
[

A(1)− A′(1)
]d

σA(1)d−1
.

Proof. Straightforward computations show that µv = (1−µA)−1 andσ2
v =σ2

A/(1−µA)3. For
renewal arrays, φ(c) = v(c)/c = c A(v)/c = A(v) and since φ(c) = 1, the result follows by
algebraic simplification. �

Remark. Note that applying (12) to the case of binomial coefficients, where A(v) = 1+ v,
yields the same answer as in (10), after simplification.

In the case of general Riordan arrays, we can define φ implicitly via A and another func-
tion Z . The details are omitted, because Z can be eliminated in terms of A in most applica-
tions. For example, A(t ) = 1+ t Z (t ) for renewal arrays.
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Note that not all our examples so far are supercritical. For example, for Dyck walks,
τv = 1 and v achieves the value 1 at c = 1/2, which is on the radius of convergence of v .
This means that the singularity structure is more complicated, and smooth point analysis
does not apply. Note that (12) does not make sense in this case.

We have so far only shown supercritical examples related to simple lattice walks. The
following example has quite a different character.

Example 4.8. We consider strings over the alphabet {1, . . . ,m}. Let ank denote the maxi-
mum number of distinct subsequences of length k that can be found in a single string of
length n. It is known that the initial segments of length n of the infinite string consisting of
repeated blocks of the string 12 · · ·m achieve this maximum for all k. The bivariate generat-
ing function is of Riordan type [7] with φ(x) = (1− x)−1 and v(x) = x + x2 +·· ·+ xm . This is
supercritical since τv =∞ and ρ(φ) = 1 > c where c is the positive root of v(x) = 1.

We leave the interpretation of the asymptotics derived from Theorem 4.2 to the reader.

Note. What about meromorphic schema? Can at least say something? See JUNK

5. PROBABILISTIC INTERPRETATION

Let Xi n denote the random variable whose probability generating function is

pi n(y) := [xn]Fi (x, y)

[xn]Fi (x,1)
.

Then pi n generates the probabilities πi nk := Pr(Xi n = k) that a uniformly chosen element
αi of size n from Ai has χi (αi ) = k.

The probability that a uniformly randomly chosen element (α1, . . . ,αd ) of
∏d

i=1 Ai , where
αi has size ni for each i , also satisfiesχ1(α1) = k1, . . . ,χd (αd ) = kd is given by the coefficient
extraction:

[xnyk]F (x,y)

[xn]F (x,1)

and so the probability that all χi (αi ) are equal is

(13) πn :=
[xn]diagy F (x,1)

[xn]F (x,1)
=

[xn]diagy F (x,1)∏d
i=1[xni ]Fi (x,1)

.

In the special case where all Fi are equal and we are concerned with the main diagonal
n = n1, the formula becomes even simpler. The probability is given by

(14) πn1 =
∑

k≥0(ank )d[∑
k≥0 ank

]d
= ∑

k≥0
[Pr(Xn = k)]d

where Xn is the random variable such that Pr(Xn = k) = ank /
∑

k≥0 ank , in other words the
value of κ conditional on all ηi having value n.

In [2] the following result appears, which gives the leading term for much more general
problems.

Theorem 5.1 ([2]). Suppose that (Xn −µn)/σn obeys a continuous local limit law with den-
sity g (x). Then πn1 ∼ K /(σn)d−1 where

(15) K =
∫ ∞

−∞
g (x)d d x.

�
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d P (d)
1 1
2 0.308508322553671
3 0.106031646409446
4 0.0377901929386580
5 0.0136873221938897

TABLE 1. Values of P (d) in Example 5.4

The result is unsurprising given (14), as the sum Pr(Xn = k)d is readily approximated
by the integral of g d , normalized by an appropriate power of σn . Since a wide variety
of problems lead to the Gaussian distribution, for which the constant K can be explicitly
evaluated, this result is rather useful. However, probabilistic methods typically only give
access to the leading term asymptotic, and for higher order terms we must try elsewhere.

Note that convergence to a Gaussian limit law typically occurs for the supercritical schema
(not always, as claimed in [6, Proposition IX.6], because the “variability condition" on vari-
ance being nonzero is not always met). It also occurs in other types of problems. For
example, it is applicable to the case of Dyck walks, by [6, Theorem IX.12].

In the special case of supercritical arrays of Riordan type, we have the following explicit
formula for K .

Proposition 5.2. Let F (x, y) =φ(x)/(1−y v(x)) be supercritical of Riordan type. Then in (15)

(16) K = 1p
d

(
µv (c)3

2πσ2
v (c)

) d−1
2

.

Proof. In the supercritical case, we have convergence to a Gaussian limit. It is unnecessary
to compute the constant via the integral in (15), because the denominator of (13) is simply
the dth power of [xn]φ(x)/(1− v(x)). That coefficient is asymptotically computed by the
usual univariate residue approach, since there is a simple minimal pole at c. �

Example 5.3. Applying (16) to the special case of restricted compositions considered in [1]
immediately yields Theorem 5.3 of that paper. Here vi = pi , vi (0) = 0 and φi = 1, and super-
criticality follows from the assumption

∑
x pi x > 1.

Note that the formula for K in (16) is equivalent to that of [1, Theorem 5.3]. In particular,
it is independent of φ.

An obvious question to ask is: what happens if there is no convergence to a continuous
limit law? Consider the case where there is a discrete limit law. In that case Pr(Xn = k)
converges uniformly to Pr(X = k) for some discrete random variable X , and so Pr(Xn = k)d

converges to Pr(X = k)d .

Example 5.4. Let Xn be the number of fixed points of a uniformly chosen permutation of
size n. Then Xn → X where X is Poisson with rate 1. Thus for each d, the probability that
each of d uniformly chosen permutations of size n has the same number of fixed points is
approximately

P (d) := e−d
∑
k≥0

1

(k !)d
.

When d = 2, this is easily expressed in terms of values of a Bessel function, but, as expected,
for d > 2 there appears to be no simple expression for the sum. Table 1 gives some approxi-
mate values. The entries for d ≥ 3 were not found in a search of the Inverse Symbolic Calcu-
lator [16].
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d P (d)
1 1
2 0.185185
3 0.040400
4 0.009335
5 0.002219

TABLE 2. Values of P (d) in Example 6.1

6. RESTRICTED COMPOSITIONS IN OTHER CASES

We have seen that cases of the original composition problem that fall into the supercrit-
ical sequence schema lead to Gaussian asymptotics for which we have complete informa-
tion. In this section, for completeness, we examine the other cases.

Example 6.1. First suppose that τi := ∑
s∈Si

pi s < 1 for all i . In this case the generating
functions Fi (xi , yi ) each fall into the subcritical case. Each obeys a discrete limit law as
described in [6, Chapter IX.2]. Fix i , let τ = τi , and introduce Xn as above. According to [6,
Proposition IX.2], the limit X has probability generating function given by

p(u) = u(1−τ)2

(1−τu)2
.

In other words, Pr(X = k) = kτk−1(1−τ)2.
The probability that d randomly chosen compositions have the same number of parts is

then
(1−τ)2d

∑
k≥0

kd (τd )k−1.

This is expressible in terms of the polylogarithm as

(1−τ)2d

τd
Li−d (τd ).

There are several known explicit formulas, involving Stirling numbers or Eulerian numbers,
for the polylogarithm with negative integer argument. For example, it is known that Li−d (x)
has the form (1−x)−(d+1) times a monic polynomial in x of degree d −1.

Table 2 gives values of the probability P (d) = 2−d Li−d (2−d ) for small values of d, for the
special value τ= 1/2.

In the critical case where
∑

s pi s = 1, we are dealing with a probability distribution on
N+. ***

7. CONCLUSIONS

7.1. Comparison with other work. Our explicit results are more general than those in [1]
because of the extension to arrays of Riordan type, which allows for many more applica-
tions.

Another important purpose of the present article is to make the case that the asymptotic
methodology used here is superior to that used in [1], and many other papers in recent
literature. We now explain this in more detail.

If F is D-finite, then the function D(x) = diagx,y F (x,1) is D-finite, meaning that it satis-
fies a linear differential equation with polynomial coefficients. However, no simpler rep-
resentation is available in general, even if F is for example, a rational function. In order
to extract asymptotics of coefficients of D , a method such as that of Frobenius (applied to
the ODE) or Birkhoff-Trjitinsky (applied to the equivalent polynomial recursion) is often
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used (for example in [1]. Unfortunately these methods suffer from the difficulty of solv-
ing the connection problem, which means that the asymptotic scale can be determined
but no rigorous method is known for determining the coefficients (some progress in the
general case has been advertised by Banderier, Chern and Hwang, but nothing has been
made public). In [1] the coefficients were claimed to be determined by means of a local
limit theorem of [2], described below. Our methods allow rigorous computation of terms
of every order, as explained in detail in [15].

In addition to the problems of computability, there are problems of computational com-
plexity. The current methods of computing the defining ODE for D(x) are computationally
intensive and the work involved increases substantially with d , as noted in [1]. The alterna-
tive method presented here does not suffer from this problem. However, once we move to
extract asymptotics, since the diagonal method only requires asymptotics of a 1-variable
function, it is likely to be quicker than the multivariate method, which requires multi-
variate asymptotic extraction. No formal comparison of the overall complexity of the two
entire procedures has been made. Since both involve computer algebra algorithms that
have a bad worst case, the question requires further study.

Furthermore, as shown in [14], even when D(x) is available, it is much more computa-
tionally intensive to perform the above procedure for multi-indices n away from the main
diagonal n1, and approximations that are uniform in the direction are not available. This
is serious deficiency, because off-diagonal multi-indices of interest typically do not lie on
a ray determined by a direction with integer coordinates.

Our methods sidestep these problems by dealing with diagy F directly (assuming that
this is meromorphic) and provide explicit approximations that are uniform in direction
and do not become substantially harder to compute as we move off the main diagonal,
showing that for multivariate asymptotic coefficient extraction problems of this sort, the
diagonal extraction method should be replaced by the methods described in [14].

7.2. Possible extensions. Since for the purposes of asymptotics it is not necessary to com-
pute the iterated diagonal diagx diagy F , perhaps it is not even necessary to compute diagy F .
However it seems to extract the information required directly from F . The difficulty is that
the multivariate methodology described above derives asymptotics that are uniform in
the central regime, where all components of r = (n,k) are of the same asymptotic order (in
other words, ni /‖r‖ and ki /‖r‖ are each bounded above and below by nonzero constants).
The diagonal diagy F involves a sum over all values of k, some of which are very small. An
argument that cuts off the tails of the distribution may work, but this seems more in spirit
with a purely probabilistic approach, and we do not pursue it here.

The singularity analysis of Hadamard products was investigated in detail by Fill, Flajolet
and Kapur [5]. This goes far beyond the meromorphic asymptotics of the present work,
and rests on the theory pioneered by Flajolet and Odlyzko [6, Chapter VI]. The expression
for diagy F (x,1) derived in Proposition 3.2 should allow derivation of asymptotics in many
important cases. We do not pursue it here for reasons of length and coherence of the
present article.

The expression for πn1 in Theorem 5.1 should generalize in a fairly straightforward way
to the off-diagonal case, provided that n is suitably restricted. Also, there is no need to
restrict to the case where all the combinatorial classes coincide. Again, this would take us
too far afield in the present work.
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