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The machinery of Riordan arrays has been used recently by several authors. We show how meromorphic singularity
analysis can be used to provide uniform bivariate asymptotic expansions, in the central regime, for a generalization
of these arrays. We show how to do this systematically, for various descriptions of the array. Several examples from
recent literature are given.
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1 Introduction
A Riordan array is an infinite complex matrix(ars) of a certain type (see below for exact definitions).
The Riordan array formalism has been much used recently to study combinatorial questions in analysis of
algorithms and other areas. Most work has been concerned with “exact” results. In this article we discuss
asymptotics of such arrays.

We apply general machinery for deriving asymptotics of bivariate generating functions, following the
research programme begun in [PW02, PW04]. Asymptotic expansions of special cases of Riordan arrays
have been discussed by several authors [Drm94, Gar95]. The main purposes of this article are to show how
the work in [PW02] immediately yields strong results for (a generalization of) Riordan arrays, and to use
this case as an introduction to the much more general results in [PW02, PW04], the computations being
simpler to understand. In addition we try to simplify and automate the process of extracting asymptotics
as far as possible.

1.1 Riordan arrays
We first recall some standard facts about Riordan arrays. See [Mer96, MV00] for more details and proofs.

Definition 1.1. A Riordan array is an infinite complex matrix(ars), with array indexing starting from
r = s= 0, whose bivariate generating function has the form

F(z,w) = ∑
r,s

arsz
rws =

φ(z)
1−wv(z)

, (1)

with v(0) = 0, φ(0) 6= 0.

The geometric series expansion shows thatars is precisely the coefficient oftr in the convolution
φ(t)v(t)s, and this could of course be used as a definition of Riordan array. It follows thatars = 0 if
r < s, so such an array is lower triangular. It is not strictly lower triangular sincea00 = φ(0).
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Note that the component univariate generating functionsφ(t),v(t) can be recaptured from the bivariate
generating functionF(z,w) via φ(t) = F(t,0) andφ(t)v(t) = Fw(t,0), so we may assume thatv(t) and
φ(t) are explicitly known.

The set of Riordan arrays forms a monoid under matrix multiplication. The group of invertible elements
is defined by the equivalent conditions below. Only the last condition is non-obvious, giving a “row”
recurrence where the definition supplies a “column” recurrence.

Definition 1.2. A Riordan array isproperif it satisfies any of the equivalent conditions of Proposition 1.3.

Proposition 1.3. The following conditions on a Riordan array are equivalent.

• for each r, arr 6= 0;

• for some r> 0, arr 6= 0;

• v′(0) 6= 0;

• there is a sequence(c j) such that ar+1,s+1 = ∑ j c jar,s+ j for each r,s.

The sequence(c j) is usually known as theA-sequence of the array (in this author’s opinion, a good
example of how not to name a mathematical concept). LetA(t) = ∑ j c j t j . Column 0 of a proper Riordan
array is not determined byA, though the other columns are determined byA once column 0 is known. Of
course we haveφ(t) = ∑r ar0tr , so that column has generating functionφ(t). It turns out we can express
the first column via another recurrence. For each proper Riordan array, there is a sequence(zj) such that
for eachr, ar+1,0 = ∑ j zjar j .

The following relationships hold between the “implicit” and “explicit” descriptions of the array:

• v(t) = tA(v(t)) (the Lagrange inversion equation);

• φ(t) = a00
1−tZ(v(t)) .

Thus given a description in terms of(φ,v), we can convert, in theory, to one in terms of(a00,A,Z), and
vice versa. Often in practice one description (generating function or recurrence) is much more convenient
than the other. Conversion between them is often computationally difficult.

1.2 A slight generalization

In [PW02] the authors presented a taxonomy applicable to multivariate meromorphic generating func-
tions, and derived asymptotics in the most common cases. Bivariate generating functions of type (1) fall
into the easiest case of the classification. In fact, in that framework it is just as easy to consider a small
generalization of Riordan array. The conditionv(0) = 0 in the definition (1) is often violated in examples
of interest, as we shall see below. Note that 1−wv(z) exists as a bivariate formal power series for each
univariate formal power seriesv(z), since 1−wv(z) does not lie in the maximal ideal of the local ring
C[[z,w]]. The conditionv(0) = 0 is clearly equivalent to lower triangularity of the corresponding coeffi-
cient array, so is necessary for some combinatorial interpretations, but is inessential for our analysis. In
addition, we need not requireφ(0) 6= 0.
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However, we do require convergence of the power seriesF(z,w) in a neighbourhood of the origin, in
order to derive asymptotics via complex analysis. Thus from now on we shall consider bivariate GFs of
the form (1) whereφ,v are analytic functions in a neighbourhood of 0 andv is nonconstant.

We note that such arrays (without the assumption of analyticity) were calledimproper Riordan arrays
in [Spr94], but this name is misleading. Such arrays are not Riordan arrays at all according to the standard
definition. Furthermore, this usage causes a notational conflict — one might expect an improper Riordan
array to be a Riordan array that is not proper, but such Riordan arrays have been calledstretchedin
[CMS98].

2 Asymptotics via meromorphic singularity analysis
The asymptotic analysis of a general two-dimensional array presents considerable difficulties. Loosely
speaking, we may say that these difficulties arise from the singular structure of the bivariate GF and from
boundary effects in the integer lattice. The arrays considered here avoid the first problem, at least in the
nonnegative case. In this section we show how asymptotics for our generalized Riordan arrays follow
immediately from previous work in [PW02].

2.1 The general framework
In [PW02] the following analytic framework is adopted. We deal with a generating functionF(z) =
G(z)/H(z) of d complex variables, whereG andH are analytic in a neighbourhood of the origin and
are relatively prime inC[z]. The zero-set ofH, denotedV , is called thesingular varietyof F , and is a
complex analytic variety of complex dimensiond−1.

A point z of V is strictly minimal if it is the only point ofV on the closed polydisk centred at the
origin and determined byz. We assume thatG andH are analytic in a neighbourhood ofz, so thatF
continues analytically past the boundary of the domain of convergence. In particular this is satisfied by
rational functions. Such a minimal point is calledsmoothif no coordinate is zero and the gradient of
H is nonzero. The strictly minimal smooth point case is generic, though much more complicated local
geometry can occur in practice. In this generic case (the only one considered by almost all authors in
analytic combinatorics), many of our results can probably be obtained by other methods. However the
point of [PW02] is to develop from scratch a unified analytic approach that allows us to attack the harder
cases, is simpler to apply than existing methods, and more likely to lead to automation. For more details
of combinatorial applications of the theory of [PW02, PW04], see [PW05].

To each smooth minimal pointz we associate a certain directionδ(z) in which asymptotics are fur-
nished by our analysis. By reducing the problem to computing the asymptotics of certain Fourier-Laplace
integrals, we can obtain complete effectively computable expansions in any dimension. Whend = 2, our
results yield the following explicit result [PW02, Thm 3.1].

Theorem 2.1 (Generic smooth point asymptotics, dimension2). Suppose that d= 2 and let F(z,w) =
G(z,w)/H(z,w) be as described above. Then if(z,w) is a smooth minimal point ofV where szHz = rwHw,
there is a complete asymptotic expansion

ars ∼ z−rw−ss−1/2
∞

∑
k=0

bks
−k.

The expansion is uniform as(z,w) varies over a compact set of such points.
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Define
Q(z,w) :=−w2H2

wzHz−wHwz2H2
z −w2z2(

H2
wHzz+H2

z Hww−2HzHwHzw
)
.

If Q(z,w) and G(z,w) are nonzero, then the leading coefficient in the expansion is given by

b0 =
G(z,w)√

2π

√
−wHw

Q(z,w)
.

2.2 Specialization to generalized Riordan arrays

We have globally thatG(z,w) = φ(z),H(z,w) = 1−wv(z). The gradient ofH is therefore(−wv′(z),v(z)),
which cannot vanish on a (minimal) point ofV since its second component is nonzero. Thus every
strictly minimal point ofV is smooth. We can of course parametrizeV globally in terms ofz. This leads
to parametrized expressions, which we present below, for previously introduced quantities. We writeQ(z)
instead ofQ(z,1/v(z)), etc.

For each univariate formal power seriesf (t) ∈ C[[t]] we define as usual

µ( f ; t) =
t f ′(t)
f (t)

and σ2( f ; t) =
t2 f ′′(t)

f (t)
+

t f ′(t)
f (t)

−
(

t f ′(t)
f (t)

)2

and these are well-defined formal power series even iff (0) = 0, and converge in a neighbourhood of 0 if
and only if f does.

We collect a few standard definitions.

Definition 2.2. We write f ≥ 0 to mean that every coefficient off (t) is nonnegative. We denote byρ
the radius of convergence off (t). Note that ifρ > 0 then f ≥ 0 if and only if f (x) ≥ 0 for eachx with
0 < x < ρ.

Definition 2.3. We say thatf (t) is aperiodicif σ2( f ; t) 6= 0. Equivalently, the set of indices of nonzero
coefficients off has at least two elements and greatest common divisor equal to 1.

Note that if a Riordan array is proper, the correspondingv will be aperiodic unlessv(t) = ct.
Theorem 2.1 can be used for generalized Riordan arrays of any type. However, there is no nice criterion

for minimality of a critical point in general. Furthermore the periodic case can be reduced in some sense
to the aperiodic one by a simple change of variable. Thus in this article we make the following (standard)
assumptions (see Section 4 for more discussion).

Assume thatφ ≥ 0,v≥ 0, and thatv is aperiodic. (*)

Note thatφ ≥ 0 andv≥ 0 if and only if F ≥ 0. Straightforward computations show thatQ(z) = σ2(v;z)
and the stationary phase equationszHz = rwHw becomesµ(v;z) = r/s. We now intend to use Theorem 2.1
to describe the asymptotics of our generalized Riordan arrays.

Proposition 2.4. Assuming(*) , the minimal points ofV are precisely those of the form(x,1/v(x)) for
which0 < x < ρ. All these points are strictly minimal.
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Proof. Sincev≥ 0, it follows that for each fixedx with 0 < x < ρ, the maximum of|v(z)| on the disc
|z| ≤ x is attained atz= x. Each pointz in the disc satisfies|v(z)|= |z|a|g(zb)| ≤ xag(xa) and equality can
happen only if|g(zb)|= |g(xb)|. The triangle inequality applied to the power series expansion ofg shows
that if g is nonconstant thenzb = xb. Such points are clearly minimal, sox is strictly minimal if and only
if b = 1, which occurs if and only ifv is aperiodic.

Note that the type of minimal point does not depend onx, nor on the type of singularity ofv at z =
ρ. Also φ never vanishes at a minimal point. Thus generic strictly minimal smooth point behaviour is
guaranteed by (*).

Theorem 2.1 now applies and yields an expansion that applies in a set∆ of directions defined by the
stationary phase equation for all possible choices of minimal points(z,w). In fact∆ is an interval (this is
a consequence of log-convexity of the domain of convergence ofF [PW02]). One question remains: is
this interval as large as possible? The answer turns out to be yes, as we show below.

Definition 2.5. Let k denote the order of vanishing ofv(t) at the origin. Note that a Riordan array always
hask≥ 1 and is proper if and only ifk = 1. Let l denote the degree ofv: that is, the polynomial degree
whenv(t) is a polynomial, and∞ otherwise. Finally, let∆′ denote the interval[k, l ].

Note thatars = 0 if r/s 6∈ ∆′, so directions outside this latter interval are not of interest.

Proposition 2.6. Under assumption(*) , for eachλ in the interior of∆, the equation

µ(v;z) = λ, 0 < z< ρ (2)

has a unique solution z(λ).

Proof. We note thatµ(v; t) = k+µ(ψ; t) andµ′(v; t) = σ2(v; t)/t = σ2(ψ; t)/t. Thusx 7→ µ(v;x) is increas-
ing for 0< x < ρ, and limx→0+ µ(v;x) = k. By (*), x 7→ µ(v;x) is strictly increasing and̄∆ = (k, l∗) where
l∗ = limx→ρ− µ(v;x). It remains to show thatl∗ = l , so that∆ = ∆′.

First consider the caseρ < ∞, limx→ρ− v(x) = ∞. Then logD is given byp≤ logρ,q+ logv(ep) ≤ 0.
Thusq→−∞ asp→ logρ inside logD and so the vertical asymptotep= logρ is a support hyperplane for
logD. Next consider the caseρ < ∞, limx→ρ− v(x) < ∞. Then limx→ρ− v′(x) = ∞ and sol∗ = ∞. Finally
consider the case wherev is entire. Then by L’Ĥopital, limx→∞ xv′(x)/v(x) = 1+ limx→∞ xv′′(x)/v′(x), etc.
If v is a polynomial,l∗ = degv. Otherwise,v is entire and not a polynomial; by inductionl∗ is arbitarily
large since all derivatives ofv satisfy the same hypotheses asv.

Definition. Define the following quantities

w(λ) = 1/v(z(λ)); (3)

b0(λ) =
φ(z(λ))√

2πσ2(v;z(λ))
. (4)

Corollary 2.7. Suppose F is as in(1) and that(*) is satisfied. Then withλ = r/s, the asymptotic formula

ars ∼ z(λ)−rw(λ)−ss−1/2
∞

∑
k=0

bk(λ)s−k (5)

holds uniformly inλ over compact subsets of∆, where z,w and b0 are given by formulae(2), (3) and (4),
and similar though more complicated formulae are computable for bk,k > 0.

We discuss the practical use of this explicit but perhaps rather complicated-looking formula in Section 3.
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Tab. 1: Some generalized Riordan arrays
Z(t) A(t) φ(x) v(x) Interpretation ofars / reference

1 1+ t 1
1−x

x
1−x Pascal triangle

(r
s

)
2t 1+ t2 1√

1−4x2

1−
√

1−4x2

2x [SGWW91, Example 2B]

1+2t 1+ t + t2 1√
1−2x−3x2

1−x−
√

1−2x−3x2

2x Motzkin triangle [SGWW91, Sec. 3]

2+2t 1+2t + t2 1√
1−4x

1−2x−
√

1−4x
2x [Spr94]

1
1−t

1
1−t

1−
√

1−4x
2x

1−
√

1−4x
2 Catalan triangle [MV00, Sec. 4]

t
1−t

1−t+t2
1−t

1+x−
√

1−2x−3x2

2x(1+x)
1+x−

√
1−2x−3x2

2(1+x) [MV00, (4.8)]

2
1−t

1+t
1−t

1+x−
√

1−6x+x2

2x
1+x−

√
1−6x+x2

2 [MSV04]
2

1−t
1

1−t
1√

1−4x
1−

√
1−4x
2 [Spr94]

t−1+
√

1−2t+5t2

2t
1+t+

√
1−2t+5t2

2
1−x

1−x−x2
x−x2

1−x−x2 [MUV04]
t

(1−t)2
1

1−t
1−5x+(1−x)

√
1−4x

2(1−4x−x2)
1−

√
1−4x
2 [Mer03, Sec 4.2]

0 2−t
1−t 1 1+x−

√
1−6x+x2

2 [MV00, (4.9)]
2t−3+

√
1+4t−4t2

4t(t−1) 1/(1− t) 4
2+

√
1−4x+

√
1+4x

1−
√

1−4x
2 tennis ball problem [MSV02, Appendix A]

1+ t 1− t 1−3x−
√

1+2x−3x2

2x(3x−2)
1+x−

√
1+2x−3x2

2x [MV00, p. 177]

1 1+x
(s

r

)
1/(1−x) 1/(1−x)

(r+s
s

)
1

1−x
1+x
1−x Delannoy numbers [BS05]

1 cosh(
√

x) Ehrenfest model [FS05, ]

3 Computing with the asymptotic formulae
While any pair(φ(t),v(t)) can be studied, some occur much more often than others in applications. Table 1
lists some examples of generalized Riordan arrays, taken from recent research literature.

We assume (*) throughout. Equation (2) has a unique, positive real, solution for all directions of interest.
This solution is a strictly minimal point controlling asymptotics in the given direction. This minimal point
can be found numerically for givenr,s. Moreover, in many cases one can solve symbolically for every
quantity in terms ofr/s, and then derive an explicit symbolic asymptotic formula, restoring the symmetry
betweenr ands in the process.

Example 3.1. The “Delannoy square” hasv(t) = (1+ t)/(1− t), φ(t) = 1/(1− t). The coefficientsars

count walks from the origin to(r,s) using steps in{(1,0),(0,1),(1,1)}. The stationary phase equation is
2sz= r(1−z2). Since we know the minimal point is positive real, we takez= (D−s)/r whereD denotes√

r2 +s2. After some algebra we obtain the leading term asymptotic

ars ∼
r rss

(D−s)r(D− r)s

√
rs

2πD(r +s−D)2

uniformly for everya,b such that 0< a≤ r/s≤ b < ∞. In particular, the number of central Delannoy
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Tab. 2: Asymptotics for subgroups of the Riordan group
Case Explicit leading termars ∼ Implicit leading termars ∼

Bell subgroup x−rvs+1 1√
2πsσ2(v;x)

vs−rAr+1 s√
2πr3σ2(A;v)

Hitting time subgroup x−rvs r√
2πs3σ2(v;x)

vs−rAr 1√
2πrσ2(A;v)

Associated subgroup x−rvs 1√
2πsσ2(v;x)

vs−rAr s√
2πr3σ2(A;v)

paths(r = s) is asymptotically

(3+2
√

2)r (21/4 +2−1/4)
2
√

πr
.

However, this type of direct symbolic computation becomes difficult for more complicatedv(t). Even
with a computer algebra system, it is not easy (for this author at least) to obtain formulae simple enough
to yield insight. On the positive side, it is easily shown that the leading term of the asymptotic formula is
an algebraic function of(r,s) if v(t) andφ(t) are algebraic series. For the next result, recall the notation
of Corollary 2.7.

Proposition 3.2. Suppose that(φ,v) defines a proper Riordan array. If v(t) is an algebraic series, then
z(r,s) is an algebraic expression in r and s. Thus ifφ(t) is also an algebraic series, the leading term
asymptotic approximation(5) is an algebraic expression in r and s.

Proof. Sinceµ(v; t) = tv′(t)/v(t), and the set of algebraic series is closed under multiplication, differenti-
ation and taking reciprocal,µ(v; t) is algebraic ifv(t) is. Nowµ(v;0) = 0 and soµ(v; t) is compositionally
invertible with inversem(v; t). Let P(t,µ(v; t)) = 0 be a polynomial equation witnessing algebraicity of
µ(v; t). Then 0= P(m(v; t),µ(v;m(v; t)) = P(m(v; t), t) and som(v; t) is algebraic.

Thus z(r/s) is an algebraic expression inr/s, and hence, clearing denominators,z is an algebraic
expression inr ands. The leading term involves only algebraic operations on algebraic quantities and is
hence algebraic.

SinceA(t) is often of a much simpler form thanv(t) (the former is a quadratic polynomial in many
applications), it often makes sense to carry out computations in terms ofA(t) andZ(t) rather than in terms
of v(t) directly. We now discuss the necessary translation of the formula (5).

Since the mapt → v(t) is an automorphism ofC[[t]], we may equally well usev as a variable. Suppose
now thatv(t) = tA(v(t)) as above. Differentiating this and rearranging we obtain expressions involving
µ(A;v) andσ2(A;v). This leads toµ(v; t) = 1/(1−µ(A;v)) andσ2(v; t) = σ2(A;v)/((1−µ(A;v))3. If
µ(v; t) = r/s, then we haveµ(A;v) = (r−s)/r. Thus we obtain the following result.

Theorem 3.3. Given(a00,Z(t),A(t)) with Z and A analytic at0, a00 6= 0,A(0) 6= 0, the following equa-
tions uniquely define functions v(z) andφ(z), analytic at0, and a function v0(λ):

v(z) = zA(v(z)); (6)

µ(A;v0) = λ; (7)

φ(z) = a00/(1−zZ(v(z))). (8)



8 Mark C. Wilson

This gives rise to a proper Riordan array(ars) via (1). Then, withλ = (r−s)/r, we have

ars ∼
v0(λ)s−rA(v0(λ))r√

2πr3σ2(A;v0(λ))
sφ(v0(λ)/A(v0(λ))). (9)

This approximation is uniform for every a,b such that1 < a≤ r/s≤ b < l, where l+1 is the degree of A.

Example 3.4 (The linear or quadratic case).Suppose now thatA(t) = at2 + bt + c with a ≥ 0,b ≥
0,c≥ 0 and at least one ofb andc being nonzero. Ifa = 0, the stationary phase equation is linear inv.
We readily obtain (whenc 6= 0, otherwise aperiodicity is violated and the result is easily obtained by other
means)

ars ∼ bscr−s r r

ss(r−s)(r−s)

sφ( s(r−s)
cr )√

2πrs(r−s)
. (10)

This reflects the fact that we have applied a linear change of variable to Pascal’s triangle.
Otherwise, the stationary phase equation is quadratic inv, namely 0= a(r + s)v2 + bsv− c(r − s).

Solving this and the defining equation forA(v) gives, withD =
√

4ac(r2−s2)+b2s2,

ars ∼
2scra(s−r)r r

(r−s)(r−s)(r +s)r

(D+bs)r

(D+bs)s

sφ(v/A(v))√
2πr(2ar2 +(r−s)s)

. (11)

In several common cases the formulae (5) and (9) simplify further. In [Sha03] there occur three sub-
groups of the Riordan group defined by a relation betweenv(t) andφ(t). In these cases we may directly
eliminateφ from (9). The computations are routine and the results are displayed in Table 2.

Example 3.5 (Subgroups of the Riordan group).The Bell subgroup is defined bytφ(t) = v(t). Its
elements are calledrenewal arrays. They were introduced under that name, before Riordan arrays, in
[Rog78]. Note that(1,A(t),Z(t)) represents an element of the Bell subgroup if and only ifA(t) = 1+
tZ(t). The coefficients of such an array are clearly just shifted versions of those whenφ(t) = 1, and this
fact is reflected in the leading term asymptotic.

In [PW00] the subgroupSof the Riordan group consisting of elements(φ(t),v(t)) such thatµ(v; t) =
φ(t) was considered (in [Sha03]Swas called thehitting time subgroup). Note that(1,A(t),Z(t)) repre-
sents an element of the hitting time subgroup if and only ifZ(t) = A′(t). This subgroup includes several
well-known arrays. Note that if(φ(t),v(t)) belongs toS then so does(φ(−t),v(−t)).

The associated subgroupis defined byφ(x) = 1 (equivalently,Z(t) = 0). Two main ways in which
elements of this subgroup arise are as follows. LetC be a combinatorial class with size generating function
v(t) = ∑nvntn. Then the bivariate GF for all (finite)C -sequences enumerated by total size and number
of parts is(1−wv(z))−1. An asymptotic approximation to the numberars of r-sequences with exactly
s parts is then obtainable from (5). This covers familiar and important examples such as compositions,
alignments, surjections, ordered forests.

Another common way in which elements of the associated subgroup arise is as follows. Let{Xi | i ≥ 1}
be a countable set of independent identically distributed random variables supported onN and letv(t)
be their common PGF. The grand PGF of all the sumsSs := X1 + · · ·+ Xr is then(1−wv(z))−1. If F is
nonconstant (the random variables are not point masses at 0) then (5) applies.
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Example 3.6 (simple sequence example).An ordered tree can be thought of as a root and an ordered
forest of subtrees of the root. Such a forest is a sequence of ordered trees. The GFF(z,w) that enumerates
ordered trees by number of nodes and root degree is then determined by the functional equation

F(z,w) =
z

1−wF(z,1)
.

Lettingv(z) = F(z,1) we see thatv(z) satisfiesz/(1−v) = v and we obtain

ars ∼
(2r−s)2r−s

r r(r−s)(r−s)
s√

2πr(r−s)(2r−s)
.

Various restrictions on sequences also lead to similar problems. Consider the following [GJ83, 2.3.18].

Example 3.7 (Skolem subsets).For each fixedp≥ 1, the objects to be enumerated are sequences 0=
σ0 < σ1 < · · · < · · · < σs ≤ r such thatσi −σi−1 ≡ 1 modp when 1≤ i ≤ k. The bivariate GF is of
Riordan type withφ(x) = 1/(1−x) andv(x) = x/(1−xp). A simple explicit computation shows that

ars ∼
[r−s+ ps]r−s+ps

(ps)s(r−s)
r−s

p

√
r−s+ ps

2πps(r−s)
.

One can also count sequences according to the number of terms of a given size, or with number of terms
of size divisible by a fixed integerp [GJ83, 2.3.12]. In each case the corresponding array is of generalized
Riordan type.

Example 3.8 (distinct subsequences).In [FHS04] the authors consider the problem of maximizing the
number of distinct subsequences of a string of lengthn over an alphabet of cardinalityd. They show in
particular that the maximum number of distinct subsequences of lengths contained in a string of lengthr
has generating function

F(x,y) =
1

1−x−xy(1−xd)

(note that there is an error in the displayed formula in [FHS04, Theorem 5]). This is of Riordan type with
φ(x) = 1/(1−x) andv(x) = x+x2 + · · ·+xd.

Thus, for example, if the alphabet is{C,A,G,T}, there are
(2r

r

)
∼ 4r/

√
πr possible subsequences of a

sequence of length 2r, and the maximum number of distinct subsequences of lengthr possible is asymp-
totic tocαr/

√
πr with α = 3.610718. . . ,c = 1.983592. . . .

Example 3.9 (walks). Walks on the integer latticeZ2 have often given rise to Riordan arrays in the
literature. Often the resulting arrays are square and various linear transformations have been used to fit
them into the Riordan array framework. We discuss only “genuine” examples here.

All walks start at the origin. Walks onZ can be represented in the usual way as walks onZ2 of a special
type: the walkn0,n1, . . . ,nt corresponding to the walk(0,n0),(1,n1), . . . ,(t,nt). A positive walk is one
constrained to lie in the upper halfspace or inN. We letank denote the number of walks of a certain type
ending at(n,k), which corresponds in the directed case above to walks withn steps ending atk, and let
F(z,w) = ∑n,k ankznwk.

A standard example is that of generalized Dyck paths. These are positive walks onZ2 defined by a finite
set of allowed jumpsE = {(r i ,si) | 1≤ i ≤ k}. The generating function is of Riordan type if 1=−minsi =
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maxsi , which includes the classical casesE = {(1,−1),(1,1)} (Dyck paths),E = {(1,−1),(1,0),(1,1)}
(Motzkin paths), andE = {(1,−1),(2,0),(1,1)} (Schr̈oder paths) or ifr i = 1,maxsi = 1 (corresponding
to walks onN with steps given by thesi).

In this latter case it has also been shown [MV00] that the generating function is a Riordan array even
for more general positive walks with an infinite set of negative jumps (so that, for example, we may jump
to 1 from anywhere inN). Indeed, every proper Riordan array with nonnegative coefficients corresponds
to such a walk.

One way of interpreting weighted walks is in terms of colours, the weight of a jump corresponding to
the number of colours available. This interpretation was given in [Spr94, Sec. 4] in the case of the finite
set{−1,0,1} of jumps. Calculations in [Spr94] show that the GF for positive walks is of Riordan type
with A(t) = at2 +bt + c, while the GF for unconstrained walks has the sameA-sequence and belongs to
the hitting time subgroup. Thus for example, in the unconstrained case we have

ars ∼
2scra(s−r)r r

(r−s)(r−s)(r +s)r

(D+bs)r

(D+bs)s

√
r√

2π(2ar2 +(r−s)s)

whereD =
√

4ac(r2−s2)+b2s2.

Furthermore, in [PW00], the above was generalized. It was shown that normalizing by taking the
weight of the jump 1 to be 1, and allowing an infinite set of negative jumps, leads to a bijection between
unconstrained coloured walks and the hitting time subgroup. Also the generating function for strictly
positive walks belongs to the associated subgroup. In each caseA(t) is the same, being given byA(t) =
∑l a1−l t l , whereal denotes the weight of the jumpl .

4 Further comments
4.1 Another extension
If in (1), we allowφ to depend also onw, much of the above analysis carries over (though the combinatorial
interpetation may be more complicated). Provided thatv≥ 0, the classification of minimal points remains
the same and the formula (5) needs only the obvious modification of changingφ(z) to φ(z,w). However
even ifF has the global formφ/(1−wv(z)) andF ≥ 0, it need not be the case thatv≥ 0, as the example
v =−1,φ = (1−w)−1 shows. Note that ifF ≥ 0 andv≥ 0 then necessarilyφ ≥ 0.

Example 4.1 (Multi-avoidance of polyomino patterns). This simple example is from [Kit04], where
the generating function

F(x,y) =
2xy

1−2(x+y−xy)

is presented. The coefficientars countsr × s binary matrices avoiding certain patterns. This example is
clearly a simple shift of a Riordan array, withv(x) = (2−2x)/(1−2x), and the above analysis applies. The
stationary phase equation is quadratic and explicit formulae are readily obtained as above. In particular,
the number of binary square matrices avoiding the given patterns is asymptotically given bycαr/

√
πr

wherec = (
√

2−1)/25/4,α = 6+4
√

2.

Example 4.2 (Substring pattern occurrences).Let σ be a fixed word of lengthk from an alphabet of
sized. Theautocorrelation polynomialof σ is the polynomialc(z) of degreed−1 whosejth coefficient
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is 1 if movingσ by j positions to the right creates an overlap and 0 otherwise. Then as in [FS05, III.6],

F(z,w) =
(w−1)c(z)−w

(1−dz)((w−1)c(z)−w)+(w−1)zk

enumerates words by length and (overlapping) occurrences ofσ. SinceF is rational and its denominator
is linear inw, the above analysis will apply. The same is true in the case where the letters have different
probabilities of occurrence.

4.2 Removing hypothesis (*)

As mentioned above, the aperiodicity assumption is not essential. The general case requires us to deal
with, instead of strictly minimal points, so-called finitely minimal and toral points. The asymptotics in
the former case are a trivial extension of the strictly minimal case, and the asymptotics in the toral case
are also easy (but not yet published).

When we drop the condition that coefficients be nonnegative, life becomes much more difficult. Con-
sider the following example.

Example 4.3. Consider the caseF(x,y) = 1/(3−3x+ x2− y) = v(x)/(1− yv(x)) wherev(x) = 1/(3−
3x+ x2). Sincev vanishes to order 0 and is not polynomial, we expect asymptotics for all possible
directions. These asymptotics can indeed be provided by smooth point analysis, but they are quite different
in character from those we have seen in the nonnegative case.

First, the type of minimal point can vary. It is routine to verify that points of the form(x,1/v(x)) for
0 < x≤ 1 are strictly minimal, and these correspond to values ofr/s∈ (0,1]. However, the asymptotics
in each direction above the diagonal are provided by a pair of complex conjugate finitely minimal points.

Moreover,σ2(v;x) = 0 atx= 1 (recall that this cannot happen in the positive case unlessv is monomial),
andarr decays asr−1/3 while the decay is liker−1/2 in each other fixed direction. This is an example
of “Airy phenomena” as discussed in [BFSS01]. Uniform asymptotics for all directions can indeed be
obtained by detailed analysis of the Fourier-Laplace integral, as shown by Manuel Lladser’s PhD thesis
[Lla03].

Note that by the Maximum Modulus Theorem, a solution ofµ(v;z) = r/swill yield a (strictly) minimal
pole ofF provided thatz (uniquely) maximizes|v| on its torus. Ifv≥ 0 andz is positive real then this later
condition must always be satisfied. Ifv = 1/u whereu≥ 0, andz is negative real, then it is also satisfied.
In general, however, determining minimality must be approached on a case-by-case basis.

4.3 Uniform asymptotics near coordinate axes

In the caseφ = 1, Drmota [Drm94] derived a bivariate asymptotic expansion of the form in Corollary 2.7.
Furthermore he showed that in many cases (those wherev has a dominant singularity of square root type)
the expansion is uniform fork/n ∈ [0,ε]. It is very likely that a similar result is true for generalφ and
more generalv. However to state and prove such a result naturally within our current framework would
require the analysis of parameter-varying Fourier-Laplace integrals as recently carried out by M. Lladser
[Lla03], and we shall not attempt it here.
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