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The machinery of Riordan arrays has been used recently by several authors. We show how meromorphic singularity
analysis can be used to provide uniform bivariate asymptotic expansions, in the central regime, for a generalization
of these arrays. We show how to do this systematically, for various descriptions of the array. Several examples from
recent literature are given.
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1 Introduction

A Riordan array is an infinite complex matr{g;) of a certain type (see below for exact definitions).

The Riordan array formalism has been much used recently to study combinatorial questions in analysis of
algorithms and other areas. Most work has been concerned with “exact” results. In this article we discuss
asymptotics of such arrays.

We apply general machinery for deriving asymptotics of bivariate generating functions, following the
research programme begunlin [PW02, PWO04]. Asymptotic expansions of special cases of Riordan arrays
have been discussed by several authiors [Drm94, (Gar95]. The main purposes of this article are to show how
the work in [PW02] immediately yields strong results for (a generalization of) Riordan arrays, and to use
this case as an introduction to the much more general results in [RW02,| PWO04], the computations being
simpler to understand. In addition we try to simplify and automate the process of extracting asymptotics
as far as possible.

1.1 Riordan arrays

We first recall some standard facts about Riordan arrays! See [Mer96,/MV00] for more details and proofs.

Definition 1.1. A Riordan arrayis an infinite complex matriXass), with array indexing starting from
r =s= 0, whose bivariate generating function has the form

Faw) = 3 st = ®
with v(0) = 0, ¢(0) #£ 0.

The geometric series expansion shows #hatis precisely the coefficient aff in the convolution
@(t)v(t)3, and this could of course be used as a definition of Riordan array. It followsathat O if
r < s, so such an array is lower triangular. It is not strictly lower triangular sigge- ¢(0).
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Note that the component univariate generating functigihs v(t) can be recaptured from the bivariate
generating functiorr (z,w) via @(t) = F(t,0) and@(t)v(t) = Fy(t,0), so we may assume theft) and
@(t) are explicitly known.

The set of Riordan arrays forms a monoid under matrix multiplication. The group of invertible elements
is defined by the equivalent conditions below. Only the last condition is non-obvious, giving a “row”
recurrence where the definition supplies a “column” recurrence.

Definition 1.2. A Riordan array iroperif it satisfies any of the equivalent conditions of Proposifion 1.3.
Proposition 1.3. The following conditions on a Riordan array are equivalent.

e foreachr, g #0;

e forsome r> 0, ay #0;

e V(0) #0;

e there is a sequence;) such that @,1s11 = 3 Cjars.j for eachrs.

O

The sequencéc;) is usually known as thé-sequence of the array (in this author’s opinion, a good
example of how not to name a mathematical concept) Atgt= 3 ; cjt!. Column 0 of a proper Riordan
array is not determined b4, though the other columns are determineddxnce column 0 is known. Of
course we have(t) = 3, a,ot", so that column has generating functipft). It turns out we can express
the first column via another recurrence. For each proper Riordan array, there is a s€quesweh that
foreachr, a 110 =3 zjaj.

The following relationships hold between the “implicit” and “explicit” descriptions of the array:

e v(t) =tA(v(t)) (the Lagrange inversion equation);
* o) = =y

Thus given a description in terms @§,v), we can convert, in theory, to one in terms(afo,A,Z), and
vice versa. Often in practice one description (generating function or recurrence) is much more convenient
than the other. Conversion between them is often computationally difficult.

1.2 A slight generalization

In [PWO0Z] the authors presented a taxonomy applicable to multivariate meromorphic generating func-
tions, and derived asymptotics in the most common cases. Bivariate generating functions|[df type (1) fall
into the easiest case of the classification. In fact, in that framework it is just as easy to consider a small
generalization of Riordan array. The conditig®) = 0 in the definition[(]L) is often violated in examples

of interest, as we shall see below. Note that\Wv(z) exists as a bivariate formal power series for each
univariate formal power seriegz), since 1- wv(z) does not lie in the maximal ideal of the local ring
C[[z,w]]. The conditiorv(0) = 0 is clearly equivalent to lower triangularity of the corresponding coeffi-
cient array, so is necessary for some combinatorial interpretations, but is inessential for our analysis. In
addition, we need not requirg0) # 0.
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However, we do require convergence of the power séfigsw) in a neighbourhood of the origin, in
order to derive asymptotics via complex analysis. Thus from now on we shall consider bivariate GFs of
the form [1) wherep, v are analytic functions in a neighbourhood of 0 arig nonconstant.

We note that such arrays (without the assumption of analyticity) were dell@per Riordan arrays
in [Spr94], but this name is misleading. Such arrays are not Riordan arrays at all according to the standard
definition. Furthermore, this usage causes a notational conflict — one might expect an improper Riordan
array to be a Riordan array that is not proper, but such Riordan arrays have beerstalietkdin
[CMS98].

2 Asymptotics via meromorphic singularity analysis

The asymptotic analysis of a general two-dimensional array presents considerable difficulties. Loosely
speaking, we may say that these difficulties arise from the singular structure of the bivariate GF and from
boundary effects in the integer lattice. The arrays considered here avoid the first problem, at least in the
nonnegative case. In this section we show how asymptotics for our generalized Riordan arrays follow
immediately from previous work i [PW02].

2.1 The general framework

In [PWO02] the following analytic framework is adopted. We deal with a generating funé&iah =
G(z)/H(z) of d complex variables, wher& andH are analytic in a neighbourhood of the origin and
are relatively prime irC[z]. The zero-set oH, denoted?/, is called thesingular varietyof F, and is a
complex analytic variety of complex dimensidnr- 1.

A point z of ¥/ is strictly minimal if it is the only point of 7 on the closed polydisk centred at the
origin and determined by. We assume thak andH are analytic in a neighbourhood of so thatF
continues analytically past the boundary of the domain of convergence. In particular this is satisfied by
rational functions. Such a minimal point is callsthoothif no coordinate is zero and the gradient of
H is nonzero. The strictly minimal smooth point case is generic, though much more complicated local
geometry can occur in practice. In this generic case (the only one considered by almost all authors in
analytic combinatorics), many of our results can probably be obtained by other methods. However the
point of [PWO02] is to develop from scratch a unified analytic approach that allows us to attack the harder
cases, is simpler to apply than existing methods, and more likely to lead to automation. For more details
of combinatorial applications of the theory bf [PW02, PW04], see [PWO05].

To each smooth minimal poirt we associate a certain directid(z) in which asymptotics are fur-
nished by our analysis. By reducing the problem to computing the asymptotics of certain Fourier-Laplace
integrals, we can obtain complete effectively computable expansions in any dimensiond\A#&rour
results yield the following explicit result [PW02, Thm 3.1].

Theorem 2.1 (Generic smooth point asymptotics, dimensioB). Suppose that & 2 and let F(z,w) =
G(z,w)/H(z,w) be as described above. Theffzfw) is a smooth minimal point o’ where szH= rwHy,
there is a complete asymptotic expansion

00
as ~7Z 'w s /2 Z]bks’k.
k=

The expansion is uniform &g w) varies over a compact set of such points.
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Define
Q(z,W) := —~WPHZzH, — WHyZHZ — W22 (HZHz2+ HZHuw — 2HHwHow) -

If Q(z,w) and G(z,w) are nonzero, then the leading coefficient in the expansion is given by

b _G(z,w) —WHy
°T Van \| Qzw)’

2.2 Specialization to generalized Riordan arrays

We have globally tha®(z,w) = ¢(z),H(z,w) = 1—wwv(z). The gradient of is therefore —wV (2),v(2)),
which cannot vanish on a (minimal) point @f since its second component is nonzero. Thus every
strictly minimal point of ¥’ is smooth. We can of course parametriZeglobally in terms ofz. This leads
to parametrized expressions, which we present below, for previously introduced quantities. V@ gyrite
instead 0fQ(z,1/v(2)), etc.

For each univariate formal power serif) € C[]t]] we define as usual

Bt ()
0=+ 1 (o)

and these are well-defined formal power series evé(df = 0, and converge in a neighbourhood of O if
and only if f does.
We collect a few standard definitions.

u(f;t) = and

Definition 2.2. We write f > 0 to mean that every coefficient é{t) is nonnegative. We denote lpy
the radius of convergence 6ft). Note that ifp > 0 thenf > 0 if and only if f(x) > 0 for eachx with
O<x<p.

Definition 2.3. We say thatf (t) is aperiodicif o?(f;t) # 0. Equivalently, the set of indices of nonzero
coefficients off has at least two elements and greatest common divisor equal to 1.

Note that if a Riordan array is proper, the correspondingll be aperiodic unless(t) = ct.

Theoreni Z.]1 can be used for generalized Riordan arrays of any type. However, there is no nice criterion
for minimality of a critical point in general. Furthermore the periodic case can be reduced in some sense
to the aperiodic one by a simple change of variable. Thus in this article we make the following (standard)
assumptions (see Section 4 for more discussion).

Assume thatp > 0,v > 0, and thav is aperiodic *)

Note thatp > 0 andv > 0 if and only ifF > 0. Straightforward computations show tl@(z) = 6?(v;2)
and the stationary phase equatszt} = rwH,, becomesi(v; z) = r /s. We now intend to use Theor.l
to describe the asymptotics of our generalized Riordan arrays.

Proposition 2.4. Assumingf), the minimal points ofl/ are precisely those of the for(x, 1/v(x)) for
whichO < x < p. All these points are strictly minimal.
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Proof. Sincev > 0, it follows that for each fixed with 0 < x < p, the maximum ofiv(z)| on the disc
|z| < xis attained az = x. Each pointzin the disc satisfies/(z)| = |z]2|g9(2°)| < ¥g(x?) and equality can
happen only ifig(2°)| = |g(x®)|. The triangle inequality applied to the power series expansigrsbbws
that if g is nonconstant thes® = x°. Such points are clearly minimal, sas strictly minimal if and only
if b= 1, which occurs if and only i’ is aperiodic. O

Note that the type of minimal point does not dependxpnor on the type of singularity of at z=
p. Also @ never vanishes at a minimal point. Thus generic strictly minimal smooth point behaviour is
guaranteed by *).

Theoren{ ZJ1 now applies and yields an expansion that applies infadfalirections defined by the
stationary phase equation for all possible choices of minimal plmtg. In factA is an interval (this is
a consequence of log-convexity of the domain of convergenée [P\W02]). One question remains: is
this interval as large as possible? The answer turns out to be yes, as we show below.

Definition 2.5. Letk denote the order of vanishing eft) at the origin. Note that a Riordan array always
hask > 1 and is proper if and only ik = 1. Letl denote the degree of that is, the polynomial degree
whenv(t) is a polynomial, ang otherwise. Finally, let\’ denote the intervdk, I].

Note thata,s = 0 if r /s ¢ A', so directions outside this latter interval are not of interest.

Proposition 2.6. Under assumptioiff), for eachA in the interior ofA, the equation
Hv;iz)=A,  0<z<p @)
has a unique solution(x).

Proof. We note thap(v;t) = k+u(g;t) andy (v;t) = a?(v;t) /t = 0(;t) /t. Thusx— W(v;x) is increas-
ing for 0< x < p, and lim_,o+ H(v;X) = k. By (®), x+— p(v; x) is strictly increasing and = (k,1*) where
I* = limy_,o- K(V; ). It remains to show thdt = I, so thath = A'.

First consider the cage< oo, lim,_,- v(x) = ». Then logD is given byp < logp,q-+logv(eP) < 0.
Thusq— —o asp — logp inside logD and so the vertical asymptope= logp is a support hyperplane for
logD. Next consider the cage< o,lim,_,- V(X) < c. Then lim_, V(x) = « and sd* = c. Finally
consider the case whevés entire. Then by L'Hpital, limy_.. XV (X) /v(X) = 14 limy_.. XV’ (X) /V/(x), etc.

If vis a polynomial|* = degv. Otherwisey is entire and not a polynomial; by inductibhis arbitarily
large since all derivatives ofsatisfy the same hypothesesvas O

Definition. Define the following quantities
W(A) = 1/v(z(N)); ©)
bo(A) = ﬂ 4)

V21o2(v; z(\))

Corollary 2.7. Suppose F is as iff]) and that() is satisfied. Then with =r /s, the asymptotic formula

as ~2Z(\) W) STY2 S b(M)s (5)

K=0
holds uniformly in\ over compact subsets &f where zw and Iy are given by formula€?), (3) and (@),
and similar though more complicated formulae are computable fgt s 0. O

We discuss the practical use of this explicit but perhaps rather complicated-looking formula in Section 3.
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Tab. 1: Some generalized Riordan arrays

Z(t) At) @(x) V(X) Interpretation ofys / reference
1 1+t = . Pascal triangl€y)
1-/1-422
2t 1+t2 \/ﬁ % [SGWW91, Example 2B]
2 1 1-x—4/1-2x—3x2 . .
1+2t 1+t+t izcel =5~ | Motzkin triangle [SGWW91, Sec. 3]
2+ 2t 142t +12 L L2V [Sprod]
T T e e Catalan triangle [MV0DO, Sec. 4]
t 1—t+t2 14+x—4/1-2x—3x2 14+x—1/1-2x—3x2
Tt = e, Y [MVOO] (4.8)]
2 1+t 1+x—1/1—6x+x%2 1+X—1/ 1—6x+x2
= =i e v . [MSV04]
2 1 1 1—y/1-4
= T Wi 7= [Spro4]
t—1++/1-2t+5t2 1+t+4/1-2t+5t2 1— 2 .
2t 2 s 1(,1X,X>>(2 _— ]iXiXZ [MUVO4J
t 1 —5x+(1—X)v/1—4x 1-v1-4
e = ) e [Mer03, Sec 4.2]
0 2=t 1 LoxeVIZ6d | gyo0) (4.9)]
2—3++/1+4t— 42 4 1 V1-ax . .
e 1/(1-t) 2+\/17x+\/m \/2 tennis ball problem [MSV02, Appendix A|
1-3x—4/14+2x—3x2 | 14+x—/14+2x—3x2
1+t 1-t s > [MVOQ] p. 177]
1 1+x })
1/(1-x) 1/(1-x) ("$)
= X Delannoy numbers$ [BSD5]
1 cosh(v/X) Ehrenfest mode[[FS05, ]

3 Computing with the asymptotic formulae

While any pair(@(t),v(t)) can be studied, some occur much more often than others in applications. [Table 1
lists some examples of generalized Riordan arrays, taken from recent research literature.

We assumé (*) throughout. Equati¢n (2) has a unique, positive real, solution for all directions of interest.
This solution is a strictly minimal point controlling asymptotics in the given direction. This minimal point
can be found numerically for givens. Moreover, in many cases one can solve symbolically for every
quantity in terms of /s, and then derive an explicit symbolic asymptotic formula, restoring the symmetry
betweerr andsin the process.

Example 3.1. The “Delannoy square” hagt) = (1+t)/(1—t), @t) = 1/(1—t). The coefficientsys
count walks from the origin t¢r,s) using steps i{(1,0),(0,1),(1,1)}. The stationary phase equation is
2sz=r(1— 7). Since we know the minimal point is positive real, we take (D —s) /r whereD denotes
Vr2 + &2, After some algebra we obtain the leading term asymptotic

r's® rs
&~ D9 (D_rp\ 2mD(r +5_ D)

uniformly for everya,b such that < a <r/s<b < «. In particular, the number of central Delannoy
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Tab. 2: Asymptotics for subgroups of the Riordan group

Case Explicit leading terma,s ~ | Implicit leading termays ~
Bell subgroup x L VAL S
211502 (V;X) 21Ttr302(A;v)
it ; —r r —r Al
Hitting time subgroup X V572n5302(v;x) VSTA gy
Associated subgroup xs——L VAL S
211502 (V;X) 21r302(A,v)

paths(r = s) is asymptotically
21/4_‘_271/4)
2v2 r(i.
(3+2V2) N

However, this type of direct symbolic computation becomes difficult for more complieétiedEven
with a computer algebra system, it is not easy (for this author at least) to obtain formulae simple enough
to yield insight. On the positive side, it is easily shown that the leading term of the asymptotic formula is
an algebraic function offr,s) if v(t) and@(t) are algebraic series. For the next result, recall the notation

of Corollary[2.7.

Proposition 3.2. Suppose thafp,v) defines a proper Riordan array. I{t) is an algebraic series, then
z(r,s) is an algebraic expression in r and s. Thusp{t) is also an algebraic series, the leading term
asymptotic approximatioff]) is an algebraic expression inr and s.

Proof. Sincep(v;t) =tV/(t)/v(t), and the set of algebraic series is closed under multiplication, differenti-
ation and taking reciprocglyv;t) is algebraic ifv(t) is. Nowp(v;0) = 0 and squ(v;t) is compositionally
invertible with inversen(v;t). Let P(t,p(v;t)) = 0 be a polynomial equation witnessing algebraicity of
p(v;t). Then 0= P(m(v;t), u(v; m(v;t)) = P(m(v;t),t) and som(v;t) is algebraic.

Thusz(r/s) is an algebraic expression m's, and hence, clearing denominatorsis an algebraic
expression im ands. The leading term involves only algebraic operations on algebraic quantities and is
hence algebraic. O

SinceA(t) is often of a much simpler form thar(t) (the former is a quadratic polynomial in many
applications), it often makes sense to carry out computations in terA($)andZ(t) rather than in terms
of v(t) directly. We now discuss the necessary translation of the forppla (5).

Since the map — v(t) is an automorphism dE[[t]], we may equally well use as a variable. Suppose
now thatv(t) = tA(v(t)) as above. Differentiating this and rearranging we obtain expressions involving
U(A;v) ando?(A;v). This leads tau(v;t) = 1/(1— p(A;v)) anda?(v;t) = o?(Av) /(1 — (A V)3, If
H(v;t) =r/s, then we havg(A;v) = (r —s)/r. Thus we obtain the following result.

Theorem 3.3. Given(ago, Z(t),A(t)) with Z and A analytic a, agg # 0,A(0) # 0, the following equa-
tions uniquely define function$zy and @(z), analytic at0, and a function y(A):

V(z) = zZAV(2)); (6)
H(A Vo) =\, )
®(2) = ago/(1—2Z(V(2))). (8)
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This gives rise to a proper Riordan arrdgs) via (I). Then, withh = (r —s)/r, we have

V(W) AN
21r302(A;Vo(N))

sp(Vo(A)/A(Vo(A)))- 9)

This approximation is uniform for everylasuch thatl < a<r/s< b < |, where I+ 1is the degree of A.

Example 3.4 (The linear or quadratic case).Suppose now tha(t) = at? + bt + ¢ with a > 0,b >

0,c > 0 and at least one df andc being nonzero. 1B = 0, the stationary phase equation is lineav.in

We readily obtain (when # 0, otherwise aperiodicity is violated and the result is easily obtained by other
means)

S(r—s
G
S(r—99 \/2ms(r )
This reflects the fact that we have applied a linear change of variable to Pascal’s triangle.

Otherwise, the stationary phase equation is quadratic mamely O= a(r + s)v? + bsv—c(r —s).
Solving this and the defining equation #¢v) gives, withD = \/4ac(r2 — s?) + b2,

ays ~ b3 (10)

25¢as N (D+by’  spV/AW))

(r—s)=9(r +s)" (D+bs)s \/2nr(2ar2 +(r—19)s) ’ )

Ars ~

In several common cases the formulge (5) and (9) simplify furthef._In [$ha03] there occur three sub-
groups of the Riordan group defined by a relation betwgenand(t). In these cases we may directly
eliminateg from (). The computations are routine and the results are displayed in[Table 2.

Example 3.5 (Subgroups of the Riordan group).The Bell subgroupis defined bytg(t) = v(t). Its
elements are callecenewal arrays They were introduced under that name, before Riordan arrays, in
[Rog78]. Note tha(1,A(t),Z(t)) represents an element of the Bell subgroup if and on&(ij = 1+
tZ(t). The coefficients of such an array are clearly just shifted versions of those@{tjen 1, and this

fact is reflected in the leading term asymptotic.

In [PWO0Q] the subgrouf$ of the Riordan group consisting of elemeggt), v(t)) such thati(v;t) =
@(t) was considered (in_[Sha03]was called théitting time subgroup). Note that(1,A(t),Z(t)) repre-
sents an element of the hitting time subgroup if and onB(t) = A'(t). This subgroup includes several
well-known arrays. Note that {fp(t), v(t)) belongs tdSthen so doesg(—t),v(—t)).

The associated subgroufs defined bygp(x) = 1 (equivalently,Z(t) = 0). Two main ways in which
elements of this subgroup arise are as follows.@ be a combinatorial class with size generating function
V(t) = S, Vnt". Then the bivariate GF for all (finitef-sequences enumerated by total size and number
of parts is(1—wwv(z))~1. An asymptotic approximation to the numkegg of r-sequences with exactly
s parts is then obtainable fror|(5). This covers familiar and important examples such as compositions,
alignments, surjections, ordered forests.

Another common way in which elements of the associated subgroup arise is as follo; Liet 1}
be a countable set of independent identically distributed random variables suppottedrmhletv(t)
be their common PGF. The grand PGF of all the si@ts= X; +--- + X is then(1—ww(z)) L. If F is
nonconstant (the random variables are not point masses at 0} then (5) applies.
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Example 3.6 (simple sequence exampleAn ordered tree can be thought of as a root and an ordered
forest of subtrees of the root. Such a forest is a sequence of ordered trees. Fle WRhat enumerates
ordered trees by number of nodes and root degree is then determined by the functional equation

z
Few) = T WFz
Lettingv(z) = F(z 1) we see that(z) satisfiesz/(1—v) = v and we obtain

(2r —g)>—s s
rr(r—s)= /2rr(r—s)(2r—s)

Ars ~

Various restrictions on sequences also lead to similar problems. Consider the following [GJ83, 2.3.18].

Example 3.7 (Skolem subsets)For each fixedp > 1, the objects to be enumerated are sequenees 0
Op<01< - <-+<0s<r such thatsj —oj_1 =1 modp when 1< i < k. The bivariate GF is of
Riordan type withp(x) = 1/(1—x) andv(x) = x/(1—xP). A simple explicit computation shows that

a [r—s+pg~StPS [r—s+ps
s ™ - .
(pys(r—g)> V2SS
One can also count sequences according to the number of terms of a given size, or with number of terms

of size divisible by a fixed integgy [GJ83, 2.3.12]. In each case the corresponding array is of generalized
Riordan type.

Example 3.8 (distinct subsequences)in [EFHS04] the authors consider the problem of maximizing the
number of distinct subsequences of a string of lemgtiver an alphabet of cardinality. They show in
particular that the maximum number of distinct subsequences of lsmgthitained in a string of length
has generating function L
Fey) = 1—x—xy(1—x9)

(note that there is an error in the displayed formula in [FHS04, Theorem 5]). This is of Riordan type with
O(x) =1/(1—x) andv(x) = X+ x2 +--- +x9.

Thus, for example, if the alphabet{€, A, G, T}, there arg(*') ~ 4" /,/Tr possible subsequences of a
sequence of lengthr2and the maximum number of distinct subsequences of lengtissible is asymp-
totic toca" //Tr with a = 3.610718..,c=1.983592...

Example 3.9 (walks). Walks on the integer lattic&? have often given rise to Riordan arrays in the
literature. Often the resulting arrays are square and various linear transformations have been used to fit
them into the Riordan array framework. We discuss only “genuine” examples here.

All walks start at the origin. Walks of can be represented in the usual way as walk&%of a special
type: the walkng,ny,...,n; corresponding to the wallO,ng), (1,n;),...,(t,n). A positive walk is one
constrained to lie in the upper halfspace oNinWe leta,k denote the number of walks of a certain type
ending at(n, k), which corresponds in the directed case above to walks mitieps ending &, and let
F(Z’W) = En,kankznwk-

A standard example is that of generalized Dyck paths. These are positive wé&lkslefined by a finite
set of allowed jump& = {(ri,s) | 1 <i <k}. The generating function is of Riordan type i#l— mins =
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maxs;, which includes the classical cades- {(1,—1),(1,1)} (Dyck paths)E = {(1,-1),(1,0),(1,1)}
(Motzkin paths), an&E = {(1,-1),(2,0),(1,1)} (Schibder paths) or if; = 1,maxs = 1 (corresponding
to walks onN with steps given by thg).

In this latter case it has also been sholwn [MV00] that the generating function is a Riordan array even
for more general positive walks with an infinite set of negative jumps (so that, for example, we may jump
to 1 from anywhere ilN). Indeed, every proper Riordan array with nonnegative coefficients corresponds
to such a walk.

One way of interpreting weighted walks is in terms of colours, the weight of a jump corresponding to
the number of colours available. This interpretation was giveh in [Spr94, Sec. 4] in the case of the finite
set{—1,0,1} of jumps. Calculations irf [Spr94] show that the GF for positive walks is of Riordan type
with A(t) = at? + bt + ¢, while the GF for unconstrained walks has the sa@vsequence and belongs to
the hitting time subgroup. Thus for example, in the unconstrained case we have

25¢as " (D+by)f NG
(r—9)(=9(r+9)" (D+bs* ,/2n(2ar2 + (r —s)s)

Qs ~

whereD = \/4ac(r2 — ) + b2,

Furthermore, in[[PWQO0], the above was generalized. It was shown that normalizing by taking the
weight of the jump 1 to be 1, and allowing an infinite set of negative jumps, leads to a bijection between
unconstrained coloured walks and the hitting time subgroup. Also the generating function for strictly
positive walks belongs to the associated subgroup. In eachA¢sis the same, being given (t) =
S a,_it', wherea, denotes the weight of the jump

4 Further comments

4.1 Another extension

Ifin (L), we allowto depend also ow, much of the above analysis carries over (though the combinatorial
interpetation may be more complicated). Provided that0, the classification of minimal points remains
the same and the formulg] (5) needs only the obvious modification of chag@int ¢(z,w). However
even ifF has the global forngp/(1—wwv(z)) andF > 0, it need not be the case that 0, as the example
v=—1,¢0= (1—w) ! shows. Note that iF > 0 andv > 0 then necessarilg > 0.

Example 4.1 (Multi-avoidance of polyomino patterns). This simple example is from_[Kit04], where
the generating function
2xy
FIXy) = ——F———
(y) 1-2(x+y—xy)

is presented. The coefficieats countsr x s binary matrices avoiding certain patterns. This example is
clearly a simple shift of a Riordan array, witlx) = (2— 2x) /(1—2x), and the above analysis applies. The
stationary phase equation is quadratic and explicit formulae are readily obtained as above. In particular,
the number of binary square matrices avoiding the given patterns is asymptotically giwen /Rymr
wherec = (v2—1)/25% a =6+4v/2.

Example 4.2 (Substring pattern occurrences).Let o be a fixed word of lengthk from an alphabet of
sized. Theautocorrelation polynomiabf ¢ is the polynomiak(z) of degreed — 1 whosejth coefficient
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is 1 if moving o by j positions to the right creates an overlap and 0 otherwise. Thenlas in [FS05, 111.6],

(w—1)c(z) —w

F =
(W) = A= a3 (w=-Do) —w) + WD X

enumerates words by length and (overlapping) occurrences 8inceF is rational and its denominator

is linear inw, the above analysis will apply. The same is true in the case where the letters have different

probabilities of occurrence.

4.2 Removing hypothesis (%)

As mentioned above, the aperiodicity assumption is not essential. The general case requires us to deal
with, instead of strictly minimal points, so-called finitely minimal and toral points. The asymptotics in
the former case are a trivial extension of the strictly minimal case, and the asymptotics in the toral case
are also easy (but not yet published).

When we drop the condition that coefficients be nonnegative, life becomes much more difficult. Con-
sider the following example.

Example 4.3. Consider the casg(x,y) = 1/(3—3x+x% —y) = V(x)/(1—yv(x)) wherev(x) = 1/(3—
3x+ x?). Sincev vanishes to order 0 and is not polynomial, we expect asymptotics for all possible
directions. These asymptotics can indeed be provided by smooth point analysis, but they are quite different
in character from those we have seen in the nonnegative case.
First, the type of minimal point can vary. It is routine to verify that points of the féxm/v(x)) for
0 < x < 1 are strictly minimal, and these correspond to values/ef (0,1]. However, the asymptotics
in each direction above the diagonal are provided by a pair of complex conjugate finitely minimal points.
Moreover,o?(v;x) = 0 atx = 1 (recall that this cannot happen in the positive case umlisssionomial),
anda,, decays as /3 while the decay is like —1/2 in each other fixed direction. This is an example
of “Airy phenomena” as discussed in [BES$01]. Uniform asymptotics for all directions can indeed be
obtained by detailed analysis of the Fourier-Laplace integral, as shown by Manuel Lladser’s PhD thesis
[LIa03].

Note that by the Maximum Modulus Theorem, a solutioqu@f, z) = r /swill yield a (strictly) minimal
pole of F provided that (uniquely) maximizes$v| on its torus. Ifv > 0 andzis positive real then this later
condition must always be satisfied.vi= 1/u whereu > 0, andzis negative real, then it is also satisfied.
In general, however, determining minimality must be approached on a case-by-case basis.

4.3 Uniform asymptotics near coordinate axes

In the casep= 1, Drmota [Drm94] derived a bivariate asymptotic expansion of the form in Cor¢llary 2.7.
Furthermore he showed that in many cases (those wheais a dominant singularity of square root type)

the expansion is uniform fdt/n € [0,¢€]. It is very likely that a similar result is true for genexaand

more general. However to state and prove such a result naturally within our current framework would
require the analysis of parameter-varying Fourier-Laplace integrals as recently carried out by M. Lladser
[LIa03], and we shall not attempt it here.
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