BELL’S PRIMENESS CRITERION AND THE SIMPLE
LIE SUPERALGEBRAS

MARK C. WILSON

ABSTRACT. We determine all finite-dimensional simple Lie su-
peralgebras L such that U(L) satisfies a primeness criterion due
to Bell. Some open problems related to primeness of enveloping
algebras are listed.

1. INTRODUCTION

This paper gives a complete account of the application of a prime-
ness criterion, introduced in [Bel90], to the enveloping algebras of the
Cartan type finite dimensional simple Lie superalgebras over a field of
characteristic zero. It brings together recent work of the author and
others, in the papers [Wil96], [WPW], [Wil] and [WP]. Combining
these with the results of [Bel90] we obtain the following result.

Theorem. Let L be a finite-dimensional simple Lie superalgebra over
an algebraically closed field of characteristic zero. Then L satisfies
Bell’s criterion (so that U(L) is prime) if and only if L is not of one
of : b(n) for n > 3; W(n) for odd n > 5; S(n) for odd n > 3.

Of the exceptions above, U(b(n)) and U(S(n)) are not semiprime.

Those familiar with the material covered should still skim the in-
troductory sections in order to fix notation. Section 2 introduces the
Cartan type Lie superalgebras, and Section 3 contains the main work.
Section 4 contains some comments and discusses some open problems.
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1.1. Lie superalgebras. For definitions and all background, see [Kac77]
and [Sch79]. There is no standard notation for many constructions; we
follow mostly the notation of [Sch79].

Throughout K denotes an algebraically closed field of characteristic
zero. A Lie superalgebra is a Zy-graded K-vector space L = L, + L_
satisfying certain graded identities similar to those in a Lie algebra.
We say L is consistently Z-graded if L has a Z-grading L = @,,c; L,
as an algebra such that Ly =3, Loy, L =3, Lop11.

The finite-dimensional simple Lie superalgebras over K were clas-
sified in [Kac77]. There are two essentially different kinds of simple
algebras. The classical algebras are those for which L, is reductive, or
alternatively those for which L_ is a completely reducible L,-module.
The others belong to the 4 infinite families of algebras of Cartan type.

1.2. Primeness of enveloping algebras. The enveloping algebra of
a Lie algebra is always a domain and hence prime. The usual proof is
via a “filtered-graded” argument, with the standard (PBW) filtration of
U(L) being used. The direct analogue for Lie superalgebras fails since
the associated graded ring is no longer prime. By using a different
filtration, Allen Bell showed in [Bel90] that if L is a finite-dimensional
Lie superalgebra over a field of characteristic zero, then the primeness of
the universal enveloping algebra U (L) is implied by the nonsingularity
of the symmetric product matriz ([f;, f;]). Here {f1,..., fs} is a basis
for the odd part L_ of L, and the matrix is defined over the polynomial
algebra S(L.). The condition is independent of which basis is chosen
— it simply expresses the nonsingularity of a certain bilinear form.

Bell showed that his result applied to all of the classical simple Lie
superalgebras except those of the family b(n). The enveloping algebra
of this outstanding case was shown not to be prime by a direct argu-
ment. An obvious next step is to consider the simple superalgebras of
Cartan type. In the papers [Wil96], [ WPW], [Wil] and [WP] the author
(with the assistance of G. Pritchard and D.H. Wood) has determined
whether or not Bell’s criterion applies to these algebras. Since the
answer is negative in some cases, and yet no information on whether
Bell’s criterion is necessary for primeness has so far been unearthed,
the primeness or otherwise of the enveloping algebra of certain Cartan
type algebras still remains open.

Note that if E is a subfield of K then L ®g K is a Lie superalgebra
over K which satisfies Bell’s criterion if and only if L does. Thus we
are simultaneously checking Bell’s criterion for all forms of the algebras
considered here.
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2. THE CARTAN TYPE LIE SUPERALGEBRAS

The Cartan type simple (infinite-dimensional) Lie algebras all arise
as subalgebras of the algebra of derivations of a finitely generated poly-
nomial algebra. The analogue of a polynomial algebra in the superal-
gebra case is a Grassmann algebra (both are enveloping algebras of
abelian Lie superalgebras). Since this is finite-dimensional so are all
our Cartan type Lie superalgebras.

Let n > 1 be an integer and let V' be an n-dimensional vector space
over K. The Grassmann algebra A = A(V) is the free anticommuta-
tive associative algebra on V| generated by V' subject to the defining
relations vw + wv = 0 for v,w € V. One can also interpret A as the
universal enveloping algebra of the odd abelian Lie superalgebra V. It
has a consistent Z-grading A = @'_, A, where A, = V7.

Let N ={1,...,n} and fix a basis {v;|i € N} of V. Given a subset
I of N, order I as i; < --- < i, and form the element v; = v;, ---v;, .
The set of all such vy, each I ordered arbitrarily, forms a basis for A,
where we use the convention vy = 1. Thus

dimA, = <n>
r

The standard basis construction for A, that obtained from the PBW
theorem, is to take all monomials v; where I inherits its order from N.
Of course the basis elements corresponding to a given I can differ only
by a factor of 1 no matter which ordering is used.

The anticommutativity of A yields the obvious formula

(1) Vv, — j:U]UJ, [ﬂz]:@,
7o, InJ#0.

2.1. W(n). Take V = K™ with standard basis vy, ..., v, and let W =
W(n) = D(A), the Lie superalgebra of superderivations of A. Then
W is a graded subspace of the graded algebra Endg(A) and multi-
plication for homogeneous elements is given in the usual way by the
supercommutator

[D D ] . D1D2 — D2D1, if D1 or D2 is even,
DR T DDy + DoDy,  if Dy and Dy are odd.
The Z-grading on W is consistent. Here the graded component W,

consists of all superderivations which map V' = Ay into A, ., so we
have
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n—1

W= w,.
r=-—1

Every element of W maps V into A and since it is a superderivation it
is completely determined by its action on the generating subspace V. It
follows that W can be identified with A ® x V* as a vector space. Thus
every element of W can be expressed as Y ; \;0; where 0; is the odd
superderivation d/0v;. In particular for any ordering of the elements
of the subsets I, the set of all v;0;, where 0; = 0/0,,, forms a basis for
W.

The tensor product of bases for A and V* of course provides a basis
for A@x V*. We shall use a different basis in which the 2 tensor factors
are not chosen independently. Let {v1,...,v,} be a basis for V. Then
we form a basis for W, as follows.

For a pair (/,i) with |I| = r 4 1, there are 2 possibilities. If i & I
say that (I,1) is of type (I,r). We order I naturally as a subset of N.
The span of the v;0; thus obtained is denoted WT(l). If i € I then say
that (7,1) is of type (IL,r). We write I = I'U{i} where I" is ordered in
the natural way as a subset of N and we decree that I' < i, so that i
is the last element of I. The span of the v;0; thus obtained is denoted
W@ 1t follows that

dim Ww® = (n—r—l)( Zl>
r

r+1

dimW, = n( " )
r+1

The multiplication formula for odd elements is

(2) [’U[ai,’U]aj] = U[ai(UJ)aj +U18j(v1)6i.

dimW® = (r+1)( " )

Note that it is immediate from this formula that the product is zero
if [INJ|>2orbothi¢Jandj¢I hold.

2.2. S(n) and S(n). Every element of W(n) can be uniquely ex-
pressed as >I ; \;0; where \; € A(n). The kernel of the divergence
mapping Y1 | A;0; — Y, 0;(N;) is a simple subalgebra of W (n) called
S(n), which we often write as simply S.
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S inherits a consistent Z-grading

n—2
S=@ S,

r=—1

A spanning set for each S, is as follows and contains 2 distinct types
of elements. Those basis elements of type (I,r) are all those of the form
v70; with ¢ ¢ I and |I| = r+1. Those of type (IL,r) are of the form v 4h;;
where 7, j ¢ A and |A| = r. Here h;; = v;0; —v,;0;. The type I elements
are all linearly independent, and their span S(!) is independent of the
span S?) of the type II elements.

The type II elements are not independent however, since h;; + hj, =
hir. We reduce the set of type IT elements to a basis for S(? as follows.
For each A with |A| = r, order the complement B = N\ A in the natural
way as a subset of N and let i be the first element of B. Select those
elements of the form v4h;; where i < j € B. These are easily seen to
be independent and span S®. The proof is the same as the proof that
the standard basis for the Lie algebra sl(n) is indeed a basis. In fact,
as the restriction of the isomorphism Wy 22 gl(n) carries Sy onto sl(n),
that situation is covered here. Under this last isomorphism the type
(L,0) basis elements v;0; correspond to the off-diagonal matrix units e;;
and the type (IL,0) basis elements h,; to the diagonal elements e;; —e;;.
We have

dim S = (n—r—l)( " )

r+1
dim S® = (n—r—1)<n>
r
n+1
dim S, = —r—1 :
im S (n—r )<T+1>

When n is even the closely related algebra S (n) is defined as follows.
For -1 <r<n-2,8 =5, Also S ; is spanned by all (1+ vn)0;.
Then S(n) is a simple Lie superalgebra not isomorphic to any S(m).
It does not inherit a consistent Z-grading from W.

2.3. H(n) and H(n). The subspace of S(n) spanned by all superderiva-
tions of the form

D/\ = Z 8,()\)8,,

1EN
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where A € A, is a Lie superalgebra called H = H(n). H inherits a
consistent Z-grading from W and we have

N n—2
H= H..
r=—1
The subalgebra H = H(n) = @"=* H, = [H, H| is a simple Lie
superalgebra.
The homogeneous component H, is isomorphic as a vector space (in

fact as an Hp-module) to A, o via D) — )\,Nand so the derivations
xr = D,,, where ) # 1 C N, form a basis for H. Thus

dier:< " >
r—+ 2

Under the isomorphism Wy = gl(n) the D, ., are mapped to the
standard basis elements ej; — e;; for Hy = so(n).

3. APPLICATION OF BELL’S CRITERION

3.1. Generalities. For most of the classical simple Lie superalgebras,
the weight space decomposition with respect to a Cartan subalgebra of
L, has several nice properties. In particular if A is a weight then so is
—\ and the associated weight spaces have the same dimension. This
fails to hold for the algebras of Cartan type, and so the arguments in
[Bel90] cannot be used.

The methods used below to show nonsingularity of the product ma-
trix are varied. Essentially, we repeatedly combine specializations with
block decompositions. The block decompositions arise sometimes from
algebra gradings and sometimes from decomposition of the associated
graph (see below). All of the Cartan type algebras have Z-gradings
with finite support, which yields a block structure to their product ma-
trices. A further grading is obtained by considering the weight space
decomposition of L considered as an Ly-module.

In every case the weight spaces corresponding to the highest even
weights prove to be crucial. I have not found a satisfactory unified
proof using this approach however, and so this remains a heuristic ar-
gument. The methods for showing singularity are even less systematic.
In the case of S(n) for n odd the zero pattern itself forces the product
matrix to be singular, whereas for W (n) with n odd more subtle (and
interesting) methods are required.
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The following elementary observation is used below. Let M be a
matrix with block form
A B
c 0

where B has more columns than rows. Then M is singular — in fact
every term in the full expansion of the determinant is zero. The proof
of the following proposition is immediate using this observation if we
choose homogeneous bases for L ordered in the obvious way.

Proposition 3.1. Let L = @ | L; be a finite-dimensional Z-graded
Lie superalgebra.
(1) Suppose that m is odd. Then a product matriz for L has the form

L—l,—l L—l,l e e L—l,m
Ly, v Lix ... Limo 0
Ly, —1 0 - 0 0

(a) if dim L, = dim L, whenever a+b = m — 1 then L satisfies
Bell’s criterion if and only if the product submatrices Lqy
for such a and b are nonsingular.

(b) ifdim Ly < dim L,, then L does not satisfy Bell’s criterion.

(2) Suppose that m is even. Then a product matriz for L has the

form
L—l,—l L—l,l C e L—l,m—l
Ly Lip ... Lims Lim
L3 L3y ... Lam3 0
Lypi-1 Lp—ig ... 0 0
Thus if dim L_; +dim L; < dim L,,, then L does not satisfy Bell’s
criterion.

O

Unfortunately the last line of case (2) does not apply to any of the
Cartan type algebras.

Another technique we use is to recast the problem in graph-theoretic
language. Given a symmetric matrix M, there is a naturally associated
graph G(M) defined as follows. G(M) has vertices labelled by the row
indices and an edge from 7 to j if and only if the entry M;; # 0. In
other words, if we replace all nonzero elements of M by 1’s then the
resulting matrix is the adjacency matrix of G(M). Finding a direct sum
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decomposition of M is equivalent in an obvious way to decomposing
G(M) into disjoint subgraphs.

When M results from a product matrix by specialization we shall
say therefore that basis elements x,y are linked if the associated ver-
tices are joined by an edge, i.e. [z,y] # 0. Often our basis elements
are parametrized and we shall say that in this situation the relevant
parameters are linked.

The following technical lemma will prove useful later. Here AAB
denotes the symmetric difference (AU B) \ (AN B).

Lemma 3.2. Let N be a finite set of even size n. Let X = {xg|0 C
S C N} be a set of algebraically independent variables over Zsy. Let r
and s be odd positive integers with r + s = n. Then the matriz with
rows indezed by all x; with |I| = r and all x; with |J| = s, defined by

M, = TIAT, |[ﬂJ| .: 1,
0, otherwise,

is nonsingular over Zo(X).

Proof. The matrix M is square, since it has dimensions (Z) X (7:) Note

that if [/N.J| =1 then [IAJ| = n—2. Thus we may label the variables
occurring in M by their ordered 2-element complements, for example
Y13 = TN\{1,3}-

We now make the specialization which sends y;; to 0 unless j —i =
n/2, and call the n/2 remaining variables z; = y11/, ..., 2,/2. For each
ilet i =i+n/2 (mod n). Note that (i')' =i and z; = zy. The image
of M under this specialization is a matrix whose only possibilities for
nonzero entries are +z; for some i.

We shall obtain a block decomposition of M by decomposing the
graph G(M). If for simplicity we label the vertex corresponding to x;
by I, there is an edge in G joining I to J if and only if [z, z;] = +2;
for some 7. We shall say that in this case I and J are joined by an edge
of colour i.

Fix ¢« € N. It follows easily from the definition of M that there is
an edge of colour ¢ joining I and J if and only if |I| 4+ |J| = n, one
of 7 or ¢ belongs to both I and J and the other belongs to neither.
Furthermore, for a given I # N, there is at most one edge of a given
colour at the vertex I. Also there is at least one edge of some colour
at the vertex I, since for some 7 we have i € [ and i’ & I.

We now obtain the promised block decomposition of M by showing
that the set of colours occurring at a given vertex of G(M) is constant
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on each component. To this end, we first show that vertices distance
2 apart have the same colours. Suppose that I and .J are linked by
an edge of colour i. Then without loss of generality I N.J = {i} and
TuJ = N\ {i'}. Let K be linked to J. If J and K are linked by
an edge of colour j then either {i,7'} = {j, '}, in which case K = I,
or {i,7/} N {j,7'} = 0. In the latter case we can assume J N K = {j}
and JUK = N\ {j'}. Thus ¢ € K since i' € JUK but ¢’ ¢ J. Let
X =Ju{d,7}\{i,j}. Then |X|=|J|, KNX ={i'}, KUX = N\ {i}
and so K and X are linked by an edge of colour 2. Thus every colour
occurring at I also occurs at K, and by symmetry I and K have the
same colours.

It follows that if [ and J are linked by an edge then they have the
same colours, since if an edge of some colour 7 joins I and L, then .J and
L have the same colours and so the colour 7 occurs at J. By induction
on the length of a path joining two vertices, the set of colours occurring
at a vertex is constant on components. This decomposes G(M) into
a union of disjoint subgraphs, each corresponding to a given set of
colours.

Now fix a block corresponding to a given set of colours. This matrix
is such that in every row and column, each variable which is present
occurs exactly once, perhaps with a minus sign. Then specializing all
but one of these variables to zero we obtain a nonsingular monomial
matrix. ]

3.2. W(n). We record here for later use some obvious but useful for-
mulae. Here p(I,4) denotes the position of the integer ¢ in the ordered
set I.

(_1)1+p(l,i)vl\{z_}’ 1€ [,
3 0; =
®) (o) {0, o
vr, (NS Ia
4 0y = .
(4) vidi(vr) {0, i1

(5) (_1)1+p(1’i)vivl\{i} = vr= (—1)|I|_p(1’i)1}]\{i}vi ifi e 1.

3.2.1. n even.

Theorem 3.3. Let n > 4 be even. Then W (n) satisfies Bell’s crite-
rion and hence U(W (n)) is prime.
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Proof. Fix odd r,s with —1 <r,s <n—1and r+ s =n — 2. Each
block W, ; is square:

dmW, = " )= " )=dimW, ifr+s=n—2
r—+1 s+1

so by Proposition 3.1 it suffices to show that each such block is
nonsingular.

We first make the specialization which sends all type (II, n — 2)
variables v;0; to zero. The remaining n variables are xp = v\ k) 0k,
and we specialize these all to 1. Let M denote the resulting matrix; it
suffices to prove that M is nonsingular.

We now calculate explicitly conditions on (1,4) and (., j) which are
equivalent to their being linked under this specialization.

The product in (2) is nonzero in W only if i € J or j € I. Also it is
clear that for the product to remain nonzero under our specialization
it must lie in the span of z; and z;.

First suppose that ¢« = j. The first term on the right side in the odd
product formula (2) remains nonzero under our specialization if and
only if i € J and T U (J \ {i}) = N\ {i}. Since |I| + |J| = n, this
is equivalent to IN.J =0 and TUJ = N. Thus i ¢ I. Similarly, if
the second term remains nonzero then i € I, ¢ € J, IN.J = () and
I'uJ = N. Hence at most one term on the right side of (2) remains
nonzero, and the corresponding entry equals +1.

Now suppose that i # j. The first term in (2) remains nonzero if
and only if 7 € Jand T U (J\ {i}) = N\ {j}. This is equivalent to the
conditions I NJ = {i}, TUJ = N\ {j}. Similarly the second term
remains nonzero if and only if j € I, INJ = {j}, TUJ = N\ {i}.
Note that again both terms cannot remain nonzero simultaneously and
so the product in (2) specializes to 0 or £1.

Thus (/,i) and (J,j) are linked if and only if exactly one of the
following conditions is satisfied:

(1) iel,j ¢ J I\{i} and JU{j} are mutually complementary in N

(2) i¢ 1,5 € J,1TU{i} and J\{j} are mutually complementary in N.

In each case the corresponding entry in M is just 1.

We now determine the components of G(M) and thereby obtain a
further block decomposition.

If r = —1 then all the (7,) are of type I, and if r = n — 1 all are of
type II. Otherwise both types of variables occur. Now variables of the
same type are not linked, and so for 1 < r < n — 3 the matrix M is,
up to a reordering of rows and columns, the direct sum of two blocks.
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Furthermore these blocks are square because

dim WO = (n —r — 1)<ri1> = (s+1)<sil> = dim W@,

The symmetry of the product matrix means that we need only consider
the blocks formed by the product of type I by type II variables, so
we assume —1 < r < n — 3. We show that each such block M is
nonsingular, from which the theorem follows.

If (I,7) is of type (I,r) then by the above A = I' U {i} has size r + 2,
and B = N \ A has size s. Conversely, given mutually complementary
A and B with respective sizes r+ 2 and s, let ¢ and j be elements of A.
Then (A\{i},7) and (BU{j},j) are linked and of type (I,r) and (IL,s)
respectively. It follows that each component of G(M) consists of all the
(I,7) and (J,j) determined by a given A. Thus after reordering rows
and columns if necessary, each M; can be taken to be block diagonal,
where the blocks have size r + 2 and each block has every entry either
1or —1.

Now we fix such a diagonal block X of size r + 2. It suffices to prove
that X is nonsingular. We first compute the entries of X.

For each A, [va\;0;, vpv;i0;] = —va\;vp0;, whereas for j # i we have
[v4\i0i, vpV;0j] = vBVA\iO; = Va\;up0;. Thus by reordering the rows or
columns of X and multiplying columns or rows by -1 if necessary, we
can arrange so that the only -1 entries occur along the leading diagonal
and the other entries are all 1, i.e. X can be taken to be

-1 1 ... 1

Now it is well known (and straightforward to show) that such a matrix
is nonsingular if its dimension is not 2 x 2. Since r # 0 (it is odd), X
is nonsingular, and this concludes the proof. O

3.2.2. n odd. Case (2) of Proposition 3.1 applies here. Unfortunately
since dimW_; +dim W; = n + n?(n — 1)/2 > n? = dim W,,_; the last
sentence there does not apply. We shall first estimate the rank of each
block W, s with r + s =n — 1. Note that necessarily 1 <r,s <n — 2.

The component W,,_; has basis consisting of all z, = vy0, with
k € N, so every nonzero entry in W, , is a linear combination of the zj.

Let I, J C N with |I| =r+1,|J| = n—r. We now obtain conditions
for (I,7) and (J,7) to be linked. It follows from (2) that a necessary
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condition for linking is that IN.J = {i} or I'NJ = {j}. These two
possibilities are in fact mutually exclusive, since

(6) [vr0;,vs0;] =0  if |I] and |J| are even and I N J = {i}.
To see this, we compute:

0105, 050] = —vron@d; — vovn i O;
= (—'I}I\{i}vivj\{i} - UJ\{i}UiUI\{i}) 8Z

(vngyongpvn = vngyvn g vi) 9
= 0.

In summary, (I,4) and (.J,j) are linked if and only if i # j and either
INnJ={i} or INnJ={j}. The corresponding entry in M equals £z
for some k € N.

We analyze the 2 types of variables separately.

If (1,1) is of type (I,r), then (I,7) links to (J, j) if and only if (.J, j) is
of type (IL,s), and I'N.J = {j}. For each j € I there is exactly one such
J and in fact we have v;0; = vy\;v;0; by our basis convention. Thus
the corresponding entry in the product matrix is vy ;v;0;. Note that
this is independent of J and j and so a row indexed by such a pair (7, )
has precisely || nonzero entries all of which are the same. Furthermore
for a fixed I the nonzero entries occur in the same columns for all i.

If (I,1) is of type (IL,r) then there are 3 subcases.

(i)I NnJ = {j} We have Ujaj = UN\]Ujaj and U]ai = U]\{Z'}Uiai and so

the entry in the product matrix is vz rvp ;3 2:0;-

(ii)INJ = {i},j € J. Here v;0; = vy\sv;0; and the corresponding en-
try is ’UN\]UJ\{]'}Ujaj.

(iii)In J = {i},j ¢ J. Here the corresponding entry is v\ v;0;.
We now estimate the rank of each block W, ;.

Lemma 3.4. The rank of W, is at most (ZLI)

Proof. Fix A C N with |A| = r. For afixed k € B = N\ A, consider the
submatrix Sy, of W, ; formed by all rows indexed by pairs (AU{k}, i) as
© ranges over B. By the analysis above, the columns which correspond
to the nonzero entries in Sy are indexed by pairs of the 4 types
(1) (B,j).j € A
2) (B.k)
(3) (B,j),j € B\ {k}
(4) (B\{k}U{j}.j),j € A

Let F be the function field = K(z,...,2,). The rows where i # k
span a 1-dimensional F-subspace. Thus using suitable row operations
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over F' we may assume that such rows contain only 1’s and 0’s. Fur-
thermore the 1’s occur precisely in the columns of the 2nd and 4th
types above.

We now compute the remaining entries of Sy, namely those in the row
with i = k. For the columns of the first type, case (iii) above applies and
the entry is v4vpd;. This is equal to €(A)z; where €(A) = £1. For the
column of the second type the entry is of course zero by equation (6).
For the columns of the third type, case (ii) above applies and the entry
is v4vp\(j)v;0;. This can be rewritten as (—1)/BI"?(B9y 050, and this
is equal to (—1)PBDy, vzd; since |B] = n—1—1 is even. We can write
this as (A, j)z; where (A4, j) = £1. Finally for columns of the fourth
type, case (i) applies. The corresponding entry is vp\ (x}vavr0;. This
simplifies to v4vrvpE\ (k1 Or by anticommutativity and this can further
be rewritten as (—1)'*P(Fky, 0p0;. In terms of the notation of the
previous case this is equal to —e(A, k)z.

Thus S; may be represented by the following table. Here to save
space we write B, = B\ {k} and By; = (B \ {k}) U {j}.

‘ (37])7]614 ‘ (Bak) ‘ (B,]),]GBk ‘ (Bkjaj)ajeA
i=k: €(A)z; 0 €(A,7)z; —e(A, k)zy,
itk 0 1 0 1

The first row of the table represents one row of S, whereas the sec-
ond row represents s rows. Similarly, each column of the table may
represent many columns of S.

By adding €(A, k)z, times any of the rows with i # k to the row
with ¢ = k& we convert S; to a matrix which may be represented by the
following table.

‘ (B,j),jGA ‘ (B,]),]EB ‘ (Bkjaj)ajEA
i=k: €(A)z; €(A,7)z; 0

In particular, note that if we keep A fixed and perform the above
procedure for each £ € B in turn, all the rows with + = k£ are now
identical, so form a rank 1 submatrix.

Now allow A to vary. Each row of W, which is indexed by some
(1,i) of type (IL,r) appears precisely once in the above construction.
Thus the total contribution to the rank of W, ; by such rows is at most

equal to the number of A, namely (:) The total contribution to the
rank by rows of type (I,r) is at most equal to (r$1)' Thus W, s has

rank at most (:f) + (TL) = (:fj:ll) O
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The main result follows directly:

Theorem 3.5. If n is odd, W(n) satisfies Bell’s criterion only for
n=3.

Proof. The case n = 1 is trivial and the associated 1 x 1 product matrix
is zero. Now assume that n > 3. The submatrix W.,_ (the rightmost
“column” of the product matrix) consists of 2 nonzero blocks and has
dimensions (n2"~') x n?. It follows from Lemma 3.4 that the rank of
W. n—2 is at most n+ (”;rl) = n(n+3)/2. Thus the rank of the product
matrix for W(n) is at most n2" ' —n?+n(n+3)/2 = n2"'—n(n-3)/2.
For n > 5 this is strictly less than n2" .

When n = 3 the bound above does not show singularity since it
equals the size of the product matrix. In fact it is easy to show (by

the row operations above) that in this case the matrix is nonsingular.
This yields the result. O

3.3. S(n) and S(n). Proposition 3.1 does not apply here. The highest
degree occurring is n — 2 and yet if r + s = n — 2 then dim S, =
(s + 1)(2111) and dim Sy, = (r + 1)(23), these two dimensions being
unequal in general. Thus even to obtain a first decomposition we need

to work harder.

We shall not need the full details of how to multiply odd basis ele-
ments, but we now treat the necessary cases.

Using equation (2) we see that for the product of odd type I elements
we have

oo\ 0y, ieJandj gl
+ 0 e Tandid ]
(7) (0105, 0,0 = { — (TUD\I} j€landi ¢
U0\ i) hig ieJandjel
0, i¢g Jand j & 1.

The third case follows from the following computation, where I’ =

INA{j}, =T\ {i}-
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[U]ai, Ujaj] = (—1)1+”(J’i)1;[vj:8j + (—1)1+p(1’j)vjvpai
+(_1)1+p(17j)+|1\fp(J,i)JrIII*lUJ,UI,UZ.ai
— (_1)p(17j)+|1\7p(J,i)+|1| (Vv pv;0) — vprvpv; 0]
— (—1)”(I’j)+”(J’i)+lvlfvJ:hij
The last two equalities use the fact that |I| and |.J| are even.
The product of a type I and a type II element leads to several cases,
which can be summarized below.

(8)

0, i@ BU{k,1}, [{k, 1y N 1] € {0,2}
j:U[UBai, ZgBU{k,l},|{]€,l}ﬂ]| =1
:t'UI'UB\{i}hkla ZGB?Hkal}ﬂ“ € {072}

[vr0;, vhi] = . . o
Fvrvp iy g, i€ B,j ¢ B, {i,j} = {k, 1}
j:UIUBaia {7’7]} = {ka l}a] ¢ I
k:*:27)]1)381', {Z,]} = {k‘, l},] el

The computations are straightforward, using the fact that I is even
and |B] is odd. We give details for the 4th and 6th cases. For the first
of these, suppose without loss of generality that k € [ and [ ¢ I. Then
[vr0;, vphy] = (_1)1+p(3’i)UIUB\{z‘}hkl + vpvr0;

(=) PV g (i) + (1) PPE D 0000,
( )1+p UIUB\{Z}[UZa - Ulal]
(=

)1+p (Bid UIUB\{i}hil-

For the second suppose without loss of generality that : = k£ and
[ €l. Then

[v10;, vhr] = [vr0;, vB(vi0; — vi0))]
= (—1)‘3‘1}11}3&- — ’UB’U[ai
= —21;[1)3@.

For a pair of type II elements we note that h;;(vg) is either +vp if
precisely one of 4, j belongs to B, and zero otherwise. Since [h;;, hy] = 0
the product [vahij, vphy) is equal to vahi;(vp)he + vehg(ve)h;; and
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hence lies in the span of vavgh;; and vavghy. Thus the subspace
S@ =3, 5? is a subalgebra.

The multiplication in S(n) differs little from that in S(n). If v,9; has
degree at least 1 then |JNN| > 2 and so [(1 +vn)0;, v,0;] = [0;, v,0;],
while [(]. + UN)ai, (]. + UN)aj] == ai(UN)aj + aj(UN)ai. Thus the only
difference in a product matrix for S(n) and one for S(n) is in the
submatrix formed by the products of elements of degree -1.

3.3.1. n even.

Theorem 3.6. Let n > 4 be even. Then S(n) and S(n) satisfy Bell’s
criterion.

Proof. Write n. = 2m. We first treat the case of S(2m) as the other
case follows quickly from this. We make the specialization which sets
all even type I1 variables to zero.

By the above the product of 2 type Il elements is in the span of
type I elements and hence specializes to zero.

Type I elements (1, i) and (.J, j) are linked if and only if if and only
if ||+ |J] <2m, INJ =0 and either : € J or j € I.

The product of a type I element v;0; and a type II element vghy,
remains nonzero only if |I| + |B| < 2m — 1 and I N B = ().

We obtain a (nonobvious) block decomposition of a product matrix
M as follows. For each a with 0 < a < m — 1 define M, to be the span
of all variables of type (I,2a — 1) and all variables of type (II,2a + 1).
It follows from the linking conditions above that [M,, My] = 0 unless
a+ b <m —1. Thus M has the reverse block upper triangular form

Moo Moy -+ Mom—2 Moy
Mo My - M ;o 0
: : : : 0
My 0 .- 0 0

Furthermore the blocks M,, on the reverse diagonal, i.e. the ones
with a +b =m — 1, are square:
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dim M, = (ZZ‘) (2m — 2a) + (25T 1) (2m — 2a — 2)
- (ZZ‘) (2b+2) + (25 1) (2b)

(2m)!

Thus it suffices to show that all such blocks M,, with a +b =m — 1
are nonsingular. Note that the (—1,—1) product submatrix does not
occur on the reverse diagonal and so we will dispose of both S and S
with the same argument.

Now fix such a a and b and consider the block M,,. Clearly M,;, has
a 2 x 2 block form (% ¥) corresponding to the division of M, and M,
into type I and type II variables.

We shall compute the rank of M,, in stages. First note that in Y
and Z the only nonzero entries occur when the last case of equation (8)
holds. This is because |B| + |I| = 2m — 1 and B and I are disjoint,
so one of k,l must belong to I. In fact if we define z; = vy ;3 0; for
1 < i < 2m then the only nonzero entries in Y and Z have the form
+22; for some i. Furthermore the linking conditions can be expressed
as follows. Choose a subset A of N of size 2k + 1. Then (A \ {i},4) is
linked to (B, {k,l}) if and only if ANB =0, AUB = N and i € {k,I}.

We first make the further specialization of all z; — 1/2. Then the
nonzero entries of Y and Z are all 1. Note that the variables occurring
in X are all algebraically independent of the z; and so X remains
unchanged by this specialization. Furthermore the linking conditions
are unchanged.

From now on we work modulo 2, i.e. we apply the natural homomor-
phism Z[L ] — Zs|L] to M. It suffices to show that the resulting ma-
trix is nonsingular. In order to avoid excessive notation we use X,Y, 7
to denote their images under this and all subsequent specializations.

First we compute the rank of Y. The linking conditions above show
that the rows may be indexed by subsets A of NV of size 2a + 1. The
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rows corresponding to a given A have nonzero entries only in columns
indexed by (B, {i,j}) where AU B = N and 7,5 € A. Thus the set
of rows indexed by a given Ay is independent of all rows indexed by
all other subsets A since their nonzero entries occur in disjoint sets of
columns. It therefore suffices to compute the rank of each submatrix
Y4 formed by all rows corresponding to a given A.

Fix such a subset A. Now for a given row (A \ {i}, i), there are two
possibilities. If i is not the first element of A then there is a nonzero
entry in column (B, {k,[}) if and only if i = [, so there is precisely one
nonzero entry in this row. If 7 is the first element of A then there are
nonzero entries in all columns (B, {i,[}). Thus by reordering columns
we can bring Y, to the form

10 -- 000 - 0
o1 -- 0200 - 0
00 -+ 100 -+ 0
11 -+ 100 --- 0

Adding all rows except the last to the last row we convert Y, to
(29). It follows that the rank of Y, is equal to |A| — 1 = 2a and hence

that the rank of Y equals (22’;’1) (2a).

In fact the row operations above convert M to the form

Q I
R 0
Z 0

Here R is the (227;’:1) X (Z(QLTI)(% + 1) matrix consisting of all rows

(A\{i}, ) with ¢ the first element of A. Appropriate column operations
then yield

0 I
R 0
Z 0
Now the rank of 7 is (2§T1)(2b) by the same computation as for Y. In

this case the analogous column operations followed by row operations
convert M to

0 0 I
0 R O
I 0 0

;- 2m 2m . . . .
Here R’ is a (2a+1) X (2b+1) matrix which is therefore square since

2a 4+ 1+ 2b+ 1 = 2m. Its rows are indexed by subsets A of IV of size
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2a + 1 and its columns by subsets B of N of the complementary size
2b+ 1.

It remains to compute the rank of R, and first we need to compute
the entries of R'. The entry R',; with row index A and column index
B is in the row indexed by (A \ {i1},i1) and column indexed by (B '\
{j1}, j1) where iy, j; are respectively the first elements of A and B. It
can be computed by applying the above row and column operations
to the submatrix Syp formed by all the row indices (A \ {i},4) and
column indices (B \ {j},7). The entry R/, is in fact the sum of all
nonzero entries in Syp. We now compute this submatrix S,p.

Now (A \ {i},7) links to (B \ {j},7) if and only if AN B = {i} or
AN B = {j}, the two possibilities being exclusive. Thus if [ANB| # 1
then Syp =0 and so R,z = 0.

One the other hand, if |[AN B| =1, let « € AN B. Then the linking
conditions show that (A\ {i},i) and (B\ {j}, ) are linked if and only
if precisely one of 7 and j equals «, and the corresponding entry in M,
is £vAuB\{a,s) Where 3 is the one of ¢ and j not equal to a. Thus R/;p
has the form x4aB = Y gcaap VaaB\(8105-

In fact the distinct variables x ga g are algebraically independent over
K. To see this, note that since the v;0; are all algebraically independent
it suffices to show that the set AAB is determined by any one of the
pairs (AAB \ {3}, 3), and this is obvious.

The conditions of Lemma 3.2 apply with a slight change in notation
and the result follows. O

3.3.2. n odd. Case (1)(i) of Proposition 3.1 applies since dimS_; =
n <n(n+1)/2 =dim.S,_s, and so Bell’s criterion is not satisfied here.
Here the zero pattern of the matrix was sufficient to make it singular.
As noted in [Bel90], the same is true of the classical algebras b(n).
Since S(3) =2 b(3) perhaps this is not surprising.

3.4. H(n) and H(n). It is known that the multiplication in H satisfies
[Dy, Dy] = £Dy1,)

where {f, g} = 3>;0:(f)0:(g). Note that this differs slightly from the
notation in [Kac77], and that the exact multiplication formula is not
needed for our purposes.

It follows from (1) above that 0;(vr)0;(vy) = 0 unless I N .J = {i},
whence

taay, if|IINJT| =1,
(9) [QTI,ZU]] _ { IAJT | |

0, otherwise
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where A denotes the symmetric difference (Boolean sum). Note that
this implies that for a given A, I C N, the equation [z, 2] = £ 4 has
at most one solution for .J. Furthermore this solution exists precisely
when I  Aand A Z I.

3.4.1. n even.

Theorem 3.7. Let n > 4 be an even integer. Then H(n) and H(n)
satisfy Bell’s criterion.

Proof. Since [ﬁ, @ = H = [H, H], it follows that the product matrices
for both H and H may be assumed to be the same. Case (1)(i) of
Proposition 3.1 applies since the highest degree occurring in H(n) is

n — 3 and

dimH,z( " >:< " >:dimHs ifr+s=n—4.

r 42 s+2
Fix such a reverse diagonal block H, ;. The conditions of Lemma 3.2
are satisfied, with the same notation, and the result follows. O

3.4.2. n odd. This case reduces rather easily to the previous one.

Theorem 3.8. Let n > 5 be odd. Then H(n) and H(n) satisfy Bell’s
criterion.

Proof. Let M, M be the product matrices for H(n), ﬁ(n) respectively.
The top degree n — 2 occurring in ﬁ(n) is odd, so that M is obtained
from M by adding another row and column. Since this procedure either
leaves the rank unchanged or increases the rank by 1, it suffices to show
that M is nonsingular.

We decompose M into 4 blocks as follows. Group the rows indexed
by those I for which n € I together and follow them by the rows for
which n ¢ I. Do the same for the columns. This gives an obvious 2 x 2
block structure. Make the specialization which sets all even z; with
n € I to zero. Then M specializes to a matrix of the form (¥ ). It
suffices to show that X and Y are nonsingular.

Now Y has entries which are the pairwise products of the x; with
I C{1,...,n — 1} and hence is just a product matrix for H(n — 1).
Thus Y is nonsingular by Theorem 3.7. Choose I with n € I. Since
I & N\ {n} there is precisely one J with n € J for which [z, z;] =
+2 3\ n}. Thus in X every row and column has precisely one occurrence
of £ 3\ (n}, s0 specializing to zero all variables except this one yields a
nonsingular monomial matrix. U
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4. COMMENTS

The author has written and used Maple code which generates the
product matrices for the Cartan type algebras. It can be accessed at
http://www.math.auckland.ac.nz/“wilson/bellcrit.html.

A natural question is: for the simple Lie superalgebras which do not
satisfy Bell’s criterion, which have (semi)prime enveloping algebras?
It was shown in [KK96] that U(b(n)) is not semiprime but it has a
unique minimal prime ideal. A similar argument (see [WP]) shows
that U(S(n)) is not semiprime. However the case of W (n) for odd
n > 5 seems much harder.

The following is a list of open questions related to the the subject of
this paper:

e If U(L) is prime, and L is finite-dimensional, must L satisfy Bell’s
criterion?
Is U(W(n)) prime for odd n > 57
Is U(L) graded prime if and only if it is prime?
Is U(L) prime if and only if it is semiprime?
If L is finite-dimensional, does U(L) always have a unique mini-
mal prime ideal?
e Does U(S(n)) have a unique minimal prime ideal?
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