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Abstract

Let K be a field of characteristic p > 0, let L be a restricted Lie
algebra and let R be an associative K-algebra. It is shown that the var-
ious constructions in the literature of crossed product of R with u(L)
are equivalent. We calculate explicit formulae relating the parame-
ters involved and obtain a formula which hints at a noncommutative
version of the Bell polynomials.

Crossed products of group algebras have played an important part in the
study of group algebras and Galois theory of rings, while considerable use
has also been made of the analogous constructions for universal enveloping
algebras of Lie algebras. The more general notion of crossed product of a Hopf
algebra, which subsumes the above cases, was introduced in full generality in
[3] and independently in [2]. The object of this paper is to clarify the special
case in which the Hopf algebra in question is the restricted enveloping algebra
of a restricted Lie algebra, as was done for ordinary enveloping algebras in
5].

We show that three constructions so far given in the literature define the
same object up to isomorphism. In order to establish this it is necessary
to compute explicit formulae relating the parameters which influence the
twisting of the p-mapping. Specializing to the case where the coefficient ring
is commutative we obtain a formula which deserves further clarification.



1 Definitions

Throughout this paper K is a field of characteristic p > 0 and L a restricted
Lie algebra. At least three definitions of crossed product by a restricted
enveloping algebra have been given in the literature. First, there is the
construction found in, for example, the paper [1]. Let R be an associative
K-algebra and L a restricted Lie K-algebra. Fix a vector space embedding
~: L — u(L) and a linear map 9: L — Deryg R. Then S = R %,y u(L) is
an associative K-algebra with the K-linear structure of R @ u(L) such that
multiplication extends that of R and

(i) rz =xr + 0(x)(r)
(ii) 2y — gz = [o,y] + t(z,y)

(iii) 2 = 2l + ¢'(x)

for all » € R, all x,y € L, and some functions t: L Xx L — R and t': L — R.

Associativity of S is equivalent to certain rather complicated relations
between the functions t,t and 0; however as remarked in [1], associativity
is the more natural condition. The difficulty stems from the fact that an
elementary description of restricted Lie algebra cocycles, in terms of func-
tional equations on L, is considerably more complex than in the ordinary Lie
algebra case. For now we note only that if either ¢ or t' is zero then rather
simple conditions on the other may be deduced. For example, consider the
case 0 = 0, in which case S is called a twisted restricted enveloping algebra.
If £ = 0 then a straightforward computation shows that for associativity it is
necessary and sufficient that ¢’ be a p-semilinear map, whereas if ¢ = 0 then
one checks easily that it is necessary and sufficient that ¢t be a Lie cocycle.

Given the functions ¢, ', uniqueness is clear from this definition, but ex-
istence has not been shown. The second definition, completely analogous
to that in [4], has the advantage that existence, as well as associativity,
is clear. Denote the multiplicative identity of R by ¢, and let R~ denote
R with its induced restricted Lie algebra structure. Given an extension
0 - R —- M — L — 0 of restricted Lie K-algebras, form the usual
restricted enveloping algebra u(M). Denoting the multiplication in u(M) by
X, we define the crossed product to be S = u(M)/I, where I is the ideal gen-
erated by « — 1 and all ryry —ry X 1y for r, 79 € R. Denote this construction
by S = R x. u(L) , where e is the extension above.



The third definition is obtained by specializing the general construction
of Doi and Takeuchi, Blattner, Cohen and Montgomery. We give the general
definition here. Let H be a Hopf algebra and R an algebra which is weakly
acted on by H. That is, there is a linear map H®R — R given by h@r — h-r,
such that h-1 =¢€(h)1,h-(rs) =3 (hy-r)(hy-s)and 1-h =h, forall h € H
and r, s € R. Given an invertible map o: H @ H — R, define R#,H to be
the algebra with the additive structure of R @ H and multiplication

(1> (7" ® h)(S (%) k) = Z’f‘(hl - S)O'(hg, kl) & h3]€2

for all A,k € H and all r,s € R.

It is known (see [6]) that the crossed product is associative with identity
1 ® 1 if and only if ¢ is a normalized Hopf cocycle and R satisfies a twisted
H-module condition.

We interpret the generalities above in the specific case H = u(L). The
comultiplication in u(L) is of course given by A(z) =z @1+ 1@« for x € L.
Then (1) yields

(2) loz)(leoy)=12zy+o(xr,y) @1 for all z,y € L

and

(3)
rol(lor)=1ex)(rel)+(x-rel forallr € R, xz € L.

The condition that o be a 2-cocycle is equivalent to the identity:
(4) o(zy,z) =x-0(y,2) +o(x,yz) for all ,y,z € L.

The normalization condition yields o(1,1) =1 and o(x,1) =0 = o(1, z) for
all  in the augmentation ideal of u(L).

Theorem 1.1. Let R be an algebra and L a restricted Lie algebra. Then
the following are equivalent for an algebra S:

(1) S is associative and S = R ¢y u(L) for some t,t'
(2) S= R x.u(L) for some extension e of R~ by L

(3) S = R#,u(L) with o a normalized cocycle and R a twisted u(L)-module.



Proof. The proof is a modification of [5, Theorem 2.8] and is only sketched.
The main difference is in the implication (3) = (1), which we prove in
Section 2.1.

Assume (1). Then clearly the subspace M = L + R -1 is a restricted Lie
algebra extension of R~ by L. As in [5] we have an epimorphism u(M) —
R % u(L) and the kernel of this map is easily seen to be the ideal I in the
definition of R X, u(L) by using Jacobson’s theorem (analogue of the PBW
theorem for restricted Lie algebras). Hence (1) = (2).

Assume (2). Then the restricted Lie extension 0 - R~ — M — L — 0
yields a cleft extension u(R~) C u(M) of Hopf algebras and hence a crossed
product u(M) = u(R™)#u(L). Since I is generated by its intersection with
R the cocycle o' yields a cocycle o : u(L) x u(L) — R and it follows that
R x.u(L) 2 R#,u(L). Thus (2) = (3).

Assume (3). Since S is associative we need only verify the properties (i)
- (iii) of the definition of R x u(L). Let T = 1 ® x for x € L. Property
(1) has already been seen to hold in equation (3), and we have 7y — gz =
[z, y] + o(z,y) — o(y, x) for all 2,y € L, which gives (ii). For (iii) we need to
compute ¥ — zlPl and show this belongs to R @ 1. This is done in the next
section (see Theorem 2.1 there). Thus (3) = (1). O

2 Explicit calculations

The main point of this section is to complete the proof of Theorem 1.1 by
showing that (1®z)? —(1®a?) € R@1. We do this by computing an explicit
formula for the twisting function ¢ in terms of the cocycle o.

In the case of U(L) as treated in [5] it was noted that given a 2-cocycle o
for U(L), then the Lie cocycle 7 associated with the extension of R~ by L is
simply given by 7(z,y) = o(z,y) — o(y, x) and that nothing further need be
said in this direction. In the other direction it was shown with more effort
that for U(L) the values of ¢ can be computed inductively from the action of
L on R and the values of 7 on L. In our situation the relation between o and
t' is not obvious, though it is clear from above that t(x,y) = o(x,y) —o(y, ).
We calculate a formula for ¢’ in terms of o below. As for recapturing o from
6,t and t', a close examination of Montgomery’s paper cited above shows
that the argument there will carry over to the restricted case with only minor
changes, and we do not include it here.

I would like to thank Shaun Cooper for helpful conversations regarding



the material of this section, in particular subsection 2.2.

2.1 General case

We first set up some notation. Let m be a positive integer. The composition
(ordered partition) corresponding to the sum m = p; + - -- + p, of positive
integers will be written as an ordered multiset P = {py,...,p.}, and we write
1P| =

We introduce the abbreviation o(n) for o(z" !, x). We also define, for a
composition P = {py,...,p.},

o(P)=o(p1)---a(p,).

Here we use the usual convention that if » = 0 then o(P) = 1.

Theorem 2.1. Let R#,u(L) with o a 2-cocycle for w(L). Then for all
r €L,

1oz =(10aP)+ lzn( %}:%;1)0@)]@1,

P k=1

where the sum is over all compositions P of p.

Proof. The normalization condition implies that (1) = 0. Also equation (1)
yields

(5)

xﬂx—x”l—i-z:(k) (j—k+1)2F  forallz € Landall j > 0.
k=0

Clearly 7" = E?:o cnjﬁ for some ¢,; € K. We first obtain a recurrence
relation for the coefficients c,;, by using (5) compare " ' and z":

Tl o= ch,mﬁig
J
= ch 1](:c9+1+2<‘]1> (j—k+1)x )
n—1ln—1 -
= chl xﬂ+1+22<) (j —k+ 1)zt

k=0 5=k



Comparing coefficients gives the desired relation, using the convention
that c,; < 0if j <O0:

(6)
Cnj = Cn—1,j— 1+Z<)cnuaz—|—1—]) ifn>0and 0 <j <n.

Note that this relation determines the c,; completely once the value cpp = 1
is specified.
On examining small values of n one is led to conjecture the formula

(7) Cnj = Z a;p O'(P

|Pl=n—j

for some ajp € K. Here the sum is over all compositions P of n — j.
Equation (7) clearly holds for n = 0. We substitute into the recurrence
relation (6). The right hand side is equal to

> a;_1po(P)+ Z (;) > aigo(Q)a(i+1—j).

|P|=(n—-1)-(—-1) |Q|=n—1—i

The first sum is over compositions of n — 7 and so is the second since
o(Q)o(i +1—j) has the form o(P) with |P| = n — j. Thus the expression
(7) for the c,; is correct. We now solve for the a;p. Formally comparing
coefficients of o(P) we obtain the relation

. ) if0<j<n.
J

(8) ajp = aj-1,p+ ap, 145 P (

Note that this relation determines the a;p uniquely once the value ao(y = 1
is specified. Here of course we have ajp = 0 if j < 0. Note also that since
o(1) = 0, the sum can be taken only over all compositions of n — j each of
whose parts is at least 2. Finally, observe that if a;p satisty this formula then
the corresponding c,; certainly satisfy (6).

On close examination one sees the pattern ajp = (”' ‘)agp and this

combined with successive applications of equation (8), using the fact that
> i Pk = | P|, leads us to the formula



F+ PN 14 (Zhipi— 1
RG]
|P| k=1 Pk — 1
This holds for the initial condition and so it suffices to check that equation

8) is satisfied. For a composition P = {pq,...,p,} we write
(
s k
F o —1
I, = [] (E”p )
ket \ Pe =1

Substituting our proposed values into the right side of (8) we obtain

j—1+|P|> (pr—1+j><j—1+lP|>
II, + ] II,_
( 1P| j |P| = p, '

ro, . 1+] J 14| P
B (J—1+|P| |P\ pr>
| P|

)- L
::G—1+wg 1+3@1+PﬂmnmP%wnr
)

T,

1P| 3 = DUIP| = p)!(G = 1+ p)!(|P] = 1)!

_ [fi-1+1Pl ,7—1+|P| 11
_ [Pl-1 '
j+|P|>

= I1,

(v

1P|
which equals the left side of (8) with our proposed a;p.
It follows that if n = p, the characteristic of K, then ajp = 0 in R for
0 <j<p,and j=pimplies a;p = 1. The result follows. O

An explicit example: with p =7 we have

77 = 2+ o028 2) + 60(2*, 2)o(z, x) + 150 (x, z)o(a*, )
+ 150(2® 2)o(2?, x) + 200 (2%, x)o (2, 1)
+ 24o(2® x)o(z,2)? + 360(x, v)o(2?, 2)o(x, v) + 450 (v, 2) 0 (2%, 7).

2.2 R commutative

In this subsection we show that a much simpler formula for ¢ can be derived
in the special case when R is commutative.



Note that in the above example we have 6 + 15 = 21,15 + 20 = 35 and
24 4+ 36 4+ 45 = 105 and these are all divisible by 7. This is no accident as we
show below.

Theorem 2.2. Let S = R#,u(L) with R commutative. Then for all x € L,
1o2)P =12+ o(aP " ).

Proof. We proceed as in the proof of Theorem 2.1 with a few notational
modifications.

Recall that a partition is a composition {p1,...,p.} in which p; < py <
-++ < p,. There is a natural action of the symmetric group S, on the set of
compositions of length r, given by 7({p1,...,p,}) = {p-1),---, P+t }. Each
orbit has a unique representative which is a partition.

Since R is commutative, all the values of ¢ commute. Thus in equation
(7) the sum Y p a;p o(P) can be rewritten as 3¢ bjg 0(Q), where the second
sum is over all partitions of n — j. For each partition @, the coefficient b;q
is equal to the sum > p a;p where P runs over all compositions in the orbit
of Q.

The recurrence relation we derive is more complicated:

(g —1+7
(9) big="Dbj-10+ ) ( j )bqk—m,czk
k=1

where () denotes the partition obtained by deleting one occurrence of ¢
from Q.

For a partition Q = {q1,q1, "+ ,q1,q2,"** , G2, , ¢} we shall write ey
for the multiplicity of ¢,. By trial and error one conjectures that

(o

where w(Q) = (ql!)"‘l~~~((|]?!|)!5T61!---er!' Since this is clear for the initial condition,
we again proceed by showing that the putative b;¢ satisfy the recurrence rela-
tion (9). We use the easily established formula w(Q;) = w(Q)Y2L1) (4 e,

QI
The right side of (9) then equals



w(Q) (j o 'Q') Y (qk g ”) ('%]_I;j)w@k)
R ES e D) Sy

S [ G B =2

Q| new =
B [ j—l+|@|> (|Q|—1+j)!]
= vl@) ( o ) T

- ol 1) (1)

-l

and this equals the left side of (9) with the proposed b;q.

If n is equal to the characteristic p of K, then for 1 < j < p—1 the factor
(‘]”J"‘Q‘) (é’) = 0in K. If j = 0 then unless @ = {p} the factor w(Q) is
zero in K, and if j = p then w(Q) = 1. This yields the desired result. O

2.3 Comments

Comparison of the two formulae for ¢’ derived in the previous subsections
yields the following interesting formula. Let P = {py,p2,...,p.} be a com-
position of n. Then

i=1DPr(i) — n
10 ! ):( )
(10) Té kHl< Prk) — 1 P1ip2;i- i Dr

One combinatorial proof of this formula was shown to me by Marston
Conder and I thank him for permission to reproduce it here. The right side
of (10) counts the number of words of length n in the noncommuting variables
x1,...,2, in which each x; occurs p; times. For each 7 € S, the product on
the left of (10) counts the number of such words in which, as we traverse
from right to left, the sth new variable encountered is ;(;), whence the result
follows.



Obviously knowing a priori how to replace the left side of the formula with

the right would obviate the work of subsection 2.2. However we have included
that subsection for possible other applications, and also because it gives a
more natural proof. The expressions w(Q)o(Q) involved there are essentially
values of the so-called Bell polynomials (see [7]) for details). It is possible
that examination of our derivation of (10) will lead to a noncommutative
analogue of these polynomials.
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