PRIMENESS OF THE ENVELOPING ALGEBRA
OF THE SPECIAL LIE SUPERALGEBRAS

MARK C. WILSON AND GEOFFREY PRITCHARD

ABSTRACT. A primeness criterion due to Bell is shown to apply
to the universal enveloping algebra of the Cartan type Lie superal-
gebras S(V) and S(V;t) when dimV is even. This together with
other recent papers yields

Theorem. Let L be a finite-dimensional simple Lie superalgebra
over an algebraically closed field of characteristic zero. Then L
satisfies Bell’s criterion (so that U(L) is prime), unless L is of one
of the types: b(n) for n > 3; W(n) for odd n > 5; S(n) for odd
n > 3. O

On the other hand, if dim V' is odd then U (S(V)) is never semiprime.

1. INTRODUCTION

It is well known that the universal enveloping algebra of a Lie alge-
bra is always a domain and hence a prime ring, and that the analogous
result is false for Lie superalgebras. In fact when L is a Lie superalge-
bra, necessary and sufficient conditions for the primeness of U(L) are
not known.

The results in this paper and its relatives cited below can be viewed
in two ways: as answering this question for certain classes of simple
superalgebras, or as a necessary first step toward the representation
theorists” goal of a description of the prime and primitive spectra of
U(L).

For all background on Lie superalgebras we recommend [Sch79].

Let L = L, + L_ be a finite-dimensional Lie superalgebra over a
field K of characteristic zero, and let U(L) be its universal associative
enveloping (super)algebra. In [Bel90] Bell gave the following simple
criterion for primeness of U(L). Let {fi,..., f,} be a basis for the odd
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part L_ of L. Form the product matriz M = ([f;, f;]), considered as a
matrix over the symmetric algebra S(Ly). If det M # 0 then U(L) is
prime.

The finite-dimensional simple Lie superalgebras over an algebraically
closed field of characteristic zero were classified in [Kac77]. There are
two essentially different kinds of such algebras, namely the classical
algebras and those of Cartan type. The primeness question for the
classical simple Lie superalgebras was settled in [Bel90] and [KK96].
The first author started the investigation of the Cartan type simple
Lie superalgebras in [Wil96], and this was continued in [WPW] and
concluded in this paper and [Wil].

In this paper we treat the case of the algebras which, in the notation
of [Sch79], belong to the families S, S. For lack of a standard name we
call them the special Cartan type algebras.

Let n > 3 and let V' be a finite-dimensional K-space. The Lie
superalgebras S(V') and S(V;t), as defined below, are simple and of
Cartan type.

In this situation the following result holds (Theorem 3.4 and remarks
in Section 3.1):

Theorem. S(V) satisfies Bell’s criterion if and only if dim V" is even,
in which case S(V;t) also satisfies Bell’s criterion.

Though the failure of Bell’s criterion to apply does not, as far as
we know, rule out primeness, we also prove (Theorem 3.4 and Corol-
lary 3.3):

Theorem. U(S(V)) is prime if and only if dimV is even, in which

case U(S(V';t)) is also prime. If dimV is odd then U(S(V)) is not
semiprime. L]

The results of this and the above-mentioned papers yield the follow-
ing theorem.

Theorem. Let L be a finite-dimensional simple Lie superalgebra over
an algebraically closed field of characteristic zero. Then L satisfies
Bell’s criterion if and only if L is not of one of the types: b(n) for
n > 3; W(n) for odd n > 5; S(n) for odd n > 3. O

Section 2 contains background on exterior algebras and Cartan type
Lie superalgebras, and should be read, in order to fix notation, even
by those familiar with such topics. The actual computations are in
Section 3.
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2. THE SPECIAL LIE SUPERALGEBRAS

2.1. Preliminaries. Again let K be a field of characteristic zero, n
a positive integer and V an n-dimensional K-vector space. Let A =
A(V') be the Grassmann algebra of V. Recall that A = @]_j A, is
an associative Z-graded superalgebra. Fix a basis {vq,...,v,} for V.
For each ordered subset I = {iy,is,...,4,} of N = {1,2,...,n} with
1 < iy < --- <1, let v; be the product v; v;, - - - v;.. The set of all such
vy forms a basis for A, where we interpret 1 = vy as the empty product.
We shall write simply v; if I = {i}. The homogeneous component
A, is spanned by those v; with |[I| = r. The anticommutativity of
multiplication in A implies that

(1) vy, — j:U]UJ, 1fIﬂJ:(/),
77 0, it 1N J 0.

The algebra W = W (V) is the Z-graded Lie superalgebra consisting
of all superderivations of A. Every element of W maps V into A and
since it is a superderivation it is completely determined by its action
on the generating subspace V. It follows that W can be identified with
A®kV* as a vector space. Under this identification the map 9; = 9/9,,
corresponds to the dual of v;, and every element of W can be uniquely
written as >; \;0; where \; € A.

The set of all v;0; is then a homogeneous basis for W, the degree
of such an element being equal to |I| — 1. In degree zero we have
Wy 2V ®V* = gl(n), the element v;0; corresponding to the matrix

unit e;;.
The multiplication formula for odd elements is
(2) [’U[ai,’Ujaj] = Ujai(UJ)aj —|—’U]8j(’U[)ai.

Note that this formula implies that the product on the left is zero if
[INJ|>2orifbothi¢ Jand j¢& 1.

2.2. S(V) and S(V;t). The subalgebra S = S(V) of W (V') consisting
of all ; \;0; such that Y, 0;(\;) = 0 is a Cartan type simple Lie
superalgebra. It inherits a Z-grading

n—2
S=p S
r=—1
which is consistent, i.e. it induces the Zo-grading. If V' = K™ with
standard basis vy,...,v, then we write S(V) = S(n), and clearly
S(V) =2 S(n) for each V' of dimension n. Thus it suffices to work
with S(n) and we shall henceforth do so.
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We now describe the basis elements for S(n) which we shall use for
all computations in Section 3. A spanning set for each S, is as follows
and contains 2 distinct types of elements. Those elements of type (I,r)
are all those of the form v;0; with ¢ ¢ I and |I| = r + 1. Those of
type (ILr) are of the form vsh;; where ¢,7 ¢ A and |A| = r. Here by
definition hij = ’Uz'ai — Ujaj.

The type I elements are all linearly independent, and their span S(V
is independent of the span S(? of the type I elements. The type II
elements are not independent however, since h;; +h;; = hy,. We reduce
the set of type II elements to a basis for S(? as follows. For each A
with |A| = r, order the complement B = N \ A in the natural way
as a subset of N and let 7 be the first element of B. Select those
elements of the form v4h;; where ¢ < j € B. These are easily seen to
be independent and span S?.

The calculations used to justify the last statement are essentially
the same as those showing that the standard basis for the Lie algebra
sl(n) is indeed a basis. This is not an accident as the restriction of the
isomorphism Wy, = gl(n) carries Sy onto sl(n). Under this the type
(I,0) basis elements v;0; correspond to the off-diagonal matrix units e;;
and the type (IL,0) basis elements h,; to the diagonal elements e;; —e;;.

We shall need the dimension formulas

dim S = (n—r—l)( " )

r+1

dimS®» = (n—r—1)<n>.

T

We shall not need the full details of how to multiply the basis elements
above. The formulas below are readily obtained using (1) and the
fact that the 0; are odd superderivations. Thus if p(B, ) denotes the
position of i in the ordered set B, we have 9;(vg) = (—1)PBDyp,  if
i € B, and 0;(vp) = 0 otherwise. Also h;;(vp) is either £vp if precisely
one of 7,7 belongs to B, and zero otherwise.

Equation (2) implies that for a product of two odd type I elements
we have

o1y 05, ieJandjgl

+ O, e Tandid ]
(3) [v10;,v,0;] = VIvn\{5} ] €l an z. ¢

NN O r€Jand jel

0, 1 ¢ Jand j & 1.
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The 3rd case follows from the following computation, where I’ =
IN{7}h ' = T\ i}
[wi0s,v,0;] = (=1)"*PIDy050; + (=1)PEDy 070,
+(_1)1+P(I:j)+|ﬂ*p(‘]’i)1}!]/Uﬂ)[’ai
. (_1)1+p(J,z‘)+|I|fp(l,j)+\J|*1UI,Ujrvjaj
+(=1)HPEDHI =Dy, 10 0,0,

— (—l)p(l’j)”(‘]’i)“wvJ:h,ij.

The last two equalities use the fact that |I| and |.J| are even.
The product of an odd type I and an odd type II element leads to
the following mutually exclusive and exhaustive cases.

(4)

0, i & BU{k, 1}, |{k 1} 01| € {0,2}
:*:’U[’UBai, 2¢Bu{k,l},|{k,l}ﬂf| =1
Tvrvp\(iy b i€ B, |{k,1}n1|€{0,2}
[Ulai;UBhkl] = . .
j:UIUB\{i}h/ij; 1€ B, {k‘, l} NnI= {]}
:t'UI'UBaia {Zaj} = {ka l}a] € I
\iQUI'UBaia {Zaj}:{kal}aj el

The computations are straightforward, using the fact that || is even
and |B| is odd. We give details for the 4th and 6th cases. For the first
of these, suppose without loss of generality that £k € [ and [ ¢ I. Then
Wi, vphi] = (=1)""PBDVyrvp (b + vpord;

(=) PEDy 0 4 (—0i0)) 4 (1) BIPEDy py yvi0,0;
= (=1)"PEDy g i [0:0; — v,0)]
(_1)1+p(B,i)

UIUB\{i}hil-

For the second suppose without loss of generality that i = k£ and
[ € 1. Then

[Ulaia UBhkl] = [Ulaia UB(Uiai - 'Ulal)]
= (—1)‘3‘1}1@3&- — ’UB’U[ai

= —21;[1)3@.
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For a pair of odd type II elements we note that since [h;;, hy| = 0
the product [vahi;, vphi] is equal to vah,j(vp)he + vehi(ve)h; and
hence lies in the span of vyvgh;; and vavghy. Thus the subspace
S =y S@ is a subalgebra.

The simple Lie superalgebra S = S(V;t) is defined, only when n =
dim V' is even, as follows. Let ¢ be a nonzero element of A,. For each
rwith 0 <7 <n—2,5,(V) is just S,(V). The difference is that the
component S_; has a basis consisting of all (1+%)d; with i € N. Then
S is the direct sum of the S, but this is not an algebra grading. Note
that if V' = K™ then necessarily ¢ is a nonzero scalar multiple of vy,
and it is easily seen that S(V;t) 2 S(K™; vy) := S(n). Thus it suffices
to work with S(n) and we shall henceforth do so.

The multiplication in S(n) differs little from that in S(n). If v;0; has
degree at least 1 then [JNN| > 2 and so [(1+vy)0;, v,0;] = [05, vs0;],
while [(1 + UN)aZ', (1 + UN)aj] = 6i(vN)8j + aj(’UN)aZ‘. Thus the only
difference in a product matrix for S(n) and one for S(n) need be in the
submatrix formed by the products of elements of degree -1.

3. COMPUTATION

3.1. dimV odd. It was shown in [Wil96] that if dim V" is odd then
S(V) does not satisfy Bell’s criterion. In fact a product matrix for S(n)
in this case has the form

S—l,—l 5_171 e e S—l,n—?
S1,-1 Sig oo Sip-a 0
Sp—2,-1 0 . 0 0

Here S; ; is the product submatrix formed by the products of elements
from S; with those from S;. The block S, o 1 is therefore of size
n(n +1)/2 x n. Thus it has more rows than columns, and it follows
immediately that the product matrix is singular (in fact every term in
the full expansion of the determinant is zero).

There still remains the question of whether U(L) is prime when L =
S(n) and n is odd. In fact the above inequality of dimensions is enough
to show that this is not the case.

Proposition 3.1. Suppose L is a direct sum A+ B+ C of subspaces
where A and B are odd abelian, [B,C] C B and dim A < dim B. Then
U(L) is not semiprime.

Proof. Write s = dim A,t = dim B, U = U(L). For V a subspace of L,
by V™ we mean the n-th associative power of V' inside U.
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We claim that A’B7 C B'~'U whenever 0 < i < j. Now AB/ C
BIA+[A,B] C Yp=j1 B¥[A,B|B'. Also [A,B] C L, C C. Since B
is stable under ad C, so is each B’ and so C B! C B‘C+B' C B'U. Thus
ABJ C BIA+ C B/~'U C Bi~'U. The claim follows immediately by
induction on %.

We now claim that B! generates a nilpotent ideal of U. It suffices to
show that UB! C BU since B'B = 0. Now U is the sum of all A*!B/C*
with i,7,k > 0, and A'B/C*B! C A'BI+Ck C B/, Since s < t
and A® = 0 whenever i > s, all ¢t — i occurring are at least 1 and so
BiT=iU C BU.

U

Proposition 3.2. Let L be a consistently Z-graded Lie superalgebra
such that

(1) L=@® _, L, and m is odd

(2) dim Ly < dim L,
Then U(L) is not semiprime.

Proof. The hypotheses guarantee that the previous proposition applies
with A=L |, B=L,, and C the sum of the remaining L;. O

Corollary 3.3. If n is odd then U(S(n)) is not semiprime. O

Proposition 3.1 applies also to the classical algebra L = b(n), in
which case it yields the same argument as in [KK96]. Since b(3) = S(3)
a common argument might be expected.

3.2. dimV even. We now consider the much more difficult case where
n is even. The proof of the next result is rather involved but ultimately
rests on little more than a judicious choice of specializations and row
and column operations.

Theorem 3.4. Let n > 4 be even. Then S(n) and S(n) satisfy Bell’s
criterion.

Proof. We first treat the case of S(n) as the other case follows quickly
from this. Write n = 2m.

We make the specialization which sets all even type II variables to
zero. Let M denote the resulting specialization of the product matrix
for S(2m).

By the above the product of two type II elements is in the span of
type II elements and hence specializes to zero.

By (3) the product of two type I elements v;0; and v;0; remains
nonzero if and only if [I| +|J| < 2m, I NJ = () and precisely one of
the conditions ¢ € J, j € I holds.
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By (4) the product of a type I element v;0; and a type II element
vphy, remains nonzero only if |I|+ |B| < 2m —1 and I N B = (.

We obtain a (nonobvious) block decomposition of M as follows. For
each a with 0 < a < m — 1 define M, to be the span of all variables
of type (I,2a — 1) and all variables of type (I[,2a 4+ 1). It follows from
above that [M,, My] = 0 unless a+b < m—1. Thus M has the reverse
block upper triangular form

Moo Moy -+ Mom—2 Mom—1
Mo My - Mpmo 0
: : : : 0
Mpy1p 0 .- 0 0

Furthermore the blocks M,, on the reverse diagonal, i.e. the ones
with a +b = m — 1, are square. To see this, we compute:

2m

dim M, = <2a>(2m—2a)+<25T1>(2m—2a—2)

- (227Z> (24 2) + (;T 1) (2)

(2m)!
ENTCTEN] +(2b+ 1+ 2a)

:( >2a+2 (2[)27_7:1)(2@)

_ <2b>(2m—2b)+ (25T1>(2m—2b—2)
= dim M,

Thus it suffices to show that all such blocks My, with a +b =m — 1
are nonsingular.

Now fix such a a and b and consider the block M,,. Clearly M,, has
a 2 x 2 block form (} ¥') corresponding to the division of M, and M,
into type I and type II variables.

We now derive conditions which are equivalent to the product of
basis elements remaining nonzero under this specialization. We refer
to these as linking conditions. This has an obvious graph-theoretic
interpretation which we now describe. If in the symmetric matrix M,
we replace every nonzero entry with a 1, we have the adjacency matrix
of a unique graph G(M,,). Thus the vertices of G(M,,) are labelled
by the basis elements of M, and M, and there is an edge joining two
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vertices if and only if the corresponding product gives a nonzero entry
of Mab-

First note that in Y and Z the only nonzero entries occur when the
last case of equation (4) holds. This is because |B|+ |I| = 2m — 1
and B and [ are disjoint, so one of k,I must belong to I and the
other must equal 7. In fact if we define z; = vy\(;0; for 1 < i < 2m
then the only nonzero entries in Y and Z have the form +2z; for some
i. Furthermore the linking conditions for Y (respectively Z) can be
expressed as follows. Choose a subset A of N of size 2a+1 (respectively
2b+1). Then (A\{i},?) is linked to (B, {k,(}) if and only if ANB = ),
AUB =N and i€ {k,[}.

We first make the further specialization of all z; — 1/2. The re-
sulting matrix is defined over the polynomial ring Z[L,]. In order to
avoid excessive notation we use X, Y, Z to denote their images under
this and all subsequent specializations. Then the nonzero entries of Y
and Z are all £1. Note that the variables occurring in X are all al-
gebraically independent of the z; and so X remains unchanged by this
specialization.

From now on we work modulo 2, i.e. we apply the natural homomor-
phism Z[L,] — Zs|[L,]. Tt suffices to show that the resulting matrix is
nonsingular.

First we compute the rank of Y. The linking conditions above show
that the rows may be indexed by subsets A of N of size 2a + 1. The
rows corresponding to a given A have nonzero entries only in columns
indexed by (B,{i,j}) where B = N\ A and i,j € A. Thus the set
of rows indexed by a given Ay is independent of all rows indexed by
all other subsets A since their nonzero entries occur in disjoint sets of
columns. It therefore suffices to compute the rank of each submatrix
Y, formed by all rows corresponding to a given A.

Fix such a subset A. Now for a given row (A \ {i}, i), there are two
possibilities. If i is not the first element of A then there is a nonzero
entry in column (B, {k,(}) if and only if i = [, so there is precisely one
nonzero entry in this row. If 7 is the first element of A then there are
nonzero entries in all columns (B, {i,1}). Thus by reordering rows and
columns we can bring Y, to the form

10 --- 000 0
01 -- 0200 0
0 0 1 00 0
11 1 00 0
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Adding all rows except the last to the last row we bring Y, to the
form (}9). It follows that the rank of Y, is equal to |A] — 1 = 2a and

hence that the rank of Y equals (2?::1) (2a).

In fact the row operations above convert M,, to the form

Q I
R 0
Z 0

Here R is a (2?::1) X (2?::1) (2b + 1) matrix with rows indexed by all

(A\{i}, ) with ¢ the first element of A. Appropriate column operations
then yield

0 I
R 0].
Z 0

Now the rank of 7 is (2§T1)(2b) by the same computation as for Y. In

this case the analogous column operations followed by row operations
convert M, to

~ O O

0
R
0

S O~

Here R’ is a (2121?:1) X (2?::1) matrix which is therefore square since
2a + 14 2b+ 1 = 2m. Its rows are indexed by subsets A of N of size
2a + 1 and its columns by subsets B of N of the complementary size
2b+ 1.

It remains to show that R’ is nonsingular, and first we need to com-
pute the entries of R'. The entry R/ ; with row index A and column
index B is in the row indexed by (A \ {i1},4;) and column indexed by
(B\{j1},j1) where iy, j; are respectively the first elements of A and B.
It can be computed by applying the above row and column operations
to the submatrix Syp formed by all the row indices (A \ {i},4) and
column indices (B \ {j},j). In fact R;5 is the sum of all entries in
Sap. We now compute Sap and hence R/, 5.

Now (A\{:},7) links to (B\{j}, j) in My if and only if ANB = {i} or
AN B = {j}, the two possibilities being exclusive. Thus if [ANB| # 1
then the entries of Syp are all zero and so Ry = 0.

One the other hand, if |[ANB| =1, let « € AN B. Then (A\ {i},1)
and (B\ {j}, ) are linked if and only if precisely one of i and j equals
«, and the corresponding entry in My, is &vaup\{a,5) Where (3 is the
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one of 7 and j not equal to . Thus R/, has the form

TAAB = Z UAAB\{,B}aﬁa
BEAAB

where A denotes the symmetric difference. We have therefore com-
puted the matrix R'. In what follows we use further specializations to
prove it nonsingular.

In fact the distinct xsap are algebraically independent over K. To
see this, note that since the v;0; are all algebraically independent it
suffices to show that the set AAB is determined by any one of the
pairs (AAB\ {f}, ), and this is obvious. Furthermore in each row or
column a given variable x sap can appear at most once, since if either
A or B is fixed, then AAB determines the other.

The sets AAB all have size n — 2, so the variables x4 a5 can be
relabelled by the 2-element complements {a, §}. Write y, 3 = T4ap in
this case. We now specialize to zero all of these y, s except when {a, 5}
is one of the m sets {1,2},{3,4},...,{2m — 1,2m}. This converts R’
to a matrix R” and it now suffices to show that R" is nonsingular over
the function field generated by the y, g.

If the entry of R” corresponding to row A and column B is y, 3, we
say that A and B are linked in G(R") by an edge of colour {«, 5}.
Note that by the above a given colour can occur at most once at each
vertex.

We now obtain a further block decomposition of R” by showing that
the set of colours occurring at a given vertex is constant on each com-
ponent. To this end, we first show that vertices distance 2 apart have
the same colours. Suppose that A and B are linked by an edge of
colour {a,3}. Then without loss of generality A N B = {a} and
AUB = N\ {3}. Let C be linked to B by an edge of a different colour
{~,0} then {«, B} N {~,0} = 0 and we may assume that BN C = {v}
and BUC = N\ {0}. Then g € C. Let X = BU{3,0}\ {o,7}.
Then |X|=|B|,CNX ={3},CUX =N\ {a} and so C and X are
linked by an edge of colour {«, $}. Thus every colour occurring at A
also occurs at C, and by symmetry A and C' have the same colours.

It follows that if A and B are adjacent vertices then they have the
same colours, since if an edge of some colour joins A and D, then B
and D have the same colours by above and so the given colour occurs
at B. Thus the set of colours occurring at a vertex is constant on
components.

Hence there is a direct sum decomposition of R”, each block being
parametrized by a given set of colours. Fix such a set of colours which
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occurs and consider the block which it parametrizes. Then every vari-
able occurring is present exactly once in each row and column. Hence
specializing all but one of the variables to zero yields a nonsingular
monomial matrix. This yields the result for S(n).

The product matrix for S(n) is the same as that for S(n) except for
the (—1, —1) submatrix. Since this is contained in the blocks Mg, which
are off the reverse diagonal, the above argument carries over verbatim
and yields the result for S(n). This completes the proof. O

4. COMMENTS

Let L be a finite-dimensional Lie superalgebra in characteristic zero.

We do not know of an L such that U(L) is semiprime but not prime.
It is known that for L classical simple or nilpotent, U(L) always has
a unique minimal prime ideal (see [KK96]). If this were true for all
L then U(L) would always be prime if and only if it were semiprime,
since a unique minimal prime in a noetherian ring is nilpotent. Clearly
U(S(n)), for odd n > 3, should be investigated in this regard.

It is still unknown whether Bell’s criterion is necessary, as well as
sufficient, for U(L) to be prime.
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