BELL’S PRIMENESS CRITERION FOR W(2n + 1)

MARK C. WILSON, GEOFFREY PRITCHARD, AND DAVID H. WOOD

ABSTRACT. On the basis of experimental work involving matrix com-
putations, we conjecture that a criterion due to Bell for primeness of the
universal enveloping algebra of a Lie superalgebra applies to the Cartan
type Lie superalgebras W (n) for n = 3 but does not apply for odd n > 5.
The experiments lead to a rigorous proof, which we present.

1. INTRODUCTION

A Lie superalgebra is a Zy-graded vector space L = Lo+ L; with a graded
bilinear product mapping [, |: L X L — L which satisfies certain identities.
A good general reference is [Sch79]. In particular the restriction to L; of the
product map yields a symmetric bilinear map. A result due to Bell ([Bel90])
shows that if the product matriz which represents this map is nonsingular
then the universal enveloping algebra U(L) is a prime ring.

The finite-dimensional simple Lie superalgebras over an algebraically closed
field of characteristic zero have been classified by V. Kac in [Kac77]. There
is an important structural division of such algebras into those of classical
type and those of Cartan type. It is known ([Bel90], [KK96]) that Bell’s cri-
terion holds for all but one family of the classical simple algebras. In recent
papers ([Wil96], [Wil]), the first author has attempted to determine whether
Bell’s criterion applies to the Cartan type simple Lie superalgebras, and has
shown that the algebras in the families of W (2n) and H(n) also satisfy the
criterion, and that S(2n+ 1) does not. The proofs in these cases, though not
trivial, were of a more straightforward character than in the present paper.

Here we dispose of one of the remaining cases by showing that W (n)
does not satisfy Bell’s criterion if n is odd and n > 5. While this has no
obvious ring-theoretic ramifications, the greater complexity of this case leads
to an interesting interplay between experimental and rigorous mathematics,
and suggests further work. In fact the algebras W (2n + 1) provide the first
“naturally occurring” case where Bell’s criterion fails for a nontrivial reason.

In section 2 we introduce the basic notation and background. Subsec-
tion 2.1 can be safely omitted at a first reading, but the others are essential
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for the rest of the paper. Section 3 presents our experimental results and
section 4 our theorems and proofs.

The authors thank Dave Saunders for his assistance with their collabora-
tion, and the referees for their helpful comments.

2. DEFINITIONS

2.1. The algebra W(n). A good general reference for this subsection is
[Sch79].

Let K be a field of characteristic zero and let A = A(V') be the exterior
(Grassmann) algebra of the vector space V= K™. Then A is an associative
superalgebra of dimension 2" where the Zs-grading is induced by the usual
Z-grading given by degree.

Let W = W(n) = D(A), the Lie superalgebra of superderivations of A.
Then W = &, W, is naturally Z-graded and this is consistent with the Zo-
grading. Here the graded component W, consists of all superderivations
which map V into A,4;, so the highest degree actually occurring is n — 1
and the lowest is —1.

For homogeneous 0 € W and z,y € A, we have d(zy) = 9(z)y £ z0(y)
where the — occurs if and only if both z and 9 are odd. Every element of W
restricts to a linear map V' — A. Conversely every element of W arises in
this way and we have the isomorphism of vector spaces W = AQx V*, where
V* denotes the linear dual of V. We shall use this identification in the rest
of the paper. Under this isomorphism the element a® f is identified with the
superderivation taking v € V to af(v) € A. One obtains the multiplication
formula for odd elements

(1) [a® f,b®g] =af(b)®g +bg(a) ® f.

2.2. Computations in A® V*. In this subsection we interpret everything
in subsection 2.1 in terms of a specific basis for A ® V*. We shall use the
formulas obtained throughout the remainder of the paper.

The exterior algebra A(V') is the free anticommutative algebra on V. In
other words it is generated by V and all relations are consequences of the

basic identity vw = —ww for all v, w € V. Of course this implies that v? = 0
forallv e V.
In this paper ordered sets will always be written as lists (i1,...,4;). A

subset of a set will not automatically inherit any ordering which its superset
may happen to have.

Fix an ordered basis (v1,...,v,) for V. For each subset I of N =
(1,...,n), choose an order i1 < iy < --- < i, of I and define vy =
Vi, Viy -~ v;,.. The set of all such v; (where we define vy = 1) forms a basis
for A. Here the choice of ordering of I is completely arbitrary; changing the
order of I only changes the corresponding v; by a factor of +1. For defi-
niteness, unless otherwise stated we shall assume I to be ordered in natural
(increasing) order as a subset of N.
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We shall need the easily established formula which is valid for any ordering
of I.

(2) (=) TPED vy = vp = (=) PNy ifi e

Here by d(I,7) we mean the ordered set I with the element i (if it appears)
deleted. This set is considered to inherit its order from 1.

Let (0i,...,0,) be the dual basis to (vi,...,vy), i.e. 0j(v;) = 0;;. For
any choice of orderings of the I, the set of all vy ® 0; is a basis of A ® V*.
For our later computations we shall always use use the following choice. If
1 &€ I then we order I naturally as a subset of N. However if + € I we order
I naturally, except that we insist that ¢ be the last element of I. Thus if I’
is the complement I\ {7} we have v; ® 0; = vpv; ® 9;, where I' is in natural
(increasing) order. Note that the ordering of I depends on i here, so that
in basis elements vr ® 9; and vr ® 9; the set I may be ordered differently.

Given an ordered set I and an integer 4, let p(I,7) denote the position of
¢ in I if it occurs and zero otherwise. Explicitly,

if I = (i1,...,4,) and i = i
(i) = s, 1 . (i1y...,ipy and 1 =4
0, ifigl.

The degree of a basis element v; ® 0; is |I| — 1, and such an element is
called odd or even according as its degree is either odd or even. Note that
the maximum degree occurring is n — 1 and the minimum is —1. It follows
from all our definitions and identifications that the multiplication formula
for odd elements becomes

(3)
[vf ® Oj,v7 ® 8]-] = (—1)1+p(J’i)XJ('L.)U[’l)d(J,Z') & 8]‘ + (—1)1+p(1’j)X[(j)’UJUd([7j) ® 0.

Here x; denotes the characteristic function of the set J. Note that it is
immediate from (3) and anticommutativity that the product is zero if |I N
J| > 2.

From now on we shall not distinguish between W (n) and A ® V* and we
shall use the description above of the latter for all computations.

2.3. Product matrix. Let L = Ly -+ L be a finite-dimensional Lie super-
algebra and let {z1,z9,...,zx}and Y = {y1,...,ynm} be ordered bases for,
respectively, L; and Ly. The subspaces Ly and L; are called respectively
the even and odd parts of L. The product matrix represents the bilinear
pairing [ , ], so that with respect to these bases the i,j entry of the prod-
uct matrix is the product [z;,z;]. The matrix is considered to be defined
over the commutative polynomial algebra K[Y] (in fact its entries are linear
combinations of the variables y1,...,yar).

For L = W (n) we use the basis defined above. Thus the rows and columns
are indexed by the pairs (I,i) corresponding to the basis elements v; ® 0;.

As an example, let L = W (3). Here the basis elements for the even part
are y;j = vy ® 0j, z1 = v(2,3,1) ® 01, 29 = V(1,3,2) ® J2 and 23 = V(1,2,3) @ 0Js.
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The basis elements for the odd part are z; = 0; and z;;, = V(i) ® O and
these are ordered as follows:

T < T2 <x3 <211 <T122 < T123 < T311 < T132 < T133 < 231 < T322 < X233-

Thus the product matrix, which we denote by W(3), is

One can compute (using a computer algebra system such as Maple) that
this matrix is in fact nonsingular, i.e. W (3) satisfies Bell’s criterion. The
first author showed in [Wil96] that the even Witt algebras W (2n) satisfy
Bell’s criterion. Proving such a result relies on finding a generally applicable
specialization. However, though one can find many specializations which
work for W (3), it is unclear how to generalize any of them even from n =3
ton =5.

3. EXPERIMENTAL DATA

3.1. Probabilistic methods. The first author has written Maple code,
used for all computations in this subsection, which generates the product ma-
trices for all Cartan type simple Lie superalgebras. The code is available via

WWW from the URL http://www.math.auckland.ac.nz/"wilson/bellcrit.html.

The rather straightforward methods used in previous papers yield noth-
ing, so we resort to experiment. Maple shows easily that the (12 x 12)
product matrix of W (3) is nonsingular. We turn our attention to the prod-
uct matrix W(5) of W(5). Experimentally, we must first decide if we think
W(5) is likely to be singular or not; then hunt for a possible proof. A
computer algebra program such as Macsyma or Maple might attempt to
determine the singularity of W(5) by direct elementary methods. However
W(5) is too large (an 80 by 80 matrix, whose entries include 80 different
variables) for this to be successful. One way to simplify the computation

0 0 0 —yer Y22  Yzs —Ys1 Ysz  Yss 0 0
0 0 yir  —Yyiz —yiz 0O 0 0 Ysi  —Ysz
0 0 0 0 0 Yir —Yiz —Yi3 —Y21 Y22
—Y21 Y11 0 0 0 0 0 29 —23 0 —2
yse —Yyiz 0 0 0 0 —29 0 0 21 0
yes  —Yyizs 0 0 0 0 23 0 0 23
—Y31 0 Yi1 0 —22 Z3 0 0 0
Ys2 0 —yiz 2 0 0 0 0
Y33 0 —Yi3 —Z23 0 0 0 0 0 21 22
0 ys1  —yzr 0 21 0 0 2 0
0 —yse ya2 —2r 0 23 0 0 2 0
. 0 yss —yz3 0 23 0 21 22 0 0

0

Y33

—Y23
0

z3
0
21

22

0
0
0
0
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is by specialization; give each variable an (integer) value, and study the
resulting numerical matrix. It is fairly clear that the rank of the special-
ized matrix cannot exceed that of W(5) itself. (The rank of a matrix is
the size of its largest non—singular square submatrix; a submatrix of W(5)
is singular iff its determinant (as a polynomial in our 80 variables) is the
0 polynomial.) In particular, if we find a non—singular specialized matrix,
we may conclude that W(5) is non-singular. It is unclear how to choose
values for the variables so that the rank of the specialized matrix will be
large (ideally, equal to the rank of W(5)). Most “regular—looking” choices
have too much symmetry to give a large rank.

In the absence of any cleverer ideas, a reasonable thing to do is to choose
values at random in some way. This gives not just one specialization, but
many — a different one each time we try it.

Early on, then, the authors attempted to calculate the ranks of randomly
specialized versions of W (5). The variables were given independent random
values sampled from a probability distribution p; distributions p we used
included:

(i) The values 0 and 1, each taken with probability 1/2. This has the

advantage of simplifying computation.

(ii) The values —1,0 and 1, each taken with probability 1/3.

(iii) The values —80, ... ,80, taken with equal probability.
100 specializations were performed using each method and the rank of the
resulting matrices computed. The results are shown in the table below.

Method | Rank < 75 | Rank =75
(i) 14 86
(ii) 2 98
(iii) 0 100

In no case did the rank of a specialization exceed 75. We are thus provided
with no firm conclusion; if we are to take anything from this exercise, it is a
belief that W(5) may well be singular. However, it is not clear a priori how
much faith one should place in these results. For a sufficiently generic matrix
they would appear compelling, but the structure of the matrix in question
may have a large effect on the data. It is conceivable that specializations
exist which give the matrix full rank, but that they are generated only with
low (or zero) probability by our random methods. In (i), for example, each
specialization will give the value 0 to about half the variables and the value
1 to the rest. Might not achieving full rank require the “1s” to be in a strong
majority 7

Fortunately there is an argument which can lay most of our fears to rest.
We are really attempting to determine whether the determinant of W(5),
a polynomial in our 80 variables, is the 0 polynomial. We can make use of
the following known result:

Proposition. Let ) be a polynomial in n variables; suppose that Q) is not
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identically 0. Let I be a finite subset of the coefficient field of Q, with
|I| > cdeg(Q). Then the number of elements of I"™ which are zeros of Q is
at most ¢~ |I|".

Proof. See [Sch80]. O

For us deg(Q) < 80, and if we take I = {—80,... ,80} (c.f. (iii)), then the
inequality in this result is satisfied with ¢ = 2. So if W(5) is non-singular,
each random specialization of the sort in (iii) has probability at least 1/2
of detecting this fact; that we failed to detect it in 100 tries means that we
have witnessed a very rare event (one with probability smaller than 2100
(= 1073%)). Tt thus appears that W(5) is very probably singular.

Similar support can be given for the assertion that the rank of W(5)
is exactly 75; we omit the details here. While this kind of probabilistic
argument does not constitute proof in the traditional sense, it is quite sound
enough for further experimental investigations to be based on its conclusion.
For more on arguments of this type, see [CS78].

3.2. The nullspace. Additional exact rank computations were made to
supplement the lower bounds found in the previous section. We used MAC-
sYMA for all the computations discussed in this section. Proving the singu-
larity of a 80 x 80 matrix with 80 variables is a daunting task. Even the fact
that half the matrix entries are zero may not help very much. Examples of
expanded determinants like ours can have 27 terms.

There is one special situation that could be efficiently exploited, however.
In all other nontrivial cases where Bell’s criterion does not hold, this is
caused purely by the zero-pattern of the product matrix — its expanded
determinant has no nonzero terms. Now this fact can be demonstrated by
a O(n®/?) algorithm [HK73] applied to a 0-1 matrix with the same zero
pattern as the matrix of interest. Hoping to exploit this fact, we formed
a general 80 x 80 matrix having the same zero pattern as our candidate.
When the variables in this matrix were randomly specialized, the calculated
determinants were not zero. Thus, there was no hope that the zero pattern
alone could make our candidate singular. Hence if indeed det W(5) = 0,
this is caused by some interesting cancellation in the expanded determinant.

One must avoid having too many variables in a symbolic computation.
Intermediate computations involving many variables may very well exhaust
computer memory even if the final answer would be quite compact. To avoid
this situation, we randomly specialized the variables and performed all arith-
metic over the ring Zgg7s. The prime 9973 was chosen for the convenience
of having displayed integers having at most four digits.

When we asked for not merely the rank of our specialized matrices, but
for their nullvectors, we were fortunate to find the 80-tuples representing
the nullvectors all began with at least 55 zeros. We therefore undertook to
prove, if we could, that the last 25 columns of the unspecialized matrix has
rank of only 20, implying a rank deficiency of at least 5 for the entire matrix.
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In the partitioning of W(5) introduced in the next section, the last 25
columns consist of the block W_1 3 with 5 rows involving 50 variables, the
block Wy 3 with 50 rows involving only 5 variables, and additional rows of
zeros, which we disregarded.

Naturally, the first block, W_y 3, was avoided as long as possible because
it involves 50 variables. We wanted to show the remaining nonzero rows,
which form Wy 3, were of rank 15, because it would then follow that the
rank of all of the rows in the last 25 columns could not exceed 20.

Concentrating, then, on W; 3 which has only 5 variables, we further re-
duced the task to finding a (right) nullvector using only some of its rows
because the random specialization indicated these sufficed to obtain rank
15. The resulting nullvector was then demonstrated to nullify all of W 3.
Since the nullvector was found to depend on 10 free parameters, we had
proven the rank of Wy 3 to be 15, as we had expected.

Summarizing, we showed that the rank of all of the rows in the last 25
columns could not exceed 20. Hence, neither could the column rank exceed
20. As a result the entire matrix can not have rank exceeding 75. But in
the previous section, we saw that the rank was at least 75.

With hindsight, we see that we erred on the side of caution. In less than
4 seconds of computing time on our workstation, MACSYMA finds the rank
of Wy 3 to be 15. In addition, one can find an explicit row dependence, but
its form, with 55 original variables and 5 free parameters, makes it difficult
to interpret and generalize.

At this stage we have proved that W (5) does not satisfy Bell’s criterion.
It remains to see whether the argument above will generalize to W (n), for
odd n > 5. To do this we have to exhibit the row dependencies explicitly.
This is carried out in the next section.

4. PROOFS

In the light of the above it is easy to conjecture that the product matrices
for odd n > 5 are singular. This is proved below, by finding an upper bound
for the rank of the submatrix W_,_» as suggested by our experimental work.

A rather detailed analysis of the structure of the product matrix is re-
quired, and the particular basis we use plays a crucial role. Of course, this
basis was not the one first used, but was discovered in the course of the
analysis. The fact that we use the same basis elements for the rows and
columns means that the product matrix is symmetric.

4.1. Detailed structure of the product matrix. From now on assume
that n > 3 is odd. Then the highest odd degree occurring in W is n —2 and
the highest even one n—1. Grouping the basis elements by increasing degree
we obtain a block structure to the product matrix. We let W, g denote the
product submatrix formed by all products of W, with Wy, let W . denote
the horizontal concatenation of all W, g, and let W. g denote the vertical
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concatenation of all W, 5. Then the product matrix has the structure

0 W11 Was ... Winga Wogao

Wi 1 Wi, e oo Wina Wino
W(n) — Wg,,l . PN PN W3,n74 0
Wn,27,1 Wn,271 0 . 0 0

We shall bound above the rank of each block W, ,_1_,.

Fix an odd r with 1 < r < n — 2. The component W, _; has basis
consisting of all z;, = vy ®0, with k € N, so every nonzero entry in Wy n_1_p
is a linear combination of the z.

Let I,J C N with |I| =r+1,|J| = n —r. We now obtain conditions on
(I,7) and (J,7) in order that the entry of Wy 1, in the row indexed by
(1,4) and the column indexed by (.J,j) be nonzero. This entry is of course
equal to [vr ® 0;,v;7 ® 0;]. We say that (I,7) and (J,j) are linked in this
situation. We shall not pursue the obvious graph-theoretical interpretation
of this term.

It follows from the multiplication formula (3) that a necessary condition
for linking is that I NJ = {i} or INJ = {j}. These two possibilities are in
fact mutually exclusive, since

(4)
[vr ® 0;,v; ®0;] =0 if |I| and |J| are even and I N .J = {i}.

To see this, we compute:
[V ® O,y ® ;] = —vrvg(g) ® O — VV(1,5) @ O;
= (_Ud(l,i)vivd(J,i) - Ud(J,i)UiUd(I,i)) ® 0;
(Ud(l,i)vd(J,i)Ui - Ud(l,i)“d(J,i)Ui) ® 0;
= 0.
In summary, (I,7) and (.J, j) are linked if and only if ¢ # j and INJ = {i} or
INJ ={j}. The corresponding entry in W(n) equals £z for some k € N,
and is given exactly by
; 0, ifINnJ=1{i
5) (o1 ® 83,0y ® 0] = {w\{z}w ® 0, i {zl},
VN\{IVT ® 0; ifInJ={j}.

The cases where ¢ € I and 7 ¢ I behave rather differently and we examine
each separately in more detail.
1)i ¢ I. Here we must have INJ = {j}. For each j € I there is exactly one
such J and in fact we have v; ® 0; = v\ ;v; ® 9; by our basis convention.
Thus the corresponding entry in the product matrix is

’UN\[’U[ ® 3Z
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Note that this is independent of J and j and so a row indexed by such
a pair ([,7) has precisely |I| nonzero entries all of which are the same.
Furthermore for a fixed I the nonzero entries occur in the same columns
for all .
2)i € I. There are 3 subcases.
(1) INJ ={j}. We have vy ® 0; = UN\IVj @ 0; and vy ® 0; = Vd(I,i)Vi @ 0;
and so the entry in the product matrix is

UN\1Vd(1,3)Vi ® O;-

(ii)INJ = {i},j € J. Here v; ® 0; = vy jv; ® 0; and the corresponding
entry is

UN\JVd(J,5)V5 ® O

(iii))INJ = {i},j & J. Here the corresponding entry is

’UN\J’UJ X 8]

4.2. Estimating ranks. After the preliminaries of the previous subsection
we can now prove a key lemma.

n—l—l)_

Lemma 4.1. The rank of Wy n_1_r is at most (TJrl

Proof. Fix A C N with |A| = r. For each k € B = N \ A, consider the
submatrix Sy of Wy n_1_, formed by all rows indexed by pairs (AU {k},1)
as ¢ ranges over B. By the analysis above, the columns which correspond to
the nonzero entries in Sy are indexed by pairs of the 4 types (B,j),j € A;
(B,k); (B,j),5 € B\{k}; (B\{k}U{j},j),j € A.

Let F be the function field = K(z1,...,2,). The rows where 7 # k span a
1-dimensional F-subspace since we are in case 1 above. Thus using suitable
row operations over F' we may assume that such rows contain only ones and
zeroes. Furthermore the ones occur precisely in the columns of the 2nd and
4th types above.

We now compute the remaining entries of S, namely those in the row
with ¢ = k. For the columns of the first type we are in case 2(iii) above and
the entry is vavp ® 0;. This is equal to €(A)z; where €(A) = 1. For the
column of the second type the entry is of course zero by equation (4).

For the columns of the third type we are in case 2(ii) and the entry is

vAVq(p,;)v;®0;. This can be rewritten using equation (2) as (=1)1Bl=P(B:d)y 4 up®

9; and this is equal to (—1)P(P)y4vp @ 0; since |B| = n—1—r is even. We
can write this as (A4, j)z; where (4, j) = £1.

Finally for columns of the fourth type we are in case 2(i). The corre-
sponding entry is vy r)vavg ® O. This simplifies to vavgvy gy ® O by
anticommutativity and then to (—1)'*t?(B#)y 05 ® 8, by equation (2). In
terms of the notation of the previous case this is equal to —e(A, k)zj.
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Thus S, may be represented by the following table.
| (B.j).j€A | (B)k) | (Bj).jeB\{k} | (B\{kHU{j}j)jeA

ik 0 1 0 1

The first row of the table represents one row of S, whereas the second row
represents n —r — 1 rows. Similarly, each column of the table may represent
many columns of Sy.

By adding €(A, k)z) times any of the rows with i # &k to the row with
1 = k we convert Si to a matrix which may be represented by the following
table.

i=k: €(A)z; 0 ‘ €(A,7)z; —e(A, k)2

(B.j),j€A | (Bj),jeB | (B\{k})U{j}j),jeA
i=k: €(A)z; €(A,7)z; 0
1 £k 0 Ok;j 1

In particular, note that if we keep A fixed and perform the above procedure
for each £ € B in turn, all the rows with ¢ = k£ are now identical, so form a
rank 1 submatrix.

Now allow A to vary. Each row of Wy ,_1_, which is indexed by some
(I,47) with ¢ € I appears precisely once in the above construction. Thus the
total contribution to the rank of Wy ,_;_, by such rows is at most equal to
the number of A, namely (7). As noted above, for a given I then the rows
indexed by (1,i) with ¢ & I are the same for all 7. Thus the total contribution
to the rank by rows with ¢ ¢ I is at most equal to the number of I, namely

(r_?_l). Hence Wy n_1_r has rank at most (:f) + (r:l_l) — (?Ill) O

We illustrate the above proof in our example n = 3. Take A = {1}. Then
the submatrix Se when represented as above yields

| T231 | 322 | T233 | T311
122 z1 0 z3 —23
123 0 Z3 0 z3
while S3 is represented as
| T231 | 233 | 322 | T211
132 0 Z9 0 Z9
T133 21 0 29 —23

The main result follows directly:
Theorem 4.2. If n is odd, W (n) satisfies Bell’s criterion only for n = 3.

Proof. The case n = 1 is trivial and the associated 1 x 1 product matrix is
zero. Now assume that n > 3. The submatrix W. ,_» (the rightmost “col-
umn” of the product matrix) consists of 2 nonzero blocks and has dimen-
sions (n2" ') x n?. Since the rank of W _1n-2 is at most n, it follows from
Lemma 4.1 that the rank of W. ,_» is at most n+ (") = n(n+3)/2. Thus
the rank of W (n) is at most n2"~! —n?2+n(n+3)/2 = n2" ' —n(n—3)/2.
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For n > 5 this is strictly less than n2"~'. We know the criterion holds for
n=3. ]

Note that for n = 5 the bound in the proof yields the correct answer 75.
For n = 3 the bound also gives the right answer 12. One can show using
Lemma 4.1 that the bound is not sharp for n > 7. We do not have a
conjecture for the exact value of the rank when n > 7.

5. COMMENTS AND FUTURE WORK

The converse of Bell’s criterion is not yet known to be either true or false,
though false seems (intuitively) most likely. In light of this, it would be of
interest to know whether U (W (n)) is prime for odd n > 5. We have made
no progress on this question.

The latest details on the verification of Bell’s criterion can be accessed via
WWW at http://www.math.auckland.ac.nz/“wilson/Research/bellcrit.html.

Added in proof. The first two authors have shown that if n is even, S(n)
and S(n) satisfy Bell’s criterion — the details will appear elsewhere. Thus
all the Cartan type Lie superalgebras have now been accounted for.
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