ASSOCIATIVE RINGS SATISFYING THE ENGEL
CONDITION
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ABSTRACT. Let C be a commutative ring, and let R be an associative C-
algebra generated by elements {z1,... ,zq}. We show that if R satisfies the
Engel condition of degree n then R is upper Lie nilpotent of class bounded
by a function that depends only on d and n. We deduce that the Engel
condition in an arbitrary associative ring is inherited by its group of units,
and implies a semigroup identity.

As part of his positive solution of the restricted Burnside problem ([12]),
Zelmanov proved that every finitely generated Lie ring satisfying the Engel
condition

I:x?y?y?"' 7y] = 0
—
n

is nilpotent. In Lie algebras over a field of characteristic zero, the Engel con-
dition implies nilpotence — not just local nilpotence. This result was proved
by Kemer ([3]) for the class of Lie algebras arising from associative algebras,
and later by Zelmanov ([11]) for general abstract Lie algebras. It is known,
however, that this result fails to hold for general Lie rings, and in particular
fails for Lie algebras arising from associative algebras over fields of positive
characteristic ([5],[8]). Perhaps the simplest example is the tensor square of
the (nonunital) Grassmann algebra of a countably-infinite-dimensional vector
space over a field of characteristic p > 2. In fact, it is nil of bounded index 2p
but not Lie nilpotent; which is to say, it is not nilpotent when considered as a
Lie algebra ([6],[7]).

Let C be a commutative (unital) ring, and let R be a finitely generated
(associative) C-algebra. It is not strictly necessary for us to assume that R is
unital, but we shall as a matter of convenience. The primary purpose of this
note is to prove that if R satisfies the Engel condition then R is Lie nilpotent.
Since such rings need not be finitely generated as Lie rings, our result is not
included in Zelmanov’s. Shalev, however, proved the above result in the case
when C'is a field of positive characteristic ([10]).

Furthermore, we are able to show that R is Lie nilpotent in a stronger sense.
Define a descending central series of associative ideals {y*(R)} in R by v'(R) =
R,¥*'(R) = ([Y(R),R]) = [¥(R),R]R. Then R is upper Lie nilpotent of
class s if 4*(R) # 0 and y*T'(R) = 0. Although upper Lie nilpotence clearly
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implies Lie nilpotence, the converse need not be true (as was conjectured by
S.A. Jennings). Indeed, the Grassmann algebra over a field of characteristic
not 2 is Lie nilpotent of class 2 but not upper Lie nilpotent, while Gupta and
Levin constructed a similar example in characteristic 2 ([2]).

Theorem. Let C' be a commutative ring, and let R be a finitely generated
associative C-algebra which is generated by d elements and satisfies the Engel
condition of degree n. Then R is upper Lie nilpotent, of class bounded by a
function depending on d and n only.

Corollary 1. Let R be an associative ring. If R satisfies the Engel condition
of degree n then its group of units U(R) satisfies the Engel condition of degree
m for some m depending only on n.

Corollary 2. Let R be an associative ring. If R satisfies the Engel condition
then R satisfies a semigroup identity.

A semigroup identity is the equality of two words in the free monoid on
countably many letters. We remark that Corollary 2 settles the ring-theoretic
analogue of a problem raised by Shirshov ([4, Problem 2.82]): does the variety
of groups satisfying an Engel identity satisfy a semigroup identity?

1. PROOFS

All associative rings considered below will be assumed to be unital. We
denote the usual descending central series of a group or Lie ring by {v;(+)}.

Proposition 1. Suppose that R is generated as an associative C-algebra by a
Lie subring L which is nilpotent of class s. If y2(L) is associative nilpotent of
index t 4+ 1 then R is upper Lie nilpotent of class at most st + 1.

Proof. We first collect a few simple facts that follow from the identities

[z,y2] = ylz, 2] + [,yl2, [y, 2] = 2y, 2] + [z, 2]y.
Notice that the Lie ring L acts on R via the ad map. If a subset X in R is
stable under this action then XR = RX. Also, [X, R] C [X, L]R. In particular,
vi(L)R = Rv;(L) and [v;(L), R] C vi4+1(L)R for each i. It follows that
7*(R) =12(L)R
and
[vi(L)R, R] C vi(L)Y2(L) R + i1 (L) R.

Put I; = v(L)R for each i. Then I; is an associative ideal of R with the
property that

i, R] C LIy + Ijyy.
We claim that for all n > 2,

where the sum is over all (n,...,ny) withn; >2and ) ,(n;, —1) =n — 1.
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The claim is true for n = 2 since y2(R) = I. If n > 2 then the claim follows
by induction and the observation

k
[Inl o 'Ink’ R] - Z In, - 'Ini—l [Ini’ R]Ini+1 e Ink
i=1
k
- Z Iny oo Iy, (IniIQ + Ini+1)Ini+1 e Iy,
i=1
Ifall n; < s and k£ < ¢t then n — 1 < st. Hence if n > 1 + st then each
monomial above is zero since I, C I and Ié"'l =141 =0. O

Proposition 2. Let n and d be positive integers. Then F(d,n), the relatively
free d-generated ring satisfying the Engel condition of degree n, is upper Lie
nilpotent.

Proof. We shall employ some well-known results from PI-theory, for which [9]
is a sufficient reference. Write R = F'(d,n).

Let J be the Jacobson radical of R. Because R is a finitely generated PI-
ring, J is nilpotent by a theorem of Braun. We claim that y?(R) C .J; which
is to say, R/.J is commutative. Indeed, since R/.J is a semiprimitive PI-ring,
by a theorem of Kaplansky, it is a subdirect product of full matrix rings over
division rings, M, (D) say, where D is finite dimensional over its centre F. As
M5 (F) does not satisfy the Engel condition, we have must have M, (D) = D.
If F' is finite then D = F', whereas if F' is infinite then D has precisely the same
identities as M,,(F') for some m > 1. But again, the latter possibility can only
occur if m = 1, and so either way D = F. Thus, R/J is a subdirect product of
fields, and therefore commutative. It follows that 4?(R) is nilpotent.

Let L be the Lie subring of R generated by the finitely many associative
generators of R. Since v2(R) is nilpotent, R is (associatively nilpotent)-by-
commutative, and hence Lie solvable. Thus L is a finitely generated solvable
engelian Lie ring, which is nilpotent by a theorem of Gruenberg [1]. The result
now follows directly from Proposition 1. O

We denote the upper nilpotence class in the conclusion of Proposition 2 by
fld,n).

To prove the Theorem, let S be the subring of R generated by its d C-
generators. Then S is upper Lie nilpotent of class f(d,n) since S is a homomor-
phic image of F(d,n). Since upper Lie nilpotence corresponds to a multilinear
identity and R is a homomorphic image of S ®z C, the result now follows from
Proposition 2.

We now prove Corollary 1. Let R be a ring satisfying the Engel condition
of degree n, and let S be the subring in R generated by {u,v,u™', v~} where
u,v are arbitrary units in R. Then S is upper Lie nilpotent of class at most
f(4,n). The result now follows from the inclusion

Tm(U(S)) S 1+~"(S),

which is readily established by induction.
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Finally, we prove Corollary 2. Suppose that R satisfies the Engel condition
of degree n, and let S be an arbitrary 2-generated subring of R. Then S is Lie
nilpotent of class at most ¢ = f(2,n). It follows by induction that S satisfies the
Morse identity z. = y. defined by 1 = zy,y1 = y=,Tit1 = TiVi, Yit+1 = YiZ-
Hence R also satisfies the semigroup identity xz. = ye.
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