
A NEW METHOD FOR COMPUTING ASYMPTOTICS OF DIAGONAL
COEFFICIENTS OF MULTIVARIATE GENERATING FUNCTIONS

ALEXANDER RAICHEV AND MARK C. WILSON

Abstract. Let
P

n∈Nd fnx
n be a multivariate generating function that converges in a

neighborhood of the origin of Cd. We present a new, multivariate method for computing
the asymptotics of the diagonal coefficients fa1n,...,adn and show its superiority over the
standard, univariate diagonal method.

1. Introduction

Let F (x) =
∑

n∈Nd fnxn be a complex power series that converges in a neighborhood
of the origin but not on all of Cd. Here x = (x1, . . . , xd), n = (n1, . . . , nd), and fnxn =
fn1,...,nd

xn1
1 · · ·xnd

d .
We wish to compute asymptotics for the diagonal coefficients fa1n,...,adn for fixed positive

integers a1, . . . , ad, a task often useful in enumerative combinatorics. For simplicity of
presentation, we suppose that fn ≥ 0 and that F is rational, although much greater
generality is possible. Thus far the only general method to extract diagonal asymptotics
to be found in the literature is what we call the standard diagonal method. It consists of
two steps: (1) find a closed form or defining equation for the diagonal generating function
G(x) :=

∑
n∈N fa1n,...,adnxn via contour integration (in the style of [Fur67] and [HK71] and

summarized in [Sta99, Section 6.3]); (2) apply univariate singularity analysis to G(x) (in
the style of [FS] for instance) to compute the asymptotics. However, as elaborated below,
this method is quite limited, working well only for main diagonals in two variables, that
is, for computing the asymptotics of fnn.

In this article we present a new, more versatile diagonal method. It consists of one step:
apply multivariate singularity analysis (in the style of [PW02], [PW04], [BP]) directly to
F (x) to compute the asymptotics.

2. Limitations of the Standard Diagonal Method

What is wrong with the standard diagonal method? It certainly works well for computing
main diagonal asymptotics in two variables, as witnessed by the following example taken
from [MZS04].

Example 2.1 (Zigzag-free Binary Words). The bivariate generating function

F (x, y) =
∑
m,n

fmnxmyn =
1 + xy + x2y2

1− x− y + xy − x2y2

counts the number of words over a binary alphabet, {0, 1} say, that have m zeros and n
ones and do not contain zigzags, that is, the subwords 010 and 101. The main diagonal
coefficients fnn, then, count zigzag-free binary words with an equal number of zeros and
ones.

To compute the asymptotics of fnn using the standard diagonal method we proceed
as follows. Since F (x, y) is rational and holomorphic in a neighborhood of the origin, for
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fixed x small enough F (x/t, t) will be rational and holomorphic as a function of t in some
annulus about t = 0. Thus in that annulus it can be represented by a Laurent series whose
constant term is [t0]F (x/t, t) =

∑
n≥0 fnnxn, the series we want. By Cauchy’s Integral and

Residue Theorems we have that for some circle γx about t = 0∑
n

fnnxn = [t0]F (x/t, t)

=
1

2πi

∫
γx

F (x/t, t)
t

dt

=
∑

k

Res(F (x/t, t)/t; t = sk),

where the sk are the “small” singularities of F (x/t, t)/t, that is, the ones satisfying
limx→0 sk(x) = 0. Since F is rational, these singularities are poles and algebraic func-
tions of x, so that the residue sum, the diagonal generating function, is also an algebraic
function of x.

In particular,

F (x/t, t)/t =
1 + x + x2

−t2 + (1 + x− x2)t− x
,

which has a single simple pole approaching zero as x approaches 0, namely, s = 1
2(1 + x−

x2 −
√

1− 2x− x2 − 2x3 + x4). The residue, the diagonal generating function, is then

G(x) :=

√
x2 + x + 1
x2 − 3x + 1

.

Now, the singularity of G closest to the origin is ω := (3−
√

5)/2, and its reciprocal is the
exponential growth order of the coefficients of G. To determine the leading subexponential
factor we note that

G(x) ∼ (1− x

ω
)−1/2

√√√√ x2 + x + 1

−ω
(
x− 3+

√
5

2

)


x=ω

= (1− x

ω
)−1/2 2√√

5

as x → ω, so that

fnn = gn ∼ ω−n 2√√
5

n1/2−1

Γ(1/2)
=

(
2

3−
√

5

)n 2√√
5πn

by asymptotic transfer (see [FS, Chapter VI] for instance). �

However, the standard diagonal method encounters major problems off the main diago-
nal even in two variables, as illustrated in the next example adapted from [Sta99, Section
6.3].

Example 2.2 (Lattice Paths). The bivariate generating function

F (x, y) =
1

1− x− y − xy
,

whose coefficients fmn are called the Delannoy numbers, counts the number of lattice paths
from (0, 0) to (m,n) with allowable steps (1, 0), (0, 1), and (1, 1).
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To compute the asymptotics of the general diagonal coefficients fan,bn using the standard
diagonal method, we fix x > 0 small enough and try to find the small poles of

G(x) :=
∑

n

fan,bnxn

= [t0]F (x1/a/tb, ta)

=
1

2πi

∫
γx

F (x1/a/tb, ta)
t

dt

=
1

2πi

∫
γx

tb−1

tb − x1/a − ta+b − x1/ata
dt

Since tb − x1/a − ta+b − x1/ata has a zero of multiplicity b at t = 0 when x = 0, it follows
that F (x1/a/tb, ta)/t has a single pole s of order b satisfying limx→0 s(x) = 0. Thus we
have that

G(x) = Res(F (x1/a/tb, ta)/t; t = s)

= lim
t→c

1
(b− 1)!

Db−1
t

(
(t− s)bF (x1/a/tb, ta)/t

)
,

where Dt is the derivative with respect to t. Patiently tracing through Leibniz’s rule
for the iterated derivative of a product, we could express this limit in terms of s and
g(t) := (t−s)−b(tb−x1/a− ta+b−x1/ata), and use it to find an algebraic equation satisfied
by G. However, even with the help of Maple, this seems unlikely for general a and b.

Thus, already at the first step of the standard diagonal method, it seems we are thwarted,
the cause of the problem being the parameters a and b occurring in the exponent: the larger
they get, the greater the difficulty in finding a defining equation for G. �

So we should keep to main diagonal asymptotics when using the standard diagonal
method. But even this poses problems in three or more variables, as illustrated by the
next example.

Example 2.3 (Ternary Words). The trivariate generating function

F (x, y, z) =
1

1− x− y − z

counts the the number of words flmn over a ternary alphabet, {0, 1, 2} say, that have l
zeros, m ones, and n twos (an easy consequence of the symbolic method as described in
[FS]). An easy combinatorial argument shows that flmn =

(
l+m+n
l,m,n

)
, to which one could

apply Stirling’s formula and derive the asymptotics.
To compute the asymptotics of the main diagonal coefficients fnnn using the standard

diagonal method instead, we iterate the contour integration process. First∑
n

fm,n,nxmyn = [t0]F (x, y/t, t)

=
1

2πi

∫
γx

F (x, y/t, t)
t

dt

=
1

2πi

∫
γx

1
−t2 + (1− x)t− y

dt,

which has a single simple pole approaching zero as y and x approach 0, namely, s =
1
2(1 + x−

√
1− 2x + x2 − 4y). The residue is then

G(x, y) :=
1√

1− 2x + x2 − 4y
.
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Second, since

lim
x→0

G(x/t, t) = lim
x→0

1√
1− 2x/t + x2/t2 − 4t

=
1√

1− 4t
,

G(x/t, t) is a holomorphic function of t in some annulus about t = 0. Thus computing
1

2πi

∫
γx

G(x/t, t)
t

dt =
1

2πi

∫
γx

1
t
√

1− 2x/t + x2/t2 − 4t
dt

will give us the diagonal generating function. Proceeding, we employ Maple and find that
two singularities of G(x/t, t)/t approach 0 as x approaches 0, namely

− 1
24

p(x) +
q(x)
p(x)

+
1
12

+
1
2
i
√

3
(

1
12

p(x) +
q(x)
p(x)

)
and its conjugate, where p(x) = (−36x+216x2+1+24

√
−3x3 + 81x4)1/3 and q(x) = x− 1

24 .
While both of these singularities are algebraic in x, Maple can not compute the sum of
their residues in reasonable time.

The problem is that the residue sum, that is, the diagonal generating function
∑(

3n
n,n,n

)
xn,

is not algebraic (see [Sta99, Exercise solution 6.3] for instance). While it is D-finite —the
diagonal of any rational function in any finite number of variables is D-finite [Lip88]—
it not trivial to find a closed form or defining differential equation for it. (In the present
case we obtain, using the Maple package Mgfun, the defining differential equation 27x(x−
1)f ′′(x)+(54x−1)f ′(x)+6f(x) = 0, which has a hypergeometric solution). Moreover, even
given the defining differential equation, we still require the theory of univariate singularity
analysis of D-finite functions to compute the asymptotics. But this theory has not been
worked out in general. Indeed, as Philippe Flajolet has informed us, certain aspects of it,
such as the so-called connection problem, might not be computable! �

3. A New Diagonal Method

To transcend the limitations of the standard diagonal method, to go beyond main diag-
onal asymptotics of bivariate generating functions, we take a multivariate approach. When
the diagonal method works, it does at least produce an explicit algebraic formula for the
diagonal generating function, which our method here does not. However, it is normally
much more useful to have an asymptotic expression for the coefficients. In order to achieve
this, we can apply a multivariate singularity analysis directly to F (x). Such an analysis
has been recently developed by Baryshnikov, Pemantle, and Wilson in [PW02], [PW04],
and [BP], the relevant parts of which we now summarize and adapt to our needs.1

Let D ⊂ Cd be the open domain of convergence of F and write F (x) = I(x)/J(x)
for some I and J holomorphic on an open domain D′ containing the closure ) D, and
relatively prime in the ring of holomorphic functions on D′. In all examples in this paper,
the representation of F as a quotient in fact holds on all of Cd, but the extra generality is
sometimes useful in applications. Let V be the complex variety {x ∈ Cd : J(x) = 0}.

A critical point of F for n ∈ (N+)d is a solution of

J(x) = 0

ndxiJi(x) = nixdJd(x) (i < d).

Here ni denotes component i of n, and Ji denotes the partial derivative of J with respect
to component i of the domain of J , conventions we adopt for all vectors and functions
throughout and which should cause no confusion in context. Let Crit(n) denote the set

1As a whole, the multivariate singularity analysis developed in the aforementioned articles is much more
general than what we present in this article, as it applies not only to rational functions but also to locally
meromorphic functions. For a more complete summary including further examples, see the forthcoming
article [PW].
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of all critical points of F for n. For generic directions n, this set is finite, being a zero-
dimensional complex variety. The main situation in which Crit(n) is infinite occurs when
J defines a binomial variety {x | xa−xb}, in which case Crit(n) is empty for all but one
direction and uncountable otherwise. Such examples can be analysed by a variant of the
methods shown here.

A contributing point of F for n is a critical point that influences the asymptotics
of the coefficients of F in the direction of n. Let Contrib(n) denote the set of all such
points. While Contrib(n) is ill-defined here, its functional role will become clear from
the next two theorems.

Theorem 3.1. If Crit(n) is finite, then

• Crit(n) contains exactly one point, call it c, that lies in the positive orthant of
Rd, and c ∈ Contrib(n);

• all other members of Contrib(n) must lie on the same torus as c;
• in the case where J = 1 − P for some aperiodic power series with nonnegative

coefficients P , Contrib(n) = {c}.

Here, the torus of a point c ∈ Cd is the set {x ∈ Cd : ∀i ≤ d |xi| = |ci|}, and a power
series is aperiodic if the Z-span of its monomial vectors is all of Zd.

A point c ∈ V is a smooth point if V is a smooth complex manifold in a neighborhood
of c, or equivalently, if Ji(c) 6= 0 for some i (see [BK86, page 363] for instance). For
simplicity of presentation, we deal only with smooth points in this article. This is the
generic case, although interesting examples are not always generic. For more on the case
of non-smooth points, see [PW04].

Theorem 3.2. Let n = (a1n, . . . , adn) for some a1, . . . , ad ∈ N+. If Contrib(n) con-
sists of a single smooth point c such that cdJd(c) 6= 0 and cd is a simple zero of xd 7→
J(c1, . . . , cd−1, xd), then

fn = c−n

 j′∑
j=0

bjn
(1−d−j)/2
d + O

(
n−d−j′

d

)
for some bj ∈ C as n → ∞. If Contrib(n) consists of a finite set of smooth points
c1, . . . , cr each satisfying the hypotheses above, then

fn =
∑

i

c−n
i

 j′∑
j=0

bijn
(1−d−j)/2
d + O

(
n−d−j′

d

)
as n →∞.

Theorem 3.3. In Theorem 3.2,

b0 =
I(c)

−cdJd(c)
√

(2π)d−1h(J, c)
,

assuming h(J, c) 6= 0. Here h(J, c) is the determinant of the matrix H, whose entries are

Hlm =
clcm

c2
dJ

2
d

(
JmJl + cd(JdJlm − JmJld − JlJdm +

JlJm

Jd
Jdd)

) ∣∣∣
x=c

;

Hll =
clJl

cdJd
+

c2
l

c2
dJ

2
d

(
J2

l + cd(JdJll − 2JlJld +
J2

l

Jd
Jdd)

) ∣∣∣
x=c

,

where l, m < d and l 6= m.
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Proof. The formula for b0 comes from [PW02, Theorem 3.5]. (Please note the typo therein:
the zdHd should be a −zdHd.) We prove the formula for H only.

For easy reading, let x̂ = (x1, . . . , xd−1). Since J is holomorphic and Jd(c) 6= 0, there
exists a holomorphic function g guaranteed by the Implicit Function Theorem such that
in some open ball around c, J(x̂, g(x̂)) = 0. As shown in [PW02], H is the Hessian (matrix
of second partial derivatives) of

f̃(θ̂) := + log g(c1eiθ1 , . . . , cd−1eiθd−1) + i
d−1∑
j=1

nj

nd
θj − log g(c)

evaluated at θ = 0.
Now, from the Implicit Function Theorem we also get

Dl g(x̂) = − Jl(x̂, g(x̂))
Jd(x̂, g(x̂))

(l < d);

Dm Jl(x̂, g(x̂)) = Jlm + Jld Dm g = Jlm − Jld
Jm

Jd
(l ≤ d,m < d).

Thus, up to an additive constant, Dl f̃ = −icleiθlg−1Jl/Jd, and for l, m < d with l 6= m we
have

Dlm f̃
∣∣∣bθ=0

= clcm

(
−g−2 Dm g

Jl

Jd
+ g−1 Jd Dm Jl − Jl Dm Jd

J2
d

) ∣∣∣
x=c

;

Dll f̃
∣∣∣bθ=0

= clg
−1 Jl

Jd
+ c2

l

(
−g−2 Dl g

Jl

Jd
+ g−1 Jd Dl Jl − Jl Dl Jd

J2
d

) ∣∣∣
x=c

.

The result then follows by plugging in the Implicit Function Theorem equations above and
simplifying. �

Several of our examples involve main diagonal asymptotics for symmetric J . In this case
h(J, c) simplifies greatly.

Proposition 3.4. If Crit(n) is finite, n = (n, . . . , n), J(x) is symmetric in x, and
Jd(c) 6= 0, where c is the contributing point that lies in the positive orthant of Rd, then
c = (c, . . . , c) for some positive real c, and

h(J, c) = d

(
1 +

c

Jd
(Jdd − Jd1)

∣∣∣
x=c

)d−1

.

Proof. By Theorem 3.1, Crit(n) contains exactly one point c that lies in the positive
orthant of Rd. By the symmetry of the critical equations J = 0 and xiJi = xdJd (i < d)
induced by the symmetry of n and J , any permutation of c’s coordinates is also a critical
point lying in the positive orthant of Rd. Since there can be only one such point, c =
(c, . . . , c) for some positive real c.

Since J is symmetric and c = (c, . . . , c), all first partial derivatives of J are equal at c,
all mixed second partial derivatives of J are equal at c, and all diagonal second partial
derivatives of J are equal at c. Thus the entries of the matrix of Theorem 3.3 simplify to

Dlm f̃
∣∣∣bθ=0

= 1 +
c

Jd
(Jdd − Jd1)

∣∣∣
x=c

Dll f̃
∣∣∣bθ=0

= 2Dlm f̃
∣∣∣bθ=0

,

where l,m < d and l 6= m, and the determinant simplifies to h(J, c) = ad−1d, where
a = 1 + c

Jd
(Jdd − Jd1)

∣∣∣
x=c

. �
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Our new diagonal method is simply the application of Theorems 3.1, 3.2, and 3.3 directly
to F . We illustrate this now with several examples.

Example 3.5 (Zigzag-free Binary Words). Consider again the bivariate generating
function

F (x, y) =
∑
m,n

fmnxmyn =
1 + xy + x2y2

1− x− y + xy − x2y2

of Section 2. To compute the asymptotics of fnn using the new diagonal method, let
n = (n, n) and J = 1 − x − y + xy − x2y2. Then Crit(n), the solution set of J = 0
and nxJx = nyJy, comprises (1/φ, 1/φ), (−φ,−φ), (1 ± i

√
3)/2, and (1 ± i

√
3)/2, where

φ = (1 +
√

5)/2. By Theorem 3.1, c := (1/φ, 1/φ) is a contributing point and the only
such point, since none of the other critical points lie on the same torus as c. It is also a
smooth point. By Proposition 3.4, h(J, c) = 4/(−5 + 3

√
5), and by Theorems 3.2 and 3.3,

fnn ∼ φ2n 2√√
5πn

.

This agrees with our answer in Section 2 since φ2 = 2/(3−
√

5). �

Example 3.6 (Lattice Paths). Consider again the bivariate generating function

F (x, y) =
1

1− x− y − xy
,

of Section 2. To compute the asymptotics of fan,bn using the new diagonal method, let
n = (an, bn) and J = 1 − x − y − xy. Then Crit(n), the solution set of J = 0 and
bnxJx = anyJy, comprises (−a±L

b , −b±L
a ), where L =

√
a2 + b2. By Theorem 3.1, c :=

(−a+L
b , −b+L

a ) is the only contributing point. It is also a smooth point. By Theorem 3.3,

h(J, c) = −2(b−L)a(a2+b2−aL)
(a−L)2(a−b+L)2)

, and by Theorem 3.2,

fan,bn ∼
(
−a + L

b

)−an (
−b + L

a

)−bn
√

ab

L(a + b− L)22πn
.

Here, where the standard diagonal method failed, the new diagonal method allowed us to
compute the asymptotics quite easily (with the help of Maple). This success comes from
a general attribute of the new diagonal method: the parameters a and b appear as factors
instead of as powers in the equations we need to solve. �

Example 3.7 (Ternary Words). Consider again the trivariate generating function

F (x, y, z) =
1

1− x− y − z

of Section 2. To compute the asymptotics of fan,bn,cn, let n = (an, bn, cn) and J = 1 −
x − y − z. Then Crit(n), the solution set of J = 0, cnxJx = anzJz, and cnyJy = bnzJz

comprises c := (a+ b+ c)−1(a, b, c). By Theorem 3.1, c is the only contributing point. It is
also a smooth point. By Proposition 3.4, h(J, c) = ab(a + b + c)/c3, and by Theorems 3.2
and 3.3,

fan,bn,cn ∼
(a + b + c)(a+b+c)n

aanbbnccn

√
a + b + c

abc

1
2πn

,

in agreement with Stirling’s formula.
Here, where the standard diagonal method failed because of the nonalgebraic character

of the diagonal generating function, the new diagonal method gave the answer easily, even
off the main diagonal. �
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Rather than multiply examples unnecessarily, we finish with an example involving an
arbitrary number of variables. Many more examples of multivariate asymptotics using
similar methods can be found in [PW].

Example 3.8 (Alignments). In a problem from computational biology, one is given a
finite set of strings of various lengths over some finite alphabet and needs to count the
number of ways of inserting blanks into these strings to make them all of equal length. The
strings represent genetic sequences, and inserting blanks represents aligning genetically
similar segments among the sequences.

More specifically and abstractly, a (d, r1, . . . , rd)-alignment is a table of d {0, 1}-strings,
one in each row, such that the sum of the entries of row j equals rj (1 ≤ j ≤ d) and
no column contains all zeros. (The ones correspond to letters of the genetic sequence and
the zeros to blanks.) As shown in [GHOW90], the generating function for the number of
(d, ·)-alignments is

F (x1, . . . , xd) =
1

2−
∏d

i=1(1 + xi)
.

To compute the asymptotics of fn,...,n (the case where all rows have the same sum;
the genetic sequences all have the same length) using the new diagonal method, let n =
(n, . . . , n), I = 1/2 and J = 1 − (1/2)

∏d
i=1(1 + xi). Then Crit(n), the solution set of

J = 0 and nxiJi = nxdJd (i < d) comprises (21/dωi − 1, . . . , 21/dωi − 1), where the ωi

(i < d) are the dth roots of unity. By Theorem 3.1, c := (21/d− 1, . . . , 21/d− 1) is the only
contributing point. It is also a smooth point. By Proposition 3.4, h(J, c) = d2(1−d)/d, and
by Theorems 3.2 and 3.3,

fn...n ∼ (21/d − 1)−dn 1

(21/d − 1)2(d2−1)/2d
√

d(πn)d−1
,

in agreement with [GHOW90]. (Please note the typo therein: the 2(k2−1)/2k in the formula
on page 139 should be a 2(1−k2)/2k).

A more important case for biological applications is to count alignments whose minimum
block size is bounded below by a constant. A block of size b in a (d, ·)-alignment is a d× b
submatrix of the alignment with contiguous columns, none of which contain a zero. As
shown in [RT], the generating function for (d, ·)-alignments with blocks of size at least b is

G(x1, . . . , xd) =
1− t + tb

1 + (1− p)(1− t + tb)− t2 + tb+1

=
1− t + tb

1− t− (p− 1− t)(1− t + tb)

where p =
∏d

i=1(1 + xi) and t =
∏d

i=1 xi. Note that when b = 1, G = F , as expected.
To compute the asymptotics of gn,...,n (which to our knowledge has only been done

up till now for d = 2 via the standard diagonal method [RT]) let n = (n, . . . , n) and
J = 1 − t − (p − 1 − t)(1 − t + tb). Then Crit(n) comprises all vectors x1 such that
j(x) := J(x1) = 0 (as seen from the equations nxiJi = nxdJd). Let c := c1 be the critical
point in the positive orthant of Rd (so c is the unique positive solution of j(x) = 0) and
note that c < 1, because j(x) < 0 for x ≥ 1. By Theorem 3.1, c ∈ Contrib(n) and all
other points of Contrib(n) lie on the same torus as c. Since

G(x1, . . . , xd) =
1 + tb

1−t

1− (p− 1− t)(1 + tb

1−t)
,

on the open polydisk {x ∈ Cd : ∀i |xi| < 1}, since this polydisk contains the torus of c,
and since (p − 1 − t)(1 + tb

1−t) is an aperiodic power series with nonnegative coefficients,
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we can apply Theorem 3.1 to conclude that c is the only contributing point. It is also a
smooth point, as is seen most easily from the form J = 1− (p− 1− t)(1 + tb

1−t). Thus by
Theorem 3.2,

gn...n ∼ c−dnb0n
(1−d)/2,

where b0 is the constant given in Theorem 3.3. Note that both c and b0 depend on b. �
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