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Abstract We consider3-candidate elections under a general scoring rule and derive precise conditions
for a given voting situation to be strategically manipulable by a given coalition of voters. We present an
algorithm that makes use of these conditions to compute the minimund&iaéa manipulating coalition

for a given voting situation.

The algorithm works for any voter preference model — here we present numerical results for IC and
for IAC, for a selection of scoring rules, and for numbers of voters up to 150. A full description of the
distribution of M is obtained, generalizing all previous work on the topic.

The results obtained show interesting phenomena and suggest several conjectures. In particular we see
that rules “between plurality and Borda” behave very differently from those “between Borda and antiplu-
rality”.

Key words scoring rule, IAC hypothesis, IC hypothesis, probability of manipulation

1 Introduction

Following the proofs by Gibbard [5] and Satterthwaite [16] that every reasonable voting rule can be manip-
ulated, several authors have tried to quantify the probability of such an event, under various assumptions
on the distribution of voter opinions. These papers have differences in: the definition of manipulability;
the measure of manipulability; the assumptions on voter preferences; whether the answers sought are exact
(either derived via numerical computation or via an analytic formula for a fixed number of voters) or asymp-
totic (as the number of voters grows large). They also differ markedly in their generality and mathematical
sophistication.

The present article considers in detail the problem of coalitional manipulation of a positional voting
rule. Our aims throughout are generality, simplicity and rigour. We consider a general positional voting
rule, derive linear equations and inequalities describing exactly whether or not a given voting situation is
manipulable by a given subset of the voters, and use these to show how to efficiently compute the minimum
size of a manipulating coalition. We present numerical results based on enumeration of the manipulable
voting situations, for positional voting rules in tBealternative case. This allows a complete picture of the
distribution of the size of a minimum manipulating coalition for moderate numbers of voters, and suggests
various conjectures about the asymptotic behaviour.

The layout of the paper is as follows. In the remainder of this section, we outline in detail our basic
assumptions and definitions. In Section 2 we derive the linear systems mentioned above, and solve them
analytically as far as possible. In Section 3 we describe our enumeration algorithm and its implementation.
In Section 4 we present a selection of interesting numerical results obtained using our program. In Section 5
we further discuss the significance of these results and discuss the relationship between our work and that
of other authors. Finally, in Section 6 we discuss possible extensions and future work.

Impatient readers may wish to jump straight to the linear conditions in Figure 1, read Theorem 2.3,
peruse the tables and graphs in Section 4 and then go on to the open problems in Section 6.
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1.1 Basic definitions

We suppose that there atealternativesor candidates,, . . ., a., for an election. We deal fully only with
the case ofn = 3 alternatives, but much of our methodology carries over to gemer@iowever when

m > 4, exhaustive computation of exact results rapidly becomes infeasible for even moderate values of
We usually writea, b, ¢ instead ofay, as, as.

Definition 1 A profile is specified by giving aapinion or preference(a linear ordering of the alternatives)
for each voter.

There aren! different possible opinions, which in our case we order lexicographically in the usual way: for
m = 3 thisisabc, acbh, bac, bea, cab, cha.

Definition 2 The above ordering of opinions induces a partition of thasetvoters into subselg, . .., V1.

We writey; for the cardinality ofV;. For each subseX C V, the above partition oV induces a corre-
sponding partition ofX, and we writer; for the cardinality ofX; := VN X. Them!-tuple (v1, ..., vm1) is
called thevoting situationcorresponding to the voters’ preferences. The set of all possible voting situations
we denote bys.

Remark 1The cardinality ofS is given by the binomial coeﬁicier(f’“z!”), wheren = |V| is the number
of voters. Form = 3 this number is asymptotically of ordef, whereas the number of profilesris

For voting rules which aranonymouginvariant under all permutations of the 3&bf voters), we need
only consider voting situations, not profiles. We shall do this throughout.

Definition 3 A positionalor scoringrule is defined for a givem by a realm-tuplew whose entries are in
(not necessarily strictly) decreasing order. Alternativeeceives scorev; from a voterv if and only ifk is
in position: of v's preference order. The total scofk| of & is obtained by summing the scores givertto
by each voter. The alternative with highest total score wins.

Definition 4 Thescoreboardassociated to a voting situatianis them-tuple of scoreg|a |, .. ., |am|). We
denote by thescore mapsending an element &f to the associated scoreboard.

Remark 2In the casen = 3 we have

la| = w1 (1 +v2) + wa(vs + vs) + ws(va + v6); @)
|b‘ = ’wl(Vg + 1/4) + U}Q(Vl + V@) + w3(1/5 + VQ);
lc| = w1 (Vs + v6) + wa(ve + vyg) + ws(vy + v3).

1.2 Tie-breaking for positional rules

All positional rules contain the possibility of tied scores for first place. In this event, a separate tie-breaking
rule will be needed. One common tie-breaking rule is to resort to a pre-determined arbitrary order (for
example, lexicographic order, or the French practice of allowing the oldest candidate to prevail). Though
simple to implement, this is not always so convenient for analysis. Another method is to give one of the
voters a casting vote. However, this is even less tractable from a theoretical point of view, as it means that
the winner can no longer always be determined from the voting situation only, but may require consultation
of the full profile.

Here we will use theandomtie-breaking method. That is, in the event of a tie, the winner will be cho-
sen at random, with all candidates with the maximum score being equally likely to be chosen. This method
complicates the voting by introducing probabilistic considerations, and of course does not yield a voting
rule in the classical deterministic sense. However, it has the great advantage that it preserves the symme-
try among candidates (such rules are caltedtral). This is important for the large-scale computational
studies undertaken in this paper, as the symmetry can be exploited to reduce the amount of work required.
Furthermore, it can be strongly argued that such a tie-breaking method is fairer than any method that breaks
the symmetry between candidates.
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1.3 Manipulation

We present below the basic definitions used throughout this article. There are many other concepts of ma-
nipulability; we discuss this further in Section 5.

Definition 5 Fix a voting rule. We define manipulability of a voting situation in stepwise fashion as follows.

— Let 7 be a profile. We say that’ is preferredto « by voterwv if for eachk = 1, ..., m the probability
of electing one ob’s most-favoured: candidates under’ is no less than under. (If ' # =, the
condition implies that this probability will be strictly greater for somng

—asubsefX C Vis amanipulating coalitionat the profiler if and only if there is a profiler’ # 7 which
agrees withr onV \ X and is preferred tor by all members ok;;

—arule is manipulable at the profile if and only if there exists a manipulating coalition at this profile;

— A rule ismanipulableat a voting situatiorns if and only if there exists a profile giving rise too, at
which the rule is manipulable.

Note in particular that a voter will never prefer to increase the probability of electing the candidate he
favours least, or to decrease the probability of electing the candidate he favours most. In three-candidate
elections, these two conditions constitute a full description of the preference rule.

Remark Note that ifr andr’ yield clear winners anda’ respectively, them prefersr’ to « if and only if v
prefersa’ to a. The extra generality in our definition is necessary because of the symmetric tie-breaking rule
we are using. In standard probability languageis preferred tar if and only if the probability distribution

on candidates associated withdominates that associated within the sense of stochastic order.

Example 1 (manipulatiorFonsider the plurality rule defined by the weight vedtbr0, 0), and an election
in which sincere preferences are such thabdters have the opiniosbc, 3 have the opiniofca, and2 have
the opinioncab. The scoreboard is thed, 3,2) anda is the sincere winner.

The subset consisting of all tlhea andcab voters can manipulate. Indeed, if the: voters vote strate-
gically ascba and thecab voters continue to votead, then the original winned is replaced by. Each of
the types of voters in the coalition prefers the new election outcome to the sincere one.

Note that no manipulation in favour éfis possible in this situation, since the only voters preferting
to a are already contributing the maximum scoré #nd the minimum ta.

Example 2 (manipulation involving tie€pnsider the Borda rule, defined by the weight ve¢?ot, 0), and
an election in which sincere preferences are suchithiater has the opinionbc, 3 voters have the opinion
acb, 4 voters have opiniohac, and3 voters have opinionba. The scoreboard is thei2, 12, 9).

The subset consisting of alkb andcba voters can manipulate. If all of them change their votesit
then the new scoreboard becon(&s, 9, 12). Note that all members of the coalition prefeto b and hence
prefer this election outcome in the sense of stochastic order. The winning probability distribution on the
candidates has changed fr@ty2,1/2,0) to (1/2,0,1/2).

Example 3 (minimal manipulatioionsider the rule with weight vect¢t, 3, 0) and the voting situation in
which the opiniorucb is held byl voter, and the opinionsbc, bac, cab, andcba are each held bg voters.

The scoreboard €4, 20, 19). A manipulating coalition can be formed by the twix voters and one of

the bac voters (who all change their vote boa, thus handing victory td). The reader may verify that this
coalition is minimal, that is, that no coalition with fewer than three members can manipulate. (A coalition
of onecba and onebac could achieve a 3-way tie, but this is not a preferred outcome fasdheoter.)

2 Manipulation of scoring rules in the 3-alternative case

For a fixed scoring rule defined by its weight vectgra fixed voting situatiowr, and a fixed subset C V,
we shall determine whethe¥ is a valid manipulating coalition with the power to change the outcome of
the election. Without loss of generality, the voting situatioiis such that the candidates’ scores are in
non-decreasing ordejiz| > |b| > |c|. The possible types of manipulations are itemized in Table 1.

We note that there are three essentially different kinds of manipulation possible. In cases 1(i), 1(ii),
1(iii), and 1(iv), there is a clear winner, and manipulation is in favour of one of the other candidates, who
is promoted to clear or joint winner. These manipulations we call Type I. In cases 2(i) and 2(ii), there is a
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Sincere outcome| Manipulated outcome Possible?| Coalition member types | Type

Ljal > 16| > |c| | (i) bwins yes bac, bea, cba (preferb to a) I
(ii) a, btie yes bac, bea, cba (preferb to a) I
(i) cwins yes cab, cba, bea (preferc to a) I
(iv) a, ctie yes cab, cba, bea (preferc to a) I
(v) b, ctie no
(vi) 3-way tie no

2. |al =1b] > || | (i) awins yes abe, ach, cab (prefera to b) Il
(i) b wins yes bac, bea, cba (preferb to a) Il
(i) cwins no
(iv) a, ctie yes cba, cab, acb (preferc to b) [
(v) b, ctie yes cab, cba, bea (preferc to a) [
(vi) 3-way tie no

3.|al = 16| = || | any no

Table 1 Manipulation of 3-candidate elections.

tie for first place, and one of the tied candidates is promoted to sole winner by manipulation. These we call
Type Il manipulations. In cases 2(iv), 2(v), there is a tie for first place, and the bottom candidate is promoted
to tie with one of the original winners. These we call Type Il manipulations.

As noted in Table 1, some types of manipulations never occur. We deal with these first.

Theorem 2.1For a 3-candidate positional voting rule, no valid coalition can ever manipulate the outcome
in any of the following ways.

(i) If ais the sincere winner: creation of a tie between the other two candidaiad c.
(ii) If the sincere outcome is a tie betweemnd b: promotion of the third candidate to the status of sole
winner.
(iii) If the sincere outcome is a tie between all three candidates: creation of any other outcome.
(iv) Under any circumstances: creation of a tie between all three candidates.

Proof Suppose that is the sincere winner. A coalition to create a tie betwkandc must consist entirely

of voters who prefer both andc to a (typesbca andcba). Other voter types will not prefer thg ¢ tie to

a clear win fora in the sense of stochastic order, because it has a higher probability of electing their least-
favoured candidate. These voters are already contributin@he minimum possible) to the score @fso

no strategic voting by them can decrease the scate®imilarly, they are already contributirfgr +w-2)/2

(the maximum possible) to the average scoré ahdc, so no strategic voting by them can increase that
average score. Hence, they are unable to bring about any situation in which the average s@ové cof
exceeds the score af In particular, the scores éfandc cannot be made equal and greater thiarscore.

The other cases are handled by similar arguments. For (ii), the only possible coalition members are those
who preferc to botha andb. For (iii), there are two sub-cases. Making any single candidate the sole winner
will be preferred only by voters who rank that candidate first, while creation of any two-way tie will be
preferred only by voters who rank the other candidate in last place. For (iv), if there is a sincere sole winner
then the 3-way tie will be preferred only by voters who ranked that candidate last. If the sincere outcome is
a 2-way tie, the 3-way tie will be preferred only by voters who ranked the other candidate fitst.

2.1 Linear conditions describing manipulability

We now turn to the class of possible manipulations described in Table 1. We shall derive linear systems
of equations and inequalities that describe exactly which voting situations are manipulable. Each of the
types I-lll need only be analysed once, since the other cases of the same type are obtained by applying
an appropriate transposition of the candidates. We consider the type | case|whereb| > |c| and
manipulation is in favour of, the type Il caséa| = |b| > |c| where manipulation is in favour &f and the
type Ill casela| = |b| > |c| where manipulation is in favour of

To save space we shall write; — w; asw;; from now on. Suppose that a manipulating coaliti§n
containsx; voters of typei (i = 1,...,6). We first consider the type | and type Il manipulations — the
results are displayed in Figure 1. All membersX¥fmust prefei to a, so we haver; = x5 = x5 = 0. It
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Fig. 1 Integer linear systems describing type | and type Il manipulability by a given coalition. The coaliticem
manipulate if and only if there exisgt, - satisfying these conditions.

la] — |b] < T3wa1 + Taws1 + Tewse + y1wiz + y2wis (IP: Ib)
lc] = 6] < T3wa1 + Tawar + Tewi2 + Yyrwiz + Yawiz
3+ T4+ Te = Y1 + Y2
0<z;<viforl<i<6
0<y;, 0<y2
all z;, y; are integers

0 < z3wa1 + Taws1 + Tews2 + Yy1wiz + Y2wis (IP: llb)
lc] = 0] < z3wa1 + zawar + Tewiz + Yy1wiz + Yyawiz
T3+ x4+ T =Yy1+ Y2
0<z; <pfor1 <i<6
0<y, 0<y
all z;, y; are integers

is clear that if manipulation is possible at all, it is certainly achievable by each voter ranfrag(this is a
dominant strategy for such voters).

Lety,, y2 denote the numbers of voters who strategically wate bea. The strategic scores then become
la|’, b, |c|’, where

lal" = |a| + (y1 — z3)wz + (y2 — T4)ws — TeW3;
b = [b] + (y1 — z3)wi + (Y2 — Ta)w1 — Tew;
" = le| = (y1 — z3)ws + (y2 — x4)ws — Tews.

For b to become the sole winner, or tie with it is necessary and sufficient that the inequalitiés >
la|’, |b]" > |c|" be satisfied. We also know that + y» equals the size of the coalition. These conditions
immediately yield the first system shown in Figure 1. The type Il analysis is very similar and yields the
second system of Figure 1.

The other cases may be obtained by applying a permutatieh: b induces the permutation,
T3, Ty < T4, x5 — Tg, While the transposition < ¢ induces the permutatian, «— o, x3 <« 5,24 <
ZTg-

The manipulations denoted in Table 1 as “Type IlI” are more complex. These are rare manipulations in
which a tie is replaced with another tie (see Example 2). Members of a coalition manipulating in this way
have no obvious dominant strategy: since the goal is to match two candidates’ scores exactly, any of the six
possible candidate orderings could potentially be a useful strategic vote. We shall see below (Theorem 2.2)
that for the purposes of this article we may ignore type Ill manipulations. However, we record the defining
linear system in Section 6 for possible future use.

It turns out that we need never consider type Ill manipulations to determine whether a situation is
manipulable, or to compute the minimum size of a manipulating coalition. We now prove this.

Lemmallf w = (1,0,0) (plurality rule) or w = (1, 1,0) (antiplurality rule), type Ill manipulations are
never possible.

Proof By symmetry we need only consider the case where the sincere regulltds |b| > |c| and we
seek to being about a residff = |c| > |b]. Only voters with opiniongab, cba or acb would prefer the
manipulated outcome. First consider plurality. No strategic action by these voters can irfeteade|) /2
or decreasé|. Similarly in the antiplurality case, none of the willing voters can decr¢gset |b|)/2 or
increasec|. Thus in no case canbe promoted abovkto tie witha. O



6 Geoffrey Pritchard, Mark C. Wilson

Theorem 2.2If a voting situation is type Illl-manipulable by a coalition, then itis also type II-manipulable
by a subset oK.

Proof We may assume by Lemma 1 that we are dealing with neither plurality nor antiplurality. By symmetry
we need only consider the situation whHeh= |b| > |c| and we seek to bring about a tie betweseandc,
with b the clear loser. Suppose th&tis a coalition that can manipulate the outcome by means of type Ill
manipulations. We have, = x3 = x4 = 0.

If ¢ # 0 then the coalition consisting of a singlea from X may strategically votéca, promotingb
to sole winner. Similarly ifcs # 0 then a single.ab may voteach, promotinga to sole winner. Finally, we
cannot havers = x5 = 0, since no strategic action by voters of typé can increasé| — [b|. O

2.2 Minimum coalition size

In the present article, we are chiefly interested in whether a given situation is manipulable by some coalition,
and if so, what is the minimum size of a manipulating coalition. As we have seen, these questions may be
reduced to integer linear programs of the form

min f () (Z(z. 7))
s.t. (m,y) € Ry
T e ZM,y € ZN,

wheref(z) = Zfﬁl x;, Ro is a linear polytope, and for three candidalds= 6 and N = 2. (The linear
conditions defining?, may include both strict and non-strict inequalities.) The situation is manipulable (in
the particular way being considered) if and onlZifZ, Z) is feasible; the optimal value Gf(Z, Z) gives

the minimum coalition size.

Exact solution of such problems requires substantial computation in the worst case. Of course, we are
dealing with a very small problem. However, several such problems must be solved for each voting situation,
so it is important that they be solved as efficiently as possible. We shall now discuss this issue in detail.

ConsidelZ(Z, Z). To begin with, define the following simpler problem.

min f(z) (P(R))
strxe R
r e RM,

whereR; = {x € RM | 3y € RN with (z,y) € Ry}. Geometrically,R; is the projection of the polytope
R, onto the subspace where gjl are zero, and so it is also a linear polytope. The prob®{R) is thus a
linear program; a relatively tractable problem. It is possible to detivéfom R, using the Fourier-Motzkin
algorithm [17].

We now list some obvious but useful relations between the integer prdbfan¥) and the projection
P(R). Inthe Lemma below, note that the optimum®fR) may not be attained if there are strictinequalities
in the definition ofRy; if the optimum is attained then its value is of course

Lemma 2 (relation betweenZ (Z, Z) and P(R)) The following facts hold.

1. If P(R) is infeasible, then so 8(Z, Z).
2. Suppose tha®(R) is feasible and lep = inf{f(x) : © € R;}. Let(z,y) € Ry be an integer point. If
either of the following conditions hold, thém, ) is optimal forZ(Z, Z).
—P(R) attains its optimal value andl(z) = [z]
— P(R) does not attain its optimal value anfdz) <p+ 1

Proof Clear from the definitions. O
We now derive explicit descriptions &f; andR,. The results are summarized in the following theorem.

Theorem 2.3 (constraints definingP) Let X be a manipulating coalition for a given voting situation. Let
x; be the number of members &fof typei, fori = 1,...,6. Then
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1. if|a|] > [b] > ||, then
0=x1 =20 =5 (PRQJ: Ib)
la] — [b] < wazws + wiaTe
la| —2|b] + |¢] < 3wi2xe
or
0=x1 =20 =23 (PROJ: Ic)
la| = |e| < w2sws + wiaxs
la| — 2]c| + |b] < Bwiazy
2. if |a] = |b| > |c|, then
0=z1 =29 =15 (PROJ: lIb)
0 < wagx3 + wioxg
or
0=x3=x4 =4 (PROJ: lla)
0 < wasxy + wi2xs
3. it cannot be the case that| = |b] = |¢|.

Proof We derive the conditions anin each case by systematically applying Fourier-Motzkin elimination.

Consider the constraints for Case 1(i)/1(ii) displayed in (IP: Ib). First use the equality constraint to
eliminatey,. This yields the equivalent system

|a| — [b] < wasws + wiawe + waay1 (IP: I'b)
c| = |b] < ws2x3 + 2wi2we + Wy
O0<z3+z4+m6— 1
0<wu
all z; andy; are integers.
We now relax the condition ogy toy; € R. For each pair of inequalities where the coefficienypbccurs
with different signs, we form a new inequality not involvigg by forming the appropriate positive linear
combination of inequalities. This yields
la] — |b] < wa3ws + w1276
|C| — ‘b| < Wo3T4 + (2w12 + 1U23)1‘6
|af = 2[b] + |¢| < Bwizze
0<z3+ 24+ 76
all z; are integers.

The second and fourth inequalities are redundant disice |c| and allz; are nonnegative. Thus we
obtain the stated system (PROJ: Ib). The Case 1(iii)/(iv) conditions are derived similarly and displayed in
(PROJ: Ic).

Now consider Case 2(ii), whose integer linear system is displayed in (IP: 1Ib). A completely analogous
argument to the previous case yields the inequalities in (PROJ: 1lb). We obtain the equivalent system

0 < wosxs + wiaxg + WY1 (lP ||’b)
c| = |b] < wsax3 + 2wi2we + WYy
O0<z3+z4+m6—1
0<az; <vforl<i<6 3)
0<wu
all z; andy; are integers.
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and then the system (PROJ: lIb) by Fourier-Motzkin elimination. Similarly, Case 2(i) yields the system
(PROJ: lla). O

The linear programs in Theorem 2.3, along with Lemma 2 can be used as a shortcut to solve the integer
programs of forniZ (Z, Z). However, caution is required: a feasible point #(R), even if it has integral
coordinates, need not correspond to any feasible poirf fdr Z). Indeed, it is possible for a solution to
P(R) (with integral coordinates) to exist even when the original proliléff, Z) is infeasible, as demon-
strated by Example 4 below. This has apparently not been noticed by previous authors, perhaps because of
Theorem 2.4 below, which covers the three most commonly studied rules, namely the plurality, antiplurality
and Borda rules.

Example 4 P(R) feasible butZ(Z, Z) infeasible)Consider the weight vectdr, 3,0) and the voting situ-

ation in which3 voters have sincere preferenge:, 1 voterach, and 1 voterab. The scores arf:| = 16,

|b| = 12, |¢| = 7. The coalition consisting of the thréec voters (3 = 3 and all otherz; = 0) satisfies the

first set of necessary conditions given in Theorem 2.3, suggesting that it might be possible to manipulate
in favour of b (Case 1(i)/(ii)). But the necessary and sufficient conditions (IP: Ib) require the existence of
integersyy, y» such that

y1 +4y2 > 7, dy1 +y2 > 7, andy; +y2 = 3,
which leads to the impossible conditidrn< 3y, < 5.

Example 5 (optimality gap betweé&r{Z, Z) and P(R)) Consider the voting rul€8, 7,0) and the voting
situation in which 4 voters have sincere preferesmee 1 voterach, 3 votersbac, 6 votershca, and 6 voters
cab. The scores arf| = 103, |b] = 100, and|c| = 97. Suppose we are interested in Type | manipulations
in favour ofc. Solving the linear program (PROJ: Ic) produces an optimum at the cegner3/7, x4 = 3.

The nearest feasible point with integer coordinates;is- 1, x4 = 4, but this is infeasible for the original
problem (Z, Z)). Indeed, a coalition of oneib and fourbca voters cannot manipulate; the best scoreboard
they can produce (by all votinga) is (96,103, 101), leavinge still in second place.

If a fifth beca voter is added to the coalition, the scoreboard becd®id 02, 102), but this is not a valid
manipulation either, as the new outcomeddie) is not preferred to an outright win farby thecab voter.
Adding the sixthbca voter to the coalition produces an outright win fofscoreboard96, 101, 103)). This
seven-member coalition is not minimal, however. A coalition of thebsixvoters may also manipulate,
producing the scoreboafd03, 94, 103) (note that all coalition members prefer thetie to an outright win
for a).

The indivisibility of votes plays an important role in this situation. If fractional votes were permitted,
only 3.44 votes (3.04ca and 0.43:ab) would need to be changed to produce the scoreb@artl9, 100, 100.01)
and an outright win for.

Remark 4Example 5 shows that the minimum coalition size can be more than the ceiling of the optimum
of P(R).

2.3 Computing the minimum coalition size

We now consider the various cases in detail, and simplify the integer programming problems analytically as
far as possible. We make liberal use of Lemma 2.

First we treat the cage| = |b| > |c|. The relaxation (and hence the original IP) is infeasiblesfr; =
0 = wy216. From now on we assume that it is nonempty. Note th&P (R) = 0.

Suppose first thabq216 > 0. Then optimality is attained at; = 0, z¢ = 1, which is the projection of
the feasible poingy; = 0,y2 = 1,23 = 0 = 14, z¢ = 1 satisfying (IP: IIb).

On the other hand, suppose thatvs = 0 butwssvs > 0. From (IP: 1I'b), we see thatwoszs <
wasy1 < |b] — |¢|] — wazzs must hold. Since alsg, > 0, this yields the constrairit < wasxs < [b] — |c|.
If these last inequalities have no integer solutiondgr= 1, the problem is infeasible. Otherwise, we can
sety; =0,y2 = 1,24 = 0,23 = 1,26 = 0in (IP: IIb) and obtain a solution that projects to a feasible point
of P(R), which is optimal as above.

In summary, in this case the minimum size of a coalition that can manipulate in favéus défwhen
such manipulation is possible. Such manipulation is impossible precisely wheg = 0 and either
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Te6 Te6
Vg Ve - —
"XRI -
la|=2[b|+]c| la|—=2]b]+]c]
max(0, =) - i max0, ==y~ - |
[ [
V3 x3 V3 3
(a) Easy case. (b) Hard case.

Fig. 2 The easy and hard cases of Type | manipulation.

waz = 0 Orwaz > |b| — |c|. A similar argument deals with manipulation in favourafand we already
know that no manipulation in favour efis possible. Thus the minimum size of a manipulating coalition
when|a| = |b] > |c| is 1, and we have precise conditions in terms.oénd the scoreboard for when this is
possible.

We now move on to the type | cases, where> |b|. We need only consider case 1(i)/(ii), whérbut
notc has the maximum score after manipulation. That is, the feasible regiB(Rfis given by (PROJ: Ib)
and the feasible region Gf(Z, Z) by (IP: Ib).

If Bwiave < |a| — 2|b] + |c| OF wesvs + wiavs < |a| — |b], thenP(R) is infeasible and hence so is
1(Z,7).

Otherwise,P(R) is feasible. We may then consider two subcasgs: > wo3 (“easy”) andwis < wag
(“hard”); see Figure 2.

First, the easy case. Note that we have > 0. If wiavs > |a|—|b| then lettingt := (|a| —|b]) /w12, the
optimal value ofP(R) corresponds to the poid, ¢); this optimal value is precisely By Lemma 2 we see
that an optimal solution df (Z, Z) is given byzs = t = y», with all otherz; andy; equal to 0. The optimal
value is thugt]. Similarly, if vs < ¢ (note that this impliesvss > 0), then, lettings = w12 (t — v6) /was,
the optimal value ofP(IR) corresponds to the poifit, ), and we see by Lemma 2 that an optimal solution
of Z(Z,Z) is given byzs = [s], 6 = vg, y1 = 0, andys = 3 + x¢. Note that in this easy casé(Z,Z)
is feasible if and only ifP(R) is.

Now for the hard case. i3v5 + (Ja] — 2|b] + |¢|)+/3 < |a| — |b] (note this impliesv;2 > 0), then the
point (vs, (|a| — 2[b| + |c|)+/(3w12)) does not satisfy the first inequality of (IP: Ib), & is a triangle and
the optimal value of?(R) corresponds to the poifits, (|a| — |b| — wesv3)/w12). We can then use Lemma
2 to verify that an optimal solution &f(Z, Z) is given byzs = v3, 26 = [(Ja| — |b] —wasvs) /wiz], y1 = 0,
andy2 =3+ Tg.

If, on the other handwssvs + (la] — 2[b] + |¢])+/3 > |a| — |b|, then the optimal value oP(R)
corresponds to a point on the lower edgeRaf as depicted in Figure 2 (b). (It is worth noting that the point
(0, (Ja] = 2]b] + |e|)+/(3w12)) never satisfies the first inequality of (IP: Ib).) There does not seem to be
an exact expression for the minimum coalition size in this case, but we have the following fast method for
computing it. The least possible valuexfis x§ = (1 + | (|a] — 2[b] + |¢|)/(Bwi2)|)+ (Or 0'if w1 = 0).
Consider in turn the values; = z¢,...,vs. For a given value of, the least possible value af; is
zg = [(|a] — |b] —w12x6) /was]; if this is strictly less thar|b| — |c| + 2w1226) /was, then these values af
andz along withy; = 0 andy, = x5+ are a feasible point af(Z, Z). Moreover, the first feasible point
found by this method will be optimal fdf(Z, Z). This is easy to see. Suppose that another fofntzy)
with 2 > a6 andzf + x5 < 3 + 6 is also the projection of a feasible point far(Z, Z)). Then

Wos®h + W1aTh < Wo3Ts + wiaTe + woz(xh — T3 + Tl — T6)
< Wo3T3 + Wi2Ze — Was
< la| —bl,
since(zs — 1, z6) is infeasible forP(R).
In this hard casef (Z, Z) may be infeasible even(R) is feasible (an example is given in Example 4);

the iterative method of the previous paragraph will then regch 14 without finding any solution.
The analysis above yields the following result.
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Theorem 2.41f w2 > wa3 Or wio = 0, then there is a solution tP: Ib) if and only if there is a solution
to (PROJ: Ib) Furthermore, the optimal value dfP: Ib) is the greatest integer not exceeding the optimal
value of (PROJ: Ib)

Proof If w5 > wogs, this follows from the easy-case arguments above.

Forw,o = 0 (the anti-plurality rule), we must consider the hard case. Without loss of genetality:
1. If Ja| =2|b|+|c| > 00orvs < |a]—1b], P(R) is infeasible. Otherwisé? (R) is feasible, and we must apply
the iterative algorithm discussed above. We begin with= z§ = 0 and correspondings = |a| — |b|;
since this is less tha| — |c|, we have immediately found an optimal solutionZ(fZ, Z). The optimal
value for bothZ(Z,7Z) andP(R) is |a| — [b]. O

3 Description of the algorithm

Our exact results are of course based on enumeration of voting situations. However, our tie-breaking meth-
ods allow us to make use of symmetry to reduce the search space, as we now describe.

The groupG of all permutations of the candidates acts on theSseftvoting situations in a natural way.
Whether a voting situation is manipulable is invariant under permutations of the candidates, so is a property
of an orbit ofG on S.

Clearly, we would like to examine only one representative from €zarbit onS. However, a simple
rule for carrying this out is not apparent. Below we give a simple rule that in most cases chooses a single
representative, but in the worst case may choose the entire orbit.

Theorem 3.1Let F = {0 € S: |a| > |b] > ||}, the set of voting situations for which the candidates are
ranked in alphabetical order. Defing: S — Z by

I1; 1!

() ml - where thd; are the multiplicities of the distinct scoresgife F;
x =
7 0 otherwise.

Then for eactG-invariant functiony on S, we have

> @) =D p().
€S zeS
Proof The groupG acts naturally on the scoreboards, and the score map taking voting situations to score-
boards commutes with the action@f Thus eacliz-orbit O on S is mapped onto &'-orbit of scoreboards.
Now O contains at least one elemensuch that its scoreboakds in nonincreasing ordefg| > |b| >
|c|. The size of the7-orbit of s is preciselyc(x). Also O is the disjoint union of fibres~1(¢) of the score
map, and there arg(x) of these. Furthermore all fibres have the same cardinality. Thus we have

Yo rnz) = p@) Y ) =p@) Y () = pap @)l (s)] = w@)|0l =Y u),

z€O zeO 2€0,a(z)=s z€0
and summing over all7-orbits gives the result. O

Example 6Consider an election under the Borda rule. If the voting situatidn,i8, 0,1, 1,0), its G-orbit

has size2 and each element has scorebo@®, 3), so hasy = 1. If the voting situation i0, 1, 2,0, 0, 0),

then itsG-orbit has sizeés. There are two elements, namély, 1,2,0,0,0) and(2,0,0,0, 1,0), that have
scoreboard4, 4,1), and each has = 3. The voting situation(2, 1,0, 0,0, 0) hasG-orbit of size6 and
scoreboard6, 2, 1), and receives the valug= 6.

We shall apply Theorem 3.1 with equal to the indicator function of manipulability (when counting
manipulable situations), and also wjtrequal to the minimum size of a manipulating coalition.

Note that we need only consider voting situations whose scoreboard satisfiesb| > |c|. Thus our
algorithm makes use of the theorem to cut the number of voting situations that must be examined, by a
factor slightly less thais. Voting situations are generated systematically. For each situation, we compute
the scoreboard and the valuepbove. If the scoreboard is not decreasing= 0), we move to the next
voting situation. Ify # 0, we compute the minimum coalition size, or report that manipulation is infeasi-
ble. This computation follows the description in Section 2.2. We consider type Il or type | manipulations
depending on whethéd| = |b| or not. We need to compute only the standard manipulations (for type |, this
is manipulation making a winner), and apply the appropriate permutation to reduce others to this case.

We have implemented the algorithm in C++ (code is available from the authors on request).



Manipulability of positional voting rules 11

4 Selected numerical results

Table 2 Probability under IAC that an-voter, 3-alternative election is manipulable by a coalitionkadr fewer voters.

n |k plurality (3,1,0) Borda (3,2,0) (10,9,0) anti-plurality
2 |1 0.000000 0.428571 0.142857 0.142857 0.142857 0.428571
3|1 0.000000 0.000000 0.321429 0.321429 0.321429 0.214286
411 0.214286 0.333333 0.190476 0.357143 0.357143 0.404762
2 0.214286 0.428571 0.190476 0.357143 0.357143 0.404762
511 0.214286 0.238095 0.309524 0.333333 0.261905 0.452381
2 0.214286 0.333333 0.380952 0.404762 0.285714 0.452381
6 |1 0.155844 0.227273 0.233766 0.324675 0.305195 0.305195
2 0.207792 0.305195 0.350649 0.441558 0.474026 0.305195
3 0.207792 0.344156 0.350649 0.441558 0.474026 0.305195
7|1 0.242424 0.219697 0.250000 0.280303 0.303030 0.393939
2 0.242424 0.310606 0.340909 0.393939 0.424242 0.484848
3 0.242424 0.363636 0.363636 0.401515 0.431818 0.484848
8 |1 0.205128 0.202797 0.223776 0.282051 0.247086 0.396270
2 0.263403 0.291375 0.340326 0.421911 0.340326 0.466200
3 0.286713 0.347319 0.386946 0.473193 0.349650 0.466200
4 0.286713 0.361305 0.386946 0.473193 0.349650 0.466200
9 |1 0.194805 0.182817 0.224775 0.236763 0.260739 0.299700
2 0.224775 0.272727 0.332667 0.359640 0.419580 0.353646
3 0.224775 0.323676 0.404595 0.410589 0.488511 0.353646
4 0.224775 0.350649 0.416583 0.422577 0.488511 0.353646
10| 1 0.209790 0.185814 0.196803 0.248751 0.251748 0.349650
2 0.257742 0.273726 0.304695 0.387612 0.395604 0.471528
3 0.281718 0.336663 0.362637 0.463536 0.457542 0.511489
4 0.293706 0.374625 0.388611 0.481518 0.461538 0.511489
5 0.293706 0.382617 0.388611 0.481518 0.461538 0.511489
11| 1 0.200549 0.170330 0.200549 0.225275 0.221154 0.343407
2 0.250000 0.258242 0.302198 0.353022 0.335165 0.442308
3 0.266484 0.318681 0.384615 0.432692 0.380495 0.475275
4 0.266484 0.357143 0.427198 0.457418 0.385989 0.475275
5 0.266484 0.370879 0.434066 0.462912 0.385989 0.475275
12 | 1 0.180349 0.160957 0.180349 0.209438 0.223497 0.276341
2 0.231739 0.247253 0.286037 0.336458 0.372818 0.356820
3 0.255495 0.307369 0.361183 0.421299 0.462993 0.383969
4 0.269069 0.351002 0.414512 0.463963 0.501778 0.383969
5 0.275856 0.374273 0.429056 0.472689 0.501778 0.383969
6 0.275856 0.379121 0.429056 0.472689 0.501778 0.383969

The algorithm described in Section 3 allows us to compute, for each voting situation, whether the situa-
tion can be manipulated by a coalition of voters, and the minimum size of such a manipulating coalition.

To gain an overview of manipulability, we must make some assumption as to which voting situations
are the most likely to occur. We will use two of the most common models for this:

— IAC (Impartial Anonymous Culture): all voting situations are equally likely.
— IC (Impartial Culture): all profiles are equally likely. Note that a voting situatien . . . , v,,,1) (with a
total of n voters) represents! /(4! - - - v !) profiles.

The IC model can be described probabilistically: voters act independently, and each voter is equally likely to
choose any of the possible preference orders. In all but the smallest electorates, this means (due to the law of
large numbers) that most of the probability is placed on voting situations where all candidates have roughly
equal support, and the margin of victory is small. Such situations are often the most prone to manipulation.
In contrast, the IAC model places more probability on voting situations where the margin of victory is
relatively large, and manipulation may be more difficult.

With our culture model (IAC or IC) and a voting rule chosen, fg{k) denote the probability that an
election involvingn voters and 3 candidates is manipulable by a coalitiok of fewer voters. Previous
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Table 3 Probability under IC that an-voter, 3-alternative election is manipulable by a coalitionkodr fewer voters.

n |k plurality (3,1,0) Borda (3,2,0) (10,9,0) anti-plurality
2 |1 0.000000 0.500000 0.166667 0.166667 0.166667 0.333333
3|1 0.000000 0.000000 0.250000 0.250000 0.250000 0.111111
4 |1 0.333333 0.472222 0.291667 0.402778 0.402778 0.296296
2 0.333333 0.555556 0.291667 0.402778 0.402778 0.296296
511 0.370370 0.339506 0.324074 0.408951 0.258488 0.375000
2 0.370370 0.416667 0.416667 0.462963 0.281636 0.375000
6 |1 0.246914 0.353652 0.331147 0.362011 0.329604 0.175412
2 0.308642 0.453961 0.423740 0.516332 0.507073 0.175412
3 0.308642 0.471965 0.423740 0.516332 0.507073 0.175412
711 0.462106 0.357082 0.336077 0.380187 0.384538 0.347951
2 0.462106 0.477109 0.471858 0.514168 0.510867 0.394762
3 0.462106 0.537873 0.503365 0.518669 0.515368 0.394762
8 |1 0.384088 0.348330 0.335002 0.368809 0.273773 0.374200
2 0.468107 0.466357 0.478134 0.546550 0.335787 0.397005
3 0.484111 0.522369 0.525145 0.610565 0.341789 0.397005
4 0.484111 0.525120 0.525145 0.610565 0.341789 0.397005
9 |1 0.384088 0.327300 0.330050 0.327725 0.322297 0.204703
2 0.432099 0.468557 0.479260 0.498189 0.502649 0.214991
3 0.432099 0.549576 0.545525 0.582808 0.571465 0.214991
4 0.432099 0.578457 0.556777 0.594061 0.571465 0.214991
10| 1 0.434099 0.335768 0.324503 0.348929 0.341792 0.354003
2 0.498114 0.469403 0.479018 0.533352 0.505874 0.434432
3 0.522119 0.547713 0.570539 0.613724 0.561002 0.443863
4 0.526120 0.572677 0.597545 0.624477 0.562669 0.443863
5 0.526120 0.573327 0.597545 0.624477 0.562669 0.443863
11| 1 0.418585 0.328479 0.317480 0.331406 0.268390 0.362999
2 0.535945 0.481467 0.471247 0.528225 0.357605 0.406740
3 0.554282 0.566568 0.574720 0.634460 0.375834 0.411521
4 0.554282 0.613192 0.613168 0.673160 0.377323 0.411521
5 0.554282 0.624003 0.616720 0.676140 0.377323 0.411521
12 | 1 0.399025 0.307993 0.310184 0.300434 0.299059 0.218128
2 0.465040 0.461212 0.464178 0.472296 0.478058 0.240433
3 0.489490 0.551249 0.579748 0.589853 0.575725 0.242694
4 0.496825 0.598379 0.632886 0.640546 0.603008 0.242694
5 0.497803 0.614579 0.644148 0.650861 0.603008 0.242694
6 0.497803 0.614724 0.644148 0.650861 0.603008 0.242694

work on manipulation has focused mainly on the extremes1 (manipulation by individuals) and = n
(manipulation by any coalition); we will consider all values/fThus we compute the full probability
distribution functionf,, of the random variablé&/, which equals the minimal coalition size (st if manip-

ulation is not possible). We restrict fo< n/2 because in every example we have seen, incredsdaes

not lead to any change in the probability (we do not have a formal proof of the plausible statement that the
minimum size of a manipulating coalition is always at mog2).

Tables 2 and 3 give the values ff(k) for small numbers of voters, for several positional voting rules.
These tables of,, (k) for smalln show that the likelihood of manipulation in small committees is high.
Furthermore we see that some rules are completely dominated by others (in the sense thati@aneach
n, fn(k) < gn(k)). It turns out that each < 12, there is often a single dominant rule among the six rules
displayed here. These are shown in Table 4 and Table 5. We also include extra information in these tables
for discussion in the next section.

Note that under IAC, the rule specified [; 2, 0) is completely dominated by Borda, plurality and the
(3,1,0) rule over the entire range < 12. Plurality also dominates thg0, 9,0) and antiplurality over this
range. It seems that under IAC, the “easy” case rules are much superior to the “hard” ones. The reverse is
true (to a less extent) under IC however: o< n < 12, plurality is dominated by antiplurality. However,
note that again th€3, 2, 0) rule is uncompetitive, being dominated by Bordadox 11, and by at least one
other “easy case” rule for each< 12.
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Table 4 Best rules fom < 12, by various measures, under IAC

Number of voters| 2 3 4 5 6 7 8 9 10 11 12
Dominantrule | plur | plur | Borda | plur | plur none none none none none none

Pr(M =1)least | plur | plur | Borda | plur | plur | (3,1,0) | (3,1,0) | (3,1,0) | (3,1,0) | (3,1,0) | (3,1,0)

Pr(M < oo) least| plur | plur | Borda | plur | plur plur plur plur plur plur plur

Table 5 Best rules fom < 12, by various measures, under IC

Number of voters | 2 3 4 5 6 7 8 9 10 11 12
Dominantrule | plur | plur | Borda | (10,9,0) | antip | none | (10,9,0) | antip | none | (10,9,0) | antip

Pr(M =1)least | plur | plur | Borda | (10,9,0) | antip | Borda | (10,9,0) | antip | Borda | (10,9,0) | antip

Pr(M < oo) least| plur | plur | Borda | (10,9,0) | antip | antip | (10,9,0) | antip | antip | (10,9,0) | antip

Table 6 Probability under IAC of manipulability of &50-voter, 3-alternative election.

n k plurality (3,1,0) Borda (3,2,0) (10,9,0) anti-plurality
150 | 1 0.028768 0.019740 0.020304 0.024294 0.027861 0.041790
10 0.156653 0.141459 0.137456 0.184919 0.232361 0.248109
20 0.231809 0.240621 0.253923 0.329686 0.390713 0.395509
50 0.289056 0.402909 0.474906 0.531345 0.536958 0.504149
00 0.291722 0.425031 0.496558 0.537954 0.537175 0.504149
Table 7 Probability under IC of manipulability of #0-voter, 3-alternative election.
n k plurality (3,1,0) Borda (3,2,0) (10,9,0) anti-plurality
150 | 1 0.167757 0.108331 0.100657 0.105540 0.108635 0.140902
10 0.819020 0.695129 0.590518 0.641616 0.570225 0.407870
20 0.975120 0.937504 0.874442 0.894358 0.729099 0.413466
50 0.981641 0.994959 0.996119 0.994388 0.830657 0.413468
) 0.981641 0.994975 0.996128 0.994389 0.830657 0.413468

We now move on to larger values af Tables 6 and 7 consider manipulability in elections wig0
voters. In Figure 4 we pld@r(M < oo) for n < 50. In Figure 4, we graplf,, (k) against: forn = 48, n =
49, n = 50. The mod3 periodicity evident for smallen is still very clear for the hard case rules but not in
the easy case. Integer effects are more important in the hard case, as we saw in Section 2.3. Once again, the
easy case rules seem to outperform the hard case ones when IAC is assumed, but the reverse is true when
IC is assumed.

A rough explanation of this behaviour is as follows. It arises largely because these models emphasize
different kinds of voting situations. Under IAC, much of the weight is placed on voting situations where the
winner has a sizeable margin of victory, and the best rules are those which prevent manipulation in such
situations. For example, under 3-candidate IAC with a large electotate ¢o), the asymptotic probability
that one candidate has an absolute majority of first preferen8@sds~ 0.56. This condition is sufficient to
prevent any manipulation of the plurality rule, and hence the probability of non-manipulability for plurality
is quite high (asymptoticallyt7/24 ~ 0.71). This does not hold for other rules, such as (for example)
antiplurality.

In contrast, the IC model places most of the weight on voting situations in which candidates are evenly
matched, and the margin of victory (under any positional rule) is narrow. The antiplurality rule, and others
similar to it, are able to prevent manipulation in these situations — despite plenty of voters who would prefer
the losing candidates — by exploiting the problem of inadvertent promotion of third candidates. However
the plurality rule and others like it do not have this ability to the same degree.

5 Comparison with the existing literature

The present article is the first to provide exact (computational) results for positional rules other than the
standard three (plurality, Borda, antiplurality). Very few authors have considered quantitative measures of
manipulability for a general positional rule. Furthermore our random tiebreaking has not been commonly
used. Thus, though we believe our approach to be superior to those undertaken by previous authors, direct
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Fig. 3 Probability of the occurrence of a manipulable situation, as a function of the number of voters

comparison with existing results is not easy. Below we discuss a few cases in which such comparison can
be profitably made. We discuss both results and methodology.

Previous authors have usually considered one or more rules, which need not be positional; the positional
rules chosen have been limited to plurality, Borda, and antiplurality. Furthermore, they

use various definitions of manipulability;
consider various measures of manipulability;
give statistical results for these measures that are either
— asymptotic (as the number of voters tendsdfy
— exact analytic (given by a formula for finite);
— exact computational (derived by an algorithm, as in the present article);
— based on random sampling;
consider various probability distributions on voter preferences (of which the Impartial Culture and Im-
partial Anonymous Culture models are the most common by far).

We discuss each of these issues except the last in more detail below. Results for the three standard
positional rules (and other non-positional rules) for more general preference models are presented in [12].
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Fig. 4 Manipulability by coalitions of various sizes, for 48, 49, or 50 voters

In [2] a so-called spatial model of voting is used. Apart from these, to our knowledge all papers have dealt
with IC or IAC only, and we confine our discussion to these cases.

5.1 Definitions of manipulability

Various definitions of manipulability are used in the literature (and we discuss them below). Small differ-
ences in such definitions, and issues such as tiebreaking, will not affect our results substantially when the
numbern of voters is large, although tiebreaking does affect numerical results for smdlbst previous
authors have used lexicographical tiebreaking.

There are two main distinctions to make. First, there is individual manipulation (in other words, by a
coalition of sizel) versus more general coalitional manipulation. Individual manipulation only was studied
in earlier papers while recently coalitional manipulation has been more studied. Second, there is a big
difference between naive manipulation (when the manipulating voters ignore any possible game-playing by
other voters) and the more sophisticated type of manipulation that allows for the possibility of reversals or
counterthreats. The only quantitative works on manipulability in the latter case of which we are aware are
[11, 3], which also consider naive manipulation; all others (including ourselves) use only the naive concept.
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Some authors (for example Saari [15]) have studied a different concept under the name of manipulation,
which we do not consider to be a valid manipulation in general. Namely, one can consider the easier prob-
lem of promotingb ahead ofa, without worrying thatc may thereby overtaké This is calledthreshold
manipulability in [14] and is simpler to analyse.

Technically, our random tiebreaking does not specify a voting rule. A rule is caeduteif it always
produces a unigue winner from each voting situation. Ties can be handled by considering non-resolute rules.
In [21] several different definitions of manipulation of non-resolute rules are presented. It is not at all clear
to us which, if any, of these definitions coincides with our definition.

5.2 Measures of manipulability

Several measures or indices of manipulability are used in [7,1, 20, 2], all of which deal only with IC and use
random sampling (the first three cited articles deal only with individual manipulation). These include such
measures as the number of candidates in whose favour manipulation is possible, the “margin of error” of an
attempted manipulation, and the number of voters who can individually manipulate. All these measures can
be computed in a straightforward way by modifying our program; however we have not implemented these
additional capabilities.

To our knowledge all other papers fit into the following framework. Rétbe the minimal size of
a manipulating coalition. Early papers considered the probalifiy}/ = 1); that is, they considered
only manipulability by a single voter. Later papers have considered the logical possibility of coalitional
manipulation; that isPr(M < co). In [2] the average minimum coalition size (conditional on manipulation
being possible, that iFy[M | M < ~o]) was studied. The average threshold coalition size was discussed in
[14].

Our analysis in the present article yields the full probability distribution of the minimum coalition size,
since we can computer(M < k) for eachk. Thus we can readily compute any of the above statistics if
desired.

5.3 Statistical results

We summarize some known results in Table 8 and Table 9. A question mark “?” means that we do not know
whether the relevant entry is known; by “exact formula” we mean a formula for finite

Exact results are found in a few papers. Results obtained by random sampling under IC are presented in
[13,20,1]. The latter two articles cover Borda and plurality. Several papers [9,11,10,12,4,3] present exact
analytic and computational results for IAC, for the three standard positional rules.

We first considePr(M = 1). The results of the above-mentioned papers sometimes vary substantially
from ours. In [20], for Borda and = 11 the value0.2321 is given, whereas we obtain3175; for n = 50
the corresponding values avd 159 and0.1701. However, it is easily seen that the probability of manipu-
lability under our random tiebreaking assumption will always exceed that computed under the assumption
of lexicographic tiebreaking, so these results are consistent.

Under IC, for every positional rule except antipluraliyg(M < oo) approaches exponentially fast as
n — oo, while it approaches/2 in the case of antiplurality. This convergence is certainly consistent with
Table 7. Whem = 21, the paper [2] give®r(M < oo) as0.810 for plurality and0.960 for Borda, whereas
we obtain0.640 and0.780 respectively. We do not have an explanation for this discrepancy; it is certainly
true that our tiebreaking assumptions are not exactly the same.

By contrast, under IACPr(M < oo) converges to a constant between0 and 1. These constants
do not depend on the tie-breaking procedure, since the set of tied situations has asymptotically negligible
probability. Our results agree well with these limits fr(M < o). For example, when = 150 we have
0.2917,0.4966, 0.5041 for plurality, Borda, antiplurality respectively. Note that convergence for the latter
is slower, as may be expected.

The other statistic that has been use@{d/|M < oo], the expected minimum size of a manipulating
coalition. This was introduced in [2]. The numerical results presented there are not easily verified, because
a slightly different measure is computed. See Section 6 for more discussion of this measure.
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Table 8 Probabilities of manipulability under IAC

Rule lim, Pr(M < co) | exactformula?| Pr(M =1) exact formula?
Positional 0<C<1 no O(n~1)[19] no
Plurality | 7/24 ~ 0.2917 [9] yes [9] ~ (55/18)n~* yes [11]

Borda ~ 0.5025 [4] no ~ (25/12)n" 1 yes [4]

Antiplurality | 14/27 ~ 0.5185 yes [6] ? ?
Table 9 Probabilities of manipulability under IC

Rule Pr(M < oo) | exactformula?| Pr(M =1) exact formula?
Positional | — 1 exp. fast no O(n~17?)[18] no
Plurality —1 ? ? ?

Borda —1 ? ? ?

Antiplurality — 1/21[8] ? ? ?

6 Extensions and future work

There are many areas for further study, and we now list some.

1. One obvious area is to understand better the type Ill manipulations. Here we derive the appropriate
linear system and record it for possible future use. Consider Case 2(iv). The coalition members must
preferc to b, so we haver; = z3 = x4 = 0. Let y1,y92,¥y3,y4,y5, andyg denote the numbers of
coalition members who strategically vatéc, acb, bac, bca, cab, andcba respectively. The conditions

to be satisfied are then derived as above:

0 =1b] — |e|] + warx2 + w12T5 + W13Te + WisY1 + Wi2Y2 + Wasys + Wazya + Wa1Ys + W31Ye
(IP:llic)

0 < |e| = |b] + w3az2 + w3175 + w216 + W32y1 + Wazy2 + W31Y3 + Wa1Ya + W13Ys + Wi2Ye
O=zo+a5+26— Y1 —Y2— Y3 —Ya— Y5 — Yo
0<z; <y for1 <i:<6
0<y;for1<;<6
all z;,y, are integers

Case 2(v) can be obtained from 2(iv) by transposirandb.

. The measur@r(M < oo) can of course be computed for a givey our methods, since it is just the
maximum value off,, (k). If a more analytic result is required, we can easily derive one by specializing
our linear systems. Explicitly, for each case listed in Table 1, thereriaxamal coalitionconsisting of
all voters with incentive to participate in a coalition. Since some of these can still vote sincerely if they
so desire, it follows that a situation is manipulable if and only if it is manipulable by the appropriate
maximal coalition. Algebraically, this means that tkie in systems such as (IP: Ib) are replaced by the
corresponding’’s. We can also express the scores in terms ofthdy (1). This yields integer linear
conditions in the/’'s andy’s only, which are necessary and sufficient for manipulation to be achievable.
The problem now reduces to one of counting lattice points inside a convex region, to which standard
techniques can be applied.

Some such conditions have been derived in various special cases by previous authors. One could attempt
to perform such a computation for a general positional rule.

. The results for smak immediately suggest conjectures about asymptotic behaviour of rules. For ex-
ample,

— plurality asymptotically minimize®r(M < co) for IAC;
— some easy case rule other than plurality or Borda mininfz¢3/ = 1) asymptotically under IAC;
— Borda is the rule for whiclPr(M < oo) converges fastest to 1 under IC.

. The measureBr(M = 1) andPr(M < oo) are the most commonly used in the literature. The measure
E[M|M < oo] was introduced in [2]. In [14] several results were derived for a general positional rule
under IC. It was shown that this measure is asymptotically equél(jgn'/?> whereC depends on
p := (w1 — we)/(wy; — ws). Furthermore, for easy case rulesX 1/2), C behaves continuously in
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p. But for the hard case, even though0) is a finite constant, there is a discontinuity@fatp = 0:

lim,,_,o C(p) = oo. Thus the closer a rule approaches antiplurality, the larggfig | M < co]. Hence

this measure is probably not all that useful, assuming IC. However, under IAC we expect the measure
to be of ordem, and it may be of more use.

5. We note that for many non-positional voting rules we can use the same methodology of deriving linear
systems to describe manipulability. Similarly, the type of linear systems derived here also occur in other
areas of voting theory.
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