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ABSTRACT. We study a basic sequential model for the formation of winning coalitions in a simple
game, well known from its use in defining the Shapley-Shubik power index. We derive in a uniform
way a family of measures of collective and individual decisiveness in simple games, and show that,
as for the Shapley-Shubik index, they extend naturally to measures for TU-games. These individual
measures, which we call weighted semivalues, form a class whose intersection with that of the class
of weak semivalues yields the class of all semivalues.

We single out the simplest measure in this family for more investigation, as it is new to the lit-
erature as far as we know. Although it is very different from the Shapley value, it is closely related
in several ways, and is the natural analogue of the Shapley value under a nonstandard, but natural,
definition of simple game. We illustrate this new measure by calculating its values on some standard
examples.

1. INTRODUCTION

Many authors have discussed the value theory of cooperative TU-games and its counterpart
for simple games, the theory of power measures. The material in the present paper arises from a
generalization of a particular measure of manipulability of voting rules (below called Q) circulated
in preprint form by the present authors. We realized that our original arguments generalize greatly,
and yield a general construction for TU-games that leads directly to a large class of allocations
including all semivalues. Amongst these, the simplest one yields a semivalue with several attractive
properties.

1.1. Our contribution. We explore the (Shapley-Shubik) sequential model for the formation of
winning coalitions in a simple game, and define (Section 3 and 4) a family of decisiveness measures
Q∗

F and individual power measures q∗
F for simple games. These measures satisfy many desirable

properties, and extend naturally to the class of TU-games. It turns out that this construction gener-
ates the class of what we call weighted semivalues. We give several interpretations of these values
in Section 5. In this framework the simplest F is affine and yields a weighted semivalue we call q∗

0 ,
which we single out for further attention. Although it differs substantially from the Shapley-Shubik
index, it is closely related as we see in Section 5.3. We illustrate the new measures by applying them
to some well-known games, including games derived from the study of strategic manipulation of
voting rules, our original motivating examples.

1.2. Basic definitions. The definitions of simple game and TU-game are not entirely standardized.
We use the most common definitions found in the literature. However, in Section 5.3, we shall drop
some of the assumptions made here.

A TU-game on a finite set X is defined by its characteristic function v : 2X →R, such that v(;) = 0.
We denote the class of all TU-games on X by G (X ). The class of finitely additive TU-games consists
of those games satisfying v(S ∪T )+ v(S ∩T ) = v(S)+ v(T ) for all S,T ⊆ X , and is denoted AG (X ).
A TU-game is monotonic if A ⊆ B ⊆ X implies v(A) ≤ v(B).

An allocation on X is a function ψ : G (X ) →AG (X ).

Remark. An allocation is often called a value assignment or simply value. An additive game is
completely specified by the value of v on singletons, so an allocation is just a way of associating a
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nonnegative real number with each player (we prefer not to use a vector, in order to avoid choosing
an arbitrary ordering on players).

A simple game [12] G = (X ,W ) on a finite set X is defined by a collection W of subsets of X (called
winning coalitions), such that ; 6∈ W . Equivalently, it is a TU-game on X where v takes only the
values 0 and 1 (the value 1 corresponding to the property “winning", whilst coalitions with value 0
are called losing). Note that we do not require that the game be nonempty — that is, we may have
W =;. The class of all simple games on X is denoted S G (X ) and we define S G analogously to G .
A special class of game is the (weak) unanimity game US defined by S, where a coalition is winning
if and only if it contains S. When |S| = 1 this is called a dictatorial game.

2. THE RANDOM QUERY PROCESS

Let G = (X ,W ) ∈ S G . Consider the following stochastic process. We choose elements of X
sequentially without repetition, at each step choosing uniformly from the set of elements not yet
chosen, until the set of elements seen so far first becomes a winning coalition. This is the same
process considered by Shapley and Shubik [11] in defining their power index (see Section 5.2 for
more details).

We first consider the random variable equal to the number of queries required.

Definition 2.1. Let V1, . . . ,Vn be elements sampled without replacement from X , where n = |X |.
Equivalently, π := (V1, . . . ,Vn) is a uniformly random permutation of X , representing the order in
which elements are to be chosen. Let

Qπ(G) = min{k : {V1, . . . ,Vk } contains a winning coalition}.

Remark. If the game is empty we will not find a winning coalition. In this case we define Qπ(G) to
have the value n +1. If the game is monotone, in Definition 2.1 the word “contains" can be replaced
by “is".

Definition 2.2. The quantity Q(G) is defined to be the expectation of Q(G) with respect to the uniform
distribution on permutations of X .

2.1. Non-sequential interpretation. The sequential nature of the process is only apparent, once
we have averaged over all possible orders. Thus we ought to be able to find a representation of Q(G)
that does not mention order of players. In order to do this, we assume from now on that the game
is monotone.

Definition 2.3. For each natural number k, define the probability measure mk to be the uniform
measure on the set of all subsets of X of size k. Thus each subset of X of size k is equally likely to be
chosen, with probability

(n
k

)−1.

For each natural number k, we let Wk (respectively, Lk ) denote the set of all winning (respect-
ively, losing) coalitions of size k.

Lemma 2.4. For each k with 0 ≤ k ≤ n,

Pr(Q(G) ≤ k) = Pr(Wk )

where the latter probability is with respect to mk .
In other words, the probability that we require at most k queries to find a winning coalition equals

the probability that a randomly chosen k-subset is a winning coalition.

Proof. The event Q(G) ≤ k means precisely that the initial subset A(Q(G),k) formed by the first k
queries contains a winning subset. Each subset of X of size k occurs with equal probability

(n
k

)−1

as an initial subset of queries of the query sequence, so that A(Q(G),k) is distributed as a uniform
random sample from Xk . �

Remark. The cumulative distribution function of Q(G) can thus be computed by simply counting
the number of winning coalitions of each fixed size.

We can now derive a simple explicit formula for Q(G).
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Lemma 2.5.

Q(G) = n +1−
n∑

k=0

|Wk |(n
k

) .

Proof. For every π, Qπ(G) is at most n+1. If G is empty then Wk is empty for all k and Q(G) = n+1,
as expected. Otherwise, Wn has a single element and Qπ(G) is at most n. Thus by Lemma 2.4 we
have

Q(G) = E [Q(G)]

=
n+1∑
k=0

k Pr(Q(G) = k)

=
n∑

k=0
Pr(Q(G) > k)

=
n∑

k=0

|Lk |(n
k

)
= n +1−

n∑
k=0

|Wk |(n
k

)
�

Remark. Note that the summation can start at k = 1 because the game is nontrivial. If we allowed
trivial games, then the value of the formula for Q(G) would be 0, which agrees with intuition.

3. CHANGES OF VARIABLE AND COLLECTIVE MEASURES

The number of random queries made in order to find a winning coalition seems to us to be
a fundamental quantity of a simple game. The quantity Q(G) intuitively seems to be a measure
of inertia or resistance (as discussed in [5]): its value is large if winning coalitions are scarce, and
small if they are plentiful. The rescaled quantity 1−Q(G)/(n + 1) looks like an index of what has
been called complaisance [5, 9] and decisiveness [2]. We consider far more general rescalings of
Q(G), with interesting consequences as will be seen below.

Definition 3.1. Let F be the set of all real-valued functions on the nonnegative integer quadrantN2.
Let F ∈F satisfy

(i) F (n,k) is decreasing in k for each fixed n.
(ii) F (n,0) = 1 and F (n,k) = 0 whenever k > n.

We say that F is an admissible rescaling.

Remark. We do not require that F be decreasing in n for each fixed k.

We shall see below that there is a direct relationship between F and the function f obtained as
follows.

Lemma 3.2. There is a bijection F ↔ f given by

f (n,k) = F (n,k)−F (n,k +1)(n
k

)(1)

F (n,k) =
n∑

j=k
f (n, j )

(
n

j

)
.(2)

Note that F is admissible if and only if f is nonnegative and
∑n

k=0 f (n,k)
(n

k

)= 1.
There is a bijection F ↔µ given by

F (n,k) =
n∑

j=k
µ(n, j )

µ(n, j ) = F (n,k)−F (n,k +1)

Note that F is admissible if and only if for each n, µ(n, ·) is a probability measure on {0, . . . ,n}. �
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Remark. We shall often write µn(k) for µ(n,k).

We now define our candidate for a measure of decisiveness.

Definition 3.3. Let G = (X ,W ) ∈S G . Define Q∗
F (G) : S G →R by

Q∗
F (G) = E [F (Q(G))]

where the expectation is taken with respect to the uniform distribution on permutations of X as in
Definition 2.2.

Proposition 3.4. The function Q∗
F is a decisiveness index on S G . Explicitly,

Q∗
F (G) =

n∑
k=0

f (n,k)|Wk |

where f and F are linked as in (1).

Proof. Let f be as given in (1). Then

n∑
k=0

f (n,k)|Wk | =
n∑

k=0
f (n,k)

(
n

k

)
Pr(Q(G) ≤ k)

=
n∑

k=0

k∑
j=0

f (n,k)

(
n

k

)
Pr(Q(G) = j )

=
n∑

j=0

(
n∑

k= j
f (n,k)

(
n

k

))
Pr(Q(G) = j )

=
n∑

j=0
F (n, j )Pr(Q(G) = j )

= E [F (Q(G))].

Now (1) and the standing assumptions on F imply that Q∗
F takes values between 0 and 1 and these

values are attained. Hence Q∗
F is a decisiveness index on S G according to the definition in [13]. �

Example 3.5. Choosing f (n,k) = 2−n yields the Coleman index [3]. In this case µn is the binomial
distribution with parameter 1/2, and

F (n,k) = 2−n
n∑

j=k

(
n

j

)

which equals the probability that a uniformly randomly chosen subset has size at least k.

Example 3.6. The simplest functional form of the construction above occurs when F (n,k) = 1 −
k/(n +1), in which case µn is the uniform distribution and

Q∗
0 (G) :=Q∗

F (G) = 1

n +1

n∑
k=0

1(n
k

) |Wk | = 1− Q(G)

n +1
.

There is a close connection between power and decisiveness measures for simple games and
value theory of TU-games [13]. In view of that connection, it is natural to generalize to TU-games.

Definition 3.7. For each admissible F , define a map Q∗
F : G →R as follows. For each game G = (X , v),

Q∗
F (G) :=

n∑
k=0

f (n,k)
∑

|S|=k,S⊆X
v(S) = ∑

S⊆X
f (n, |S|)v(S).

We usually denote Q∗
F (G) simply by Q∗

F when no confusion is likely.
This extended definition of Q∗

F yields a very general object, called a collective value in [13].
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3.1. The self-dual case. We can derive some special formulae for Q∗
F in important special cases.

We recall that the dual of a TU-game G = (X , v) is the TU-game G∗ = (X , v∗) where v∗(S) = v(X )−
v(X \ S) for each S. In the case of simple games, winning coalitions become losing, and vice versa,
when passing to the dual. A game is self-dual if v∗(S) = v(S) for all S.

Proposition 3.8. Let G = (X , v) ∈G and suppose that F satisfies the identity

(3) F (n,k)−F (n,k +1) = F (n,n −k)−F (n,n +1−k).

If G is self-dual, then Q∗
F (G) = v(X )/2.

Remark. The condition on F says that the probability measure µn is symmetric on [0..n]. For ex-
ample, the Coleman index satisfies this property, and Proposition 3.9 was proved for that special
case in [2, Proposition 3.4]. The index Q∗

0 also satisfies the condition. This condition we call self-
duality for the following reason. Given a collective value I , define another collective value I∗ by
I∗(G) = I (G∗). The value is self-dual if I = I∗. It is easily seen that a collective value of the form Q∗

F is
self-dual if and only if F satisfies the stated condition.

Proof. Let I = q∗
F satisfy the stated condition and let G be a self-dual game. Then

I (G)+ I (G∗) =∑
S

f (n, |S|)v(S)+∑
S

f (n, |S|) [v(X )− v(S)]

=∑
k

f (n,k)

(
n

k

)
v(X )

= v(X )

while

I (G)− I (G∗) =∑
S

f (n, |S|)v(S)−∑
S

f (n, |S|) [v(X )− v(S)]

=∑
S

f (n, |S|)v(S)−∑
S

f (n, |X \ S|)v(X \ S)

= 0.

The result follows by solving for I (G). �

In the case of simple games we can say a little more. Recall that a simple game is proper if
the complement of each winning coalition is losing, and strong if the complement of every losing
coalition is winning.

Proposition 3.9. Let G = (N ,W ) be a simple game and suppose that F satisfies the identity (3).

(i) If G is proper and strong then Q∗
F (G) = 1/2.

(ii) If G is proper and not strong then Q∗
F (G) < 1/2.

(iii) If G is strong and not proper then Q∗
F (G) > 1/2.

Proof. For each k we define four types of subset: Dk (respectively Ck ) consists of those which are
winning, and whose complement is not (respectively is), whereas Qk (respectively Pk ) consists of
those which are losing, and whose complement is not (respectively is). Complementation yields a
map from G to G∗ such that Dk ⇔ Pn−k ,Ck ⇔Cn−k ,Qk ⇔Qn−k . Thus Q∗

F (G)+Q∗
F (G∗) = 1 as in the

proof of the previous proposition, and

Q∗
F (G)−Q∗

F (G∗) =∑
k

f (n,k) (|Dk |+ |Ck |)−
∑
k

f (n,k) (|Qk |+ |Pk |)

=∑
k

f (n,k) (|Dk |+ |Ck |)−
∑
k

f (n,k) (Qk +Dk )

=∑
k

f (n,k) (|Ck |− |Qk |) .

G is proper if and only if Ck = 0 for all k, while G is strong if and only if Qk = 0 for all k (a simple
game is proper and strong if and only if it is self-dual). The results follow by solving for Q∗

F (G). �
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Example 3.10. Next, we consider the unweighted qualified majority voting game. The winning co-
alitions are precisely those of size at least k0, for some fixed k0 (depending on n). The value of Q∗

F
on such a game equals

∑n
k=k0

f (n,k)
(n

k

) = F (n,k0). Thus if n is odd and k0 = (n +1)/2 (the straight
majority game), Q∗

F has value F (n, (n +1)/2. If furthermore F satisfies the symmetry condition (3),
then direct computation shows that Q∗

F takes the value 1/2. This is to be expected, since the game in
question is proper and strong.

4. INDIVIDUAL MEASURES

In this section we discuss properties of the marginal function of Q∗
F , which we denote q∗

F . Ex-
plicitly, q∗

F,i (G) =Q∗
F (G)−Q∗

F (G−{i }). We first review some properties of semivalues and generaliza-
tions.

4.1. Semivalues and related concepts. Several classes of allocations have been discussed in the
literature. They can be given by axiomatic characterizations, but explicit formulae are more useful
for our purposes.

Definition 4.1. Let X be a finite set.
A weighted weak semivalue on X is an allocation on X that has the form

ψi (v) = ∑
S⊆X

p(S) [v(S)− v(S \ {i }]

where p(S) ≥ 0.
A weak semivalue on X is a weighted weak semivalue for which

∑
S:i∈S p(S) = 1 for each i ∈ X .

Remark. The above concepts were introduced in [1] in axiomatic terms. An equivalent formulation
is that an allocation is a weighted weak semivalue if and only if it satisfies the standard axioms of
Linearity, Positivity, Projection and Balanced Contributions.

Definition 4.2. A weighted semivalue on X is a weighted weak semivalue for which p(S) depends
only on |S|, and thus has the form

(4) ψi (v) =
n∑

k=0
f (n,k)

∑
|S|=k,S⊆X

[v(S)− v(S \ {i }]

where f (n,k) ≥ 0 for all n,k.
A semivalue on X is a weighted semivalue on X that in addition satisfies the normalization con-

dition

(5)
n∑

k=1

(
n −1

k −1

)
f (n,k) = 1.

Remark. The definitions have the unfortunate consequence that a semivalue is a weighted weak
semivalue that is both a weak semivalue and a weighted semivalue! The term weighted semivalue
is formally used in the present paper for the first time, to our knowledge.

In [4] it was proven that semivalues are precisely the allocations satisfying the standard axioms
Linearity, Positivity, Projection and Anonymity. The last says that if π : X → X is a permutation,
then ψ(πi ) =πψ(i ) for each i ∈ X . Note that because of Anonymity, we may assume that X = Xn :=
{1,2, . . . ,n}, where n = |X |. Let G denote the union

⋃
n G (Xn). A semivalue on G is a function that

for each n restricts to a semivalue on Xn . In [4] it was shown that in addition to the explicit form
(5), the recursion

(6) f (n,k) = f (n +1,k)+ f (n +1,k +1)

is necessary and sufficient for such an extension.
The particular weighted semivalue we have in mind is the marginal function of Q∗. We first show

that rescaling is needed in all but the most trivial cases.

Proposition 4.3. Let F be an admissible rescaling, let f be related to F as in Lemma 3.2 and let ψ be
defined as in (4). Then
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(i) ψ gives a weighted semivalue on Xn for each n.
(ii) Let cn = ∑n

k=1

(n−1
k−1

)
f (n,k). Then ψ̃ defined by ψ̃i (v) = ψi (v)/cn gives a semivalue on Xn for

each n.
(iii) ψ gives a semivalue on Xn if and only if f (n,k) = 0 for 1 ≤ k ≤ n −1 and f (n,n) = 1.

Proof. Note that ψ gives a weighted semivalue on Gn because F is admissible, hence f (n,k) ≥ 0 for
all n,k. Dividing by cn ensures that the normalization condition (5) is satisfied. Finally, suppose
that cn = 1 and let ank = (n

k

)
f (n,k). By admissibility, ank ≥ 0 and

∑
k ank = 1. By hypothesis, 1 =

cn =∑
k

k
n ank . Subtracting these two equalities yields the result. �

4.2. The marginal function of Q∗
F . The marginal function of a decisiveness index is often inter-

preted as a power index (the analogue for TU-games is the relationship between a potential and an
allocation [13, 6]). We now explore this direction.

Proposition 4.4. Let F be an admissible rescaling. Then

(i) Q∗
F is the potential function of a function q∗

F that for each n induces a weighted semivalue on
Gn , given by

q∗
F,i =

n∑
k=0

f (n,k)
∑

|S|=k
[v(S)− v(S \ {i })]

= ∑
S:i∈S

f (n, |S|)Di (S)

Here F and f are related as in Lemma 3.2.
(ii) Let

cn := 1

n

n∑
k=1

k [F (n,k)−F (n,k +1)] .

Then the normalized quantity q∗
F /cn is a semivalue on Xn for each n.

(iii) q∗
F is a weighted semivalue on G if and only if F satisfies the recursion identity

(7) F (n,k)−F (n,k +1) = n +1−k

n +1
F (n +1,k)+ 2k −n

n +1
F (n +1,k +1)− k +1

n +1
F (n +1,k +2).

If, furthermore, cn is independent of n, then the normalized quantity q∗
F /cn is a semivalue on

G , given by ∑
S:i∈S

f (n, |S|)
Q∗

F (U1)
Di (S)

Proof. The first part follows from Proposition 4.3 because q∗
F has exactly the form stated. The other

results follow from the basic characterization of semivalues, translating the formulae for f into
those for F . The coherence recursion (6) translates into

F (n,k)−F (n,k +1) = n +1−k

n +1
[F (n +1,k)−F (n +1,k +1)]

+ k +1

n +1
[F (n +1,k +1)−F (n +1,k +2)] .

Note that cn is precisely the value Q∗
F (U{1}) of Q∗

F on the dictatorial game with n players. The
result now follows by algebraic simplification. �

The construction above is in fact universal.

Proposition 4.5. There is a bijection between probability measures on {0,1, . . . ,n} and weighted
semivalues on Gn given by µn ↔ q∗

F .

Proof. From Proposition 4.4, q∗
F is a weighted semivalue. Conversely, given a weighted semivalue

ξ we define µn(k) = f (n,k) := f (n,k)/cn where cn := ∑
k f (n,k)

(n
k

)
. Then defining F by (1) applied

to f we have q∗
F = ξ. �
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Remark. Note that a weighted semivalue satisfies the normalization condition for a semivalue if
and only if for each n, the mean of µn is exactly n.

The recursion (6) translates to

µn(k) =
[

1− k

n +1

]
µn+1(k)+ k +1

n +1
µn+1(k +1).

Example 4.6. For the Coleman index, the marginal function is given by f (n,k) = 2−n . The associated
semivalue (obtained by dividing by Q∗

F (U1) = 1/2) is the Banzhaf value.

Example 4.7. We now consider the Shapley value, given by

σi (G) = ∑
;⊂S⊆X

(n −|S|)!(|S|−1)!

n!
[v(S)− v(S \ {i })]

= ∑
;⊂S⊆X

|S|−1( n
|S|

) [v(S)− v(S \ {i })]

=
n∑

k=1

1

k
(n

k

) ∑
S⊆X ,|S|=k

[v(S)− v(S \ {i })]

It is the semivalue associated to q∗
F where F (n,0) = 1 and for k ≥ 1

F (n,k) = Hn −Hk−1

Hn
:=

∑n
j=k

1
j∑n

j=1
1
j

.

where Hn denotes as usual the nth harmonic number.

We single out the simplest case for special mention. Recall that a regular semivalue is one for
which the weights f (n,k) for 1 ≤ k ≤ n are all nonzero.

Proposition 4.8. The formula

(8)
q∗

0,i

Q∗
0 (U1)

= 2

n +1

n∑
k=0

∑
S⊆X ,|S|=k

[v(S)− v(S \ {i })](n
k

)
defines a regular semivalue on G .

Proof. This follows from Proposition 4.4 and Proposition 3.9, because F (n,k) = 1−k/(n+1) satisfies
the identity (3) and so q∗

0 is self-dual. �

5. INTERPRETATION OF THE MEASURES

The collective value Q∗
F can be easily interpreted as a decisiveness index on simple games, which

gives the probability of finding a winning coalition when coalitions are sampled first by choosing
size according to µn and then choosing a coalition of that size uniformly at random. The individual
value q∗

F can be interpreted in the usual way (not without controversy) as a power index [13]. In this
section we consider some other interpretations.

5.1. Coalition formation. Consider the following model of coalition formation [7]. We assume that
each possible coalition (subset S of X ) forms with probability p(S), and that only one coalition S
will form. Consider the following two expectations. First, the ex ante expected marginal contribu-
tion of i to S is

E [Di (S)] := E [v(S)− v(S \ {i })] = ∑
S:i∈S

p(S) (v(S)− v(S \ {i })) .

The ex interim expected marginal contribution of i to S, conditional on i ∈ S, is

Φi (v, p) := E [Di (S) | S 3 i ] = E [Di (S)]

Pr(S 3 i )
.

Then [7, Proposition 3] the mapsΦi (·, p) are in bijection with the set of all probability distributions
on 2X . Furthermore the map corresponding to p is precisely the weighted weak semivalue given by

Φi (v, p) = ∑
S:i∈S

p(S)∑
T :i∈T p(T )

Di (S).
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Note thatΦ is a weak semivalue if and only if
∑

T :i∈T p(T ) does not depend on i , and a semivalue
if and only, if in addition, p(S) depends only on |S|. Thus for weak semivalues, the ex ante and ex
interim marginal contribution of i to S is the same.

We now apply the above framework to our measures q∗
F .

Proposition 5.1. Let F be an admissible rescaling. Then under the coalition formation model above,
q∗

F,i gives the ex ante expected contribution of i to S, while the associated semivalue gives the ex
interim expected marginal contribution of i to S, conditional on i ∈ S. �

Remark. The special case of the Shapley value was discussed in [7, Proposition 2], where essentially
the same formula was derived.

5.2. Sequential interpretation. The Shapley value σ can be defined sequentially as follows. Given
a game G = (X , v), follow the query process and at each step award v(S)− v(S \ {i }) to i , where S
is the set of elements queried so far and i is the last element queried. The expected value with
respect to the uniform distribution on permutations of X is the Shapley value σi (G). For simple
games, this means that we award 1 point to i whenever i is pivotal, and 0 otherwise.

We can generalize this interpretation to measures of the form q∗
F . We follow the query process,

and award kµn(k) to the pivotal element if the process stops at k queries. For example, for q∗
0

this means awarding k/(n +1), the fraction of the maximum possible number of queries made (a
possible interpretation is that we offer a higher price to pivotal elements to reveal themselves as
we repeatedly fail to find them) . This corresponds to the nonsequential formula for q∗

F using the
analogous computation to that for the Shapley value above.

5.3. Another model of semivalues. The standard model of simple game requires that the empty
coalition never be winning (this is a consequence of the standard assumption that v(;) = 0 for
all TU-games). For reasons of mathematical elegance, at least, we prefer that the class of simple
games be closed under duality. This then requires that the grand coalition is always winning, which
is a reasonable assumption for weighted voting games. However for many applications, such as to
the study of manipulation, empty games naturally arise. Thus, by duality, we should admit trivial
games to the class of simple games. This approach is followed, for example, by Taylor and Zwicker
[12].

We denote by S G+(X ) the class of simple games in this extended sense. The analogue for TU-
games we denote G+(X ).

In this new model, the axiomatic definition of semivalue remains the same, since the efficiency,
anonymity, positivity and projection axioms still make sense. However the characterization of [4]
changes slightly.

Proposition 5.2. A function ψ is a semivalue on G+(X ) if and only if it has the form

ψ(i ) =∑
k

f (n,k)
∑

S⊆X ,|S|=k
[v(S)− v(S \ {i })]

where f (n,k) ≥ 0 and f satisfies the identity

∑
k

f (n,k)

(
n

k

)
= 1.

Such a function extends to a semivalue on G+ if and only if f also satisfies the identity

f (n,k) = f (n,k +1)+ f (n +1,k +1).

Proof. The proof of [4] still works, with the only change being that the normalization condition is
slightly different. This is because the vector space of all games now includes the empty game in the
standard basis of unanimity games and so has dimension one more than before. �

Corollary 5.3. Let F be admissible. Then q∗
F is a semivalue on G+(X ).

Remark. For example, q∗
0 is the exact analogue of the Shapley value in this new context. The Shapley

value is the semivalue that has equal weight on all coalition sizes from 1 to n, hence the formula
f (n,k) = [n

(n−1
k−1

)
]−1, whereas q∗

0 has equal weight on all coalition sizes from 0 to n.
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W m C Q∗
0

1;2;3;4 0.9375 0.8000
1;2;3 0.8750 0.7500
1;2;34 0.8125 0.7000
1;2 0.7500 0.6667
1;23;24;34 0.7500 0.6500
1;23;24 0.6875∗ 0.6067
12;13;14;23;24;34 0.6875∗ 0.6000
12;13;14;23;24 0.6250 0.5833
1;23 0.6250 0.5500
1;234 0.5625∗ 0.5500
12;13;14;23 0.5625∗ 0.5333
12;13;24;34 0.5625∗ 0.5333
1 0.5000 0.5000
12;13;23 0.5000 0.5000
12;13;24 0.5000 0.5000
12;13;14;234 0.5000 0.5000
12;34 0.4375∗ 0.4667
12;13;234 0.4375∗ 0.4667
12;13;14 0.4375∗ 0.4500
12;13 0.3750 0.4167
12;134;234 0.3750 0.4033
123;124;134;234 0.3125∗ 0.4000
12;134 0.3125∗ 0.3833
123;124;134 0.2500 0.3500
12 0.2500 0.3333
123;124 0.1875 0.3000
123 0.1250 0.2500
1234 0.0625 0.2000

0.0000 0.0000
TABLE 1. Values of Q∗

0 and q0 for simple games with 4 players.

6. THE MEASURES Q∗
0 AND q∗

0

We recall that Q∗
0 (G) is the probability that a randomly sampled coalition is winning, when a

coalition size is chosen uniformly and condition on that a particular coalition is chosen. Alternat-
ively, it gives the expected fraction of the maximum possible number of queries saved when players
are sampled uniformly at random without replacement until a winning coalition has been found.

Example 6.1. We present the values of Q∗
0 for all simple games with 4 players (up to isomorphism).

Because of anonymity, we may call the players 1,2,3,4 and we define each game by listing its minimal
winning coalitions in the obvious way (the last line corresponds to the empty coalition). Table 1 is
the analogue of the table in [2] for the Coleman index C , which we also list for comparison. We have
reordered some rows from the table in [2], by permuting some rows with equal values of C . These
rows are marked with ∗.

Note that the values of C always (weakly) decrease going down the column, as do those of Q∗
0 .

Thus C and Q∗
0 never disagree on the relative decisiveness of two games when they both agree that

two games are not equally decisive. Even though the range of the values of C (excluding the empty
game) is much larger than the range of values of Q∗

0 , the latter never has equal values on two games
when the former does not, but the former sometimes has equal values when the latter does not. Thus
Q∗

0 appears to discriminate better between games.
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The next type of example was our original motivation for the study of Q∗
0 . The quantity Q seems

to us a compelling way to measure the effort taken by an external agent to change the outcome
of the election via manipulation. Assuming that the voting situation is known but not the com-
plete profile (we may know from polling data how many voters of each type there are, but not their
identity), the agent incurs a unit cost to determine each voter’s type. The sequential model occurs
naturally here.

Example 6.2. Consider a 3-candidate election where voters submit complete and total preference
orders. Suppose that the voting situation is as follows: 2 voters have preference order abc, 1 has bac
and another has cba. A manipulation is a change of vote by some subset that causes a preferred
outcome for those voters, assuming the other voters continue to vote sincerely. We define a winning
coalition to be a subset containing a subset that can manipulate coalitionally. Here for concreteness
we break ties uniformly at random, and assume risk-averse manipulators (see [10] for more details).

Using a positional scoring rule that awards 1,α,0 points to the first, second, third ranked candid-
ates, we see that the scores of a,b,c respectively are 2+α,1+3α,1.

There is no manipulating coalition which can make c win, since the last voter cannot help c over-
take both a and b, while the other voters have no incentive to do so.

If α≤ 1/2 then a wins (solely, unless α= 1/2 in which case a and b tie). The cba voter can change
to bca, and this allows b to win, so is preferred by that voter. Thus a manipulating coalition of size 1
exists. Furthermore, if α≥ 1/3, then the bac voter also has the power to make b win by voting bca.
It follows that for 1/3 ≤ α ≤ 1/2, the winning coalitions are those containing either of the last two
voters, while for 0 ≤α< 1/3, the winning coalitions are those containing the last voter. In the former
case, a winning coalition is found by the random query process after 3 queries for 4 of the 24 possible
query sequences, after 2 queries for 8 query sequences and after 1 query for 12 query sequences. Thus
Q = 40/24 and Q∗

0 = 1−Q/5 = 2/3. Similarly, in the latter case the relevant voter is found after 1,2,3,

or 4 queries in each of 6 query sequences, leading to Q = 60/24 and Q∗
0 = 1/2.

If α> 1/2 then b is the sole winner. Either of the abc voters can make a win by switching to acb.
In this case we have by the same argument as above that Q∗

0 = 2/3. As described in detail above, these
values of Q∗

0 give a measure of the probability of finding a manipulating coalition when coalitions
are sampled according to a particular probability distribution.

In the case 0 ≤α< 1/3, the individual measure q∗
0 has the value 0 for all but the last voter, and 1/2

for that voter. When 1/3 ≤ α ≤ 1/2, the values are 0 for the first two voters, and 2/15 for each of the
last two, whereas when 1/2 < α, the roles of the first pair and last pair are reversed. These numbers
represent the ex ante probability of being critical in a winning coalition, if coalitions form according
to the particular probabilistic model used here.

6.1. A bargaining model. Laruelle and Valenciano [8] present a model of bargaining intended to
help give a noncooperative foundation to the theory of power indices and values. They discuss a
setup where a proposer suggests an initial allocation of payoffs to a winning coalition containing
the proposer. Let p be a map that for each set X of players, takes each simple game on X to a
probability distribution over X × 2X . The idea is that pG (i ,S) is the probability that i will be the
proposer with the support of S. They impose a dummy axiom which leads to the condition that
pG (i ,S) = 0 unless i swings S. Anonymity is also a reasonable assumption.

They discuss nonsequential (“first choose S, then i ") and sequential (“choose i and S simultan-
eously") approaches. In the former case, given a probability distribution over coalitions where the
probability of S depends only on |S|, in the first round we choose S and then choose choosing i ∈ S
uniformly at random. If i swings S, then i is the proposer, otherwise we repeat rounds until a pro-
poser is found). Thus we are in the arena of weighted semivalues and we write p(n, s) for p(S) when
|X | = n.

Proposition 6.3. Let F be admissible and consider the nonsequential protocol above, where S is
chosen according to the probability given by µF . Let πi be the probability that i is eventually chosen
as the proposer, and let ri be the probability that i is chosen as proposer in the first step. Then there
is c so that πi = cri for all i .

In particular, for F = F0, πi equals the Shapley-Shubik index of i .



12 GEOFFREY PRITCHARD, REYHANEH REYHANI, AND MARK C. WILSON

Proof. Let ri denote the probability that i is chosen as proposer in the first step. Thenπi = ri /
∑

i ri .
Now

ri =
∑

S:S∈W,i∈S,S\{i } 6∈W

p(S)

|S|

= ∑
S 6=;

p(S)
Di (S)

|S|

=
n∑

k=1

f (n,k)

k

∑
|S|=k

Di (S)

When F = F0, f (n,k)/k is precisely [n +1]−1 times the coefficient found in the Shapley-Shubik
index, namely [k

(n
k

)
]−1. Thus ri equals [n + 1]−1 times the Shapley-Shubik index σi of i . Thus

since
∑

i ri is independent of i (in fact it equals [n +1]−1), the ratios πi /ri are constant, and so the
normalized probability πi equals σi . �

Remark. This result was stated (in other words) without proof in [8, p. 124].

In the sequential scenario, the query process seems a very natural one. If the pivotal voter is
always chosen as the proposer, then the probability of being the proposer is again the Shapley-
Shubik index. However other choices are possible. For example, for each admissible F , if we weight
the pivotal voter by kµn(k) every time it is pivotal in position k, and then compute the overall
probability accordingly, we obtain the normalized version of q∗

F .
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