
INPUTS, ALGORITHMS, QUALITY MEASURES: MORE REALISTIC

SIMULATION IN SOCIAL CHOICE

MARK C. WILSON

Abstract. Much of my research deals with trying to evaluate the performance of social choice

algorithms via simulations, which requires appropriate inputs and quality measures. All three

areas offer substantial scope for improvement in the coming years. For concreteness and because of
my own limited experience, I focus on the allocation of indivisible goods and on voting, although

many of the ideas are more broadly applicable.

Introduction

There are hugely many possible algorithmically defined rules for voting and allocation. Why
then do we see so few of them in the literature? This phenomenon is not limited to social choice
— in my experience, in most application areas the number of heavily studied and implemented
algorithms is fairly small. For example, there are many ways to sort a list, but quicksort, mergesort
and heapsort dominate the literature and practice. Of course, in the case of sorting, there is only
one really interesting performance criterion, namely optimal (average or worst case) running time,
and it is (asymptotically) achieved by all the algorithms listed, while naive sorting algorithms fail
to achieve optimality. However in economic design, we are typically faced with multiple competing
success criteria, such as strategyproofness, efficiency, fairness, and welfare, which intuitively should
lead to more algorithms that are considered viable.

Axiomatic methods are very common in economic design. An axiom is essentially a statement
of the form “if the input satisfies property P, then the output satisfies property Q”. For example,
for the unanimity axiom for voting, P might be “all voters have the same top choice” and Q might
be “the common top choice is the winner of the election”. A rule satisfying an axiom leaves no
room for confusion, or concerns about input distributions, since we are dealing with logic and not
probability. The fact remains, however, that there are many axioms, and they usually conflict with
each other. This leads often to impossibility results if too many axioms are imposed, occasionally to
characterization results if we impose exactly the right number, and frequently to tradeoffs that must
be investigated when we impose even fewer. These tradeoffs necessarily use notions of probability,
such as how often P implies Q, or optimization, such as how close the outcome is to an outcome in
which Q holds.

For a given collection of axioms, it is unnecessarily limiting to consider only the extreme cases,
namely the algorithms that satisfy at least one of the axioms. Rules satisfying some axioms often
fail to satisfy others, which is not surprising. What is more surprising is how badly an “extremal”
algorithm, which satisfies axiom A, fails to satisfy axiom B. For example, Serial Dictatorship is
strategyproof and efficient for allocation, but overall performs relatively poorly on fairness and
welfare criteria. Similarly, throwing away all items and allocating none is a fair and strategyproof

Date: August 5, 2018.
Thanks to Klaus Nehring for his feedback on an earlier draft.

1



2 MARK C. WILSON

procedure, but very inefficient. A large number of papers start with one of the extremal algorithms
and investigate how badly it performs with respect to other axiomatic properties. We should at
least aim to explore the “Pareto frontier of the space of rules” consisting of rules not dominated
by any other rule. The rule we need for a given situation may fail to satisfy any of the axioms in
general, but may only just fail to satisfy all of them simultaneously, while extremal rules may score
100% on one axiom but close to zero on another. I believe that failure to appreciate this fact is a
major reason for the small number of algorithms in the literature.

As an aside, it is important to choose the right criteria and set of algorithms for our analysis.
For example, a large number of papers have been written about minimizing the manipulability of
voting rules within various classes of rules, for example positional scoring rules. But we already
know that dictatorial voting rules minimize manipulability absolutely since they are strategyproof.
Since dictatorial rules are considered bad, presumably, because of other axioms relating to fairness
and welfare performance, any such studies should surely consider those two criteria and their relative
importance. Otherwise, we cannot a priori exclude the possibility that a dictatorial rule performs
overall worse than the rules in the class under study. Surprisingly, a large number of papers have
not taken this into consideration. I published a few papers along these lines before realizing this.

Exploring the Pareto frontier of rules leads us immediately to issues of measurement. If an
algorithm does not satisfy a certain axiom, then we need to measure how close it comes to doing
so, and there are many more ways to do this than the literature would indicate. A general setup
is to have measures µ1, . . . , µk, one for each axiom, each taking values between 0 and 1, where 1
indicates that the axiom holds for that input. For example, we might measure the fraction of agents
who envy another agent under the algorithm’s allocation for the given input, or simply have the
indicator function which is 1 if the algorithm is strategyproof on the given input and 0 otherwise.
Ideally for each input we will represent each algorithm by a k-tuple of values of the measures. An
algorithm A1 is dominated by A2 if and only if µi(A1) ≤ µi(A2) for all i and there is some i for
which the inequality is strict.

This is too weak a partial order to impose on our algorithms. For example, no extremal algorithm
can be dominated on any input by any other algorithm, since one of the measures has value 1.
Thus we may need to give weights to the various measures and consider only the weighted sum
(this includes the case of weight zero, where we exclude a measure completely). But even if we do
not, we can still search for rules on the frontier that are not dominated. The main problem is that
the dominance relation is defined for each input separately, which is too detailed for most purposes.
We typically need to relax this by considering a distribution over all inputs. But this introduces
statistical notions - how to summarize all this information about distributions? The most obvious
measures are the maximum, minimum, mean and median. Worst case comparisons don’t tell us
much — quicksort is worse than insertion sort in the worst case, but it is still much more used in
practice because its expected running time is better. Best case performance is usually perfect for
all algorithms. So the mean or median make more sense.

Of course, these statistics depend substantially on the input distribution. What kind of data
will our algorithm be faced with? If inputs are chosen uniformly at random from all linear orders
of n distinct elements, then quicksort has running time in Θ(n log n). However its worst case is
quadratic. In the case of allocation rules, the Impartial Culture (where each agent independently
chooses a linear preference order as above) is the easiest case. The lack of correlation between
agents means that many agents have different first preferences, and even if they coincide on first
preference, they have different second preferences. This makes allocation very easy (note that for
voting, this is the hardest case, because every order of candidates has approximately equal support
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and only random variability of order
√
n prevents a complete tie). Impartial Culture has value as

an extreme case and is mathematically tractable, but is well known to be very unrealistic [7].
Having pointed out some issues that I feel have not been adequately addressed in the literature

so far, in the following sections I discuss some ideas for improvement in methodology. I assume
that some kind of simulation or mathematical analysis will be used in order to compare algorithm
performance. I consider the following setup. We generate several input datasets according to various
distributional assumptions. Each is analysed separately. For each algorithm in our set, we compute
the value of each measure µi when running the algorithm on the given input. These are aggregated
to find the expected value with respect to the given distribution. These values µ∗

i := E[µi] are taken
as the coordinates in k-space and the algorithms compared using dominance as above. Results will
have the form “Serial Dictatorship is dominated by the Boston mechanism with respect to efficiency
and envy-freeness for 10 of 12 datasets.”

There are other issues I have not considered here which will need to be dealt with. For example,
comparing means may be reasonable in some cases, but if the distributions of a given measure for
outputs of two different algorithms using the same input distribution overlap substantially and have
large variance, we may need a more refined analysis.

Inputs

If we are happy to use simulation rather than proving analytic results, we can use any input
distribution we like. How to stress-test our algorithm by choosing interesting and “realistic” data?
For example, evaluating and comparing voting rules using only the Impartial Culture, although it
has been done often, is not sufficient.

The Mallows model has been used by several authors, based on the idea of there being an
underlying true ranking of alternatives ρ and the probability of an agent having the preference π
being proportional to exp(−cd(π, ρ)), for some c > 0, where d is the Kendall tau (swap) distance.
This is typically applied with independence between agents.

To get correlation between agents, we can use an urn process in which we think of a new agent
as copying a randomly chosen agent. This can lead to the Impartial Anonymous Culture, which is
analytically very tractable and less unrealistic than Impartial Culture, but still far from describing
reality. Different values of the parameter associated with this Eggenberger-Pólya urn (we may add
more than one agent at a time) lead to more general distributions which may be more realistic. I
have not seen serious work on fitting such distributions to real data. Of course, obtaining real data
on preferences is difficult, increasingly so as has become clear from the failure of recent electoral
predictions worldwide.

Some analyses require more subtlety. For example, with a coauthor I have recently [6] investigated
the performance of electoral systems. Most electoral systems involve geographic districts, and
treating them as independent or merging them into a single district are both oversimplifications.
We used a coupled urn model with one urn for each district, allowing for imitation both within
and across districts. To my knowledge this is the most sophisticated model used in the area so far.
Surely there are better ones.

We have been modelling true preferences so far. In order to understand real performance of
algorithms, it would be useful to have good models of strategic behavior, so that the agents’
expressed preferences can be used as inputs but the real ones used for quality measures. For simple
voting rules such as plurality it is easy to model behaviour of voters. Of course, the more complicated
the rule the less likely manipulation should be in practice, because of agent fears about other agents’
strategic voting and simply because of the complexity of computing a strategic preference.
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I hope to see a greater variety of input distributions used in the future literature.

Quality measures

At the most basic level, we can take µ to be the indicator for any axiom, so that µ∗ is the
probability that an input leads to an outcome satisfying the axiom. This has been widely used and
is very simple.

More sophisticated measures may consider the number of agents directly affected by failure of
the axiom to hold. For example, the fraction of ordered pairs (i, j) of agents for which i does not
envy j’s allocation (that is, prefers it to the allocation given to i) measures partial envy-freeness.
The fraction of agents for whom truthtelling is a dominant strategy is a measure of resistance to
individual manipulation.

The next level involves measurements based on preference intensity. For example, if I have my
2nd choice and you have my 1st choice, I may envy you less than if I have my 3rd choice and
you have my 1st choice. As another example, a single manipulator may find it harder to change
its expressed preference if that is very different from its true preference (for example, because the
latter might be partially known to other agents, and preferences may not be given secretly, or the
agent may require a bigger bribe in order to submit a vote far from its sincere one).

Measures based on cost of forming coalitions are important. For example, the communication
overhead of organizing a coalition to manipulate a voting rule, or trade among themselves to restore
an efficient outcome, may grow rapidly with coalition size.

Implicit in the measures so far is an idea of distance from the outcome to an axiomatically perfect
one. For example, in the manipulation context above, a cost function as in the Mallows model may
be appropriate. There are many other possible metrics, however. As another example, consider the
directed graph G formed by agents, in which each agent i points to the agent holding i’s favorite
item. Gale’s Top Trading Cycle (TTC) algorithm reallocates items according to cycles formed in
G, passing to items ranked 2nd, 3rd, etc and deleting agents and items as it goes. The algorithm
terminates precisely when the digraph has only trivial cycles (each agent points to itself), and that
occurs if and only if the allocation is efficient. A sophisticated measure of efficiency, then, might
use a metric that measures the distance from G to the nearest acyclic digraph. Such a metric might
take into account the number and length of cycles in the original digraph.

So far all the measures have involved finding the minimum distance (or cost) to achieving ax-
iomatic perfection for a given input. We can also consider probabilistic measures, which may be
more realistic. In practice, it may be hard to find a minimum manipulating coalition, and the
prevalence of manipulators should be considered. A voting rule that can be manipulated for a
given input by 5 agents, never by 4 or fewer, and by very few coalitions of size 6, may be less
manipulable in practice than one for which all coaltiions of size 6 can manipulate but no smaller
coalition can. A general idea is to consider the simple game on the set of agents, with a winning
coalition being a subset containing a manipulating coalition. An index such as the Coleman index
(or generalizations discussed in [5]) gives a measure of how likely a randomly chosen coalition is to
be winning.

A new fairness idea (to my knowledge) is having low order bias. Almost all deterministic allo-
cation algorithms require a fixed order on agents. For example, Serial Dictatorship has this built
into the definition, while the Boston mechanism requires ties to be broken. A completely fair al-
gorithm would be not only fair ex ante (by the usual randomization of the agent order) but also
ex post — my welfare should not suffer just because I am chosen to submit my preferences last.
Serial Dictatorship is clearly extremely unfair — the expected rank of the object chosen by the last
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agent is much higher than 1, the rank achieved by the first player. Boston similarly is unfair to
later players. Randomization during the algorithm (after player order has been chosen) might deal
with this problem, but if we insist on deterministic algorithms, what can we do (see “Algorithms”
below)?

In general there are so many possible measures that we ought to try to justify the ones we use.
Most of the literature I have seen simply uses a naive measure or copies the choice of a previous
author in the field. A bigger intellectual contribution can be made by giving axiomatic properties
that we wish a measure to hold. Spurred on by a perceptive referee, my coauthors and I did this
for manipulability of voting rules [5], and now I try to apply this general advice in all my research.
Every time we want to measure “partial X”, where X is an axiom, we should think about the
axiomatic foundations of our measure. I hope to see much better justification of measures in the
future literature.

Algorithms

In addition to the design criteria for algorithms such as computational efficiency and solution
quality, simplicity of explanation to the public is also a consideration if we want our algorithm
to be adopted. There are limits to this — Single Transferable Vote is unlikely to be completely
understood by the public yet has been used in Australia (which, perhaps not coincidentally, has
compulsory voting) for decades. Nevertheless, a coherent “story” is often helpful.

Inspired by a Christmas party game, with a coauthor I recently introduced the Yankee Swap
algorithm for allocation of indivisible goods [4]. Again spurred by a perceptive reviewer complaining
of how arbitrary this seemed, we generalized this to a family of 8 algorithms, 4 of which can be
profitably followed by TTC to yield 12 algorithms in total. Two of these are equivalent to our old
friends Serial Dictatorship and Boston. These algorithms are all derived from the Gale-Shapley
algorithm for two-sided matching by assigning fictitious preferences for items over agents, allowing
these to change during the algorithm, and adopting a queue or stack discipline for agents to propose
to items. The point is that a single standard algorithm for an allocation problem gave rise to 12
algorithms for a closely related problem in a coherent way. All of these algorithms have an easy
interpretation in terms of a party game involving stealing gifts. Some of them appear to make
good tradeoffs although none satisfies any of the standard axioms, and very likely none would have
been found by concentrating only on the standard algorithms. It is still too early to tell whether
these algorithms will attract attention. One of them has good welfare properties, and another has
extremely low order bias even though it is deterministic.

In voting theory, there may be many more good algorithms to be found. To mention one among
several recently introduced rules, Zwicker and coauthors have introduced the mediancenter rule
[1] which is still little explored. The general technique of distance rationalization has been used
to construct new rules with given axiomatic properties, based on given notions of consensus and
distance between profiles [2, 3]. I am sure that appropriate choices of consensus and distance can
yield some new interesting rules, which may have good overall performance even if they fail to be
extremal in the sense discussed above.

Conclusion

I hope to have convinced the reader that with high probability, there are many interesting new
algorithms still to be found, and researchers should be on the lookout for them, sometimes hidden
in plain sight in ordinary life. This should lead in many situations to better rules being used than
those currently under consideration. Much more sophisticated and better motivated measures of
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performance, and more thorough analysis with respect to more realistic input distributions, will be
needed if these algorithms are to be fairly compared with the standard ones in the literature.
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