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Abstract

Is the enemy of an enemy necessarily a friend, or a friend of a friend a friend? If not, to what extent
does this tend to hold? Such questions were formulated in terms of signed (social) networks and
necessary and sufficient conditions for a network to be “balanced” were obtained around 1960. Since
then the idea that signed networks tend over time to become more balanced has been widely used
in several application areas, such as international relations. However investigation of this hypothesis
has been complicated by the lack of a standard measure of partial balance, since complete balance is
almost never achieved in practice. We formalize the concept of a measure of partial balance, discuss
various measures, compare the measures on real-world and synthetic datasets and investigate their
axiomatic properties. We use both well-known datasets from the sociology literature, such as Read’s
New Guinean tribes, and much more recent ones involving senate bill co-sponsorship. The synthetic
data involves Barabási-Albert and specially structured random graphs. We show that some measures
behave better than others in terms of axioms, computational tractability and ability to differentiate
between graphs. We also find that under all our measures, real-world networks are more balanced
than what is expected by chance. We make some recommendations for measures to be used in future
work.
Keywords: structural analysis, signed networks, balance theory, axiom, frustration index, algebraic
conflict

1 Introduction

Transitivity of relationships has a pivotal role in analyzing social interactions. Is the enemy
of an enemy a friend? What about friend of an enemy or enemy of a friend? Network
science is a key instrument in quantitative analysis for such questions. Researchers in the
field are interested in knowing the extent of transitivity of ties and its impact on the global
structure and dynamics in communities with positive and negative relationships. Whether
the application involves international relationships among states, friendships and enmities
between people, or ties of trust and distrust formed among shareholders, relationship to a
third entity tends to be influenced by immediate ties.

There is a growing body of literature that aims to connect theories of social structure
with network science tools and techniques to study local behaviors and global structures
in signed graphs that come up naturally in many unrelated areas. The building block of
structural balance is a work by Heider [Heider, 1944] that was expanded into a set of graph-
theoretic concepts by Cartwright and Harary [Cartwright and Harary, 1956] to handle a
social psychology problem a decade later. The relationship under study has an antonym or

ar
X

iv
:1

50
9.

04
03

7v
3 

 [
cs

.S
I]

  2
8 

Se
p 

20
16



ZU064-05-FPR AW2016 29 September 2016 2:10

2 S. Aref and M.C. Wilson

dual to be expressed by the opposite sign [Harary, 1957]. In a setting where the opposite of
a negative relationship is a positive relationship, a tie to a distant neighbor can be expressed
by the product of signs reaching him. Cycles containing an odd number of negative edges
are considered unbalanced, guaranteeing total balance only in networks containing no
cycles with an odd number of negative edges. This strict condition makes it quite unlikely
for a signed network to be totally balanced. The literature on signed networks suggest
many different formulae to measure balance. These measures are useful for detecting total
balance and imbalance, but for intermediate cases their performance is not clear and has
not been systematically studied.

Our contribution

The main focus of this paper is to provide insight into measuring partial balance, as much
uncertainty still exists on this. The dynamics leading to specific global structures in signed
networks remain speculative even after studies with fine-grained approaches. The central
thesis of this paper is that measures of partial balance should relate to the application, as a
considerable extent of balance is flexible in interpretation in different areas. Thus we need
to consider a variety of measures. However, not all measures are equally useful. We provide
a numerical comparison of several measures of partial balance on a variety of undirected
signed networks, both randomly generated and inferred from well-known datasets. Using
theoretical results for simple classes of graphs, we suggest an axiomatic framework to
evaluate these measures and shed light on the context-dependency involved in using such
measures.

This paper begins by laying out the theoretical dimensions of the research in Section 2
and looks at basic definitions and terminology. In Section 3 different means of checking for
total balance are outlined. Section 4 discusses some approaches to measure partial balance
in Eq. (3) – (12) summarized in Table 1. Basic numerical results on random networks
are provided in Figures 1 – 2 in Section 5. Section 6 is concerned with performance of
measures on specially structured graphs in Figure 3 – 5. A set of axioms is suggested in
Section 7 to evaluate the measures systematically. Section 8 concerns recommendations
for choosing a measure of balance. The numerical results on real signed networks are
presented in Section 9. Section 10 presents the findings of the research regarding the
interpretation and methodology. Finally, Section 11 sums up the research highlights and
provides direction for future research. Throughout this paper, the terms signed graph and
signed network will be used interchangeably to refer to a graph with positive and negative
edges. While several definitions of the concept of balance have been suggested, this paper
will only use the original definition for undirected signed graphs unless explicitly stated.

2 Problem statement and notation

We consider undirected signed network G= (V,E,σ) where σ is the sign function σ : E→
{−1,+1}. The set of nodes is denoted by V , with |V | = n. E stands for the set of edges
including m− negative edges and m+ positive edges adding up to a total of m = m++m−

edges. The signed adjacency matrix is defined in (1). We denote unsigned adjacency matrix
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by |A| which is the entrywise absolute value of A.

Auv =

{
σu,v if u,v ∈ E
0 if u,v /∈ E

(1)

Positive and negative degree of nodes are denoted by d+ and d− and calculated based
on A. du represents the degree of node u and is calculated based on |A|. A walk of length
k in G is a sequence of nodes v0,v1, ...,vk−1,vk such that for each i = 1,2, ...,k there is an
edge from vi−1 to vi. If v0 = vk, the sequence is a closed walk of length k. If the nodes in a
closed walk are distinct except endpoints, it is a cycle of length k. The sign of a cycle is the
product of the signs of its edges. A cycle is balanced if its sign is positive and is unbalanced
otherwise. The total number of balanced cycles (closed walks) is denoted by O+

k (Q+
k ).

Similarly, O−k (Q−k ) denotes the total number of unbalanced cycles (closed walks). The
total number of cycles (closed walks) is represented by Ok = O+

k +O−k (Qk = Q+
k +Q−k ) .

3 Checking for balance

It is essential to have an algorithmic means of checking for balance. The characterization
of bi-polarity, that a signed graph is balanced if and only if its vertex set can be partitioned
into two subsets such that each negative edge joins vertices belonging to different subsets
[Cartwright and Harary, 1956], leads to an obvious breadth-first search procedure similar
to the usual algorithm for determining whether a graph is bipartite. As acyclic graphs are
always bipartite, acyclic signed graphs are always balanced. Moreover, the eigenvalues of
the signed and unsigned adjacency matrices are equal if and only if the signed network
is balanced [Acharya, 1980]. For our purposes the following additional method is also
important. We define the switching function g(X) operating over a set of vertices X ⊆V as
follows.

σ
g(X)
(u,v) =

{
σu,v if u,v ∈ X or u,v /∈ X
−σu,v if u ∈ X and v /∈ X or u /∈ X and v ∈ X

(2)

As the sign of cycles remains the same when g is applied, any balanced graph can switch
to an all-positive signature [Zaslavsky, 2010]. Accordingly, a balance detection algorithm
can be developed by constructing a switching rule on a spanning tree and a root vertex,
as suggested in [Zaslavsky, 2010]. Another method of checking for balance in connected
signed networks makes use of the signed Laplacian matrix defined by L = D−A where
Dii =∑ j |A|i j. L is positive-semidefinite i.e. all of its eigenvalues are nonnegative [Kunegis,
2014]. The smallest eigenvalue of L equals 0 if and only if the graph is balanced [Hou,
2004].

4 Measures of partial balance

Several ways of measuring the extent to which a graph is balanced have been introduced
by researchers. The simplest of such measures is the degree of balance suggested by
Cartwright and Harary [Cartwright and Harary, 1956], which is the fraction of cycles that
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are balanced:

D(G) =

n
∑

k=3
O+

k

n
∑

k=3
Ok

(3)

There are two measures closely related to D(G). The first is relative k-balance, denoted by
Dk(G) and formulated in (4). The special case k = 3 is called the triangle index, denoted
by T (G). Relative k-balance is proved by El Maftouhi, Manoussakis and Megalakaki
[El Maftouhi et al., 2012] to tend to 0.5 for Erdős-Rényi graphs such that the probability
of an edge being negative is equal to 1/2.

Dk(G) =
O+

k
Ok

(4)

The second measure is weighted degree of balance and is obtained by weighting cycle
based on length as in (5), in which f (k)≥ 0 is a monotonically decreasing function of the
length of cycle. The selection of an appropriate function is briefly discussed by Norman
and Roberts [Norman and Roberts, 1972], suggesting functions such as 1/k,1/k2,1/2k,
but no objective criterion for choosing such a weighting function is known.

C(G) =

n
∑

k=3
f (k)O+

k

n
∑

k=3
f (k)Ok

(5)

Although fast algorithms are developed for counting and listing cycles of undirected graphs
[Birmelé et al., 2013], the number of cycles grows exponentially with network size. To
tackle the computational complexity, Terzi and Winkler [Terzi and Winkler, 2011] sug-
gested disregarding all cycles longer than three. Replacing the remaining triangles by
closed walks of length 3, triangle index can be calculated efficiently in (6) where Tr(A)
denotes the trace of A.

T (G) = D3(G) =
O+

3
O3

=
Tr(A3)+Tr(|A|3)

2×Tr(|A|3)
(6)

Relative signed clustering coefficient is suggested as a measure of balance by Kunegis
[Kunegis, 2014] taking insight from the classic clustering coefficient. Being normalized,
this measure is equal to triangle index. Having access to an easy-to-compute walk-based
formula [Terzi and Winkler, 2011] for T (G) obviates the need for a clustering-based cal-
culation by iterating over all triads in the graph.

Bonacich argues that dissonance and tension are unclear in cycles of length greater than
three [Bonacich, 2012], justifying the use of the triangle index to analyze structural bal-
ance. However the neglected interactions may represent potential tension and dissonance,
though not as strong as that represented by unbalanced triads. Many prefer having a smaller
weight for longer cycles, thereby reducing their impact rather than totally disregarding
them. Note that C(G) is a generalization of both D(G) and T (G).

Investigating a very basic random process for generating signed graphs, the expected
value of cycle-based measures can be calculated. We consider generating signed graphs by
a random process of negating edges independently with probability q in a given unsigned
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graph. Under this process, the probability of a cycle of length k being balanced equals
the expected value of relative k-balance, denoted by E(Dk(G)) and calculated in (7) for a
given q (details of calculations are given in Appendix B). Accordingly, the expected value
of D(G) is calculated in (8).

E(Dk(G)) = E(
O+

k
Ok

) = ∑
i even

(
k
i

)
qi(1−q)k−i = (1+(1−2q)k)/2 (7)

E(D(G)) =

n
∑

k=3
E(O+

k )

n
∑

k=3
Ok

=

n
∑

k=3
(1+(1−2q)k)(Ok)/2

n
∑

k=3
Ok

(8)

Based on (7), we expect E(Dk(G))→ 1 when q→ 0 and E(Dk(G))→ 0.5 when q→ 0.5.
In case of q→ 1, E(Dk(G)) oscillates based on parity of k. It can be concluded from (8)
that E(D(G))→ 0.5 in random signed graphs with non-trivial negative edges. A similar
conclusion can be made for C(G). For the triangle index, E(D3(G)) = (1+(1−2q)3)/2
shows that the expected value of the measure merely depends on q.

Beside checking cycles, there are computationally easier approaches to structural bal-
ance such as the walk-based approach. Walk-based measure of balance is suggested by
Pelino and Maimone [Pelino and Maimone, 2012] with more weight placed on shorter
closed walks than the longer ones. Let Tr(eA) and Tr(e|A|) denote the trace of matrix
exponential for A and |A| respectively. In this formula, closed walks are weighted by a
function with a relatively fast rate of decay compared to functions suggested by [Norman
and Roberts, 1972]. The weighted ratio of balanced to total closed walks is formulated
in (9). Regarding the calculation of Tr(eA), one may use the standard fact that A is a
symmetric matrix for undirected graphs. It follows that Tr(eA) = ∑

i
eλi in which λi ranges

over eigenvalues of A.

W (G) =
K(G)+1

2
, K(G) =

∑
k

Q+
k −Q−k

k!

∑
k

Q+
k +Q−k

k!

=
Tr(eA)

Tr(e|A|)
(9)

The idea of a walk-based measure was then used by Estrada and Benzi [Estrada and Benzi,
2014]. They have tested their measure on five signed networks resulting in values inclined
towards imbalance which were in conflict with some previous observations [Facchetti et al.,
2011].

The smallest eigenvalue of signed Laplacian matrix provides a measure of balance called
algebraic conflict [Kunegis et al., 2010]. Algebraic conflict, denoted by λ (G), equals
zero if and only if the graph is balanced. Positive-semidefiniteness of L results in λ (G)

representing the amount of imbalance in a signed network. Algebraic conflict is used
in [Kunegis, 2014] to compare the level of balance in online signed networks of different
sizes. Moreover, Pelino and Maimone analyzed signed network dynamics based on λ (G)

[Pelino and Maimone, 2012]. Bounds for λ (G) are investigated by [Hou, 2004] leading
to recent applicable results in [Belardo, 2014,Belardo and Zhou, 2016]. Belardo and Zhou
prove that λ (G) for a fixed n is maximal in the complete all-negative graph of order n. dmax

represents the maximum average degree of endpoints over graph edges. λ (G) is bounded
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by λmax(G) = dmax− 1 [Belardo, 2014]. We use this upper bound to normalize algebraic
conflict. Normalized algebraic conflict, denoted by A(G), is expressed in (10). Clearly
λmax(G) is maximized by complete graphs [Belardo and Zhou, 2016].

A(G) = 1− λ (G)

dmax−1
, dmax = max

(u,v)∈E
(du +dv)/2 (10)

A quite different measure is the frustration index. Originally proposed for applications
on ferromagnetic molecules, it is also referred to as the line index for balance by [Harary,
1959]. A set E∗ of edges is called deletion-minimal if deleting all edges in E∗ results in a
balanced graph, but no proper subset of E∗ has this property. Each edge in E∗ lies on an un-
balanced cycle and every unbalanced cycle of the network contains an odd number of edges
in E∗. The graph resulted from deleting all edges in E∗ is called balanced transformation of
a signed graph. Frustration index equals the minimum cardinality among deletion-minimal
sets as in (12).

L(G) is hard to compute as the problem can be reduced to graph maximum cut problem,
in a special case of all negative edges, which is known to be NP-hard. However, upper
bounds can be readily provided such as L(G) ≤ m−, which states the obvious result of
removing all negative edges.

Facchetti, Iacono, and Altafini have used Ising spin glass computational methods to
estimate frustration index in relatively large online social networks [Facchetti et al., 2011].
Using frustration index estimated by a heuristic algorithm, they concluded that the online
signed networks are extremely close to total balance; an observation that contradicts some
other research studies like [Estrada and Benzi, 2014].

The number of frustrated edges in Erdős-Rényi graphs is analyzed by El Maftouhi,
Manoussakis and Megalakaki [El Maftouhi et al., 2012]. It follows a binomial distribu-
tion with parameters n(n− 1)/2 and p/2 in which p represents equal probabilities for
positive and negative edges in Erdős-Rényi graph. Therefore, the expected number for
frustrated edges is n(n− 1)p/4. They also prove that such a network is almost always
not balanced when p ≥ log2/n. It is straightforward to prove that frustration index is
equal to the minimum number of negative edges over all switching functions [Zaslavsky,
2010]. Moreover, if m−(Gg(X)) = L(G) then every vertex under switching g(X) satisfies
d−(vg(X)) ≤ d+(vg(X)). Tomescu [Tomescu, 1973] proves that this measure is bounded
by
⌊
(n−1)2 /4

⌋
. Bounds for the largest frustration index over all signings of vertices are

provided by [Akiyama et al., 1981]:
m
2
−
√

mn≤maxL(G)≤ m
2
. (11)

In order to compare with the other indices which take values in the unit interval and give
the value 1 for balanced graphs, we suggest normalized frustration index, denoted by F(G)

and formulated in (12).

F(G) = 1− 2L(G)

m
, L(G) = min

E∗
|E∗| (12)

Balance can also be analyzed by blockmodeling based on iteratively calculating Pear-
son moment correlations from the columns of A [Doreian, 2005]. Blockmodeling reveals
increasingly homogeneous sets of vertices. Doreian and Mrvar discuss this approach in
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partitioning signed networks [Doreian and Mrvar, 2009]. Applying the method to Cor-
relates of War data on positive and negative international relationships, they refute the
hypothesis that signed networks gradually move towards balance using blockmodeling
alongside some variations of D(G) and L(G) [Doreian and Mrvar, 2015]. Some researchers
suggest that studying the structural dynamics of signed networks is more important than
measuring balance [Cai et al., 2015, Ma et al., 2015]. This approach is usually associated
with considering an energy function to be minimized by local graph operations decreasing
the energy. However, the energy function is somehow a measure of network imbalance
which requires a proper definition and investigation of axiomatic properties. Six measures
of partial balance investigated in this paper are outlined in Table 1.

Table 1: Measures of partial balance summarized

Measure Name, Reference, and Description

D(G) Degree of balance [Cartwright and Harary, 1956] [Harary, 1959]
A cycle-based measure representing the ratio of balanced cycles

C(G) Weighted degree of balance [Norman and Roberts, 1972]
An extension of D(G) using cycles weighted by a non-increasing function of length

W(G) Walk-based measure of balance [Pelino and Maimone, 2012] [Estrada and Benzi, 2014]
A simplified extension of D(G) replacing cycles by closed walks

T(G) Triangle index [Terzi and Winkler, 2011] [Kunegis, 2014]
A triangle-based measure representing the ratio of balanced triangles

A(G) Normalized algebraic conflict [Kunegis et al., 2010] [Kunegis, 2014]
A normalized measure using least eigenvalue of the Laplacian matrix

F(G) Normalized frustration index [Harary, 1959] [Facchetti et al., 2011]
Normalized number of edges whose removal results balance

5 Basic results on random networks

In this section, we start with a brief discussion on the relationship between negative edges
and imbalance in networks. According to the definition of structural balance, all-positive
signed graphs (merely containing positive edges) are totally balanced. Intuitively, one
may expect that all-negative signed graphs are very unbalanced. Perhaps another intuition
derived by assuming symmetry is that increasing the number of negative edges in a network
reduces partial balance proportionally. We analyze partial balance in randomly generated
graphs to show neither of the intuitions is correct.

5.1 Barabási-Albert random network with various m−

We calculate measures of partial balance, denoted by µ(G), for a Barabási-Albert network.
A Barabási-Albert preferential attachment random network with 15 nodes and 50 edges is
generated by attaching 5 edges from a new node to existing nodes. Figure 1 demonstrates
the partial balance measured by different methods.
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For each data point, we report the average of 50 runs, each assigning negative edges at
random to the fixed underlying graph. The bottom subfigures of Figure 1 show the mean
along with±1 standard deviation. It is worth mentioning that we observed similar decrease
of the measures in other types of random graphs with various negative edges including
Erdős-Rényi, small world, scale-free, and random regular graphs.
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Fig. 1: Partial balance measured by different methods in Barabási-Albert network with
various number of negative edges

Measures D(G) and C(G) (with f (k) = 1/k) are observed to tend to 0.5 where m− > 5,
not differentiating partial balance in graphs with a non-trivial number of negative edges.
C(G) weighted by f (k) = 1/k! decreases slower than the former two and then provides
values close to 0.5 for m− ≥ 15. W (G) drops below 0.6 for m− = 10 and then clusters
around 0.55 for m− > 10. T (G) is the measure with the widest range of values, symmetric
to m− and confirming previous calculations (7). The single most striking observation to
emerge is that A(G) seems to have a completely different range of values, which we discuss
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further in 6.4. A steady linear decrease is observed from F(G) for m− ≤ 10 providing
smaller values for m− ≥ 35 compared to the other measures except for T (G).

5.2 4-regular random networks of different orders

To investigate the impacts of graph order (number of nodes) and density on balance, we
computed the measures for randomly generated 4-regular graphs with 50 percent negative
edges. Intuitively we expect values to have low variation and no trends for similarly struc-
tured graphs of different orders. Figure 2 demonstrates the analysis in a setting where the
degree of all the nodes remains constant, but the density (4/n− 1) is decreasing in larger
graphs. For each data point the average and standard deviation of 100 runs (each generating
a new 4-regular graph and randomly making half of the edges negative) are reported.

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

W T A F

n

μ(G)

Fig. 2: Partial balance measured by different methods in 50% negative 4-regular graphs of
different orders n and decreasing densities 4/n−1

According to Figure 2, the four measures differ not only in the range of values, but also
in their sensitivity to the graph order and density. First, W (G)→ 1 when n→ ∞ for larger
graphs although the graphs are structurally similar, which goes against intuition. Clustered
around 0.5 is T (G) which features a substantial standard deviation for 4-regular random
graphs. Values of A(G) are around 0.8 and do not seem to change substantially when n
increases. F(G) provides stationary values around 0.7 when n increases. While λ (G) and
L(G) depend on the graph order and size, the relative constancy of A(G) and F(G) values
suggest the normalized measures A(G) and F(G) are largely independent of the graph size
and order, as our intuition expects.

6 Balance in specially structured signed networks

In this section, we analyze the capability of measuring partial balance in some families
of specially structured graphs. Closed-form formulae for the measures in two families of
specially structured graphs can be found in Table 2. The three families of complete signed
graphs that we investigate are as follows in 6.1–6.3.
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6.1 Minimally unbalanced complete graphs with one negative edge

The first family includes complete graphs with one negative edge, denoted by Ka
n . Such

graphs are only one edge away from a state of total balance. It is straight-forward to provide
closed-form formulae for µ(Ka

n ) as expressed in (B 1) – (B 7) in the Appendix B.
In Ka

n , intuitively we expect µ(Ka
n ) ↑ n and µ(Ka

n ) → 1 as n → ∞. We also expect
the measure to detect the imbalance in Ka

3 (a triangle with one negative edge). Figure 3
demonstrates the behavior of different indices for Ka

n . W (Ka
n ) gives unreasonably large

values for n < 5. Except for W (Ka
n ), the measures are totally ordered over the given range

of n.
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Fig. 3: Partial balance measured by different methods for Ka
n (6.1)

Table 2: Balance in minimally and maximally unbalanced graphs Ka
n (6.1) and Kc

n (6.3)

µ(G) D C W T A F

Ka
n 1−

2∑
n
k=3

n!
(n−k)!

n(n−1)∑
n
k=3

n!
(n−k)!k

1−
2∑

n
k=3

n!
k!(n−k)!

n(n−1)∑
n
k=3

n!
k!(n−k)!k

∼ 1− 2
n 1− 6

n(n−1) ∼ 1− 4
n2 1− 4

n(n−1)

Kc
n

∑
n
even

n!
2k(n−k)!

∑
n
k=3

n!
2k(n−k)!

∑
n
even

n!
2k(n−k)!k!

∑
n
k=3

n!
2k(n−k)!k!

∼ 1+e2−2n

2 0 0 1
n ,

1
n−1
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6.2 Negative complete graphs with one maximally sized cycle of positive edges

The second family of specially structured graphs is referred to as maximally unbalanced
graphs by [Estrada and Benzi, 2014]. These graphs, denoted by Kb

n , are comprised of one
cycle of n positive edges with the remaining pairs of nodes connected by negative edges
forming a complete graph. The adjacency matrix can be defined as A(Kb

n ) = 2Cn−Kn in
which Cn and Kn are the unsigned adjacency matrices of a cycle graph of order n and a
complete graph of the same order.
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T
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F

n

µ(Kn
b
)

Fig. 4: Partial balance measured by different methods for Kb
n (6.2)

Assuming Kb
n to be highly unbalanced, intuitively we expect µ(Kb

n ) to decrease with
n and µ(Kb

n )→ 0 as n→ ∞. Figure 4 demonstrates the behavior of different indices for
Kb

n . Note that D(Kb
n ),C(Kb

n ),W (Kb
n )→ 0.5 as n increases which suggests their incapability

of measuring low balance in Kb
n . However, T (Kb

n ),A(K
b
n ),F(Kb

n )→ 0 as n→ ∞ which
supports their performance. For this family, we may calculate an exact closed-form formula
for L(Kb

n ) as shown in (B 8) which reveals a gap between L(Kb
n ) and its upper bound to be

discussed in 6.4.
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6.3 Maximally unbalanced complete graphs with all-negative edges

The third family of specially structured graphs to analyze includes all-negative complete
graphs denoted by Kc

n . All 3-cycles in Kc
n are unbalanced leading to T (Kc

n) = 0. Based on
maximality of λ (G) in Kc

n , A(Kc
n) = 0. The other indices are calculated in (B 10) – (B 15)

in the Appendix B.
Intuitively, we expect µ(Kc

n)→ 0 as n→∞. Figure 5 illustrates D(Kc
n) oscillating around

0.5 while W (Kc
n),C(Kc

n)→ 0.5 as n increases. However F(Kc
n)→ 0 as n→ ∞.
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Fig. 5: Partial balance measured by different methods for Kc
n (6.3)

6.4 Maximally unbalanced graphs and tightness of upper bounds

Having discussed 3 families of complete graphs, it is worth mentioning that measures of
partial balance may lead to different maximally unbalanced complete graphs. Based on
λ (G) and L(G), Kc

n represents the family of maximally unbalanced graphs, while it is
merely one family among the maximally unbalanced graphs according to T (G). Estrada
and Benzi have found Kb

n to be a family of maximally unbalanced graphs based on W (G)
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[Estrada and Benzi, 2014], while this argument is not supported by any other measures. As
the signs of cycles in a graph are not independent, the structure of maximally unbalanced
graphs under the cycle-based measures, D(G) and C(G), is not known.

A simple comparison of L(Kb
n ),L(K

c
n) and the proposed upper bound m/2 = (n2−n)/4

reveals substantial gaps. These gaps equal (5n−16)/4 and n/4 (for even n) respectively
for Kb

n and Kc
n . This supports the previous discussions on looseness of m/2 as an upper

bound for frustration index. Assuming Kc
n to be “the maximally unbalanced graphs” under

L(G), m/2− n/4 would be a tight upper bound for the frustration index. This allows a
modified version of normalized frustration index, denoted by F ′(G) and defined in (13),
to take the value zero for Kc

n . Similarly, the upper bound, λmax(G), used to normalize
algebraic conflict, is not tight for many graphs. For instance, in the Barabási-Albert graph
studied in Section 5, the existence of an edge with dmax = 13 makes λmax(G) = 12, while
λ (G) = 2.36.

F ′(G) = 1−L(G)/(m/2−n/4) (13)

The two observations mentioned above suggest that tighter upper bounds can be used for
normalization. However, the statistical analysis we use in Section 9 is independent of the
normalization method, so we do not pursue this question further now. Having discussed
major differences of the measures and their capabilities, the next section of this paper
addresses an axiomatic framework for evaluating the measures of partial balance.

7 Axiomatic framework of evaluation

The results in Section 5 and Section 6 indicate that the choice of measure substantially
affects the values of partial balance. Besides that, the lack of a standard measure calls for
a framework of comparing different methods. Two different sets of axioms are suggested
in [Norman and Roberts, 1972], which characterize the measure C(G) (up to the choice
of f (k)). Moreover, the theory of structural balance itself is axiomatized in [Schwartz,
2010]. However, to our knowledge, axioms for general measures of balance have never
been developed. Here we provide the first set of axioms for measures of partial balance, in
order to shed light on their characteristics and performance.

7.1 Axioms for measures of partial balance

We define a measure of partial balance to be a function µ taking each signed graph to an
element of [0,1]. Worthy of mention is that some of these measures were originally defined
as a measure of imbalance (algebraic conflict, frustration index and the original walk-based
measure) calibrated at 0 for completely balanced structures, so that some normalization
was required, and perhaps our normalization choices can be improved on. As the choice of
m/2 as the upper bound for normalizing the line index of balance was somewhat arbitrary,
another version of normalized frustration index is defined in (14).

X(G) = 1−L(G)/m− (14)

Before listing the axioms, we justify the need for an axiomatic evaluation of balance
measures. As an attempt to understand the need for axiomatizing measures of balance,
we introduce two unsophisticated and trivial measures that comes to mind for measuring
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balance. The fraction of positive edges, denoted by Y (G), is defined in (15) on the basis that
all-positive signed graphs are balanced. Moreover, a binary measure of balance, denoted
by Z(G), is defined in (16).

Y (G) = m+/m (15)

Z(G) =

{
1 if G is totally balanced
0 if G is not balanced

(16)

While Y (G) and Z(G) appear to be irrelevant, there is currently no reason to avoid using
such measures. We consider the following notation for referring to basic operations on
signed graphs:
Gg(X) denotes signed graph G switched by g(X) (switched graph).
G⊕H denotes the disjoint union of two signed graphs G and H (disjoint union).
G	 e denotes G with e deleted (removing an edge).
G	E∗ denotes G with deletion-minimal edges deleted (balanced transformation).
C+ denotes a positive cycle.
e ∈ E∗ denotes an edge in the deletion-minimal set.
G	E∗⊕ e denotes the balanced transformation of a graph with an edge e added to it.

We list the following axioms:

A1 0≤ µ(G)≤ 1.
A2 µ(G) = 1 if and only if G is balanced.
A3 If µ(G)≤ µ(H), then µ(G)≤ µ(G⊕H)≤ µ(H).
A4 If µ(G) 6= 1, then µ(G⊕C+)> µ(G).
A5 µ(Gg(X)) = µ(G).
A6 If e ∈ E∗, then µ(G	 e)≥ µ(G).
A7 If µ(G) 6= 0 and µ(G	E∗⊕ e) 6= 1, then µ(G⊕ e)≤ µ(G).

Table 3 shows how some measures fail on particular axioms. It is worth mentioning that
the axiomatic evaluation of the measures are somewhat independent of parametrization:
for each strictly increasing function h such that h(0) = 0 and h(1) = 1, the results in Table
3 hold for h(µ(G)). The results provide important insights into suitability of F(G) as a
measure of partial balance. A more detailed discussion on the proof ideas and counter
examples related to Table 3 is provided in the Appendix C.

Table 3: Different measures satisfying(3) or failing(7) Axioms

D(G) C(G) W (G) T (G) A(G) F(G) X(G) Y (G) Z(G)

A1 3 3 3 3 3 3 3 3 3

A2 3 3 3 7 7 3 3 7 3

A3 3 3 3 3 7 3 3 3 3

A4 3 3 3 7 3 3 7 7 7

A5 3 3 3 3 3 3 7 7 3

A6 7 7 7 7 7 3 3 7 7

A7 7 7 7 7 7 3 3 7 3
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7.2 Some other desirable properties

Another desirable property, which we have not formulated as a formal requirement owing
to its vagueness, is that the measure takes on a wide range of values. For example, D(G)

and C(G) tend rapidly to 0.5 as n increases which makes their interpretation and possibly
comparison with other measures difficult. A possible way to formalize it would be expect-
ing µ(G) to give 0 and 1 on each complete graph of order at least 3, for some assignment
of signs of edges . This condition would be satisfied by T (G) and A(G), as well as F ′(G).
However, D(G),C(G) and W (G) would not satisfy this condition due to the existence of
balanced cycles and closed walks in complete signed graphs of general orders. Moreover,
the very small standard deviation of D(G), C(G), and W (G) makes statistical testing
against random balance of reshuffled networks complicated. D(G), C(G), and W (G) are
also shown to have some unexpected behaviors for complete graphs discussed in Section
6.

8 Recommendations for choosing a measure of partial balance

Taken together, the findings above give strong reason not to use cycle-based measures,
whether weighted or not. The major issues with cycle-based measures D(G) and C(G)

include the very small variance in randomly generated and reshuffled graphs, computa-
tional complexity of counting/listing cycles, clustering of values around 0.5 for graphs
with a non-trivial number of negative edges, and the numerical values which are difficult
to interpret.

The triangle index, however, seems to behave better, and is easy to compute based on
closed walks of length 3. However, T (G) fails 4 out of 7 axioms and cannot be used for
graphs that do not have triangles, such as square grids. Accepting these shortcomings,
networks can be differentiated by the wider range of values that T (G) provides.

Walk-based measures like W (G) can perhaps be improved by a more systematic way
of weighting closed walks to avoid double-counting of closed walks with repeated edges.
However the clustering of values near 0.5 may present problems. Moreover, the model
behind W (G) is strange as signs of closed walks do not represent balance or imbalance.

Satisfying all the axioms, normalized frustration index seems to measure something
different from cycle balance, and be worth pursuing in future. We recommend using F(G)

for graphs up to 1000 edges. For larger graphs, computing F(G) would be time consuming
and A(G) and T (G) seem to be the other options. Depending on the type of the graph,
triangles might not necessarily capture global structural properties which would make
T (G) an improper choice for some specific graphs like sparse 4-regular graphs and square
grids.

9 Results on real signed networks

In this section, we analyze partial balance for a range of signed networks inferred from
datasets on small communities with positive and negative interactions and preferences.

Read’s dataset for New Guinean highland tribes [Read, 1954] is demonstrated as a
signed graph (G1) in Figure 6(a), where dotted lines represent negative edges and solid
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(a) Highland tribes network (G1), a signed
network of 16 tribes of the Eastern Central
Highlands of New Guinea [Read, 1954]

(b) Monastery interactions network (G2) of
18 New England novitiates inferred from
the integration of all positive and negative
relationships [Sampson, 1968]

(c) Fraternity preferences network (G3) of 17
boys living in a pseudo-dormitory inferred
from ranking data of the last week in
[Newcomb, 1961]

(d) College preferences network (G4) of 17
girls at an Eastern college inferred from
ranking data of house B in [Lemann and
Solomon, 1952]

Fig. 6: Four well-studied signed datasets illustrated as signed graphs in which dotted lines
represent negative edges and solid lines represent positive edges

lines represent positive ones. Sampson’s dataset for monastery interactions [Sampson,
1968] (G2) is drawn in Figure 6(b). There are also datasets of students’ choice and re-
jection (G3 and G4) [Newcomb, 1961, Lemann and Solomon, 1952] as demonstrated in
Figure 6(c) and Figure 6(d). The last three are converted to undirected signed graphs by
considering mutually agreed relations. A further explanation on the details of inferring
signed graphs from the choice and rejection data is provided in Appendix A. Moreover, a
larger signed network (G5) is inferred by [Neal, 2014] through implementing a stochastic
degree sequence model on Fowler’s data on Senate bill co-sponsorship [Fowler, 2006].

The results are shown in Table 4 where the average and standard deviation of measures
for the reshuffled graphs (Gr), denoted by mean(µ(Gr)) and SD(µ(Gr)), are also provided
for comparison. T (G) and F(G) give reasonable values to distinguish partial balance in real
networks and their corresponding reshuffled graphs. Although neither of the networks is
completely balanced, the small values of L(G) suggest that removal of some edges makes
the networks completely balanced. Table 4 also provides a comparison of partial balance
between different datasets of similar sizes. In this regard, it is essential to know that the
choice of measure can make a substantial difference. For instance among G1–G4, under
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T (G), G1 and G3 are respectively the most and the least partially balanced networks.
However, if we choose A(G) as the measure, G1 and G3 would be the least and the most
partially balanced networks respectively.

Table 4: Partial balance compared between signed graphs (G1–5) and reshuffled graphs

Graph n m m− T A F λ L

G1 16 58 29

µ(G) 0.87 0.88 0.76 1.04 7.00
mean(µ(Gr)) 0.50 0.75 0.49 2.12 14.80
SD(µ(Gr)) 0.07 0.02 0.04 0.20 1.25
Z-score 5.36 5.52 6.24 -5.52 -6.24

G2 18 49 12

µ(G) 0.86 0.88 0.80 0.75 5.00
mean(µ(Gr)) 0.54 0.79 0.59 1.39 10.02
SD(µ(Gr)) 0.10 0.03 0.05 0.18 1.22
Z-score 3.13 3.57 4.10 -3.57 -4.10

G3 17 40 17

µ(G) 0.78 0.90 0.80 0.50 4.00
mean(µ(Gr)) 0.51 0.83 0.60 0.87 8.02
SD(µ(Gr)) 0.12 0.03 0.04 0.15 0.88
Z-score 2.32 2.44 4.55 -2.44 -4.55

G4 17 36 16

µ(G) 0.79 0.88 0.67 0.71 6.00
mean(µ(Gr)) 0.48 0.87 0.61 0.78 7.04
SD(µ(Gr)) 0.14 0.03 0.06 0.17 1.00
Z-score 2.28 0.46 1.04 -0.46 -1.04

G5 100 2461 1047

µ(G) 0.86 0.87 0.73 8.92 331.00
mean(µ(Gr)) 0.50 0.75 0.21 17.46 973.83
SD(µ(Gr)) 0.00 0.00 0.01 0.02 9.30
Z-score 112.69 395.19 69.13 -395.19 -69.13

We have implemented a very basic statistical analysis using mean(µ(Gr)) and SD(µ(Gr)).
Reshuffling the signs on the edges 100 times, we obtain two parameters of balance distri-
bution for the fixed underlying structure. For measures of balance, Z-scores are calculated
based on Z = µ(G)−mean(µ(Gr))

SD(µ(Gr))
to show how far the balance is with regards to balance

distribution of the underlying structure. Positive values of Z-score for T (G), A(G), and
F(G) can be interpreted as existence of more partial balance than the average random level
of balance. Z-score values also represent the significance when compared to the standard
range of (−3,3).

From the Z-scores, we can see that all the 5 graphs have a level of partial balance more
than the average expected. The significance and level of partial balance more than expected
by chance is very high for G5, high for G1, G2, and G3, and low for G4. It indicates
that ties the real signed networks investigated are more transitive than what we expect
when signs are allocated by chance. It is worth pointing out that the statistical analysis we
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have implemented is independent of the normalization method used in A(G) and F(G).
The two right columns of 4 provide λ (G) and L(G) alongside their associated Z-scores.
Representing more balance by smaller values, Z-scores obtained for λ (G) and L(G) equal
the opposite of the Z-scores obtained for A(G) and F(G).

(a) G1 and deletion minimal set of 7 negative
edges

(b) G2 and deletion minimal set of 2 positive
and 3 negative edges

(c) G3 and deletion minimal set of removing
4 negative edges

(d) G4 and deletion minimal set of 3 positive
and 3 negative edges

Fig. 7: The deletion minimal set illustrated by dotdash lines for four signed networks

Figure 7 shows the four small signed networks, with a deletion minimal set of edges
indicated by dotdash lines whose removal makes the network balanced. It shows how such
networks are close to balance when measured by frustration index. The numerical results
support previous observations of networks closeness to balance [Facchetti et al., 2011] and
contradicts some other arguments provided by using other measures [Estrada and Benzi,
2014]. A possible reason for the conflicts in the literature may be the method of measuring
balance itself, which we discuss further in the following section.

10 Discussion

One criticism of much of the literature on balance theory is that it is widely used on directed
signed graphs. It seems that this approach is questionable in two ways. First, it neglects
the fact that many edges in signed digraphs are not reciprocated. Bearing that in mind,
investigating balance theory in signed digraphs deals with conflict avoidance when one
actor in such a relationship may not necessarily be aware of good will or ill will on the
part of other actors. This would make studying balance in directed networks analogous
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to studying how people avoid potential conflict resulting from potentially unknown ties.
Secondly, balance theory does not make use of the directionality of ties and the concepts
of sending and receiving positive and negative links.

In a parallel line of research on network structural analysis, researchers differentiate
between classical balance theory and structural balance specifically in the way that the
latter is directional [Bonacich, 2012]. They consider another setting for defining balance
where absence of ties implies negative relationships. This assumption makes the theory
limited to complete signed digraphs. Accordingly, 64 possible structural configurations
emerge for three nodes. These configurations can be reduced to 16 classes of triads, re-
ferred to as 16 MAN triad census, based on the number of Mutual, Asymmetric, and Null
relationships they contain. There are only 2 out of 16 classes that are considered balanced.
New definitions are suggested by researchers in order to make balance theory work in
a directional context. According to Prell [Prell, 2012], there is a second, a third, and a
fourth definition of permissible triads allowing for 3, 7, and 9 classes of all 16 MAN triads.
However, there have been many instances of findings in conflict with expectations [Prell,
2012].

Leskovec, Huttenlocher and Kleinberg compare the reliability of predictions made by
competing theories of social structure: balance theory and status theory (a theory that
explicitly includes direction and gives quite different predictions) [Leskovec et al., 2010].
The consistency of these theories with observations is investigated through large signed
directed networks such as Epinions, Slashdot, and Wikipedia. The results suggest that
status theory predicts accurately most of the time while predictions made by balance theory
are incorrect half of the time. This supports the inefficacy of balance theory for structural
analysis of signed digraphs. For another comparison of the two theories, one may refer to
a study of 8 theories to explain signed tie formation between students [Yap and Harrigan,
2015].

Apart from directionality, the interpretation of balance measures is very important. Nu-
merous studies have compared balance measures with their extremal values and found
that signed networks are far from balanced [Estrada and Benzi, 2014]. However, with
such a strict criterion, caution must be applied not to look for properties that are almost
impossible to satisfy. A much more systematic approach is to compare values of partial
balance in the signed graphs in question to reshuffled graphs. According to this approach,
we suggest comparing signed network balance with analogous reshuffled graphs having the
same structure (as in Section 9). Table 4 provides this comparison showing that the extent
of transitivity of ties in signed networks is substantial. The real signed networks analyzed
are more balanced than we expect by chance. An alternative approach would identify how
measures of balance interact with other network parameters that are linked to transitivity
of ties [Szell et al., 2010, Szell and Thurner, 2010].

11 Conclusion and future research

Taking axiomatic properties of the measures into account, using D(G), C(G), and W (G)

is recommended. T (G) and A(G) may introduce some minor problems as discussed, but
overall using them seem to be more appropriate compared to cycle based and walk based
measures. The numerical results taken together with the axiomatic properties, recommend
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F(G) as the best overall measure of partial balance. However, considering the difficulty
of computing F(G) for large graphs, one may prefer to use T (G) or A(G) instead while
accepting their potential shortcomings.

Returning to the questions posed at the beginning of this paper, it is now possible to
state that many signed networks exhibit a level of partial (but not total) balance beyond that
expected by chance. One of the more significant findings to emerge from this study is that
methods suggested for measuring balance have their context and interpretation. The present
study confirms previous findings that some measures of partial balance cannot be taken as a
reliable static measure to be used for analyzing network dynamics. It contributes additional
evidence that suggests a gray-scale for transitivity of positive and negative relationships.
Although the major numerical part of the current study is based on signed networks with
less than a few thousand edges, the findings suggest the inefficacy of some methods for
analyzing larger networks as well. One gap in this study is that we avoid using structural
balance theory for analyzing directed networks, making a significant part of the literature
(including Epinions, Slashdot, and Wikipedia datasets) untested by our approach for now.
However, see our discussion in Section 10.

The findings of this study have a number of important implications for future investiga-
tion. Although this study focuses on partial balance, the findings may well have a bearing
on link prediction and clustering in signed networks [Gallier, 2016]. Some other theoretical
topics of interest in signed networks are network dynamics [Tan and Lü, 2016] and opinion
dynamics [Li et al., 2015]. Effective methods of signed network structural analysis can
contribute to these topics as well. From a practical viewpoint, international relationships is
a crucial area to implement signed network structural analysis. Having an efficient measure
of partial balance in hand, international relations can be investigated in terms of partial
balance in networks of states.

A Inferring undirected signed graphs

Sampson collected different sociometric rankings from a group of 18 monks at different
times [Sampson, 1968]. The data provided includes rankings on like, dislike, esteem,
disesteem, positive influence, negative influence, praise, and blame. We have considered all
the positive rankings as well as all the negative ones. Then only the reciprocated relations
with similar signs are considered to infer an undirected signed edge between two monks
(see [Doreian and Mrvar, 2009] and how the authors inferred a directed signed graph in
their Table 5 by summing the influence, esteem and respect relations.).

Newcomb reported rankings made by 17 men living in a pseudo-dormitory [Newcomb,
1961]. We used the ranking data of the last week which includes complete ranks from
1 to 17 gathered from each men. As the gathered data is related to complete ranking,
we considered ranks 1-5 as one-directional positive relations and 12-17 as one-directional
negative relations. Then only the reciprocated relations with similar signs are considered
to infer an undirected signed edge between two men (See [Doreian and Mrvar, 2009] and
how the authors converted the top three and bottom three ranks to a directed signed edges
in their Fig. 4.).

Lemann and Solomon collected ranking data based on multiple criteria from female
students living in off campus dormitories [Lemann and Solomon, 1952]. We used the data
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for house B which is resulted by integrating top and bottom three one-directional rankings
each for multiple criteria. As the gathered data itself is related to top and bottom rankings,
we considered all the ranks as one-directional signed relations. Then only the reciprocated
relations with similar signs are considered to infer an undirected signed edge between two
women (See [Doreian, 2008] and how the author inferred a directed signed graph in their
Fig. 5 from the data for house B.)

B Details of calculations

In order to simplify the sum E(Dk(G)) = ∑
i even

(k
i

)
qi(1− q)k−i, one may add the two fol-

lowing equations and divide the result by 2:

∑
i

(
k
i

)
qi(1−q)k−i = (q+(1−q))k

∑
i

(
k
i

)
(−q)i(1−q)k−i = (−q+(1−q))k

In Ka
n , a k-cycle is specified by choosing k vertices in some order, then correcting for

the overcounting by dividing by 2 (the possible directions) and k (the number of starting
points, namely the length of the cycle). If the unique negative edge is required to belong
to the cycle, we need choose only k−2 further elements and no overcounting occurs. The
number of negative cycles and total cycles are as follows.

n

∑
k=3

O−k =
n

∑
k=3

(n−2)!
(n− k)!

,
n

∑
k=3

Ok =
n

∑
k=3

n!
2k(n− k)!

The unsigned adjacency matrix |A| of the complete graph has the form E− I where E is
the matrix of all 1’s. The latter matrix has rank 1 and nonzero eigenvalue n. Thus |A|(Ka

n )

has eigenvalues n− 1 (with multiplicity 1) and −1 (with multiplicity n− 1). The matrix
A(Ka

n )
has a similar form and we can guess eigenvectors of the form (−1,1,0, . . . ,0) and

(a,a,1,1, . . . ,1). Then a satisfies a quadratic 2a2+(n−3)a−(n−2) = 0. Solving for a and
the corresponding eigenvalues, we obtain eigenvalues (n−4±

√
(n−2)(n+6))/2,1,−1

(with multiplicity n−3)).

This yields K(Ka
n )=

(n−3)e−1+e+e
n−4−

√
(n−2)(n+6)

2 +e
n−4+

√
(n−2)(n+6)

2

(n−1)e−1+en−1 which results in W (Ka
n )∼

1+e−4/n

2 .
Furthermore, since every node of Kn has degree n−1, the eigenvalues of L := (n−1)I−

A are precisely of the form n−1−λ where λ is an eigenvalue of A.
Measures of partial balance for Ka

n can be expressed exactly according to the closed-
form formulae as stated in (B 1) – (B 7):

D(Ka
n ) = 1− 2

n(n−1)

∑
n
k=3

n!
(n−k)!

∑
n
k=3

n!
(n−k)!k

(B 1)
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C(Ka
n ) = 1− 2

n(n−1)

∑
n
k=3

n!
k!(n−k)!

∑
n
k=3

n!
k!(n−k)!k

(B 2)

W (Ka
n )∼

1+ e−4/n

2
∼ 1− 2

n
(B 3)

T (Ka
n ) = 1−

(n−2)!
(n−3)!

n!
2×3(n−3)!

= 1− 6
n(n−1)

(B 4)

λ (Ka
n ) = n−1− (n−4+

√
(n−2)(n+6))/2 = (n+2−

√
(n−2)(n+6))/2 (B 5)

A(Ka
n ) = 1−

n+2−
√

(n−2)(n+6)
2n−4

∼ 1− 4
n2 (B 6)

F(Ka
n ) = 1− 2

n(n−1)/2
= 1− 4

n(n−1)
(B 7)

In Kb
n , the deletion-minimal set has a specific structure. This can be used to calculate

L(Kb
n ) and F(Kb

n ) exactly as in (B 8) – (B 9) :

L(Kb
n ) =

{
(n2−6n+16)/4 if n is even
(n2−6n+17)/4 if n is odd

(B 8)

F(Kb
n ) =

{
(5n−16)/(n2−n) if n is even
(5n−17)/(n2−n) if n is odd

(B 9)

In Kc
n , all cycles of odd length are unbalanced and all cycles of even length are balanced.

Therefore:
n

∑
k=3

O+
k =

n

∑
even

n!
2k(n− k)!

|A|(Kc
n)

has eigenvalues n−1 (with multiplicity 1) and −1 (with multiplicity n−1). The
matrix A(Kc

n)
has a similar form and the corresponding eigenvalues would be 1− n (with

multiplicity 1) and 1 (with multiplicity n− 1). This yields K(Kc
n) =

(n−1)e1+e1−n

(n−1)e−1+en−1 which

results in W (Kc
n)∼ 1+e2−2n

2 .
Moreover, a closed-form formula for L(Kc

n) can be expressed based on a maximum cut.
Measures of partial balance for Kc

n can be expressed exactly according to the closed-form
formulae as stated in (B 10) – (B 15):

D(Kc
n) =

∑
n
even

n!
2k(n−k)!

∑
n
k=3

n!
2k(n−k)!

(B 10)

C(Kc
n) =

∑
n
even

n!
2k(n−k)!k!

∑
n
k=3

n!
2k(n−k)!k!

(B 11)

W (Kc
n)∼

1+ e2−2n

2
(B 12)

λ (Kc
n) = λmax = dmax−1 = n−2 (B 13)
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L(Kc
n) =

{
(n2−2n)/4 if n is even
(n2−2n+1)/4 if n is odd

(B 14)

F(Kc
n) =

{
1− n(n−2)/4

n(n−1)/4 = 1
n−1 if n is even

1− (n−1)(n−1)/4
n(n−1)/4 = 1

n if n is odd
(B 15)

C Counter examples and proof ideas for the axioms

Axiom 1 holds in all the measures introduced due to the systematic normalization imple-
mented.

T (G), A(G), and Y (G) do not satisfy Axiom 2. All 3-cycles being balanced, T (G) fails to
detect the imbalance in graphs with unbalanced cycles of longer than three. A(G⊕C+) = 1
for unbalanced graphs which makes A(G) fail Axiom 2. Y (G) fails on detecting balance in
completely bi-polar signed graphs that are indeed balanced.

As long as µ(G⊕H) can be written in the form of (a+c)/(b+d) where µ(G)= a/b and
µ(H) = c/d, µ satisfies Axiom 3. So all the measures considered satisfy Axiom 3, except
for A(G). In case of λ (G) < λ (H) and λmax(G) < λmax(H), A(G⊕H) = 1− λ (G)

λmax(H) >

A(H) which shows that A(G) fails Axiom 3.
Clearly in Axiom 4, C+ contributes positively to D(G) and C(G) while T (G⊕C+) =

T (G) when C+ is longer than 3. As W (C) equals 1 for C+, Tr(eA)/Tr(e|A|) would be added
by equal terms in both the numerator and denominator leading to W (G) satisfying Axiom
4. A(G) satisfies Axiom 4 because A(G⊕C+) = 1. As m increases by the length C+, F(G)

satisfies Axiom 4. The dependency of X(G) and Y (G) on m− and incapability of the binary
measure, Z(G), in providing values between 0 and 1 make them fail Axiom 4.

The sign of cycles (closed walks), the Laplacian eigenvalues [Belardo and Zhou, 2016],
and the frustration index [Zaslavsky, 2010] will not change by applying the switching func-
tion introduced in (2). Therefore, Axiom 5 holds for all the measures discussed except for
X(G) and Y (G) because they depend on m−, which changes in switching. This observation
supports the normalization used for F(G).

All the cycle-based measures, namely D(G),C(G), and T (G) fail Axiom 6 (for example,
take G = K4 with two symmetrically located negative edges). W (G) is also observed to fail
Axiom 6 (for instance, take G as the disjoint union of a 3-cycle and a 5-cycle each having
1 negative edge). It is known that λ (G	 e) ≤ λ (G) [Belardo and Zhou, 2016]. However
in some cases where λmax(G	 e) < λmax(G) counter examples are found showing A(G)

fails on Axiom 6 (consider a graph with n = 8,m+ = 10,m− = 3,min |E∗| = 3 in which
λmax(G) = 6 and λmax(G	e) = 3). Y (G) and Z(G) fail Axiom 6. Moreover, F(G) satisfies
Axiom 6 because L(G	 e) = L(G)−1.

The cycle-based measures and W (G) do not satisfy Axiom 7. For T (G), we tested a
graph with n = 7,m = 15, |E∗| = 3 and we observed T (G⊕ e) > T (G). According to
Belardo and Zhou, λ (G⊕ e) ≥ λ (G) [Belardo and Zhou, 2016]. However in some cases
where λmax(G⊕ e) > λmax(G) counter examples are found showing A(G) fails on Axiom
7. Counter examples showing D(G),C(G),W (G), and A(G) fail Axiom 7, are similar to
that of Axiom 6. Moreover, F(G) satisfies Axiom 7 as do X(G) and Z(G), while Y (G)

fails Axiom 7 when e is positive.
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