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Abstract—Is the enemy of an enemy necessarily a friend, or
a friend of a friend a friend? If not, to what extent does this
tend to hold? Such questions were formulated in terms of signed
(social) networks and necessary and sufficient conditions for a
network to be “balanced" were obtained around 1960. Since
then the idea that signed networks tend over time to become
more balanced has been widely used in several application areas,
such as international relations. However investigation of this
hypothesis has been complicated by the lack of a standard
measure of partial balance, since complete balance is almost
never achieved in practice.

We formalise the concept of a measure of partial balance,
compare several known measures on real-world and synthetic
datasets, as well as investigating their axiomatic properties. We
use both well-known datasets from the sociology literature, such
as Read’s New Guinean tribes, and much more recent ones
involving senate bill co-sponsorship. The synthetic data involves
both Erdős-Rényi and Barabási-Albert graphs.

We find that under all our measures, real-world networks
are more balanced than random networks. We also show that
some measures behave better than others in terms of axioms,
computational tractability and ability to differentiate between
graphs. We make some recommendations for measures to be
used in future work.

I. INTRODUCTION

Transitivity of relationships has a pivotal role in
analysing social interactions. Is the enemy of enemy a
friend? What about friend of an enemy or enemy of a friend?
Network science is a key instrument in quantitative analysis
for such questions. Researchers of the field are interested
in knowing the extent of transitivity of ties and its impact
on the global structure and dynamics in communities with
positive and negative relationships. Whether the application
involves international relationships among states, friend-
ships and enmities between people, or ties of trust and
distrust formed among shareholders, relationship to a third
entity is always influenced by immediate ties.

There is a growing body of literature that aims to connect
theories of social structure with network science tools and
techniques to study local behaviours and global structures
in signed graphs that come up naturally in many unrelated
areas. The building block of structural balance is a work by
Heider [1] that was expanded into a set of graph-theoretic
concepts by Cartwright and Harary [2] to handle a social
psychology problem a decade later. In a setting where the
opposite of a negative relationship is a positive relationship,
ties to a distant neighbour can be expressed by the product
of signs reaching him. The relationship under study has

an antonym or dual to be expressed by the opposite sign
[3]. Cycles containing an odd number of negative edges
are unbalanced, so total balance is guaranteed for signed
networks containing no cycles with an odd number of
negative edges. This strict condition makes it quite unlikely
for a signed network to be totally balanced. The literature
on signed networks suggest many different formulas to
measure balance. These measures are useful for detecting
total balance and total unbalance, but for intermediate
cases their performance is not clear and has not been
systematically studied.

Our contribution

The main focus of this paper is to provide insight into
measuring partial balance, as much uncertainty still exists
on this. The dynamics leading to specific global structures
in signed networks remain speculative even after studies
with fine-grained approaches. The central thesis of this
paper is that measures of partial balance should relate to
the application, as transitivity is flexible in interpretation
in different areas. Thus we need to consider a variety of
measures. However, not all measures are equally useful.

We provide a numerical comparison of several measures
of partial balance on a variety of undirected signed net-
works, both randomly generated and inferred from well-
known datasets. Using theoretical results for simple classes
of graphs, we suggest an axiomatic framework to evaluate
these measures and shed light on the context-dependency
involved in using such measures.

This paper begins by laying out the theoretical dimen-
sions of the research in Section II and looks at basic def-
initions and terminology. In Section III different means of
checking for total balance are outlined. Section IV discusses
some approaches to measure partial balance in Eq. 3 – 11.
Section V provides the numerical results in Figures 1 – 6
and Table I. Section VI suggests a set of axioms to evaluate
the measures. Section VII is concerned with performance of
measures in structures that are close to total balance as in
Figure 7. Section VIII presents the findings of the research
including Figures 8 – 11, and focuses on context and
interpretation. Section IX sums up the research highlights
and provides direction for future research. Throughout this
paper, the terms signed graph and signed network will be
used interchangeably to refer to a graph with positive and
negative edges. While several definitions of the concept of
balance have been suggested, this paper will only use the
original definition of it for undirected signed graphs unless
explicitly stated.



II. PROBLEM STATEMENT AND NOTATION

We consider undirected signed networks G = (V ,E ,σ)
where σ is the sign function σ : E → {−1,+1}. The set of
nodes is denoted by V , with |V | = n. E stands for the set
of edges including a total of m edges, m− negative edges
and m+ positive ones. The expression u ∼ v denotes the
adjacency of two nodes, regardless of sign. The adjacency
matrix is defined in (1). We denote by |A| the entrywise
absolute value of A, which we call the unsigned adjacency
matrix.

Au v =
{
σu,v if u, v ∈ E
0 if u, v ∉ E (1)

A walk of length k in G is a sequence of nodes
v0, v1, ..., vk−1, vk such that for each i = 1,2, ...,k there is an
edge from vi−1 to vi . If v0 = vk , the sequence is a closed
walk of length k. If the nodes in a closed walk are distinct,
it is a cycle of length k. The weight of a cycle is the product
of the signs of its edges. A cycle is balanced if its weight is
positive. The total number of balanced cycles (closed-walks)
is denoted by O+

k (Q+
k ). Respectively, O−

k (Q−
k ) denotes the

total number of unbalanced cycles (closed-walks), and Ok
(Qk ) the total number of cycles (closed-walks).

III. CHECKING FOR BALANCE

It is essential to have an algorithmic means of checking
for balance. The characterisation of bi-polarity, that a signed
graph is balanced if and only if its vertex set can be
partitioned into two subsets such that each negative edge
joins vertices belonging to different subsets, leads to an
obvious breadth-first search procedure similar to the usual
algorithm for determining whether a graph is bipartite.
Moreover, the eigenvalues of signed and unsigned adjacency
matrices are equal if and only if the signed network is
structurally balanced [4]. Therefore, balance can also be
detected by comparing eigenvalues. For our purposes the
following additional method is also important. We define
the switching function g operating over a set of vertices
X ⊆V as follows.

σ
g
(u,v) =

{
σu,v if u, v ∈ X or u, v ∉ X
−σu,v if u ∈ X and v ∉ X or u ∉ X and v ∈ X

(2)
As the sign of cycles remains the same when g is applied,
any balanced graph can switch to an all-positive signature.
Accordingly, a balance detection algorithm of complexity
O(n2) can easily be developed by constructing a switching
rule on a spanning tree and a root vertex, as suggested in
[5].

IV. MEASURES OF PARTIAL BALANCE

Several ways of measuring the extent to which a graph is
balanced have been introduced by researchers. The simplest
of such measures is the degree of balance suggested by
Cartwright and Harary [2], which is simply the fraction of
cycles that are balanced:

D(G) =

n∑
k=3

O+
k

n∑
k=3

Ok

. (3)

Harary [6] provides some properties for the degree of
balance in block structures i.e. connected components of
network with no cut points. The minimum and maximum
values for unbalanced block structures are given by:

m −n

m −n +2m−n ≤ D(G) ≤ m −n

m −n +2
. (4)

There are two measures closely related to D(G). The first is
relative k-balance where the sums defining the numerator
and denominator of D(G) are restricted to a single term of
fixed index k. This extension for k = 3 is called the triangle
index, denoted by T (G).

The second measure can be obtained by weighting
cycle lengths as in (5), in which f (k) is a monotonically
decreasing function of the length of cycle. The selection
of an appropriate function is briefly discussed by Norman
and Roberts [7], suggesting functions such as 1/k,1/k2,1/2k ,
but no objective criterion for choosing such a weight-
ing function is known. Exact calculation for cycle-based
measures is time-consuming for large networks, as the
number of cycles grows exponentially with network size.
To tackle the computational complexity, Terzi and Winkler
[8] suggested disregarding all cycles longer than three and
replacing the remaining triangles by closed-walk of length
3 in calculations as in (6) where Tr(A) denotes the the
trace of matrix. Some researchers argue that dissonance and
tension are unclear in cycles of length greater than three [9],
justifying the use of the triangle index to analyse structural
balance. However the neglected interactions may represent
potential tension and dissonance, though not as strong as
that represented by unbalanced triads, still determinant
of network structure and evolution. Many prefer having
a smaller weight for longer cycles, thereby reducing their
impact rather than totally disregarding them. Note that C (G)
is a generalization of both D(G) and T (G).

C (G) =

n∑
k=3

f (k)O+
k

n∑
k=3

f (k)Ok

(5)

T (G) = Tr(A3)+Tr(|A|3)

2×Tr(|A|3)
(6)

Beside checking cycles, there are computationally easier
approaches to structural balance such as the walk-based
approach. A walk-based measure of balance is suggested by
Estrada and Benzi [10] with more weight placed on shorter
closed-walks than the longer ones. They have tested their
measure on five signed networks resulting in values inclined
towards unbalance. Moreover, they argued that balance
measures are sensitive to the weight of social links, resulting
in the conflicting observations prior to their study [10].
According to their measure, comparison of higher powers of
the signed and unsigned adjacency matrices reveals some
insight into network structural properties.

Let Tr(e A) and Tr(e |A|) denote the trace of matrix expo-
nential for A and |A| respectively. In this formula, closed-
walks are weighted by the inverse factorial of their lengths
which has a relatively fast rate of decay comparing to
weighting functions previously suggested for cycle-based



measures. The weighted ratio of balanced to total closed-
walks is formulated as follows:

W (G) = 2K

K +1
,K =

∑
k

Q+
k −Q−

k
k !∑

k

Q+
k +Q−

k
k !

= Tr(e A)

Tr(e |A|)
(7)

A clustering-based measure for balance is suggested by
Kunegis [11] taking insight from the classic clustering coef-
ficient denoted by CC (G). The signed clustering coefficient,
SC (G), is defined similarly, but it numerically approximates
the number of times that the closing edge creates a bal-
anced triad as in (8).

CC (G) = {u, v, w ∈V |u ∼ v ∼ w ∼ u}

{u, v, w ∈V |u ∼ v ∼ w}

SC (G) =
∑

u∼v∼w∼u
σ({u, v})σ({v, w})σ({w,u})

{u, v, w ∈V |u ∼ v ∼ w}
(8)

Additionally, the normalised relative signed clustering coef-
ficient is defined as in (9). This measure is an approximation
of the triangle index based on sampling over a fixed number
of triads in the graph. A drawback of this measure is that
it disregards longer cycles like [8]. On the other hand, it
can be computed readily for large networks. As balanced
(unbalanced) sampled triads contribute to S(G) positively
(negatively), it ranges between [0,1] and is comparable to
the other measures.

S(G) = SC (G)+CC (G)

2×CC (G)
≈ O+

3

O3
= T (G) (9)

A quite different measure is the frustration index. Originally
proposed for applications on ferromagnetic molecules, it
is also referred to as the line index for balance by [12].
It equals the minimum number of edges whose deletion
(or equivalently, negation) result in a balanced graph. In a
setting where each vertex is given a value of ±1 as well, if
the endpoints of positive (negative) edges are in the same
(opposite) states, they are satisfied, while edges violating
such rules are “frustrated". The frustration index is therefore
the smallest number of frustrated edges over all possible
assignments of ±1 to the nodes. Similarly, this measure
equals the number of members in a collection of edges,
called deletion-minimal, whose deletion results in balance,
while there is no subset of this collection yielding balance.
Each edge in a deletion-minimal set lies on an unbalanced
cycle and every unbalanced cycle of the network contains
an odd number of edges of the deletion-minimal set. This
measure is hard to compute as the problem can be reduced
to graph maximum cut problem, in a special case of all
negative edges, which is known to be NP-hard. However,
upper bounds can be readily provided for line index for
balance, as denoted by L(G), such as L(G) ≤ m− which states
the obvious result of removing all negative edges.

The number of frustrated edges in Erdős-Rényi graphs
with equal probabilities for positive and negative signs are
analysed by El Maftouhi, Manoussakis and Megalakaki [13].
It follows a binomial distribution with parameters n(n−1)/2
and p/2. Therefore, the expected value for frustrated edges
is n(n−1)p/4. They also prove that such a network is almost
always not balanced when p ≥ log2/n.

It is straightforward to prove that frustration index is
equal to the minimum number of negative edges over all
switching functions [5]. Moreover, if m−(Gg ) = L(G) then
every vertex under this switching satisfies d−(v g ) ≤ d+(v g ).
Tomescu [14] proves that this measure is bounded by⌊

(n −1)2 /4
⌋

. Bounds for the largest frustration index over
all signings of vertices are provided by [15]:

m

2
−p

mn ≤ maxL(G) ≤ m

2
. (10)

An exhaustive search algorithm can be used for flipping
edges and calculating frustration index. In order to compare
with the other indices which take values in the unit interval
and give the value 1 for balanced graphs, we normalise
the frustration index by dividing by the maximum possible
value and map it via a decreasing function. This yields the
normalised frustration index, which we denote by F (G):

F (G) = 1− 2L(G)

m
. (11)

Balance in signed networks can be seen through another
view as well. Vertices can be grouped into increasingly
homogeneous positions by iteratively calculating Pearson
moment correlations from the columns of the adjacency
matrix [16]. This reveals within-block and between-block
connections in the reduced-form matrix. Assuming position
as a set of vertices, blocks are sets of ties between positions.
Generalized blockmodeling reveals network structural prop-
erties such as balance. Although perfect balance is unlikely,
networks may have partitions that are close to perfectly
balanced [16]. Doreian and Mrvar [17] discuss this approach
in partitioning signed social networks extensively.

V. NUMERICAL RESULTS

Measures of partial balance, denoted by µ(G) are cal-
culated for both Erdős-Rényi and Barabási-Albert random
networks. The same randomly generated graphs with dif-
ferent number of negative edges assigned on random are
used to analyse balance. Figures 1 – 2 demonstrate the
partial balance in random networks measured by different
methods. As it is shown measures have different sensitivity
to the number of negative edges. Interestingly, the degree
of balance, D(G), is observed to tend to 0.5 for random
networks with m− ≥ 7. No difference to D(G) is observed
where C (G) is weighted by f (k) = 1/k as values are almost
equal. Neither one of them differentiates partial balance in
networks with non-trivial number of negative edges m− ≥ 7.
From the charts, it can be seen that C (G) weighted by
f (k) = 1/k ! decreases slower than the former two and then
fluctuates around 0.5 for m− ≥ 15. Moreover, a steady linear
decrease is observed from F (G) for m− ≤ 10 and then it
fluctuates around 0.5 for networks with greater number
of negative edges. The single most striking observation to
emerge is from the walk-based measure, W (G), that drops
to 0.3 for m− ≥ 10 and then decreases to 0.1 for networks
with more negative edges. Triangle index, T (G), and its
approximation, S(G), are the two measures with the widest
range of values almost steadily decreasing to 0.5 where
m− ≤ 15 then fluctuating around it for 15 ≤ m− ≤ 35 and
finally decreasing to the smallest values on the charts where
m− ≥ 35.



Fig. 1. Partial balance measured by different methods for Erdős-Rényi
(n=15, p=0.45) network with 50 edges and 2573532 cycles

Fig. 2. Partial balance measured by different methods for Barabási-Albert
Preferential Attachment (n=15,m=5) network with 50 edges and 411890
cycles

In the remaining part of this section, we report measures
of partial balance for a range of small signed networks
inferred from datasets. There are well-studied datasets on
small communities with positive and negative interactions
and preferences. Read’s dataset for New Guinean highland
tribes [18] is demonstrated as a signed graph in Figure 3,
where dotted lines represent negative edges and solid lines
represent positive ones. Sampson’s dataset for monastery
interactions [19] is drawn in Figure (4). There are also
datasets of students’ choice and rejection [20], [21] as
demonstrated in Figure 5 and Figure 6. The last three are

converted to signed graphs by considering mutually agreed
relations. Moreover, a larger signed network is inferred by
[22] through implementing a stochastic degree sequence
model on Fowler’s data on Senate bill co-sponsorship [23].
The results are shown in Table I where measures for the
random graphs with the same parameters are also provided
for comparison.

The cycle based measures are difficult to compute in
large networks with more than 109 cycles. The degree of
balance provides useless values clustered around 0.5 that is
not unusual. Its extended measure weighted by f (k) = 1/k
provides the same values that are not reported in the
table. However, C (G) with f (k) = 1/k ! provides much more
relevant values making real networks and random graphs
distinguishable. T (G), S(G), and F (G) also give reasonable
values to distinguish partial balance in real networks and
their reciprocal random graphs. Although neither of the
networks are completely balanced, small values of L(G)
suggests that removal of only a few edges makes the real
networks completely balanced. From this data, we can
see that random networks have lower partial balance. It
indicates that ties in real signed networks are more tran-
sitive than what we expect by random. A clear reason for
W (G) providing small values for senate network could not
be identified in this analysis. This raises questions about
potential dependency of W (G) to network parameters which
will be discussed in the next Section.

VI. AXIOMATIC FRAMEWORK OF EVALUATION

Two different sets of axioms are suggested in [7], which
characterise the measure C (G) (up to the choice of f (k)).
Moreover, the theory of structural balance itself is axo-
matised in [24]. Here we provide another set of axioms
for measures of partial balance in order to shed light on
their applications and context. We define a measure of
partial balance to be a function µ taking each signed graph
to an element of [0,1]. However, worthy of mention is
that some of these measures were originally defined as a
measure of unbalance (frustration index and the original
walk-based measure suggested by [10]) calibrated at 0 for
completely balanced structures, so that some normalisation
was required, and perhaps our normalisation choices can
be improved on.

We list the following axioms.

A1 µ(G) = 1 if and only if G is balanced.
A2 µ(G) = µ(G ⊕G), where the graph on the right

denotes the disjoint union of two copies of G .
A3 If C is a cycle with positive weight, then µ(G) ≤

µ(G ⊕C ).
A4 If C is a cycle with negative weight, then µ(G) ≥

µ(G ⊕C ).

The first three axioms holds in all the measures intro-
duced. Following the addition of a negative cycle, W (G) is
observed to increase resulting in its failure in the last axiom
(for example, take G = K5 with single negative edge, and C to
be of length 3 cycle with a single negative edge). Moreover,
F (G) satisfies the fourth axiom whenever L(G) ≤ m/k where
k is the length of C , but it is easy to see by considering



TABLE I. MEASURES OF PARTIAL BALANCE CALCULATED FOR FIVE SIGNED NETWORKS AND THEIR SIMILAR RANDOM GRAPHS

Graph n m m− Cycles D(G) C(G) W(G) T(G) S(G) F(G) L(G)
Highland tribes [18]

16 58 29
22216973 0.491 0.677 0.527 0.868 0.884 0.759 7

G(n,m) 31791520 0.500 0.496 0.173 0.516 0.521 0.448 16
Monastery Interactions [19]

18 49 12
1436972 0.504 0.717 0.743 0.857 0.841 0.796 5

G(n,m) 1347065 0.500 0.536 0.497 0.567 0.549 0.633 9
Fraternity preference [20]

17 40 17
107928 0.498 0.739 0.835 0.778 0.801 0.800 4

G(n,m) 110152 0.498 0.511 0.685 0.500 0.487 0.650 7
College preference [21]

17 36 16
15265 0.498 0.616 0.764 0.786 0.841 0.667 6

G(n,m) 19289 0.500 0.442 0.601 0.417 0.541 0.611 7
Senate bill co-sponsorship [22]

100 2461 1047
≥ 109 0.002 0.864 0.843 0.731 331

G(n,m) ≥ 109 0.000 0.507 0.522 ≥ 0.216 ≤ 965

Fig. 3. Highland tribes network, a signed network of 16 tribes of the
Eastern Central Highlands of New Guinea [18]

Fig. 4. Monastery interactions network of 18 New England novitiates
inferred from the integration of all positive and negative relationships in
time T4 [19]

a sufficiently long negative cycle that F (G) fails the fourth
axiom in general.

Another desirable property which we have not formu-
lated as a formal requirement owing to its vagueness, is that
the measure takes on a wide range of values. For example,
W (G) tends to 0 as |V (G)| increases, for some families of
graphs such as the Senate database in Table I, which makes
comparison with other measures difficult. It also has a vastly
different behaviour for another family of graphs that will be
discussed in the next section.

Fig. 5. Fraternity preferences network of 17 boys living in a pseudo-
dormitory inferred from ranking data of the last week in [20]

Fig. 6. College preferences network of 17 girls at an Eastern college
inferred from ranking data of house B in [21]

VII. ALMOST BALANCED NETWORKS

In this section we analyse the capability of measures
in measuring partial balance in structures that are only
one edge away from a state of total balance. Particu-
larly, we are interested in complete graphs Kn with one
negative edge. It is straight-forward to provide closed-
form formula for different measures of partial balance in
such nicely structured graphs. Measures of partial balance,
D(Kn),C (Kn),T (Kn),W (Kn) and F (Kn) can be expressed as
in (12) – (16) (details of calculations are provided in the
appendix).

D(Kn) = 1− 2

n(n −1)

∑n
k=3

n!
(n−k)!∑n

k=3
n!

(n−k)!k

(12)



Fig. 7. Partial balance measured by different methods for Kn with one
negative edge i.e. complete graphs where L(Kn ) = 1

C (Kn) = 1− 2

n(n −1)

∑n
k=3

n!
k !(n−k)!∑n

k=3
n!

k !(n−k)!k

(13)

T (Kn) = 1− 6

n(n −1)
(14)

W (Kn) ∼ 2e−4/n

1+e−4/n
(15)

F (Kn) = 1− 4

n(n −1)
(16)

Figure 7 demonstrates the behaviour of different indices for
Kn with a single negative edge. W (Kn) gives unreasonably
large values for n ≤ 5. D(Kn) can be observed to tend
to a value significantly smaller than 1 for such networks
with large n. Values of C (Kn) are almost always larger than
D(Kn). T (Kn) provides the most relevant values while F (Kn)
gives larger values and can be observed to measure partial
balance differently as it is not based on cycles.

VIII. DISCUSSION

Figures 8 – 11 show the four small signed networks, with
a minimal deletion set of edges indicated by dotdash lines. It
is interesting to see how these small signed networks can be
made balanced by removing a few edges. It shows how such
networks are not that far from balance (when measured
by normalised frustration index), contrary to some of the
measures we calculated.

One criticism of much of the literature on balance theory
is that it is widely used on directed signed graphs. It seems
that this approach is questionable in two ways. First, it
neglects the fact that many edges in signed digraphs are
not reciprocated. Therefore, one side of such relationships is
not aware of good will or ill will towards him. Implementing
balance theory on signed digraphs provides the extend of
dissonance avoidance no matter known or unknown. Sec-
ondly, it does not make use of the directionality of ties and
the concepts of sending and receiving positive and negative
links. Moreover, some issues stay unclear when extending
balance theory to digraphs by replacing cycles with semi-
cycles. For instance, the signed digraph in question may
have two arcs with opposite signs between two nodes. The

two arcs are simply replaced with an edge, but the signs of
edge is undefined.

In a parallel line of research on network structural
analysis, researchers differentiate between classical balance
theory and structural balance specifically in the way that
the latter is directional [9]. They consider another setting
for defining balance where absence of ties implies negative
relationships. This assumption makes the theory limited to
complete signed digraphs. Accordingly, 64 possible struc-
tural configurations emerge for three nodes. These config-
urations can be reduced to 16 classes of triads, referred to
as 16 MAN triad census, based on the number of Mutual,
Asymmetric, and Null relationships they contain. There are
only 2 out of 16 classes that are considered balanced. New
definitions are suggested by researchers in order to make
balance theory work in a directional context. According to
Prell [25], there is a second, a third, and a fourth definition
of permissible triads allowing for 3, 7, and 9 classes of all
16 MAN triads. However, there have been many instances
of findings in conflict with expectations [25].

Leskovec, Huttunlocher and Kleinberg [26] compare the
reliability of predictions made by competing theories of
social structure: balance theory and status theory (a theory
that explicitly includes direction and gives quite differ-
ent predictions). The consistency of these theories with
observations is investigated through large signed directed
networks such as Epinions, Slashdot, and Wikipedia. The
results suggest that status theory predicts accurately most
of the time while predictions made by balance theory are
incorrect half of the time. This supports the inappropri-
ateness of balance theory for structural analysis of signed
digraphs.

Apart from directionality, the interpretation of balance
measures is highly essential. Numerous studies have com-
pared balance measures with their extremal values and
found that signed networks are far from balanced. However,
with such a strict criterion, caution must be applied not to
look for properties that are almost impossible. A much more
systematic approach would identify how measures of bal-
ance interact with other network parameters that are linked
to transitivity of ties, such as number of nodes, positive
edges, and negative edges. According to this approach, we
compare with the value of the balance measures for an anal-
ogous random graph with the same network parameters.
Table I provides this comparison showing that the extent of
transitivity of ties in signed networks is substantial. The real
signed networks analysed are more balanced than we expect
by chance. Therefore random signed networks with non-
trivial number of negative edges appear to be less balanced
than real-world signed networks, while there are extremal
cases of total balance on one side and deliberately designed
unbalanced structures on the other side.

Taken together, the findings do not support strong rec-
ommendations to use cycle-based measures, as they are
difficult to compute and do not provide a proper range
of values, whether weighted or not. The triangle index,
however, seems to behave well, and is simple to compute
because closed walks of length 3 are the same as (directed)
3-cycles. Moreover, networks can be differentiated by the
wide range of values that T (G) provides. S(G) can be used



Fig. 8. Highland tribes network becomes balanced after removing 7
negative edges

Fig. 9. Monastery interactions network becomes balanced after removing
2 positive and 3 negative edges

as its approximation in case of large networks. Continued
efforts are needed to make frustration-based measures com-
parable to the others while satisfying all four axioms intro-
duced. Frustration seems to measure something different
from cycle balance, and be worth pursuing in future. Walk-
based measures like W (G) can perhaps be improved by
a more systematic way of weighting closed-walks to avoid
double-counting of cycles and closed-walks with repeated
edges. However the clustering of values near zero for large
networks may present problems.

IX. CONCLUSION AND FUTURE RESEARCH

Returning to the questions posed at the beginning of this
study, it is now possible to state that many signed networks
exhibit a level of partial (but not total) balance beyond that
expected by chance. One of the more significant findings
to emerge from this study is that methods suggested for
measuring balance have their context and interpretation.
Although this study focuses on partial balance, the findings
may well have a bearing on link prediction and clustering
in signed networks. The present study confirms previous
findings that theory of structural balance cannot be taken
as a reliable predictor of network evolution. It contributes
additional evidence that suggests a gray-scale for transitivity
of positive and negative relationships. Although the major

Fig. 10. Fraternity preferences network becomes balanced after removing
4 negative edges

Fig. 11. College preferences network becomes balanced after removing 3
positive and 3 negative edges

part of the current study is based on small signed networks,
the findings suggest the inefficacy of some methods for
analysing larger networks as well. One gap in this study
which could have affected the measurements of partial
balance is that we avoid using structural balance theory
for analysing directed networks, making a significant part
of the literature untested by our approach for now. However,
see our discussion in Section VIII.

The findings of this study have a number of important
implications for future investigation. Having an efficient
measure of partial balance in hand, we plan to analyse in-
ternational relations. The literature in international relations
offers data on formal alliances between some countries as
well as hostile relations between some others. Middle East is
an interesting region due to the number of conflicts among
states of a region. A signed graph can be readily designed
where balance theory and frustration index predict which
relations need to be protected to avoid a cold war bi-polarity
situation in the region.
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APPENDIX: DETAILS OF CALCULATIONS

In Kn with one negative edge, a k-cycle is specified by
choosing k vertices in some order, then correcting for the
overcounting by dividing by 2 (the possible directions) and
k (the number of starting points, namely the length of the
cycle). If the unique negative edge is required to belong to
the cycle, we need choose only k −2 further elements and
no overcounting occurs. Therefore, the number of negative
cycles and total cycles are given by:

n∑
k=3

O−
k =

n∑
k=3

(n −2)!

(n −k)!
,

n∑
k=3

Ok =
n∑

k=3

n!

2k(n −k)!
.

Similarly, T (Kn) can be calculated as

T (Kn) = 1−
(n−2)!
(n−3)!

n!
2×3(n−3)!

= 1− 6

n(n −1)
.

As in such a graph L(Kn) = 1, the normalised frustration
index can be expressed as

F (Kn) = 1− 2L(Kn)

m
= 1− 2

n(n −1)/2
= 1− 4

n(n −1)
.

The unsigned adjacency matrix |A| of the complete graph
has the form E − I where E is the matrix of all 1’s. The
latter matrix has rank 1 and nonzero eigenvalue n. Thus
|A| has eigenvalues n −1 (with multiplicity 1) and −1 (with
multiplicity n − 1). The matrix A has a similar form and
we can guess eigenvectors of the form (−1,1,0, . . . ,0) and
(a, a,1,1, . . . ,1). Then a satisfies a quadratic 2a2 + (n −3)a −
(n−2) = 0. Solving for a and the corresponding eigenvalues,
we obtain eigenvalues (n −4±p

n −2)(n +6))/2,1,−1) (with
multiplicity n −3). This yields

K = (n −3)e−1 +e +e
n−4−p(n−2)(n+6)

2 +e
n−4+p(n−2)(n+6)

2

(n −1)e−1 +en−1

which results in W (Kn) ∼ 2e−4/n

1+e−4/n .
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