
COMPSCI 715
Advanced Computer Graphics

Unity Basics



Today’s Mission

1. How does a game engine like Unity work?
2. What are game objects and components?
3. How do you apply this to your own project?



Schedule 1st Half

Mid-semester break. So far 12% of individual assignments.

Week Activities Assignments

1 Tue: course outline, Wed: project topics, 
Thu: feedforward learning (guest lecture)

Register teams

2 Tue + Thu: exergaming (guest lectures),
Wed: academic writing overview, abstracts

Abstract (1.5%)

3 Tue + Thu: Unity, Wed: writing introductions Introduction (2.5%)

4 Tue: feedforward (guest lecture), Thu: Unity, 
Wed: writing about related work

Related work (2.5%)

5 Team meetings, Wed: design & implement. 1st prototype (1.5%)

6 Team meetings, Wed + Thu: demos (2.5%) 2nd prototype (1.5 %)



Unity Resources

● Unity Documentation: http://docs.unity3d.com/ 
● Unity Tutorials: http://unity3d.

com/learn/tutorials/modules 
● Many video tutorials on YouTube, e.g.

https://www.youtube.com/watch?
v=9Xr5Rc9Rw6I&list=PLmQnFpk1W81tyuEySbOJ4bG6
Z1BrS_0hi 

● Thanks to Michael Ivanov for some illuminating figures:
http://www.slideshare.net/sasmaster/unity3d-
programming-5725801 

http://docs.unity3d.com/
http://unity3d.com/learn/tutorials/modules
http://unity3d.com/learn/tutorials/modules
http://unity3d.com/learn/tutorials/modules
https://www.youtube.com/watch?v=9Xr5Rc9Rw6I&list=PLmQnFpk1W81tyuEySbOJ4bG6Z1BrS_0hi
https://www.youtube.com/watch?v=9Xr5Rc9Rw6I&list=PLmQnFpk1W81tyuEySbOJ4bG6Z1BrS_0hi
https://www.youtube.com/watch?v=9Xr5Rc9Rw6I&list=PLmQnFpk1W81tyuEySbOJ4bG6Z1BrS_0hi
https://www.youtube.com/watch?v=9Xr5Rc9Rw6I&list=PLmQnFpk1W81tyuEySbOJ4bG6Z1BrS_0hi
http://www.slideshare.net/sasmaster/unity3d-programming-5725801
http://www.slideshare.net/sasmaster/unity3d-programming-5725801
http://www.slideshare.net/sasmaster/unity3d-programming-5725801


Unity Introduction

A game engine
● Abstraction: sits on top of OpenGL (ES), DirectX, …
● Complete: provides all features you need for a game, 

e.g. graphics, physics, sound, input, networking…
● Inversion of control: the engine runs the game

○ Specific game content/features/behavior are 
plugged into and managed by the engine

○ Don’t call us, we call you: engine calls event handlers

Why Unity?
● Free version available, lots of free resources
● Multi-platform: supports most mobile, desktop & console 

OSs, browser plugin



Unity Overview



GameObjects
Games consist of them
● Think of visible objects in a game
● But also invisible objects for logic, 

state etc.
● Can be organized hierarchically 

in a Scene

What a GameObject can do depends on its Components
● Technically Components are themselves objects
● Are just associated with GameObject and can reference it
● Give a GameObject more features by adding components, e.g.

visual appearance, physics, dynamic behavior
● Knowing Unity’s capabilities means knowing the different 

components



Unity GUI Overview

Project Assets

GameObjects 
in Scene

Components 
(and their 
properties) of 
selected 
GameObject

Scene Modeling View

Modeling 
Operations

Play / Pause / 
Single Frame

Console for Debugging



Creating & Transforming Objects

Use menu GameObject -> Create (e.g. Create Other -> Cube)
or just drag & drop from Assets
● Object appears in current Scene
● Combine objects by dragging into other object in Hierarchy
● Name it, enable/disable it
● Put object on Layer to organize groups of objects
● Tag objects to retrieve them more easily

Transform Component
● Every GameObject has it
● Defines public properties: Position, Rotation, Scale 
● Grid cells usually used to mark 1 meter



Visual Appearance

MeshFilter
● Selects a mesh for the object 

from Assets
● Can import new assets from 

asset packages or files

MeshRenderer
● Select Material for object, 

e.g. colors, textures, 
reflective properties...

● Select Shader to use, 
e.g. Diffuse, Specular...



Camera

● Camera Component makes an object
a camera

● Typical camera properties:
○ Perspective/Orthographic Projection
○ Field of View: wide or narrow
○ Clipping planes: near/far visibility
○ Viewport aspect ratio
○ Culling mask: what to draw
○ Clear flags: sky color

● Note: Cogwheel -> Reset



Other Visible Objects

Light Component
● GameObject -> Create Other -> 

Directional / Point / Spot Light …
● Define light properties, e.g. color, intensity

SkyBox Component
● Textured environment around your scene
● Edit -> Render Settings -> Skybox Material

(or add SkyBox component to camera)
● Get Skybox material from 

Assets -> Import Package -> Skyboxes



Physics

RigidBody Component
● Makes object subject to physical 

forces, e.g. gravity or impact
● Define physical properties, e.g. 

mass & drag
● Define physical constraints, e.g.

object can only move vertically
● Test by clicking play to start game engine

Collider Components
● E.g. BoxCollider, SphereCollider etc.
● Detects collision between objects
● Physics only works if all involved objects have colliders


