
COMPSCI 715
Advanced Computer Graphics

Using Related Work

Today’s Mission

1. How do you find good related work for your
project?

2. How does a good related work section look
like?

3. What have related works contributed to your
research problem?

Typical Research Paper Structure
1. Introduction: What is the research problem?

Introduce and motivate it. Summarize your contributions.
2. Related Work: What have others done? How is it different?

Cite, summarize other solutions & compare it with your own.
3. Design: Your solution. Describe it in enough detail so others

can implement / replicate it. Software architecture (e.g. class
diagram)? User interface (e.g. screen diagram)? Algorithms?

4. Implementation: How have you implemented your solution?
Tools and technologies used? Implementation challenges?

5. Evaluation: Explain the methodology you used for
evaluation. Present the results. Discuss them.

6. Conclusion: Summarize contributions. Point out future
work.

Some General Writing Tips
● Use direct and simple language

○ Focused: If it is unnecessary, take it out, e.g.
■ Bad: “This paper tries to build a system that could do X”
■ Good: “We do X”

○ Active voice better than passive voice, e.g.
■ Bad: “The system was build by us by extending X”
■ Good: “We built the system by extending X”

○ Compact: Break long sentences into shorter ones, e.g.
■ Bad: “A improves B, but while A needs C, D doesn’t, so D

is a good choice.”
■ Good: “A improves B, but needs C. D doesn’t need C, so it

is a good choice.”
● Form logical units with a logical flow

○ Each section has a clear purpose - don’t dilute it
○ Each paragraph describes one idea / argument - don’t mix
○ If you need A to understand B, then A comes first

What are Contributions?

The “gold nuggets” of new knowledge in a publication
● Novel: nobody has done it before, reasonably non-obvious

○ Argue with related work: explain what others have done
(their contributions) and what they haven’t

● Useful in some sense - applicable to other projects /
problems
○ See motivation, e.g. in the introduction

● Scientific:
○ Clear: understandable, reproducible
○ Right level of abstraction: provide the interesting and not

the boring details
○ Right terminology: write like other researchers
○ Evidence-based: convince the readers with facts

CC Rob Lavinsky - iRocks.com

Finding Related Work
1. Gather papers that might be relevant

○ Keyword search with different words
(e.g. Google Scholar, ACM, IEEE)

○ Snowball search:
follow up the references
(cited and citing papers)

2. Filter papers that are actually relevant by reading the abstract
3. Read the papers

○ First just scan over it (figures? sections? methodology?)
○ What is the research problem? What are the contributions?
○ Do they cite related work that is useful for you?
○ See http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/07/paper-reading.pdf

http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/07/paper-reading.pdf

Peer-reviewed Publications
● Scientists submit papers to journals or conferences

that are peer-reviewed
○ Short paper ~5 pages, long paper ~10 pages,

journal article ~20 pages
● Other scientists, established experts in the field,

review the papers, free of charge
○ Individual reviewers remain anonymous, but the board of

possible reviewers is known
○ They check for: obvious inconsistencies, dubious

statements, good standards of presentation, sufficient
degree of completeness, i.e. disclosure of details, and
novelty of the results

○ They usually will request changes
● Many papers get rejected (usually 50% or more)

Citing Publications
● Cite quality assured publications using proper citation style

○ Peer-reviewed (not just pro forma, e.g. no fake
conferences)

○ Cited by others in the field (means you should know
about it if you are working seriously)

○ Well-known conferences & journals (e.g. see rankings)

● If you need to refer to a webpage, use footnote with URL
instead of citation

● Industry white papers and reports can be cited, but are not
quality assured, so no strong backup for you (“grey
literature”)

● Textbooks only for very specific things (refer to them with
page or chapter number)

● Not Wikipedia (good for your own overview, but unreliable)

Writing about Related Work
(~1 page 2-column)

It is all about the contributions and showing how yours are novel:
1. Summarize the contributions of the good related works in

one paragraph per publication
2. Organize the paragraphs by grouping them in subsections
3. Compare the related works with your contributions to show

how your contributions are novel
○ What are the similarities to your work?

Give credit where it is due.
○ What are the differences?

i. Is yours new knowledge?
ii. Is yours better in some way?

E.g. more powerful, simpler,
less limited

Exercise
Learn from good and bad example introductions
1. Read the related work section (note: examples are

shortened)
2. Identify the following parts:

a. Sources for the related works
b. Contributions of the related works
c. Differences to own contributions of the project

3. Discuss:
What are the good and bad points?
How could it be improved?

Good Related Work Example 1
https://www.cs.auckland.ac.nz/~lutteroth/publications/VanDykEtAl2012-GLDebug.pdf

gDEBugger4 was one of the first commercial graphics debuggers to become
widely available in 2004. It demonstrated many of the features seen in modern
graphics debuggers, such as [...] The contribution of gDEBugger is in its
pioneering of graphics debuggers in the commercial space, as well as [...]

GLSLDevil9 [14] is a tool specifically aimed at debugging the shader pipeline of
OpenGL applications. GLSLDevil provides novel features in that it automatically
instruments OpenGL shader code. The instrumented code then outputs extra
information that can be used for debugging.

GQL (graphics query language) was created along with a debugging system by
Duca et al. [5]. Similar to GLDebug, it enables tracking and logging the state
and calls made by an OpenGL program over the course of execution. However,
the historical information is only made available through an SQL-like language
(GQL) that users have to learn, and there is no direct support for comparing
states and highlighting of state differences.

https://www.cs.auckland.ac.nz/~lutteroth/publications/VanDykEtAl2012-GLDebug.pdf
https://www.cs.auckland.ac.nz/~lutteroth/publications/VanDykEtAl2012-GLDebug.pdf

Good Related Work Example 2
https://www.cs.auckland.ac.nz/~lutteroth/publications/PenkarLutterothWeber2013-
NavigatingHypertextWithGaze.pdf

Considerable effort has been invested in finding efficient click alternatives. The
most straightforward one is considered to be dwelling or fixating on a clickable
area. [...] This click alternative primarily suffers from inadvertent clicking, a
problem that can be mitigated if it is possible to place the content or labels
outside the clickable areas [9].
Research has also focused on compensating for the inaccuracy and
imprecision of gaze tracking. MAGIC is one such example in which the user
relies on explicit commands using other input devices, e.g. the mouse, while
also benefiting from the speed of pointing with gaze [15]. This approach moves
the mouse pointer quickly to the area being gazed at, but relies on the mouse
for finer adjustments and clicking.
The EyePoint [19] is another possible solution to cater for lack of accuracy and
precision in gaze tracking. [It] involves magnification (of the area being gazed
at) on the press of a keyboard button. In the magnified view, the key can be
released while dwelling at the object of interest, resulting in an action on that
object [...] However, these techniques either block or distort the screen content,
and loss of contextual information can be inconvenient and problematic,
especially for tasks involving visual search [20].

https://www.cs.auckland.ac.nz/~lutteroth/publications/PenkarLutterothWeber2013-NavigatingHypertextWithGaze.pdf
https://www.cs.auckland.ac.nz/~lutteroth/publications/PenkarLutterothWeber2013-NavigatingHypertextWithGaze.pdf
https://www.cs.auckland.ac.nz/~lutteroth/publications/PenkarLutterothWeber2013-NavigatingHypertextWithGaze.pdf

Good Related Work Example 3
https://www.cs.auckland.ac.nz/~lutteroth/publications/ZeidlerEtAl2013-AucklandLayoutEditor.pdf

Rockit [16] automatically proposes constraints based on the “gravity field” of
other objects. The user can select the desired constraints from a set. This is
similar to previous work where constraints are inferred by snapping graphical
objects relative to other objects [11]. In ALE widgets can be snapped to others
in order to set up the corresponding constraints. However, ALE adds more
powerful edit operations, such as as inserting a widget between others [...]

Bramble [7] connects objects using a set of interactors, which establish non-
linear constraints. While this can be used to prevent overlap, the user has to
add interactors manually. ALE adds such constraints automatically. [...]

Adaptive document layout [12] in the print and web domains is somewhat
similar to GUI layout. However, the flow of a document constrains placement
differently than a GUI. Documents typically arrange text and images in a
sequential manner, and support more flexibility in the layout using algorithms
for figure placement, line-break, and pagination. Grid-based [15] as well as
constraint-based [3,13] methods have been used for document layout.

https://www.cs.auckland.ac.nz/~lutteroth/publications/ZeidlerEtAl2013-AucklandLayoutEditor.pdf
https://www.cs.auckland.ac.nz/~lutteroth/publications/ZeidlerEtAl2013-AucklandLayoutEditor.pdf

Bad Related Work Example 1
The various documents I read helped me to get a clear picture of what I need to
achieve in the time period of completion of the project. Various links on the
Wikipedia website regarding Sculpting, Subdivison surfaces and Collaboration
helped me understanding the basics for starting the project [...]
The available sculpting tools already have become popular because of their
completeness for the features provided which are easy for a user to understand
and implement. The tool which we/I took as reference is Sculptris. A better
definition than just telling it as a sculpting tool is “Sculptris is an elegant,
powerful and yet easy to use 3D sculpting software, allowing the artist in you to
simply focus on creating amazing 3D artwork.
3D Collaborative Sculptor aims to implement all the features similar to the
features available in Sculptris. Well, might be because of time constraints of the
project, it will implement less features compared to Sculptris. Our main aim is to
implement the Collaborative feature in the 3D Collaborative Sculptor extending
a better solution for the 3D and Graphics related companies as collaboration
speed up the process of development with accuracy.

Bad Related Work Example 2
An abstract syntax tree (AST) is a tree representation of the abstract syntactic
structure of source code [3]. Each node of the tree represents a construct that
occurred in the source code. Abstract syntax trees are widely used in
compilers, due to their ability to represent the structure of the program's source
code. AST is usually generated after the syntax analysis phase of a compiler.
Design Patterns are known solutions to common design problems in software
engineering [13]. They are well known solutions to general design problems.
Design patterns are usually defined as a relation between the interacting
objects of a software system or the way classes are structured in the source
code. Anti-Patterns are bad coding practices in oppose to Design Patterns.
Code Smells are also bad coding practices but they are different to Anti-
Patterns, they are usually code taints such as long methods, code duplication
and data classes. Code Smells are tend to be local code taints within methods
or classes whereas Anti-Patterns are usually structural problems.

Bad Related Work Example 3
Murphy-Hill et. al. [7] worked on developing a code smell detector called Stench
Blossom which offers an interactive visualization tool to give programmers a
conceptual overview of the smells in source code and helps them in
comprehending the sources of the code smells.
Neukirchen et. al. [8] worked on developing an anti-pattern detecting system
which nds anti-patterns in test suites. Their open-source refactoring and metrics
tool named TRex was capable of automatically detecting code smells.
Stoianov et. al. [10] used a logic-based approach to detect anti-patterns in
source code. Their solution uses an infrastructure named Jtransformer that is
an Eclipse plugin which generates logic facts that is a representation of java
source code.
Emden et. al. [11] have worked on implementing a system that visualizes code
smells. They implemented a prototype code smell browser called jCOSMO for
the detection and visualization of code smells in java source code.

This Week’s Assignment:
Write Related Work Section (2.5%)

Write a related work section for your project
(~1 page double-column)
● Individual submission, no group work
● Worth 2.5% of your final mark
● Again, methodology and contributions are hypothetical:

imagine your project is over and was successful
● Be professional: try to imitate well-written introductions
● Use LaTeX, e.g. https://www.writelatex.com/

Submit PDF by Sunday 17/8 7pm to assignment dropbox:
https://adb.auckland.ac.nz

All the best :-)

https://www.writelatex.com/
https://adb.auckland.ac.nz
https://adb.auckland.ac.nz

