
COMPSCI 230
Software Design and Construction

GUI Concepts
2013-04-17

Recap: Framework

Generic software platform for a certain type of applications
● Consists of parts that are found in many apps of that type

○ Libraries with APIs (classes with methods etc.)
○ Ready-made extensible programs ("engines")
○ Sometimes also tools

(e.g. for development, configuration, content)
● Often evolved by developing many apps of that type

and reusing code more and more

Characteristics:
● Reusable: the parts can be used for many apps of that type
● Extensible: developers can add their own app-specific code
● Inversion of Control: framework often calls your code

Graphical User Interface (GUI)
Concepts

Desktop Environment
● Uses Windows, Icons, Menus, Pointer (WIMP)

to render a GUI
● Everything arranged on a desktop (desktop metaphor)
● Different parts of a desktop environment:

○ Windowing System: handles input/output
○ Window Manager: takes care of windows
○ GUI Framework (aka. GUI Toolkit): draws widgets and

dispatches their events

Windowing System
● Manages input and output devices:

graphics cards, screens, mice, keyboards
● Sends input events from input devices to apps
● Receives and processes drawing commands from apps
● Often able to talk to remote applications: send input events

and receive drawing commands over the network

Screen

GUI Input Events

Primitive Pointer Events
● Mouse Moved
● Mouse Down
● Mouse Up

Complex Pointer Events
Click = mouse down, mouse up
Double Click = two clicks within a certain time
Enter = mouse moves into a region
Leave = mouse moves out of a region
Hover = mouse stays in region for a period of time
Drag and Drop = mouse down, mouse moved, mouse up

Primitive Keyboard Events
● Key down
● Key up

Input Handling in Widgets
● Input events are dispatched to the right widgets by windowing

system and GUI framework
● Keyboard events are sent to widget with input focus in active

window
● Widgets have event listeners (aka. handlers) for input events;

they can translate simple input events into more complex, specific
ones (e.g. "Mouse down, mouse up" becomes "Button1 activated")

● Developers can set event listeners for widgets,
which invoke application logic

Rendering of Widgets
Widgets have a visual representation

● Widgets define “paint” event listener: draws the widget by
sending commands to the windowing system

● Widget gets paint events (aka. “update events”) from the
windowing system (through GUI framework)

● Often not complete redrawing, but “update region”
● Application can send “invalidate” events to the windowing

system if redrawing necessary (to trigger paint events)

The GUI Event Loop
1. GUI application is started
2. Widgets are set up
3. Event loop is started
4. Wait for events from the windowing system

(event queue)
5. Dispatch each event to the right widget

a. Input event: call appropriate event listener
(→ call to application logic)

b. Paint event: call paint method
6. Go back to 4.

→ Event-Driven Programming

Window Manager
● Controls placement and appearance of windows

(but not the window contents)
● Open, close, minimize, maximize, move, resize
● Start apps, list and switch between running apps
● Window decorators, desktop background with icons

● Often built into windowing system
● Implemented using a GUI framework

Introduction to Java Swing

Java Swing
● Standard GUI framework for Java
● Developed in the late 90s
● Based on an existing framework called AWT
● AWT is simply an API to the GUI framework of the operating

system a Java program runs on
● Widgets have "native" look
● Can't change the look & feel

● Swing builds new widgets on top of AWT
● The look & feel can be changed

SWING DESIGN PRINCIPLES

1. GUI is built as containment hierarchy of widgets
 (i.e. the parent-child nesting relation between them)

2. Event objects and event listeners
○ Event object: is created when

event occurs (e.g. click),
contains additional info
(e.g. mouse coordinates)

○ Event listener: object implementing an interface
with an event handler method that gets an event
object as argument

3. Separation of Model and View:
○ Model: the data that is presented by a widget
○ View: the actual presentation on the screen

*

Containment Hierarchy

● Most UI are created by nesting widgets into other widgets
(containers)

● Containment hierarchy: the way the widgets of a UI are
nested

● Not all controls visible; often invisible internal containers

Top-Level Container:
JFrame

Pane:
JContentPane

Component:
JButton

Container:
JScrollPane

Component:
JList

Java Swing
Example GUI
with containment
hierarchy

Swing Widgets
Top-Level Containers

JFrame JPanel

JSplitPane JTabbedPane

JDialog

JScrollPane

General-Purpose Containers

JButton

JCheckbox

JRadioButton
and ButtonGroup

JCombobox

JLabel

JList

Menu

More Swing Widgets

JColorChooser

JFileChooser

JTree

JTable

Swing Hello World
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class HelloWorld {

public static void main(String[] args) {
JFrame frame = new JFrame("Hello World!");
frame.setSize(220, 200);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container contentPane = frame.getContentPane();
contentPane.setLayout(null);
JButton button = new JButton("Hello World!");
button.setLocation(30, 30);
button.setSize(150, 100);
contentPane.add(button);

frame.setVisible(true);
}

}

Swing Hello World
with Events

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class MyActionListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 Toolkit.getDefaultToolkit().beep();
 }
}

...
public class HelloWorld {
 public static void main(String[] args) {
 ...
 JButton button = new JButton("Hello World!");
 button.addActionListener(new MyActionListener());
 ...
 }
}

Summary

● Desktop environments consist of:
● Windowing System: handles input/output
● Widget Toolkit:

draws widgets and dispatches their events
● Window Manager: takes care of windows

● Swing is a GUI toolkit for Java
● GUI as containment hierarchy of widgets
● Event objects and event listeners

References:
http://java.sun.com/docs/books/tutorial/uiswing/
http://www.javabeginner.com/java-swing-tutorial.htm

Quiz

1. What does a windowing system do with input events?
2. How can applications draw their widgets?
3. What is the containment hierarchy of a GUI?
4. What is an event listener?

