Tips for Academic Writing

By Christof Lutteroth and Gerald Weber

Before you start you should look at similar documents, e.g. old reports/dissertations with a good
grade or papers from good conferences. You can write a good document yourself by imitating them.

Academic writing is an iterative and incremental process. You start with an outline, adding bits as
your project progresses. You should get feedback on your writing whenever you can, and improve
it. Start small and simple. You can always add more detail later on.

If your supervisor is not allowed to read your full report, you should instead request feedback for a
detailed outline. This outline should contain all the section and subsection headings, and ideally a
heading for each paragraph. Creating such a detailed outline is also a good way to get started on
your document.

Typical Structure
A typical structure for a paper/report/dissertation in Computer Science is the following:

0. Title and Abstract

1. Introduction

2. Related Work

3. Requirements

4. Design / Concepts / Specification
5. Implementation

6. Evaluation / Discussion

7. Conclusion

But the parts are written in a different order: Related Work, Requirements, Design, Implementation,
Evaluation, Introduction, Conclusion, Title and Abstract.

Related Work - What have others done?

In every academic paper, there has to be a discussion of related work. You should search for related
academic papers with keywords that are suitable for your project, e.g. using Google Scholar, Scopus
or Web of Science.

e Look for high-quality academic publications. Preferably journal articles, books or
conference papers. Technical reports, standard documents and industry white papers can
also be used, but be aware that they may be biased (e.g. an industry whitepaper may try to



sell a product). Web pages such as Wikipedia articles should generally not be cited, as they
may change anytime.

e Select the papers that are relevant for your project by reading the abstract and scanning
over the paper. Usually only some of the papers are relevant for your project. However, it is
possible to cite and briefly discuss papers that are only marginally relevant.

e Read the papers, or at least the parts that are relevant for your project. If a paper is about
your topic, then read also the papers that are cited by it and the papers that cite it (some
databases give you that information, e.g. ACM).

e Cite the papers in your own paper using a consistent citation style. For example, you could
add a number in brackets such as [1] as a citation, and have a bibliography listing the papers
with their numbers at the end. A paper should be cited in the first sentence it is referred to,
e.g. “The ALM system [1]...” A citation should either point the reader to additional
information about a something that is mentioned. It can also be used to support an
argument, e.g. “As Lutteroth and Weber pointed out [2] ...“ A paper can be cited several
times.

You should briefly describe what others are doing, i.e. summarize the most important points. What
has been done? Why? How?

You can show that you are able to analyze other people’s research by comparing several related
works and pointing out the similarities and differences. You can also show that you are able to
evaluate research objectively by pointing out advantages and/or disadvantages. To guide your own
research project, you should look out for gaps in the research (unanswered questions) or potential
improvements that you can do.

Requirements - What exactly are you trying to achieve?
In this part you come up with a list of requirements for your project, and explain each of your
requirements. Requirements mean that you specify what functions your system is ideally supposed
to fulfill. You are not saying how you will do it, just what you want in the end. For example, you may
want your system to have certain important functions, to be fast, reliable, easy to maintain, easy to
use by certain users, etc. You should also write why each of these requirements is important. If
possible, prioritize the requirements: which ones are most important and which ones are less
important? Why?

Your requirements should be supported by the related work you have read. That is, cite related work
to show that you are targeting the right requirements. The requirements should address the
research gaps or opportunities for innovation that you have identified while analyzing the related
work.

Design - How do you achieve your requirements?
In this part you explore the design space of your project analytically and make well-founded design
decisions. This means that whenever there are several possibilities something can be done in the



design, you describe and analyze all of them, possibly focusing on the most promising choices in your
analysis. You should explain the pros and cons of each possibility, and based on that judgment, you
make a choice for your project. This is how you come to a single design that is well thought-out. The
design part may contain diagrams such as architecture diagrams or data models, and pseudocode for
algorithms.

You should use figures whenever appropriate. Figures should be referred to in the text. Figures are
usually not self explanatory, but should be either explained in the text or should be used to illustrate
the text. Use a font that is not much smaller than the text font. If figures are taken from other
sources, they must be referenced. This is generally to be avoided, except in Related Work.

Giving an example is usually very helpful for explaining a complex concept. The example should be
small but illustrate the concept clearly. Sometimes the same example can be used as a running
example throughout the document to explain several concepts.

Implementation - How did you build your system?
In this part you describe the implementation of your design, i.e. what you have implemented. You
should describe the features (typically using screenshots) as well as the shortcomings. This
implementation is usually a prototype, so it is natural that it is not perfect. You should also describe
how you implemented the different parts, e.g. which tools and components were used in the
development. Focus on the interesting bits, i.e. those that might be useful for others trying to
implement a similar system or understand your program code. This part may contain short snippets
of source code, if that helps to understand how non-trivial parts of the project were implemented.
Long sections of technical information can also be included as an appendix if they are important.
Make sure that you include your full source code on a CD when submitting your work to a
supervisor.

Evaluation - Why is it good?
In this part you are critically reflecting on your project outcome, but it is also a place to highlight the
achievements of your project, i.e. how good and useful or how much better than other systems it is.
You should evaluate your work based on your requirements, i.e. show that it fulfills the
requirements. The type of evaluation depends on your project and should be discussed with your
supervisor. Among the things that can typically be evaluated are the following: performance (e.g.
speed, memory usage), usability (ideally from the perspective of typical users), and other types of
quality (e.g. accuracy, deviation from some optimum). An evaluation may be done analytically by
examining the project outcomes and explaining why they are valuable. It can also be done
empirically, i.e. by using some sort of statistical data such as a benchmark or experimental
measurements. It is always good to compare your outcomes to those of similar projects. An
evaluation of some form is an essential component of each report and complements the analysis of
options in the design section.



Introduction - Why are you doing it?
In the introduction, you should answer the following questions: what is your project about (topic
and scope) and why is it interesting (motivation). You should also briefly explain the context of your
project, i.e. give some useful background information. To focus the attention of the reader, you can
give a list of research questions that you are trying to answer in the project. Finally, you should give
a brief outline of the rest of the document.

Conclusion
Here you sum up what you achieved in your project, highlighting the main achievements. Revisit the
research questions and give a summary of the answers you came up with. You should also point out
future directions of your work, e.g. possible extensions or unsolved problems and limitations of your
work.

Title and Abstract
This comes last because then you know best how to sum things up. An abstract should be very brief
(around 100-200 words), and should sum up what your project is about, a brief outline of the state-
of-the-art, then your achievements and how you did it, and possibly why this is significant. An
abstract is usually a single paragraph.

Proof-Reading
This is absolutely necessary! Give your document to your supervisor, your friends, or even to a
professional proof reader (this is not very expensive).

Writing Style
Also within the sections your document should be well-structured. Typically, each idea should be
expressed in a single paragraph. If a paragraph is too large (approx. more than 7 sentences), you
should break it down into two paragraphs.

Try to avoid repetitions or redundancy. If there are redundant parts, try to regroup them so that
each idea is explained only once.

Examples of How to Improve Sentences
The following gives some examples of sentences that can be improved, with explanations:

Today, software development projects are getting more and more complicated, and many version
control systems can be used in software development projects.

The term “software development projects” appears twice, which seems redundant. Furthermore,
there are actually two thoughts expressed in this sentence: “software development projects are
getting more and more complicated” and “many version control systems can be used”. To make the
text clearer, one should either express and explain the two ideas separately, i.e. in different



sentences, or establish a stronger connection between the two ideas (e.g. projects are getting more
complicated because there are so many systems that can be used).

Choosing the right version control system will make project management work easily.

This sentence makes a claim that is too strong. To make project management work, there are many
factors involved, and version control systems are just one. Tone down the sentence, for example by
saying that version control systems provide important support for project management.



