Refactoring a Complex GUI Application:

A Case Study with the Auckland Layout Editor

Lingjun (Irene) Zhang

Supervised by:
Christof Lutteroth

A report for Compsci 380 course, The University of Auckland, 2014.

Abstract

Refactoring is a collection of actions that aims to improve software quality without breaking or changing existing
functionality. It is generally considered to improve quality attributes such as understandability and
maintainability. However there is a lack of controlled studies to assess the effect of refactoring on graphical user
interface (GUI) applications. Scala is a general-purpose, multi-paradigm programming language, which
combines functional and imperative programming styles. It is claimed to be a superior language compared to
Java for the development of GUI applications. There is an absence of investigations comparing Java and Scala

Swing.

In this project, we address these gaps and investigate the effects of refactoring and the use of Scala in a GUI
application, using the Auckland Layout Editor (ALE) as a case study. ALE is a GUI builder that uses the Auckland
Layout Model (ALM), a constraint-based layout manager. We converted the source code from Java into Scala
and performed some refactoring to achieve more separation of concerns (SoC). We evaluated the effect of
refactoring using internal metrics. Comparing the metrics at the start of the project and at the end of the project
seems that software quality was improved in the areas of maintainability, reusability, understandability, and
extensibility. We also compared key Java and Scala constructs to assess which ones are better suited for
programming a complex GUI application such as ALE. We found Scala to provide a better capability to
decompose a complex application into simpler parts. Other features of Scala that we felt were beneficial include:
its concise syntax as compared to Java, a more powerful event handling system, a more flexible inheritance

structure and its support for implicit collection transformations, which are not present in Java.

In addition to conversion to Scala and refactoring of ALE, the following contributions were made: ALE’s existing
functionality was improved and new functionality was implemented, and a prototype plugin for the IntelliJ IDEA

was created.

Table of Contents

AADSTFACE. ...ttt R R R R R r e n e i
I ESY o) T USRS vi
LSE OF TADIES ...ttt bbbt bbbt bbb bt bt bt b e e e bt et eb e nr e renns vii
Chapter 1. INEFOTUCTIONciiiiiteieteite ettt b et b ettt bbbt bbbt b b et b bbb b e bt bbbttt nr e 1
(@8 aT T (=T g L Fo 1 t=T IR o OSSR 4
2.1, SOTIWAE QUANITYcveieiiieiie et bbb bbbt b ettt ettt 4
2.2. EXisting Studies 0f REFACIONING.......cviiiiiiiiiiiiciieee bbb 5
2.3. StUAIES OF SCAIA VEISUS JAVAeveveisieeieisitesie sttt 7
Chapter 3. Introduction to the SCala [aNQUAGEcveieieieie et reene e 9
3L, OVBIVIBW ..tttk b b8 bt E b8 b h e E b b e bt bt h R bbbttt 9
3.2. Scala’s Multi-Paradigm Programmingcocooueireiiiiiisinieieesieeeie sttt 9
I S To%: 1 - W O] o] [d L@ T4 1=] (- SR 9
3.2.2. SCalA IS FUNCEIONALoiviiiiiee e ane s 9

3.1, SCAlA S BOINETIES ...uviiiiiiiiiti ettt e bbb R bRt bt be e be e beeraenheenreeneeenas 10
3.1.1. Scala’s INtErOPETADIIILY . .cveeveiriiiiiitiesie et s e e nr e e n e e nreenr e nn e 10
I S ToF 1 W [Y o] =T @] o ot PSR 10
3.1.3. Scala Supports Better SCAlAbIltcooeiiiiiiie e 10

3.1. Scala GUI Platform vs Java GUI PIAtfOrm..........ccooiiiiiiiiiiiicce et 11
Chapter 4. The Auckland Layout MOdel (ALM)c.coi it sre e sre s 13
4.1, OVEIVIEBW ...ttt b b s b8 b et bbb AR bR bRt h R bR et n s 13
4.2, CIBSSES. ...tttk h bbbk h b E bbb E e h R b h £ h e R b e Rt bbbt bttt 13
42,0 ALIMLAYOUL ...ttt e bbb bRt r e nr e n s 14
A.2.2. LAYOUESPEC ..evvieiiee ittt ettt et se et e ettt e et e e bt e kb e e bt e s ke e ek et e b b e e kb e e b b e e bb e et be e nbbe e baeebeeenbneennbe e 14
4230 ALIMPANEL. ... bbbt b bbbt ebennes 14
0 D 4 I | SRS 14
4.2.2. CONSIIAINT.....oe.itiitie ettt r et r et r et R e e b e Rt e e et e Rt nr et e bt nn et en e nn e arenr e enennes 14
423, AATBA... o e 15
424, ROW/COIUMIN L.ttt bbb bbb bbbt b e b st bt bt e bt s bt eb e nb et ebenb st ebesb st ebennes 15
Chapter 5. The Auckland Layout EItor (ALE)ccoiiiiiiiiieeeese e 16
5.1, OVBIVIBW ...ttt bbb et h e bt bt e bbb s b bR s bt eR bRt Rt R e n et r e nr e ne s 16
5.2, ClASSES ..ttt ettt h e E R R R E R R R R bR R R r et r e n b nn et re s 17
LTI A I o o SRR SSSRS 18
5.2.2. PrOPErtIESVWINTOW. ... ittt sttt bbbttt bbbt bt e b e be e st e b e besbesbesbeeneas 18
5.2.3. AreaPanel and ConStraintSPANE]ccooiiiiiiiiiiieese e 18
5.2.4. ConStraiNtSEAILINGPANEL..........coviiieieiie bbb 18

LIS TR =101 - U4 T 19

5.3. Switching @ GUI into EdIitiNg MOUEcooiiiiiiiiiieree et 19
5.4. GUI Containment HIBIAICY ..ot 22
Rt 1) 1T = of SOOI 23
5.4.2. PropertieSWindoW (Ar€a MOUE)civeieieiiiti e st eeeeie sttt e et et s aeste e ena e e e s e saesresreaneaneas 23
5.4.3. PropertiesWindow (CONSraiNtS MOUE).........ceiieiiirieiierieisie ettt 24
5.5. General Features and Edit OPEratiONScoeviiiiiiirieieie ettt b e sb e nr e enennes 24
5.5.1. Features in Both Area and Constraints MOOES ..o 24
5.5.2. Features and Edit Operations in Area IMOEcccvciviieieieiese et se e sre e eneas 25
5.5.3. Features and Edit Operations in CONStraints IMOGE.............ccuvereiiereiiienee e 27
Chapter 6. IMPIEMENTALIONcciiiiiciciee et e e e et e et et e st e tesreeteereeneeeeseentesrenreenes 29
6.1. ConVersion 0f JAVA 10 SCAIAcoveviiriiiiiiec e 29
6.1.1. Initial Conversion from Java to SCala CIaSSESccoiiireiiieniei e 29
6.1.2. Switch Statements in Java vs Pattern Matching in Scala ..o, 30
6.1.3. Event Handling in Java VS SCala.........ccociiiiiiiie ettt 31
6.1.4. Collections Transformations iN SCAIAccoeiiiireiiiiic e 34
6.1.5. Making a Custom Wrapper Class iN SCalA..........ccccoriiiiieiiiene e 34
6.2. RETACIONING ALE ...ttt bbb bbbttt nr ettt nr et 36
6.2.1. GENEral REFACIOIINGS ©.o.veeiieie ettt et e e be e e s saesreesreesteenteentesneennee e 36
6.2.2. SEPAration OF CONCEINSeiiuiiieciecte ettt e e e e te et e e st e sae e s te e be e be e s aesneesreesaeesteenteensesneenneenes 38
6.2.3. Refactoring ALMEditorListener and BiNLISIENETccoeiieriiinenieieieee e 41
B.2.4. CONCIUSION ...ttt ettt r et r et r et r et b e r ettt nn et nr et nrns 42
6.3. Modifying Existing and Implementing New Functionalitycccoooviiiiiiiiie s 42
6.3.1. Split Area Horizontally/VertiCallyc.coooiiiiiiii e 42
6.3.2. Changes to the Appearance of Components Added to the Bin ... 43
6.3.3. Changes to Insertion into an Already OCCUPIE ATEa........c.eccveiiiiieitieie et 43
6.3.4. Inserting into an UNOCCUPIEA Ar€a..........ccuveiuieieiieieeieesieesteetesee st e steesteesteeae s e staesreesreesteensesnsesnee e 45
6.3.1. Classes Diagram for the New Implementation of ALE ..., 46
6.4. Creating an INTEHi PIUGINcoiiiiiiieei bbb sb e sr e ebe e 47
6.4.1. IntelliJ Ul Designer Plugin from the Community Editionccccooevieiiiiiic e 47
6.4.2. INTElliJ EAITOr SYSEEIM ...oviiiiiteieiite et bttt b ettt sb et nens 48
B.4.3. CONCIUSION ..ottt st b e et b ettt b et b e bt b e e bbbt bbbt s bt et et e et st ene et 49
Chapter 7. EVAIUBLIONo.eiiiieiieie ettt e bbbt s et e b e bt bt bt e b e et e b e seenbesbeebeenes 50
7.1. Evaluation of Program QUATITYccoiiiiiiiiiie ettt b 50
7.1.1. Internal Attributes of New Implementation of ALEcccocoriiiiiniiieneeee e 50
7.1.2. Influence on OVerall QUAITLY..........ooviiiiieiie e et 54

7.2. Evaluation of the CONVErSioN 10 SCAIAccccviiiciieiiii ettt st s srre s saee s 55

7.3, THIEALS 1O WAIIHILYeveeetieeeeees bbbt b bbbt r et b e nn e eb e nn e eneanes 56
Chapter 8. FULUIE DIFBCTIONS.civiiititiietiit etttk b bbbt bbbttt b e nn 57
(@8 a T (=T e @ o Tod 111 [3 ISR 57
L2710 TToTo [T o])P TRSI 58
AADPEINTICES ..ttt b et bt bt e bt bt E b e bt Eeh bR R R R R R R R R R £ Rt E R e bt bRt bt r et benr e rennas 60

List of Figures

Figure 1-1 Switching a GUI from operational mode into editing MOTecccooiireiiiencire e, 2
Figure 3-1 Hierarchy of Scala and Java SWINQ..........ccouriiiiiiiie b 11
Figure 4-1 Class diagram of ALM classes in ALE JaVa VEISIONcccoeiiiriiiiineieineeesieeee e 13
Figure 4-2 Overview of a constraint and illustration of how instance variables in the constraint class correspond
to a constraint used in the layout SPECITICALIONccveieiiiie e 15
Figure 5-1 A pictorial representation of the appearance of the GUI window/ testing window in area mode........ 16
Figure 5-2 Class diagram of ALE, the old implementation............c.cocoveiiiiiiniecieie e 17
Figure 5-3 The editable components in ConstraintEditingPanel Class...........ccovvevveieneiie s 19
Figure 5-4 Initialization of the editing mode by clicking the “Switch to Edit mode” menu item and the
instantiation of LayoutSpec, ALMLayout and PropertieSWindow CIasses.cccveiiireinineisinciese e 20

Figure 5-5 Continuing the initialization of the editing mode: the activity of the Propertieswindow, and showing
the instantiation of AreaPanel, ConstraintsPanel, ALMEditor, BinPanel and ConstraintEditingPanel classes.... 20
Figure 5-6 final of the initialization of the editing mode: the activities of BinPanel and ConstraintEditingPanel 21

Figure 5-7 Containment hierarchy for the testing window (old implementation)c.cccccoeviviieiie e cseee. 23
Figure 5-8 Containment hierarchy for the properties window (area mode) (old implementation) 23
Figure 5-9 Containment hierarchy for the properties window (constraints mode) (old implementation)............. 24
Figure 5-10 Features in both area and coNStraints MOUEScccveiiiriiieiieie e 24
Figure 5-11 Edit operations and features in area MOde PArt 1cooveeriiiirinieineese e 25
Figure 5-12 Edit operations and features in area MOde PArt 2cocvoireriiiriniiineesee e 26
Figure 5-13 Edit operations and features in constraints Mode Part 1..........ccccoereireneiineneieneneeseeeseeeesie s 27
Figure 5-14 Edit operations and features in constraints MOde Part 2..........cccvereiririiineneneeeseeese s 28
Figure 6-1 Overview of important ALE classes in the old vs the new implementationc.ccccocevvvnininenn. 29
Figure 6-2 Diagram showing the difference between Java and Scala event handlingccccoooveveviviieiecinenne. 33
Figure 6-3 The SCala WIaPPEr SYSIEIM.....uiiui it eieiiesteesteeste e e e e e st e e e sre e teeeeaseeassesseesteeste e teesteasaesseesreesreeseeaneas 35
Figure 6-4 The important variables in the refactored getAreaYTabClicked method............cccccoovvviiiiiie e, 37
Figure 6-5 Separation of components before and after refactoringccccoevv e, 38
Figure 6-6 Separation of features/operations before and after refactoringccocooeevenvinniic 39
Figure 6-7 Refactoring the ALMEItOrLiStENEr SYSIEMc.couiiiiiiiiiirieisicre e 41
Figure 6-8 Refactoring the BiNLISTENEr SYSEIMcuiiiiiiiiriiiiti ettt 41
Figure 6-9 Newly implemented edit operations usable in both MOdESccoeiririiiinir 42
Figure 6-10 Contrasting the appearance of text boxes, buttons and labels in the old implementation versus the
QLA] o F=T 1=) - £ o TP 43
Figure 6-11 Summary of the modified bin behaviour when inserting into an already occupied area................... 44
Figure 6-12 Comparing the two version of the bin feature of placing a component back into an area that has no
[070] 1 (=] 0 A T T TP PO TP PP OUUPPPP 45
Figure 6-13 Class diagram of ALE in the new implementationccccooveii i 46
Figure 6-14 The Ul of the prototype Intellid plugin of ALE ... 47
Figure 6-15 Steps for registering the editor in IntelliJ, creation of the editor panel, and start of edit mode......... 48
Figure 7-1 Diagram showing coupling (the number of references to other classes) within each class................. 51
Figure 7-2 Graphs showing the number of methods per class before and after refactoringccocecvvrvinnnn 52
Figure 7-3 Graphs showing total LOC per class before and after refactoringcccccooeverienieiniincnc s 54
Appendix Figure 1 Containment hierarchy for the testing window (new implementation)...........ccccccoceveneneee 64
Appendix Figure 2 Containment hierarchy for the properties window (area mode) (new implementation) 65

Vi

file:///E:/%23_Toc380422426
file:///E:/%23_Toc380422441
file:///E:/%23_Toc380422449
file:///E:/%23_Toc380422451

Appendix Figure 3 Containment hierarchy for the properties window (constraints mode) (new implementation)

.. 65
Appendix Figure 4 Diagram of the testing window after refactoring, containing the variable names of all
components in the code (NeW IMPIEMENTATION)cc.oiiiiiiiiie e 65
Appendix Figure 5 Diagram of the properties window (area mode) after refactoring, containing the variable
names of all components in the code (New impIemMENtatioN)cooveiiiiiiiiiiiie e 66
Appendix Figure 6 Diagram of the properties window (constraints mode) after refactoring, containing the
variable names of all components in the code (new iMplementation)ccccvviveiieieriiie s 66

Appendix Figure 7 Showing the initialization of the editing mode by clicking the “Switch to Edit mode” menu
item and the instantiation of LayoutSpec, ALMLayout and PropertiesWindow classes. (new implementation) .67
Appendix Figure 8 continuing the initialization of the editing mode: the instantiation of PropertiesPanel,

ALMEditorCanvas, AreaPanel, ConstraintsPanel classes. (new implementation)cccoevviveveiencniesesnennan, 67
Appendix Figure 9 final of the initialization of the editing mode: the instantiation of Palette and
ConstraintEditingPanel classes (New implementation)..........ccociireiriniie e 68
List of Tables

Table 1 Summary of the definitions of internal attributes used in this study, with their associated metrics 5
Table 2 Summarizing studies which investigate the use of internal software attributes as predictors of external
SOTEWANE AELITDULES.e.ee ittt b bbb bbbt bt e bt e e et sb e eb e s bt e bt e b e et e nbesb e st e sneeneas 5
Table 3 Summary of studies investigating the effect of refactoring on software quality.........cc.ccoceevnviiiniinennn. 7
Table 4 Summary statistics for the ALE in the old vs the new implementationccocoevieneiieneineneee, 54

Vil

Chapter 1. Introduction

Graphical user interfaces (GUIs) have become increasingly important as the number of applications using them increased
over the last decades. Almost all applications are built by using WYSIWYG (What You See Is What You Get) builders,
which are supported by GUI toolkits. These tools can be used to add various components to a canvas and perform
various operations on them (such as resize and move). Layout engines are often incorporated into modern GUI toolkits
to specify the dynamic behaviour of a layout. This is achieved by a layout manager implementing a layout model, which
takes user specifications to set the optimal position and size of components in the layout.

The Auckland Layout Editor is similar to other GUI builders in that components can be dragged and dropped from a
palette to a canvas. ALE uses the Auckland Layout Model [1], a layout engine that uses constraint-based layouts. It is a
powerful and flexible layout model that uses constraints to define the positions of components. However, constraint-
based layouts are complex: editing individual constraints requires specialist knowledge and therefore errors such as
overlapping and the presence of unnecessary constraints are likely to occur. ALE simplifies editing for the end-user by
hiding the lower-level details such as specifying constraints. Instead it allows users to specify constraint-based layouts
using only simple mouse operations [2] such as moving, swapping, inserting and deleting, while maintaining all
specifications and non-overlap between components in the layout.

Besides the original C++ version, a prototype Java version of ALE using the constraints-based layout system as described
above has also been developed (for a full description see Chapter 5). Like the original ALE, it is also a drag and drop
type editor which supports the insertion of a particular component into a testing window canvas. It uses the ALM layout
manager as in the original ALE (see Chapter 4). Every GUI is started in the operational mode (normal function); a user
can switch a GUI into editing mode at any time during run-time, which allows for its customization [3, 4]. Figure 1-1
shows the switch to editing mode by clicking the “Switch to Edit Mode” menu item in the GUI testing window named
“TestEdit1” (see Section 5.3 for more details on the switch process), accompanied by the appearance of a properties GUI
editor window (the properties window).

The properties window can be in one of two modes: area mode, which allows a user to edit the rectangular areas
containing the components of the GUI, and constraints mode, which allows a user to edit the constraints in the layout
specification. The GUI window (also referred to as the testing window) and the properties window are synchronized so
that each window is automatically updated to reflect the settings in the other one when a change is made. It supports
some of the edit operations seen in the original ALE version such as inserting, removing, swapping and resizing (see
Section 5.5). Some other features are not yet supported.

2] TestEdit! - olEN [Z] Testeditl - olEN|

button | buttonz 280X button1 | bution2 180!
button3 buttond button3 buttond | i
buttons | butiond lento buttons | butions | T
L richTextBox1 - ----fichTextBax1 :
checkedListBox1 checkedListBox1 §

listView1 listView1

smummnm% D

labell label2 label3) abell label2 label3

] Properties - oIEN Properties - 'IEN

File

Areas | Constraints 5 | Constraints
Area button1

1(X10) = 0.0penalty=Infinityerror=1.425701214827768E 4 | =

-
Content button1 -

Row w [+ -1(Y13) = 0.0penalty=Infinityerror=7.105427357601002E...
Column —— X[+ 1(¥13) + -1(¥14) = 0.0penalty=Infinityerror=4.263256414...
Left left ~ Right X9 x

Top ton > Bottom Y12 ¥ |} = 484.0penalty=Infinityerror=2.2355588350819744E -4
Width/Height i7 26

m) = 461 Openalty=Infinityerror=2.2737367544323206E-13
= 0.0penalty=100.0error=4.080390475091673E.7 hed

Add New Constraint

Figure 1-1 Switching a GUI from operational mode into editing mode
In this paper, we use the ALE Java version as a case study to address the following research questions:

1) Does converting a complex GUI application (such as ALE) from Java to Scala improve its code base?
2) How can a complex GUI application (such as ALE) be refactored?
3) In how far does refactoring help to improve the quality of a complex GUI application (such as ALE)?

Java is a widely-used general-purpose object-oriented (OO) language. Despite its popularity, it has some limitations as a
language, which are addressed by the relatively new Scala language. Scala is a general-purpose programming language
with multiple paradigms, supporting both object-oriented and functional programming approaches (see Chapter 3 for an
introduction to the language). Scala Swing is a wrapper system around Java Swing and is considered to be more powerful
due to its cleaner syntax without using explicit inheritance [5]. Its reactions system, which uses partial functions, also has
several advantages compared to Java’s event handling system. To take advantage of the various benefits of Scala Swing,
we converted the source code of the Java version of ALE to the Scala language. At the time of this report’s writing, there
were no studies directly comparing Scala and Java GUI applications, therefore the differences of a complex GUI
application using Java Swing versus using Scala Swing were investigated in this case study.

Software quality is usually defined as the embodiment of particular combination attributes such as maintainability,
reusability and comprehensibility [6]. However, these so-called external/indirect quality attributes tend to be subjective in
nature and difficult to measure. Therefore much research effort has focused on indirectly assessing the degree to which a
software product possesses these attributes, by using a set of measurable internal/direct quality attributes [7-12]. These
include cohesion, coupling, complexity, and inheritance [13].

Refactoring is defined as a transformation of an object-oriented program by redistributing classes, variables and methods
in the class hierarchy that improves the design without changing its behaviour of functionality [14]. In this project, the
edit operations of ALE were refactored to achieve a better separation of concerns (SoC). Several studies have evaluated
whether refactoring is beneficial or detrimental to software product quality characteristics. These studies were conducted
by either assessing internal quality attributes directly [15, 16] or by using statistics [17-19] or internal attributes [8, 9, 20-
24] as predictors of external quality attributes (as outlined in Section 2.2). To extend upon these findings, the ALE Java
version was used to evaluate the effect of refactoring on software quality, measured by both direct quality attributes and
other related statistics.

Furthermore, some edit operations were added to extend the functionality of ALE Java version and others modified to
improve usability. One future goal is to make the stand-alone ALE a plugin for an Integrated Development Environment
(IDE). Therefore a prototype plugin of ALE was developed in this project for the IntelliJ IDEA, which was chosen due to
its support for Swing and the Scala language. In conclusion, the four major goals of this project are as follows:

1) To convert the source code of ALE Java version to Scala

2) To refactor the source code to improve its quality

3) To implement new functionality and improve the usability of some existing functionalities
4) To develop a prototype plugin for the IntelliJ IDEA

5) To evaluate the effects of the aforementioned steps

It must be noted that even though some regard the conversion of code into another language to be a subtype of
refactoring, the conversion of the source code and refactoring efforts are described and evaluated separately in this report.

The remainder of this paper is structured as follows: Chapter 2 outlines the related work in terms of studies involving
refactoring and comparing Scala and Java. Chapter 3 offers an introduction to the Scala language. Chapter 4 describes
ALM and its important classes. Chapter 5 provides an overview of the ALE prototype, including its layout system, class
structure, features and GUI. Chapter 6 describes how ALE was converted to Scala, how it was refactored and modified
during the course of the project, and outlines the steps taken to create the IntelliJ plugin. Chapter 7 critically examines the
final product, comparing quantitative and qualitative measures of quality before and after the project. In addition, our
experiences with the Scala language during the course of this project is described. Chapter 8 summarizes future
directions and Chapter 9 concludes this paper.

Chapter 2. Related Work

In this chapter previous work relating to the objectives of this study is explored. First, an overview of software quality is
given with definitions of internal and external quality attributes that are relevant for this study. In addition, studies

investigating the measurement of the former as a predictor of the latter are summarized. Next, existing studies about the
effect of refactoring on software quality are explored. Finally, existing research comparing Scala and Java are reviewed.

2.1. Software Quality

Object-oriented metrics to quantitatively measure internal quality attributes have been researched and classified by many
authors [25-28]. They are all potentially relevant to this study since the majority of ALE is written in the object-oriented
style. Since the number of possible metrics described in the literature is virtually endless, only the most popular ones are
considered. They are summarized in Table 1 along with the internal quality attributes they measure. They are primarily
from the Chidamber & Kemerer (CK) metrics suite [27] but also from the Traditional set [29] and MOOD set [30].

Internal Description Metrics

quality

attribute

Cohesion Measures the level of dependency of the local methods of a Lack of Cohesion of

class on each other and the degree to which they are related Methods (LCOM): “the
and work together to provide well-bounded behaviour [31]. number of disjoint/non-
intersection sets of local
methods” [27]

Coupling A measure of the degree of interdependency between Coupling Between Object
modules/entities [28]. Two classes are coupled when one classes(CBO): Number of
class uses another’s methods and/or instance variables. classes to which a given

class is coupled [27]
Response for a
Class(RFC): “number of
methods a that can
potentially be executed in
response to a message
received by an object of
that class.”[27]

Modularity A module has its own area of responsibility (high cohesion) Uses Coupling and
and communication between those parts is scarce and Cohesion metrics
happens through well-defined interfaces (loose coupling)
[32].
Complexity Defined as the psychological complexity associated with a Cyclomatic
software and is a predictor of the time and effort required to | Complexity(CC): “the
maintain it [27]. complexity of a control
flow graph of a method”
[29]

Weighted Methods per
Class(WMC): This metric
is the sum of complexities
of methods defined in a
class where all “method
complexities are
considered unity” [27]

Encapsulation Describes a type of design in which interaction with an Method Hiding Factor
object can only be achieved through its public interface [33]. | (MHF) or Attribute
It is a mechanism to achieve data abstraction and Hiding Factor (AHF):
information hiding. How well-hidden methods

or attributes are within a
particular class,
respectively[30]

Inheritance Inheritance is a mechanism in which a class acquires Depth of Inheritance
characteristics from another [34]. Tree(DIT): Maximum
inheritance path from
class to root class [27]
Number of Children
(NOC): Number of direct
descendants for each class
[27]

Others Lines of Code (LOC), Source Lines of Code (SLOC)
Comment Percentage (CP) — all from the Traditional suite
Table 1 Summary of the definitions of internal attributes used in this study, with their associated metrics

Software quality is defined as the degree up to which a system possesses certain external attributes or characteristics.
Their taxonomy was initially introduced by 1SO9126 [35] which present these characteristics: functionality, reliability,
usability, efficiency, maintainability and portability. Other characteristics have also been described in literature such as:
performance, usability, portability, understandability, reusability, and readability [13]. Much research has gone into
determining the degree to which certain internal quality attributes to predict external quality attributes, and so allow their
measurement indirectly. Du Bois et al. developed practical guidelines for improving cohesion and coupling metrics and
validated them as indicators for maintainability on an open source software system [7]. Kataoka et al. [8] proposed a
quantitative evaluation method using coupling metrics to measure changes to maintainability through refactoring. A
method for assessing refactoring effect on reusability was proposed by Moser et al using a set of internal software
metrics such as CBO, LOC and CC[9]. Testability was linked to a set of internal quality metrics by Bruntink and
Deursen [10]. Dandashi [11] demonstrated that adaptability, maintainability, comprehensibility and reusability may be
deduced from the analysis of internal metrics such as WMC, CBO, RFC and CC. The relationship between internal
metrics and fault-proneness has also been studied [12]. These findings are summarized in Table 2; note that many more
other studies have correlated internal metrics with software quality or validated the significance of other such studies in
literature; these studies are emphasised because they have been associated with refactoring in literature.

Study Measured internal Coupled external attribute
metric(s)/attribute

Bois et al. [7] Cohesion and coupling Maintainability

Kataoka et al [8] Coupling Maintainability

Moser et al. [9] CC and CK metric suite Reusability

Bruntink and Deursen [10] Lines of code per class (LOCC), Testability

NOC, number of fields (NOF),
number of methods (NOM), RFC,

WMC

Dandashi [11] CC, number of Physical Source Adaptability, Maintainability,
Statements (PSS), WMC, DIT, Comprehensibility, Reusability
NOC, RFC, CBO

Gyimothy et al. [12] Many metrics including Fault-proness
WMC, DIT, RFC, NOC, CBO,
LCOM, LOC

Basili et al. [36] NOC, CBO, RFC Fault probability

Table 2 Summarizing studies which investigate the use of internal software attributes as predictors of external software
attributes

2.2. Existing Studies of Refactoring

In this section, empirical studies investigating the effect of refactoring on internal and external software attributes are
explored.

Some researchers assessed refactoring effects on the internal software quality attributes through measuring internal
metrics only. Stroggylos and Spinellis analyzed how documented refactorings in four popular open source software
systems affected their code metrics and concluded that refactoring sometimes has detrimental effects if not used

effectively [15]. Du Bios and Mens [16] evaluated the effect of three types of refactoring (extract method, encapsulate
field, and pull-up method) on internal software measures such as NOM, NOC, coupling, and cohesion and found both
positive and negative impacts on the measures.

Others assessed refactoring effects on external software quality attributes by surveying programmer experience or
measuring certain statistics within the scope of their study. By performing a controlled experiment on the differences in
program comprehension between using the Refactor to Understand and Read to Understand patterns, Du Bois et al. [17]
provided the first empirical support for the claim that refactoring increases comprehensibility of code. Changeability was
the topic of another study by Geppert et al. which showed that change effort (decrease by 11%) and customer reported
defects were significantly reduced after refactoring [18]. An empirical evaluation on maintainability (measured by the
time required to fix random errors in code) and modifiability (measured by time and LOC needed to implemented new
requirements) was conducted by Wilking et al. [19] without improvement to both.

By far the most common approach involved assessing refactoring impact on internal attributes as indicators of changes in
external software attributes (drawing on the conclusions of studies such as those in Table 2). Using a quantitative
evaluation method, Kataoka et al. found that refactoring enhances system maintainability [8]. Leitch and Stroulia also
studied maintainability by evaluating two types of refactoring (extract method and move method) on two software
systems produced reduction in code size, density of dependencies and regression testing. The conclusion was that
refactoring improves maintainability [20].

In an academic study by Stroulia and Kapoor, a case study performed on a group of students demonstrated that size and
coupling metrics decreased after refactoring, improving the extensibility of the software [21]. Moser et al. conducted an
empirical study on a commercial software system with the CK metrics suite and the CC metric from the Traditional suite
used as indicators for reusability. It was found that refactoring enhanced reusability of hard-to-reuse classes in an XP-like
development environment [9]. A later study by Moser et al. measured LOC, CK metrics, in association with effort (in
hours) with conclusion that refactoring reduces complexity while increasing productivity and cohesion [22].

Tahvildari et al. used a software re-engineering quality framework on four case studies and found improvement in
maintainability. They also investigated the use of metrics to detect design flaws [23]. Recently, a more comprehensive
study was conducted involving several external quality attributes (adaptability, maintainability, comprehensibility,
reusability, and testability). No consistent trends were found regarding the effect of refactoring on these quality attributes
thus no firm conclusions could be made about whether refactoring improves software quality [24]. Table 3 summarizes
the studies mentioned above, and indicate that the majority of studies found that refactoring produces positive effects on
code quality.

Studies measuring internal/direct attributes directly

Study Case study Internal quality attributes Result after
refactoring

Stroggylos and | Open source software CK metrics, Afferent coupling, Number Advantageous or

Spinellis [15] | systems of Public Methods of a Class (NPM) disadvantageous

depending on the
refactoring

Du Bois and A small demo program NOM,NOC,CBO,RFC,LCOM Advantageous or

Mens [16] disadvantageous
depending on the
attribute

Studies measuring external/direct attributes by using statistics within the scope of their study

Study Case study External quality attributes Result after
refactoring

Boisetal. [17] | Controlled study Comprehensibility Improved

involving two groups of
students with similar
skills

Geppert et al. A project in industrial Changeability Improved
[18] environment
Wilking et al. Controlled experiment Maintainability and Modifiability No benefit to both
[19] with students
Studies measuring internal/indirect attributes as indication of external/direct attributes
Study Case study Internal attributes/metrics External attribute Result after
refactoring

Kataoka etal. | AC++ Coupling Maintainability Improved
[8] program
Leitch and Two Java Code size, number of Maintainability Improved
Stroulia [20] case studies procedures (efforts and costs)
Stroulia and A research Size and coupling Extensibility Improved
Kapoor [21] prototype

tool
Moser et al. A project in CC, CK metrics, and LOC Reusability Improved
[9] industrial

environment
Moser et al. A project in CK metrics, Effort (hour), and | Productivity Improved
[22] industrial LOC

environment
Tahvildari et | Four open- Complexity, coupling, Maintainability Improved
al. [23] source complexity, and inheritance

software metrics

systems
Alshayeb et Three small CK metrics, FOUT, NOM, Adaptability, Inconclusive
al. [24] open-source LOC Maintainability,

projects Comprehensibility,

Reusability,
Testability

Table 3 Summary of studies investigating the effect of refactoring on software quality

2.3. Studies of Scala versus Java

There have been relatively few controlled studies to evaluate the benefits of Scala vs. Java quantitatively and empirically
and analyse Scala and Java together. In [37], memory behaviour of programs written in Scala and Java were compared by
running the DaCapo [38] benchmark suite. A number of features were analysed using Java Virtual Machine (JVM)
profilers including garbage collector workload, object churn, and how the size of the object and immutability influences
performance. Another study [39] adapted a benchmark for Scala and Java and ran them on a mobile device and compared
the memory usage, power consumption, execution time, and size of application. These studies compare Scala ‘sand
Java’s performance, which are not very relevant to the purpose of this paper and will not be discussed further.

Scala’s developers claims that Scala can reduce LOC to about 50% of the same program written in Java, and in extreme
cases, Scala’s LOC is ten times smaller compared to Java [5] . However, these claims are over-generalized without
controlled studies to support them. To date, investigations into claims about the advantages of using Scala instead of Java
has only been investigated by one paper [40] and were briefly considered in another paper [41]. To our knowledge, there
are currently no studies directly addressing the benefits of Scala for code refactoring and especially in the context of
writing GUI applications.

One recent study [40] compared the experiences of thirteen computer science masters students and one industry software
engineer who worked on three projects in Scala and Java. The resulting 39 Scala programs and 39 Java programs
involved parallel programming and made use of the concurrency library. Key features such as effort, code, language,
usage, and performance and programmer satisfaction were analysed. They proved with statistical significance that Scala
code is slightly more compact than Java code. Scala had median of 533 lines of code and Java had median of 547, only a
median and mean difference of 2.6% and 15.2% for the LOC, respectively.

Scala is also claimed to reduced the time required to debug and test applications compared to Java [5]; however, this
claim was challenged in the findings. The tested subjects spent more time developing the Scala code because the
automated type inference produced errors while debugging that required effort to track, understand and correct the type.
Furthermore, the subjects also required more time to produce a working Scala program compared to Java program due to
the increased effort required to understand how to make use of the functional style in the program. The findings indicated
that more time was required to solve the problem in Scala compared to Java, the median hours spent on Scala and Java
were 56 hours and 43 hours respectively [40].

Another study compared the characteristics of multiple languages (C++, Java, Go and Scala) such as code complexity,
the compilation time, run-times, and memory footprint. The same well-defined algorithm was implemented in all four
languages, involving several data structures, memory allocation schemes and iteration without language-specific
adaptations or optimizations. The findings showed that Scala has the most concise notation and the best potential for
optimization of code complexity but suffered from complicated and unpredictable garbage-collection system due to its
use of JVM [41].

Chapter 3. Introduction to the Scala language

An important objective of this project is to convert the source code of ALE from Java to the Scala language. Therefore,
this chapter aims to give a brief overview of Scala, namely its multi-paradigm nature, its benefits compared to Java, and
its GUI toolkit.

3.1. Overview

Scala unifies the object-oriented programing (OOP) paradigm with the functional programming (FP) paradigm. [5].
Created by Martin Odersky and his research group at EPFL, the first public version was released in January 2004; at the
time of this report’s writing, the latest stable release is 2.10.3. It is a statically typed, mixed-paradigm, JVM language
(generates JVM byte code) with succinct and flexible syntax. It is a relatively new language that was created as an
alternative to other common statically typed languages like Java and C# to improve upon their lack of scalability and
support for component abstraction and composition [42]. Many mainstream companies are migrating to Scala and
achieving a boost in productivity, for example LinkedIn, Novell, Xerox, Sony Pictures Imageworks [43] and Twitter
[44].

3.2. Scala’s Multi-Paradigm Programming

Throughout the history of software development there has always been a need for language that are able to deal with
growing complexity and produce succinct and reliable software [45]. Proponents for multi-paradigm programming
languages claim that no single paradigm is suited for dealing with all the possible scenarios encountered in complex
programs and both are necessary to allow for flexible and high-quality programs [5, 46]. Many have claimed that Scala’s
multi-paradigm aspect makes it superior to Java [5, 42, 47].

Since Scala supports both the FP and OOP paradigms, it is extremely flexible and the advantages of each style can be
applied to specific problems. For example, functional programming is beneficial for concurrency because variables are
immutable and functions have no side effects negating the need to synchronize access to mutable state. In contrast, OOP
can be used in situations that require mutability of objects.

3.2.1. Scala is Object-Oriented

Scala uses a “uniform object model” that does not distinguish between object/reference types (classes, Integer) and
primitive types (int, boolean); instead everything is essentially object type. In Scala, various classes represent the types,
properties, and behaviour of objects:

e Traits: Similar to Java’s Interface, these abstract classes can be “mixed-in” and do not take constructor
parameters

o Obijects: These are classes associated with a unigue instance (Singletons). In an object, the class and its instance
are indistinguishable. This replaces the need for static members as in Java.

e Case classes: these classes are used in pattern matching which allows for the decomposition of objects, a feature
largely absent in Java.

Like in Java, only single inheritance is allowed but Scala offers traits and composition of data structures through mixin.
Scala also has more sophisticated typing system with generics that are more flexible and more advanced typing
constructs, which provide the foundation for more type-safe design. These features have been widely claimed to allow
for more customization and to be more powerful than their Java counterparts [42].

3.2.2. Scala is Functional

In Scala, every function can be assigned to variables just like values, allowing for the creation of complex operations
from simple ones. Scala supports the following functional language techniques:

e Anonymous, nested functions: In Scala, functions with no name and nested functions can be defined.

e Higher-order and curried functions: All functions are objects that can be passed to other functions, allowing
for the creation of “higher-order” functions which take functions as parameters. It also allows for currying, the
transformation of a function of multiple parameters into a function which returns a function of one parameter
each time (itself a higher-order function).

e Closures: “Functions can use variables that are outside of the definition scope of the function, not defined as
local variables or passed as arguments.” This feature simplifies the development of domain-specific languages
and control abstractions [48].

Java (up until version 7) has not been a functional language, but instead emulated the behaviour of lambda expressions
with anonymous inner classes (AIC). For example, adding a listener to a JComponent involved the creation of a class
implementing the particular listener’s interface and overriding the implemented methods. Refactoring Java code to use
functional features will make the code more succinct and readable. It is claimed that Scala’s functional paradigm
constructs allows for clearer and more readable code, simplifies difficult tasks and testing, reduces complexity, and
achieves the same task in less LOC compared to Java [42].

3.1. Scala’s Benefits

3.1.1. Scala’s Interoperability

Scala runs on the JVM, is completely interoperable with the Java programming environment [49]. It is also interoperable
with C#, but only Java is discussed here as it is related to the topic presented by this paper. Byte code originated from a
Java source can be easily invoked from Scala and similarly Scala code can be invoked from Java. Using integrated Java
and Scala code is therefore possible, providing greater flexibility since Scala seamlessly integrates the Java libraries and
classes. Because Java is still dominant in the market and used frequently, Scala’s compatibility is extremely helpful in
extending and improving current Java applications.

3.1.2. Scala is More Compact

Finally, Scala programs are claimed to be more compact: “a typical Scala program should have about half of the number
of lines of the same program written in Java™ [5]. This reduction in the lines of code (LOC) is said to be mostly due to
control abstractions that avoid duplication, type inference, more efficient structures in its standard library, a simplified
inheritance system, and optional semicolons [5, 48]. Consequently, the creators claim that Scala is less error-prone than
Java since fewer LOC implies fewer possible places for defects.

3.1.3. Scala Supports Better Scalability

Scalability is another advantage of Scala claimed by its creators, due mostly to its ability to reduce complexity of
problems with more concise high functionality code [50]. Its support for interoperability also allows for the programmer
to use a combination of unique methods which will also increase Scalability [48]. With this feature, Scala can easily be
used to effectively increase Scalability of Java programs and makes it ideal for small and simple to large and
sophisticated applications.

10

3.1. Scala GUI Platform vs Java GUI Platform

&) Java swin
| |
- 8
Component
(java.awt)
Container "
} +
(java.awt)
Windaw
¥ (java.awt) ha
F ¥
Frama Dizlog
(fava.awt] {fava.awt]
ry F
IFrame Iwindow IDialeg IComponent
(javarswing) {javax.swing) [javaeswing) {javax.swing)
i .
ITextField JButton JcomboBox Jiabel InenuBar IPanel IFopuphenu
{javax.swing] {jgvax.swing) {javax.swing) (javax.swing) {jEvax.swing) {javaz.swing) (javaxswing]
"y .
(6= Scala swing
UiElement :
|scalaswing)
JM.!WLEI‘II"\FDH!"I {:Dntainer
+ [scala swing)
WIMD'_” Jeva mart companent
|scala swing)
Jonm it wind : —
e Y e SequentialContziner
scala.swin,
Richwindaw ¢ el
i Jays.swh.component
o |scalaswing) LA Oompun.ent i P! Wrapper
Jmn mwt Window zca ing) [zcalz.swing)
. Juvax swing JComponent Wrapper Javes swing JCompanent
FI'E"“? Dialog e |4 {scalaswing)
scala.swin ala.swing)
‘ E" [SI: JwwmrswingJCompanent
Jevaaswing JFrame S Swing IDimtog
TextField Button CombaBox Lahal hdenuBar Panel scrollPane
(zcalaswing) (scala.swing) (zzala swing) (scala.swing) {scala swing) [zcala swing) [scala.swing)
T swing JTextField Jwmxswing.JButton Jawmx_swing JCombaBox IavEE swing JLabel Jevms swing Iienugar I aswing JPanel Jmmu swing JSoralifane

Figure 3-1 Hierarchy of Scala and Java Swing
The following colour-coding is used in the Java Swing hierarchy: class in red box: class belongs to java.awt package, class in blue
box: class belongs to javax.swing package

The following colour-coding is used in the Scala Swing hierarchy: red box under class: java.awt or javax.swing abstract peer member,
blue box under class: javax.swing concrete peer member, class in green box: scala.swing class with javax.awt abstract peer member,
class in purple box: scala.swing class with javax.swing concrete peer member. The blue arrows represent inheritance using the
“extends” key word (traits or classes) while the orange arrows represent inheritance using the “with” key word (traits).

The original GUI platform and library for Java was Abstract Windowing Toolkit (AWT), which made direct calls to the
operating system or windowing environment for building elements of the GUI. However the elements in the AWT
included only elements that were present in all platforms (platform dependent), and because the elements were drawn by
the underlying platform, the appearance would change depending on the platform. Therefore, the Swing GUI library was
created for Java, which works by making calls to AWT. Because Swing doesn’t contain any platform-specific (native)

code, GUI elements could be rendered in different ways so there would be a uniform “look” across different platforms
[51].

11

The library used for writing Scala GUI comes from the Scala.swing package, which is a wrapper for Java’s Swing library
(the javax.swing package which itself sits on top of the java.awt package) and makes calls to it. A summary of the
hierarchy of Java swing components is presented in Figure 3-1 top while Figure 3-1 bottom summarizes the hierarchy of
Scala swing components with their respective Java AWT or Swing wrapper classes. Just like Java swing, all components
in Scala inherit from the root class Component, however unlike in Java Component does not descend from

Container.

There is a Scala wrapper class for almost all JComponents and each has the same name as the Java class but without the
initial ‘J” (for example “JButton” becomes ‘“Button”). Methods in the associated JComponent can be called from a Scala
Component by using the peer method. Note that some classes have peer as an abstract value member, so this member
cannot be directly used until a concrete implementation has been given (for example in Figure 3-1 (bottom), peer is
implemented in Frame and Dialogue after inheriting the abstract member from RichWindow).

Figure 3-1 top also shows Java/Swing’s window hierarchy with AWT’s Frame and Dialog both sharing the base class
Window. However the JFrame and JDialog classes do not extend Jwindow even though they share common
functionality not present in AWT. Scala provides better design of the window hierarchy as seen in Figure 3-1 bottom
where Frame and Dialog have Window as a common ancestor, with common wrapper code refactored into
RichWindow.

Scala GUIs use the same concepts as Java, using the benefits of Java’s Swing library but with simpler Scala syntax which
makes code more manageable. To build a complex GUI application, both Scala and Java use the idea of a containment
hierarchy, which builds GUI by adding components and nesting them within each other. In Java, all JComponents extend
from Container and can all hold child JComponents within them. The Scala Container is a trait that extracts a
common interface to provide components, menus, and windows with the ability to hold child components. For example,
MenuBar extends SequentialContainer.Wrapper Which extends Container and Panel extends
Container.Wrapper (Figure 3-1) therefore both possess the ability to nest child components. For both Scala and
Java, a top-level component like a panel is used to hold an arbitrary number of child components inside it, to achieve the
overall GUI layout in the end.

The laying out of the child components is governed by layout rules specified in the layout manager. It determines the
behaviour of the layout when resized, and determines the size and position of the components within a container. In Java,
the layout manager is an object implementing the LayoutManager interface and can be set by the user while in Scala
one of the layout containers is used (e.g. BorderPanel combines a Panel with the border layout features). For both
Java and Scala, users can specify options, which make the layout rules customizable to some extent.

Section 6.1 continues the introduction of general Scala and Scala swing with practical examples from the ALE source
code, which includes these topics: Java vs Scala event handling — including pattern matching (Section 6.1.2), partial
functions (Section 6.1.3.1), Scala collections (Section 6.1.4), and Scala’s wrapper system — including traits (Section
6.1.5).

12

Chapter 4. The Auckland Layout Model (ALM)

The Auckland Layout Model (ALM) is the constraint-based layout engine used for the Auckland Layout Editor (ALE).
This section provides an overview of the advantages of ALM and introduces important ALM classes.

4.1. Overview

ALM forms its layout specification using a set of constraints based on linear algebra while the optimal layout is
calculated using linear or quadratic programming. Since linear programming is difficult to understand, ALE simplifies
GUI building by offering four levels of abstraction: 1) linear constraints/linear programming, 2) soft constraints, 3) areas,
4) rows and columns. It separates different parts of the layout specification into different modules, allowing each to be
managed separately with the potential to be recombined later. In ALM, variables used in a constraint are vertical or
horizontal lines known as X and Y tabstops (or tabs), respectively. They are created by extending every edge of each
rectangular area and define the x- and y- coordinates within the GUI coordinate system, forming a type of grid layout [1].

4.2. Classes

Figure 4-1 presents a class diagram of the important ALM classes in the Java version. All classes are described below are
situated in the a1m package, except for the Constraint, Summand, and Variable whichare inthe 1insolve
package.

alnterfaces «Interfacex N
LayoutManager MouseListener LinearSpec
L Packagelinsclve
? JPane| | ?
| A LayoutSpec
ALMLayout Package::alm
Package: :alm -areas:<hrea>

-rows:<Row>
~columns:<=Column=
-left:XTab, right:XTab
=top:XTab, bottorm:YTah
+s0lve| void
+setRight{double):void

+edilForm: PropertiesWindow
-listener:ALMPans|
-parant:JComponant

-layoulSpes LayoutSpec
-componentsTaAdd:-<Component>
-tempEditFormBin. <Area>

+oad(File) void +setleft{double)void
+add ToComponentsToAdd(Companent L void +setBattam{doubla)void

+geiMinSize():Dimension

+gethMaxSize():Dimension
+geiPreferredSizel).0 imension

—~Mathods to:

set or get rightleft'topbottom insets

addAreaXTabY Tab/Row/Column

get Areas/Hows/Columns

] get Right'Left Top/Bottom tabs

ABNUM* et preferred/minimax size

ALMPangl
””rEQEL";';‘,';.Z,”.,T o | Packageaimother | ¢
| rightCli ckMenu.JPopupMenu .
ARAUME +ALMPanel[JComponent) !
VerticalAlignment initializeRIghtClickMenultems{xEid
Package:aim -selRightClickMenu|):vad) x Packageclinsolve X

+layout(Container)void
+editJComponantvoid
+quitEditiJComponant)void
+recoverLayout{ Containar):vaoid
+layoutContainen Containervoid
+minimumLayoutSizel Containery Dimension
+praterredLayoulSizel Container Dimension

|
i
|
|
i
|
|
i
|
|
|
|
+save(File):waid : +selTapidoubla)vold
|
I
I
|
I
I
i
|
I
i
|
|

+mousaClicked{Mousel ntvoid Conslramt
wBALM® +disab aMouseUst ackage: linsolve
DperatorType -ls:LihearSpec
Package:linsolve XTab Wau,}é | -lefiSide: Summand]]
* . Package:a n'| Package -of:OperalorType

Area g/ -fghtSide:double
Pacxage:alm . panalry:df:lunla
Is-LayoutSpec Dulu I =name: String
+left:XTab, right:XTab Package:alm |cowner:Object |
+top:XTab. bottom ¥ Tab Is:LayoutSpec ~Methods to setigst
+row:Row +top-¥Tab all the instance variables
+column:Column +bottom¥Tab -1aS5tring mathods

+content-JComponeant L

+consiraints:<Consiraint>

+hor zontalflignment: HorizontalAli gament Raow .
+vertical Alignment:-VerticalAlignment Packager:alm

+leftinsetint, rightinset:int, topinsetint, battominset:int Is:LayoutSpec paus:;meﬁ::glqe
childArea-ChildArea +ef:-XTab -
—Methods to set/get: #rightXTab -mat.'d:.'u;ls
-var.variame
left,right, top, botiom tabs J—
content, preferedimaximin contentSize F,_____-———'-"‘ -Method_s o setigat
the coefficient and variable

herzontalAlignment, vericalAlignment
leftirghttop/botiom insets

Figure 4-1 Class diagram of ALM classes in ALE Java version

13

4.2.1. ALMLayout

This class implements LayoutManager, provides the methods for specifying the rules of the layout, and manages
insets, areas, rows and columns. It contains lists to store components added to the GUI testing window and the discarded
components in the bin. Methods include those to initialize layout (in which a new instance of LayoutSpec is created;
each ALMLayout is associated with its own LayoutSpec), to calculate and set the layout, to switch the mode to
editing mode, and other general methods associated with recovering and changing the layout (most accessed from the
LayoutSpec instance).

4.2.2. LayoutSpec

Contains information for the layout specification: the class contains lists to store the columns, rows, and areas in the
specification. It also contains X/YTab instance variables define the top, bottom, left and right borders of the component
being edited. There are also methods for getting/setting areas, rows, columns, XTab, YTabs, insets, and sizes.

4.2.3. ALMPanel

For the purposes of this study, only its functionality for providing a right click menu for the test GUI is described here.
When the user switches to editing mode, this class adds a MouseListener to the JComponent containing the test GUI
components (for example the JPanel in the TestEditl window) and also defines a method to show a popup menu at the
position of a right click on it.

4.2.1.X/YTab

XTab and YTab extend the Variable superclass (since they are variables used in constraints) and represent the virtual
gridlines grid lines, which define the boundaries of areas, child areas, and inset tabs.

4.2.2. Constraint

At its core, ALM uses linear constraints (linear equalities and inequalities) and a linear objective function (a linear
combination of variables/tabstops and their constant coefficients) to specify its layout. The first type of constraint, called
absolute constraint, is defined by setting the width or height between two tabs to a particular value, or fixing tabs at
particular positions. The second type, called relative constraint, defines tabs at positions relative to other tabs. Resizing
the window causes the adjustment of the tabs for relative constraints while they are unaffected for absolute constraints.

Flexible constraints known as soft constraints can be specified which helps prevent over-constraint specifications. Unlike
hard constraints, which are satisfied strictly, soft constraints, may be violated if circumstances do not permit their
satisfaction.

14

I coeff:double] [var:Variable] I Op:0peratorType]

1 T O T | S e t

I rightSide:double] I penalty:double I

I

leftSide:Summand|]]

Figure 4-2 Overview of a constraint and illustration of how instance variables in the constraint class correspond to a constraint
used in the layout specification

The Constraint class contains instance variables that correspond to each property in a constraint, as shown by Figure

4-2.

summand is the combination of a coefficient and variable

leftSide isan array containing all the summands in the constraint

op enum represents the operator type and is either = (for linear equality), <= or >= (for linear inequalities)
rightSide (double) is the “right side” of the equation

penalty (double) for if the constraint gets violated

4.2.3. Area

A rectangular area (which may contain components or other graphical elements) is bound by a pair of X and Y tabstops.
The Area class contains all the information needed in to define a rectangular area including:

preferred, minimum, maximum size

its boundaries (left, right XTabs and top, bottom Y Tabs)

the row/column it belongs to

its content (the JComponent it contains)

its horizontal/vertical alignment (enums: left, right, center, fill)

its child area (null if it doesn’t contain one, used to show inset tabs)
left/right/top/bottom inset

4.2.4. Row/Column

Rows and columns are represented either by a y interval (pair of x tabstops) or x interval (pair of y tabstops),
respectively, and can contain several areas. These features are not yet implemented and these classes are not yet used.

15

Chapter 5. The Auckland Layout Editor (ALE)

This Chapter gives an overview of the Auckland Layout Editor (ALE) [2], i.e. its general concepts and its Java code base
at the start of this project, i.e. before any changes were made. It describes its various classes, the steps following the
initialization of the editing mode, the containment hierarchy of its GUI, and its edit operations and other features.

5.1. Overview

ALE is a WYSIWYG GUI builder, which allows the end-user to manipulate and customize GUI dynamically. ALM has
the potential to support many edit operations while maintaining all constraints in the specification and supporting the
non-overlapping of components in the layout. Editing mode is initiated by calling the method edi t defined in
LayoutManager Which converts the components in the GUI into bitmap images so that their appearance is maintained
while removing their functionality. This is accompanied by the appearance of a properties window that contains editable
components for editing the specification of the GUI layout. Only the area and constraints modes are discussed in this
study since the others have not been implemented yet.

T T

-| buttonl | button2 | textBoxl .
R R i 1

button3 § buttond | ! !

Area T =t

-button5- | button6 - ~|textBox2
Child Area 'i 77777 richTextBox1 - - l, ffffffff Row
= thecked-FistBoxi- 1 i .
[] listviewl |
1 } i 1 1
1 1 1 1 I
I 1 1 1 I
| i i ! i
| i i ! i
i | 1 | i
| i 1 ! i
| i i i I
labeil) i label2 : label3
1 ; i . ;
1 1 1 1 I
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 I 1
| i i i i
Ly e —— . : e —
[[
\ (J
Column
Horizontal Alignment:Left Horizontal Alignment: Center Horizontal Alignment: Right

Figure 5-1 A pictorial representation of the appearance of the GUI window/ testing window in area mode

Figure 5-1 shows a pictorial representation of the testing window called TestEditl (mimicking the actual appearance in
Figure 1-1); these pictorial representations are used from now on instead of screen shots. Note that TestEdit1 is
simply an example using the ALM to place 14 components onto a JPanel. Other examples exist and more could be
created but for simplicity only the TestEditl example is used throughout this report.

The figure illustrates the ALM concepts (green labels) as well as how ALE displays them (orange labels). Labell,
Label2, and Label3 have left, centre, and right horizontal alignment property, respectively. The figure also label a row
(pair of y-tabs) and a column (pair of x-tabs) which can be used to define, rearrange and resize areas easily without
directly referencing tabs, by employing the table metaphor. In the area mode, the area selected by the mouse is
highlighted by a red rectangle while the target area is highlighted by a green rectangle. In both modes, the usable
X/YTabs are represented by grey dashed lines and inset X/Y Tabs by red dashed lines.

An inset is the space between an area and its content. A child area is created when the end-user either requests insets or
special alignment on a particular area, which means the control is smaller than the borders of an area. In Figure 5-1 the
area highlighted in blue contains a richTextBox1 with left, right, top, bottom inset values of ten. A child area is created to

16

uoneluawaldwi pjo ay) ‘J1v 4o weabelp sse|d z-G aanbi4

with X/YTabs corresponding to the left, right, top, bottom borders of richTextBox1. Unlike the usable X/Y Tabs

displayed as grey dashed lines, these inset X/YTabs cannot be used as variables in a constraint.

5.2. Classes

ELIENEUOPPE -

SERIYPRE - wie:abeyoeq
nokeTies - nofEINTY
SE|gIsuoisay /
[ageT e top guey Bumg Bung) TGRS T T W - BOENEA [odr Qe MaNaIEam- T JOETTaA L0 I T
[BGETOL MSAUDD- 180 WieBleyIEd pron:(Jixe | urgsuo JpajoejegeEpdng ploAT nus Iy Breepdn.
poa(juatodwoDrjusuodwoDppes | BBy ploafiuluegsucapapepgebusyns ploajsaqepesaEpdn.
prov (U plon()SIUENSUODAEPN. PO (JUMOOSEN0W WS E LB HSUDD BAGLLIRI
PEEE R R s mon:(uapgabe Juiesuoog plon{ Jumogesnop Wslnuajpqe LIUBISUoDppE
suieisuoe begpus siuiEnSuOD) Loa- pioayJajugabedeaey ploaljumagasnow el nuaeaue AReyds
BUE IS BUEJESE- nofETEs — ageuen ey edi)ge | mayeiEad- [AL HEkaom_SElEmlz NUBWYIEIUOTIO HE)06
IR0 e aTE g saf|qsuadsay ploniBusRauaoppe PIDAUMDRENOY WS} NUSHILSIIOD SA0WEL
|auedug TR e / pra jseangaepdn . proafsaydesshusuodwoueds
A DIOA) MODUALEIES 4+ P BJEUEA NILTENSUODILIC) SOE | SA0Wal-
Ui wie: sbexIed pron(uawuBiyIE LS A s WUB IyEU0ZLI0H PIOA (BHOBIEA JIIES U0 00 | 68 | PRE-
[BUBGSIUIBASUOT) 5185 U] pBUSdWOoD M IUo DB QIS PRE apgeue, uidliuod esnge a6
SHOELE AU IO B8y IO JEBNGE | A/ ESIY) 56
B|QELE A (U IWOd e IBaNGE LA 8
xogoquogedi | sopisdg)xogoquo uojeisd gpjng- By (UI0g ey panoa B SUl
wogaquiosr xogoquosanele aajendad- pioa:(ipeo) (uan3uigjuctayulgmau-
Jojog:(Bums oo o8| geLE A eG- PIoAT U8 ATUIE)SIBUSTSI U rEMUC)L+ PIor() pBAOYBsTIOW
rogequwoedriioe) TspuBwwng xogoqUIo 8| BUE/BIEMD- plonJau s g)ieuss|ugpRes mion:(jpabbeigesnow+
pioay JEuauBdL oD aYSaLE+ PIOA(JUBATGE | JGUPTNTYIUOIIY e DION(PasEA|BLASNOW.
(xogoqWOoDrs|QELBA SEX0EAGUICIWO.IS0ELE ABAOLLEI- PIOA: (JUSAJUOIY |DBLLIOUEJUOIIE4 Plon: (Jpassal gasnie
Pran()San|BATUIRIISUGDAZI U+ FIon(JUBAS RSN oY) PRsSSaldESNoUL prow: (Jsusnu s Db e
PloAUBAZqE LIOIPI I TV |SI0UaIS [IORPIULOUl+ F R
plon (US| UoNpINT Y HausisTIppes <syEey| Jusuodwon >EEs U BaIYE| - <IBUBISTIOND I Tw> RIBUBS 0] pa-
PO (UBA JUOY) PELLIONE S LI+ 2JUaUodION > S|QqUOS|GISIALLE POy apowl-
plosfjuasgwey)pebusyosegwe))+ <PQE =5@0E TIUIRISUGD+ 800 WE BOEYIE]
<IBIETE Dy Ty > Seuss o e <UL SO > S B SU0 TUas N+ JOPPANTY
<BQBIIEA> S8 | QR JEA- <JEUBISTTUIE > S1aUEISIIUIg+ 7 T
JUIEASUOD MBS0 ._m_h_ﬂ_._nﬂua.._w.-mn_-f ¥ " “
To0 WE; abeRIeg WiE abepeg / j i
jsuedfuppasiuensuog mopuipsafadosg ’ | !
i i ' M [|
| | ! ’ I |
_ _ _ / " “
& & v / I |
__ ! DIOA A IIE LIGIETN , 1 i
Qe i eusisIwal T J/ X |
ABDRpE | BUWE 4 8 ; I |
1 ! [|
! I |
ﬁ_w B [v o
IBLBSTUO Y 5] | weuodwonr |
Ile ISIUaAD waoepE|» W Aw
adf) ;adf 1 uena- JBUE)51]8snapy
misiye R — JEIE]S U ESNoPN

wasepIaqu|»

17

Figure 5-2 presents a class diagram of the important classes associated with the editor. All classes are described below
are situated in the alm. other package, except for PropertiesWindow which is in the alm package.

5.2.1. ALMEditor

This class is the editing canvas which is layered on top of the testing window in the editing mode. Its main purpose is to
1) detect mouse clicks and movements and either respond by calling methods within itself or relay the information to
PropertiesWindow and 2) to replace the functional GUI components with bitmap images. Most of the functionality
for editing is defined in this class, the rest is defined in PropertiesWindow.

e It has an enum inner class for the mode enum variables

e Itinitializes the popup menu and its menu items and keeps track of what should be in the popup menu in each
mode, and for the constraint mode, the items change dynamically depending on the position of the right click

e Itimplements MouseListener, and MouseMotionListener. The
MousePressed/Released/Moved/Dragged event handler methods contains code for the detection of
the mouse on the canvas to provide information for the edit operations.

o It defines the paintComponent method which paints the XTabs, YTabs, inset lines (if show inset tabs was
selected), the selected area with red border, destination area with green border, and constraint lines. It also goes
through all the areas in the layout specification and uses Buf feredImage to draw the component in each area
in the canvas

e Itimplements the BinListener interface and provides an implementation of the newBinAction method

5.2.2. PropertiesWindow

This class contains the majority of the code in the properties window that appears when editing mode is started. It is the
mediator for most of the activity, containing many components and methods and has references to most of the other
classes (ALMEditor, ALMLayout, AreaPanel, ConstraintsPanel, and BinPanel).

e It has an instance of the ALMLayout associated with the GUI currently being edited

e Itsets up a menu bar with load, save (load and save a particular layout) and exit options.

e It contains all the variables for child components in the properties window, including those in the areas panel
and constraints panel

e It contains all the methods relevant to the features and operations performed by the properties window’s child
components.

e Event listeners are added to all the interactive components

e Itimplements the ALMEditorListener interface and provides an implementation of the newTabAction
method

e It has a method for updating the components associated with editing the areas and another method for updating
the components associated with editing the constraints

5.2.3. AreaPanel and ConstraintsPanel

AreaPanel and ConstraintsPanel define the layout for the area panel and constraints panel, respectively. The
AreaPanel and ConstraintsPanel classes have their own instance of ALMLayout, which is used to set up the
GUI layout for their panel in the properties window. The GUI components themselves are instance variables in
PropertiesWindow, S0 there is an extra step needed to retrieve them when adding each component to the
area/constraints panel.

5.2.4. ConstraintsEditingPanel

A class that contains the components and methods associated with the single line that becomes editable when it is clicked
in the constraints panel.

18

e It contains a reference to the constraint that it is editing
e Ituses flow layout to add each of the editable components shown in Figure 5-3
e It contains a method to change the text in the components to reflect any new changes made to the editable

Components
‘ 10 H lv” = |V|| 484.0 |Pena|ty: | Infinity I + I - |
[
constraintCoeffs constraintVars ~ OperatorCombo penalty removeVariableButton
(list of ITextBoxes) (list of JComboBoxes) rightSide addVariableButton

Figure 5-3 The editable components in ConstraintEditingPanel class

5.2.5. BinPanel

This JPanel uses a gridBagLayout layout manager to layout its bin components, however the list containing the bin items
are in PropertiesWindow. It contains two methods which are called through the PropertiesWindow class when
the user removes a GUI component from the window: the convertToLabel method which converts the bin item to a
JLabel for display, and the addComponent method which makes the JLabel visible on the bin panel.

5.3. Switching a GUI into Editing mode

The three figures below (Figure 5-4, Figure 5-5, and Figure 5-6) illustrate the sequence of steps that occur after editing
mode is started all the up until everything is displayed correctly in both the testing window and properties window. Each
box with a title represents a class. Within the class, the references to other classes is represented as a purple rounded box
while its variable name is in purple below it. The important methods and constructors are labelled with red circles
containing ‘m’ and ‘c’ respectively. Instantiation of each class is marked with a red circle containing the down arrow.
The grey circled numbers represent the order in which the class was instantiated. For example, PropertiesWindow is
the third class to be instantiated: it is labelled “3”. Lastly, the containment hierarchy at each step is illustrated showing
what components are added to the container class.

19

@‘T Testedits —Panel (1)
[LayoutSpec] [AlMLayout]
Is le
M main()

< Create and show IFrame
o Add itself (JPanel) to contentPane

Constructor()
o setlayout(le)

o Is.addArea/Constraint/XTab/YTab
o lesetlayoutSpec(ls)

o Add components to itself

@ actienPerformed()

le.edit{i/) [call edit for

=

ALMPanel — JPanel |

©

(C | ALMLayout ——LayoutiManager | ZT'I\

-

e

C | LayoutSpec — —LinearSpec {:2 I

o Store layout information
[XTabs, ¥Tabs, constraints, areas)

editForm layoutSpec
@ setlLayoutSpec (Is)
o layoutSpec=Is
edit|]

o layoutSpec.solve()

, this)

O ?:rzate PropertiesWindow(
1L
i@ C | PropertiesWindow —— JFrame | ST\‘

[AreaPanel] [Constm'lll.sPanel]

[BinPanel

[ConstraintEditingPanel]

@ Constructor(

o Create and add MenuBar to itself

, layout)

Key I
Reference to
it class
layout MName of instance

OO0 &

Ir.-
hS

—————

al

] e ®

variable

Flow of control

Start edit mode

Creation of new
Instance of class

Java dass with
main method
{runnable)

Java dlass

Constructor
method
Adding
component

Numbering the
Order in which
the classes are
instantiated

“extends”

Figure 5-4 Initialization of the editing mode by clicking the “Switch to Edit mode” menu item and the instantiation of
LayoutSpec, ALMLayout and Propertieswindow classes.

- Fo)
<ZE,> AreaPanel——JPanel 4)

o Create constraintlistPanel and add

to constraintsScrollPane

O Create ConstraintEditingPanel(index)

And add to constraintListPanel when mouse
Clicks on particular JLabel

o Add Menultems to both PopupMenus

Paint the X/YTabs and red/green rectangles

- £ N
@E) BinPanel — JPanel ©)

=]

— -
<_I7\(E/) ConstraintEditingPanel —IPanel (6 |

. - o | PropertiesWindow(2) | e
C) PropertiesWindow —*JFrame [3 .'>'] ~ (e
— PropertiesPanel ~ £
- (¢ Constrgpgepy
[ALMEditor] [ALMLayout J properties () h%; Pane|
al MEditor alMEngine @Construc‘tnr(properties} O O 7
o Setup layout and add BinPanel o
@ Constructor(, layout) = — f
; o £
O Create AreaPanel and @) ConstraintsPanel —— JPanel | ?)
O ConstraintsPanel(this, aLMEditorCanvas) PropertiesPanel
o Add both to a tabbedPane [properties 1 Testegiry
O Create ALMEditorC | : @Constructor(pmperties}
reate itorCanvas(layout) o Setup layout and ConstraintsEditingPanel A "
\ 7

o Remove components from " - y |~

N o C) ALMEditor—+JComponent 4)
and then add ALMEditorCanvas in its place > <
o Create areaScrollPane m

comporgp,
Q Create BinPanel(properties) and add
layout Iabel1

to areaScrollPane @ Constructor{layout)
o Create constraintsScrollPane o Create Areas/Constraints PopupMenu

Figure 5-5 Continuing the initialization of the editing mode: the activity of the PropertiesWindow, and showing the
instantiation of AreaPanel, ConstraintsPanel, ALMEditor, BinPanel and ConstraintEditingPanel classes

20

@C | PropertiesWindow ——JFrame (3 |

——

(c) BinPanel — IPanel 4 [€) ConstraintEditingPanel —*JPanel (5) j
@ convertToLabel() o Shows after clicking on a constraints label
o convert the component to JLabel o Set flow layout

addComponent{JComponent) o Add all the components

o add the JLabel representing JComponent

~ 4, . cm“’?iﬂmmﬁi

4 A _Lonstry
! "eaPan | A ”’T"*'"'SSCfoHPane FJ]
;
\ Y Intlistp |l
i A A] ane| T
*erolipane 7

(o] linPany ..g._ID%Q .
-BinPanel ‘ COHStraiéesEditinébanel ‘

Figure 5-6 final of the initialization of the editing mode: the activities of BinPanel and ConstraintEditingPanel

1) TestEditl class

This class contains a main method, when executed, will display a GUI example to the end-user. First the ALMLayout
and LayoutSpec classes are created, then the example components are added to itself (which is a JPanel), and finally
the GUI example is added to and displayed in a JFrame.

In the constructor, ALMLayout and LayoutSpec are instantiated (variables named 1e and 1s). setLayout method
defined in ALMLayout is called and 1s is passed as argument and becomes set as an instance variable in ALMLayout.
Now this GUI is associated with one instance of ALMLayout which manages the layout of the components using
information stored in one instance of LayoutSpec. Methods for adding an X/YTab, adding an area, and adding
constraints are called so that JButtons, JLabels, and JTextBoxes are set up in their correct positions. These X/YTabs,
areas and constraints now stored in LayoutSpec and can be accessed later on. setLayoutSpec is called with the
instance of the LayoutSpec passed as argument.

Also, an instance of the ALMPanel is created which registers MouseListener on the JPanel. The testing window
now has the reaction installed to display a popup menu containing the menu item “switch to editing mode” whenever the
user right clicks on it. Lastly, an instance of the class itself (the newly set-up JPanel with 14 JComponents and popup
menu) is added to a newly created JFrame.

Clicking on the menu item will start the editing process by calling the edit method from the ALMLayout class.
2) LayoutSpec class and ALMLayout class

One instance of LayoutSpec is created for the particular test window, it is used to store layout information containing
lists of XTabs, YTabs, constraints and areas used to specify and modify the layout.

One instance of ALMLayout is created for the layout in the TestEditl example, it contains and stores the instance of
LayoutSpec, and also stores the instance of PropertiesWindow. It also contains the edit method which is called
and passed the JComponent which is being edited (in this example it is the TestEdit1 JPanel). Within the edit
method, an instance of PropertiesWindow is created.

3) Properties Window class

21

Within the constructor, one instance each of AreaPanel and ConstraintsPanel are created and added to a newly
instantiated tabbedPane. It also makes the two JPanels to be scrollable.

Also, an instance of ALMEditorCanvas is created, the size set to be the same as the TestEdit1 JPanel. Following
this, all the JComponents contained in the TestEdit1 JPanel are removed and ALMEdi torCanvas (which extends
JComponent) is layered on the JPanel instead. Also, a menu bar containing the menu items “load”, “save”, and “exit” are
created and added to itself.

Lastly, the BinPanel is instantiated and made scrollable. The ConstraintsEditingPanel isinstantiated in the
constructor but is only added to the constraintListPanel JPanel when a JLabel has been clicked, which replaces
the selected JLabel with an instance the ConstraintsEditingPanel JPanel with editable components
corresponding to the selected constraint.

4) ALMEditorCanvas class

Within its constructor, a popup Menu is created and added to itself. The class also overrides the paintComponent
method which paints the all the components stored in the ALMLayout instance so the TestEditl window looks as if it
still contains all the JComponents previously there. Furthermore, the paintComponent method paints the X/Y Tabs
and red/green rectangles seen in the window.

4) AreaPanel/ConstraintsPanel

Both classes use their own instance of ALMLayout to set up the layout in their respective panels. They add the correct
JComponents (including BinPanel for AreaPanel and ConstraintsEditingPanel for ConstraintsPanel) to themselves but
first have to access them from PropertiesWindow.

4) BinPanel

It simply sets up gridBag layout and contain two methods for manipulating bin items which are used by the
PropertiesWindow. It contains nothing at the start of the editing mode.

5) ConstraintsEditingPanel,

On clicking a particular JLabel, the ConstraintsEditingPanel is initialized and displayed at the position of the
JLabel. At this moment, all its components are initialized and added to itself. Thus, the selected JLabel is replaced by a
line of JComponents which allow for the editing of the selected constraint.

5.4. GUI Containment Hierarchy

The section below contains diagrams which illustrate the containment hierarchy for the TestEditl window (Figure 5-7),
properties window in area mode (Figure 5-8) and properties window in constraints mode (Figure 5-9).

22

5.4.1. TestingEdit1

Figure 5-7 Containment hierarchy for the testing window (old implementation)

5.4.2. PropertiesWindow (Area Mode)

Figure 5-8 Containment hierarchy for the properties window (area mode) (old implementation)

23

5.4.3. PropertiesWindow (Constraints Mode)

Figure 5-9 Containment hierarchy for the properties window (constraints mode) (old implementation)

5.5. General Features and Edit Operations

This section describes the edit operations and other features found in ALE Java version: those in both modes (Section
5.5.1), in area mode only (Section 5.5.2) and in constraints mode only (Section 5.5.3). Note that each is indexed by a
letter: the letter is contained within a grey circle for features and in a yellow circle with the Scala logo for edit operations,
indicating that these are factored out into new Scala classes in the new implementation (see Section 6.2.2.2). Edit
operations are those actions which change and customize the layout, most of these were also present in the C++ version
of ALE [2] , while general features are the remaining actions that an end-user can perform.

5.5.1. Features in Both Area and Constraints Modes

: _T‘i
= = 1 = T —
b1 | b2 ! Bl | b2 1 \If TN
textBoxl textBoxl
b3 | b4 ' b3 | ba o - - e (3 | Feature
b5 | b6 - text 1 b5 | b6 = buttonl . -
Theckl richTextBox1 Box , reri FiehTextBoxL- Box Ro:v -
listView1 2 ! ! listView1 5 Column w7 i i
. B . e e Edit operation
' Top [t [¥] Bt [;’12 i = (Scala)
1 fidth/Heis 77 26
| i
labell . label2 label3 labell a label2 Iabel3))
. . e Reversible action
| @ || Switch to Edit Mode | | @ | Switeh to Normal Mode
- | '__r,/‘
I - — . 0]
1 t I Direction of flow
T
1
-0 =] -0Ox . .
= _ ' —= r Yo | 5 Direction of
1| B2 | teutpoxt ftextBoxd | |l
b3 | ba ; ! 3 ba | ; S mouse drag
5 h&
i | [needgort } X | | [rehentbort]| ="
checkl Box 1 cheekl BOX~ Drag cursor
] listViewl h | listView1
' .
1 | {——> Resize cursor
! labelt] Il _lahel abel
1 | N o
! ' | Hide Inset Tabs P
| ‘ T ‘ Remove Selected L Mouse click
1 Constraint "
\ 1 action
1

Figure 5-10 Features in both area and constraints modes

24

Switching between editing and normal mode (Figure 5-10a)

Note that normal mode is another term for operational mode described earlier in this report. After “Switch to Edit Mode”
has been clicked in the popup menu, the properties window will become visible and subsequently the editing mode is
started. It contains two tabs signifying the two different editing modes one can choose to edit the GUI in the testing
window (Figure 5-10, the two-way blue arrow signifies the ability to switch between the tabs). The process for starting
the editing process, including the names of the classes and the order that they are instantiated, is summarized above in
Section 5.3.

In both modes, clicking on “Switch to Normal Mode” menu item in the popup menu will close the properties window
and terminate the editing process and go back to normal/operational mode. All the buffered images in the testing window
are changed back into JComponents corresponding to the position of their images at the end of the process. Alternatively
simply exiting the properties window will achieve the same effect.

Show/hide inset tabs (Figure 5-10 b)

Clicking on “Show Inset Tabs” menu item shows the inset tabs for the JComponents in the TestEditl window as dashed
red lines (Figure 5-10b right). Clicking “Hide Inset Tabs” menu item hides them (Figure 5-10b left).

5.5.2. Features and Edit Operations in Area Mode

T
1
- % 1 - - -
1 T ™
b1 | B2 | taxthox1 W 1 1 bl | b2 | jagpoxa 1 bl | B2 |textpoxt [|
b3 | b2 N | b3 | ba : b3 | ba area I 2
b5 | b6 E 1 b5 | b6 - ot b5 | b6 - et Content listviewl v
checkl - -richTextBoxl- - {- -5 Es, | checkl - -richTextBoxl- - “Box- ekl --ﬂehTe)dBox—l—-]--Box- — v
! listviewl) ! ! listView1 _ ! listViewl 3 Column b4
o = . e (%] pgm [AL[W
1 Top Y15 | %] Bowom | YL |V
! f : : i ! i Width/Height 235] 76
label1| label2 ! label3 , label1| label2 ! label3 label1 | label2 label3 _
\ i 1 ! i i
CE Swap ! | @) Edit area properties
— : w_ i
1
1
—mx ' —ox —mx
bl b2 A I bl b2 bl b2 textBoxl .
b3 | ba | : b3 | ba b3 | b4 i Area Tistviewl v
b5 | b6 | —dk———— |text h b5 | b6 b5 | b6 !:{tex_t Content listViewl v
checkl | ool i checkl Checkl HehtEdBoES -~ Row =
T i T i T stV Column
| listviewl 1 f listViewl 2 R — listViewl 2 - G .2 [TN
1 i | Top [15 [¥] Bottom [V16 [¥
| ! | | ! | ! Width/Height [285 T 26]
labell; label2 ! label3; : labell] label2 ! label3| label1 | label2 label3 =
: H 1 f ! I |
d Resize \
= | -
1
1

Figure 5-11 Edit operations and features in area mode part 1

Swapping areas (Figure 5-11c)

Swapping areas occurs by clicking on selecting an area (by clicking on it, for example in the figure the area containing
textBox1 is selected in Figure 5-11c left), then dragging the mouse to the destination area (for example, the area
containing textBox2 in the Figure 5-11c left). When the mouse is released, the two areas will swap positions (Figure
5-11c right it appears as if textBox1 has swapped position with textBox2).

Resizing an area (Figure 5-11d)

When scrolling to the border of an area, the cursor will change to a bi-directional arrow; indicating that one can drag and
change the size of an area (see the white arrow in Figure 5-11d left). Also, selecting a YTab causes all the usable Y Tabs
(i.e. not inset tabs) to change from grey dashed lines to blue solid lines to aid visualisation for resizing (the same is true if
a XTab is selected). Resizing can occur provided that the end result doesn’t cause overlapping of different areas
(although this checking mechanism is not fully functional so some overlap does occur in certain situations). In Figure
5-11d left, the top border of the area is dragged to the top-most YTab and released (the green border shows the size of the

25

area after release). The right image shows the resulting resized area; the occupying component (richTextBox1) appears to
be resized.

Edit area operations (Figure 5-11¢)

Area and content combo boxes: contain the names of all the components in testing GUI. Any combo box
selection will automatically update the selection in the testing window. Similarly, clicking on the listViewl
button in the testing window will make the listViewl selection automatically appear in the area and content
combo boxes (for example, the listViewl is selected in Figure 5-11¢). Note that the area and the content which
occupies the area is have the same name.

Row and column combo boxes: Not yet implemented.

Left, right, top and bottom combo boxes: Left and right combo boxes list all the XTabs, while top and bottom
combo boxes lists all the YTabs in the layout specification. Selecting a different Tab from the left, right, top, or
bottom combo boxes changes the left, right, top or bottom boundaries of an area in the testing window. (In
Figure 5-11e, the top images show listView with the “left” XTab as its left boundary and the bottom images
show listView with “X10”) as its left boundary).

Width/Height text fields: These contain information regarding the width and height of the selected area. They
are not editable but change corresponding to the changes made to an area (In Figure 5-11e, the top images show
listView with 439 width and the bottom images show listView with 285 width).

T T
1 1
- 1 - 1 - %
| ¥ 1 "
bl | b2 | teutpoxs 1 I I 1 bl { b2 }
b3 | b4 1 : Area buttonl v I b3 ba]
[T — ! | text_ Content buttond z ! b5 | B8 | textpox1 | [text
checkl Box H ®E o - . checkl Box
e B - I A umn T -
f listViewl 2 ' i listview1 Lon = T L d N listViewl 2
. \ Top ©p %] Bowom | V2 ¥ |
| : I textBox1 ! i [77] 26 1
: 3 ‘ i : :
label1; label2 Iabel3 1 label1/ a0 b2'3 \ 1 labell | label2 label3
| 1 i n 1 | |
I B textBoxl | |
fg e | Gumnsert (area occupied @ !
- 1 _E = 1
1 1
1 1

Figure 5-12 Edit operations and features in area mode part 2

Removing area content (Figure 5-12f)

To remove a particular component from the TestEditl window, either drag and drop the component outside of the
TestEditl window, or by right-clicking on the component and selecting “Remove Area Content” menu item. This
component then disappears from the TestEditl window and appear as a customized JLabel in the panel for storing bin
components in the areas tab of the properties window (end result of the action in Figure 5-12 left is the textBox1
appearing in the bin in Figure 5-12 middle).

Reinserting a component from bin (Figure 5-129)

To swap a component in bin with a component in TestEdit1, simply click on the component in the bin (e.g. textBox1 in
Figure 5-12 middle) and drag the mouse to a location in the testing window (e.g. dragging to richTextBox1 in Figure
5-12 middle). Alternatively the same effect can be achieved by right-clicking on the richTextBox1 area and hovering
over the “bin” menu and selecting the desired component in the bin to replace richTextBox1 (e.g. by selecting TextBox1
in Figure 5-12 middle). The resulting window is shown in Figure 5-12 right in which textBox1 has replaced
richTextBox1 and richTextBox1 is now in the bin. A buggy implementation of the operation for inserting into an
unoccupied area is also available and described in Section 6.3.4.

26

5.5.3. Features and Edit Operations in Constraints Mode

—-Ox =0 .3 - 0%
- . - ——
— ‘ I bl | B2 | textBox1 ...l ___|
IS N A b3 b4 !
Ny Add constraint b5 | b6 [richTextBont]}
N [_Eizddl Box_|
1 listviewl 5
4830
: ———. | O WEE e e [
lagers; 1acel2 ;Iabé‘ﬁ
—-ox Remove Selected k Modif constrai: t Remove Selected
r W p—— | Add New Cunsvlﬂq;H e [E Y n | Add Mew Constraint o
i) ‘ N) = y“\‘_‘. ——e =
[h)| Edit constraint properties O .
~ o 4
-Ox -0 % -o%
[I I bl | b2 | pevigox I
7 =y | b3 bd ! a
I = Feam{ T [j) Remove constraint b5 | b6 tBoxl | | text |
- ol checkl Box
| listviewl 2
Add New Constraine || Remove Selected !
‘Constraint
. M {abelz CIL - DIEMC s e G
| f Ad
. Remove Selected . Remove Selected
‘ Add New Constraint | e w : : Add Mew Constraint H =

Figure 5-13 Edit operations and features in constraints mode part 1
Edit constraint properties (Figure 5-13h)

By clicking a particular constraint label, it is replaced by an editable form with text fields, combo boxes, and buttons and
allow for the editing of the selected constraint (Figure 5-13h). Editable components include: the coefficient (text field),
variable (combo box), operation (combo box containing =, <= or =>), rightSide (text field), penalty (text field), and two
buttons to add or remove another summand to the constraint (see Figure 5-3 for an enlarged, labelled version of the
constraint editing panel).

Add new constraint (Figure 5-13i)

Clicking the “Add New Constraint” button causes a new constraint to be added (with default values) to the list and the
corresponding change of applying this constraint is seen in the testing window (Figure 5-13i).

Remove selected constraint (Figure 5-13j)

Clicking the “Removed Selected Constraint” while a constraint is selected from the list, causes the selected constraint to
be removed from the list and the corresponding change of applying this constraint is seen in the testing window (Figure
5-13)).

Modifying a distance constraint (Figure 5-13k)

It is possible to drag and modify a distance constraint, which edits the rightSide of the constraint as well as edit the value
in the text field. The constraint is being dragged and modified in Figure 5-13k top and after its release in Figure 5-13k
bottom, the rightSide text field value is updated. However this operation is buggy and doesn’t change the GUI.

27

1
1
—mx : —oOx% — %
bl b2 | textBox1 .. ____ ! ‘ | iz textBoxl | ____
b3 b4 ! 1 = b4 |
b5 BB - text U N 57 I S I b6 - text
Ee L [CreToBod | -
checkl Box ' | checkl Box _
Tstviewl 5) fistViewl 5
| Remove Tab From Constraint !
labell E rorwer labell label2 label3)
1 i
1
= Remove Selected
h : ‘ Add Mew Constraint. int \‘
1
1
1
-1 % 1 —-Ox -0 %
T 1 \ud
bl 52 [tetgont .l . \ | - i 2 textBoxl.
5 BE - = =G e L e TEMC Fereind B BT er—
checkl [richTextBoxi] Box 1 | ewckl [|
Tstview1 ' ' listViewl
1 \
Add Tab To Constraint :
labell TTE O 1 labell label3]
| 1
:I\ 1 . Remove Selected
! h 1 ‘ Add Mew Constraint. int L
- 1
'

Figure 5-14 Edit operations and features in constraints mode part 2
These menu items change dynamically depending on the position of the right-click.

Remove tab from constraint (Figure 5-141)

This is only available in the popup menu when the right click position is near one of the XTabs or YTabs in the currently
selected constraint (in Figure 5-141 left, the constraint currently selected is 2.0 X9 - 1.0 X10 = 0.0). When the “Remove
Tab from Constraint” menu item is clicked, the XTab near the right mouse-click (X10, the blue XTab) is removed from
the currently selected constraint (which now becomes 2.0 X9 = 0.0) and the corresponding change of removing this
constraint is be seen in the testing window (right-most image in Figure 5-141 right).

Add tab to constraint (Figure 5-14m)

This is only available in the popup menu when the right click position is near one the XTabs or YTabs not in the
currently selected constraint (any of the grey dotted XTabs or YTabs, for example the XTab next to TextBox1 is selected
in Figure 5-14m left). When the “Add Tab to Constraint” menu item is selected, the selected XTab or YTab is added to
the currently selected constraint (ie another “+” and textbox with the default value 1.0 and combo box with the selected
XTab or YTab). The selected constraint to be added is X11. In Figure 5-14m right, it appears in front of the “=" combo
box. The corresponding change of adding this constraint is seen in the testing window (right-most image in Figure 5-14m
bottom).

28

Chapter 6. Implementation

ALE described in chapter 5 is the state of the program at the start of this project before any changes were made (the old
implementation). This chapter details the steps involved in converting the program to the new implementation at the end
of this project. Figure 6-1 gives a general overview of the changes made to produce the new implementation. These
changes relate to the four major objectives described in Chapter 1. 1) the conversion of the source code from Java to
Scala, represented by the arrows in the figure (Section 6.1). 2) Refactoring of the source code to improve its quality
(Section 6.2). This was mostly involved achieving better separation of concerns by creating edit operation classes. The
relevant classes in the figure for this section are the deleted classes, the new edit operation classes, and the modified
classes. 3) The classes highlighted with pink were used to modify existing or implement new functionality (Section 6.3).
4) Lastly, the new implementation of ALE was integrated into the IntelliJ IDEA through the creation of a prototype
plugin (Section 6.3.1), as indicated by the grey box in the figure.

= =

A

@) Old implementation Y = New implementation —
Deleted classes Modified classes . New classes
! JALMEditorListener .ié)ALM Editor \% ALMEditorCanvas Edit operation classes
—) - & " (EVEdi AddSelectedConstraintTab
(€ JALMEditorTabEvent| | _g_)Molde = EditorMode "=
= (c))AreaPane — (2 Ee= Inserting
|)BinListener = | \&AreaPanel -
@ B (€ JBinPanel i (%\ Palette ke ModifyConstraints
\.£ /BinEvent —] o o=
(€)ConstraintEditingPanel (&= ConstraintEditingPanel f RemoveArea
. S, . = i
[mi (€)ConstraintsPanel ‘/\%\'Constraintspanel = RemoveSelectedConstraintTab
- ;/_\-. X ..
(F)‘ Java class . \ffg PropertiesPanel d-_’- Resizing
- (€ JPropertiesWindow & (Wi SplitAreaHorizontal
- -/ PropertiesWindow N 2P
(e) Java enum class \YE" P = . 5
~ aESplltAreaVertlcaI
1 Java interface Unchanged classes c' _ Swa pAreas
@ an (c)ALMPpanel -
|) cala class —
= ,CC:;,CO|0 Chooser {!_C)\ther new classes
@ scala wrapper — Plugin (&= ComponentinBin
class (. JColumnsPanel j . C
— /4 y
Operation & y 9 4 Y PopupMenu
= (Scala class) \E.) Rowpanel -

Figure 6-1 Overview of important ALE classes in the old vs the new implementation

6.1. Conversion of Java to Scala

The classes converted to Scala are listed in Figure 6-1, represented by the blue arrows going from a Java class to a Scala
class. An automatic conversion tool in IntelliJ was used to partially convert each class into Scala (Section 6.1.1). The two
main objectives were: 1) to convert the editable JComponents associated which perform the edit operations to Scala
components to make use of Scala’s more flexible event handling system (Section 6.1.3) 2) to make use of some of
powerful Scala constructs, i.e. pattern matching (Section 6.1.2) and collection transformations (Section 6.1.4). During the
process of converting the code to Scala, a custom wrapper class had to be created and a description is provided in Section
6.1.5. The following sections assume that the reader is familiar with basic Scala syntax and conventions. A general
overview is presented in Appendix D for those unfamiliar with the language.

6.1.1. Initial Conversion from Java to Scala Classes

The “Convert Java file to Scala” offered by the Scala plugin supported by the IntelliJ IDE was used to automatically
convert each Java class to Scala class as needed. The first step involved manually fixing the problematic code to conform
to the Scala conventions so that each class would compile and run successfully. This meant that features not supported in
Scala had to be removed and replaced with alternatives such as:

29

e the use of filtering statements instead of continue

e usingthe breaks classin scala.util.control which allows the use of the break keyword to exit an
enclosing block marked with breakable

e importing JavaConversions to manage the conversion between Java and Scala collections so that the Java
collections returned by a method or used in the code is automatically converted to a Scala buffer that can be
used by Scala code

e Enum type is no longer supported for Scala so an enum class was created to store the mode constants

e Assigning a Java variable to a Scala variable requires use of the _$eq construct.

e Some of the methods were no longer working since Java components were expected but instead Scala
components were being passed to it. Because Scala swing builds its library by “wrapping” the components in
Java, the corresponding Java component could be obtained by using the peer method

After achieving successful compilation, there were still several runtime errors and setting issues preventing the testing of
the application. These errors and their solutions are listed in Appendix C. After this initial conversion, the source code
was in Scala syntax only but the code was still Java code in all other respects. The rest of this section describes the task
of gradually converting the code to further utilise Scala’s features.

6.1.2. Switch Statements in Java vs Pattern Matching in Scala

Case classes in Scala allow for pattern-matching on objects without a large amount of boilerplate. In Java the construct
for a switch statement is as follows:

switch (selector) {//alternatives// //default at the end//}

while the construct for pattern matching in Scala is:

selector match {//alternatives//
patternl => statements
pattern2 => statements ...}

A sequence of alternatives (pattern => statements) isused for pattern matching, each starts with the
keyword case. After the keyword is the pattern to be matched, followed by => and statements which are
executed upon matching the pattern. The matching expression matches value selector against the patterns
patternl, pattern2, etc in the given order. There are many types of patterns in Scala. The constant pattern matches
constants based on equality (as determined by ==), this is similar to Java’s switch statements which also match on
constants. Other types of patterns include the constructor pattern that matches on multiple arguments, the sequence
pattern which matches on sequences or arrays, tuple patterns which match on tuples, typed patterns to test for type-
testing. Therefore Scala allows for the matching of many more types than just the primitive types and String offered by
Java.

30

// Panels for tabbed pane in properties window, for selecting and using the
different editing modes

var areaPanel: AreaPanel = new AreaPanel (//...//)

var constraintsPanel: ConstraintsPanel = new ConstraintsPanel (//...//)

peer.add (new TabbedPane {
pages += new Page ("Areas", areaPanel)
pages += new Page ("Constraints", constraintsPanel)
//because listenTo (selection) only calls the cases when a tab is pressed
listenTo (this)
reactions += {
case e: ChangeEvent =>
selection.page.title match {
//gets the page from the selection, and shows whatever page whose title
matches the selection.page.title
case "Areas" => alMEditorCanvas.setMode (AreakEdit)
case "Constraints" => alLMEditorCanvas.setMode (ConstraintEdit)

}

alMEditorCanvas.repaint

}
peer.setVisible (true)
} .peer)

In the above code the page member from the TabbedPane class is used to add a new tab, passing its title and content
panel as arguments. The matching of the title of each page to a particular case of type String is an example of constant
pattern matching. TabbedPane contains the selection member which represents the current tab selection. The page title
is retrieved from this member and then checked against each alternative to determine which is the currently selected page
with respect to equality (==). Another example of pattern-matching in the code above is the ChangeEvent case, an
example of applying case classes for pattern matching in Scala’s event handling system which is further explored in
Section 6.1.3.1 below. It also provides examples of the more powerful constructor pattern in Scala.

6.1.3. Event Handling in Java vs Scala

This subsection begins with a description of the event handling system in Java. Subsequently Scala event handling
system is also described with particular emphasis on the constructs that help make it effective.

6.1.3.1. Event handing in Java
An example of Java event handling used in the code is:

areaBinPanel = new BinPanel();
areaBinPanel.addMouseListener (new MouseAdapter () {
public void mousePressed(MouseEvent e) ({
// some code //
}
public void mouseReleased(MouseEvent e) {
// some code //

}

public void mouseDragged (MouseEvent e) {
// some code //
}
3
In Java Swing, event handling occurs as follows (see Figure 6-2 for a diagram representation):

o Install an event listener object for the component by using the method (. addEventXListener ())

31

e The event listener object is passed as a parameter, which implements an interface with an EventXHandler
method (this event listener object is usually created with an anonymous class)

e This event handler method receives an event object as a parameter, which can be used to infer information about
the event that just occurred

When an event occurs:

e Anevent object is an object that is created when the user performs an action by interacting with the GUI

e The event object is sent to the specified target component

e Then the object notifies the event handler and the correct handler method is called with the object passed as an
argument

6.1.3.2. Publisher/Subscriber System in Scala
An example of the same code from Section 6.1.3.1 written in Scala is (see Figure 6-2 for a diagram representation):

areaBinPanel = new BinPanel () {
listenTo (this.mouse.clicks, this.mouse.moves)
reactions += {
case e: MouseDragged => // some code executed after mouse drag //
case e: MousePressed => // some code executed after mouse press //
case e: MouseReleased => // some code executed after mouse release //

In Scala swing, an event is an object (or more specifically, an instance of a case class, explained in the next section) that
is sent to a subscribing component. Each component may be a publisher and/or subscriber. A publisher (or “event
source”) publishes events while a subscriber (or “event listener’”) subscribes to a publisher and is notified when events
are published. All classes with the publisher trait has the pub1ish member which is a method used to notify all
registered reactions All classes with the reactor trait has the 1istenTo, and reactions members. The
1istenTo member accepts publishers as arguments; the component containing the 11 stenTo member becomes
subscribed to the publishers passed as arguments (similar to installing listeners in Java). Each component inheriting from
reactor has a collection of reactions: the += method is used to install/register reactions in addition to the standard
ones. Similarly, the —= method can be used to uninstall/deregister a previously registered reaction.

areaBinPanel is instantiated as an instance of BinPanel (a Scala Panel class). Because Panel has the reactor
trait, it can respond to events (it has the 11 stenTo method). In this example, the panel is subscribed to mouse click and
mouse movement events within itself. The handler refers to the block of code beginning just after reactions containing
the case statements. Instead of the event object being passed to a particular eventXHand1 ing method as in Java, all
event handlers are contained in the handling block and a particular partial function system is used to handle the event
(described in the next section).

Each component has a Mouse object which in turn contain three objects (also publishers) for dealing with different types
of mouse events: clicked (MouseClicked, MousePressed, MouseReleased, MouseEntered, and
MouseEx1ted events.), moves (MouseMoved and MouseDragged events), and wheel
publishers(MouseWhee 1Moved events). Similarly it has a Keys object for dealing with key events. In the example
above, calling 1istenTo on only the mouse objects means the handler is only called in response to mouse clicks and
moves. If ListenTo (this) is called instead, then the handler would react to every type of event fired from the bin
panel.

32

Java Swing , Scala Swing I
! /
|
User | i Subscriber
action . ! User Eyento ject
<<interface>> i ! (instance of inherits fram
EventXListener i AELET case class) rescrsto
activates i ! Subscriber/Listener
implements |
handles | creates
EventX EventXListener | Reactions += { handler
| .
eventXHandler ! i notifies
e (eventX) i E,"e”t ObJEC; listeners/subscribers
3 1
object notifies : (instance o
1 caseclass) Pattern matching
Creates 1
{generates i Publisher
an event) !
Source (JComponent, mouse - Inherits from 1
p
i+ listens to
addEventXListenerjeventXListener) E Publisher{Component,mouse)
removeEventXListener(eventXListener) registers | ListenTa(publisher)
notifyEventX() i deafTo{publisher) subscribes to
1
|

Figure 6-2 Diagram showing the difference between Java and Scala event handling

6.1.3.1. Partial Functions, Pattern Matching and Case Classes in Scala

A partial function can only operate on certain values of the arguments and is undefined for other arguments. The event
handlers are partial functions that pattern match on events. Just like in Java, there are many different subtypes of Event
for responding to different types of events; in Scala they are defined inthe Scala.swing.event package. Unlike
Java though, event handling in Scala can make use of case classes, which are designed to support pattern matching
succinctly. An instance of the case class is created when user interaction initiates an event. For example when a mouse is
pressed, the following case class is created:

case class MousePressed (source: Component, point: java.awt.Point, modifi-

ers: Modifiers, clicks: Int, triggersPopup: Boolean) (peer:
java.awt.event.MouseEvent)

The event object is used for pattern matching in the handler (the reactions block). In the code example provided in
Section 6.1.3.2 above:

e this partial function operates on events, but would only be defined if the argument was of MouseDragged,
MousePressed, Of MouseReleased type

e Only mouse events is be passed to the handler since 1istenTo method is only registered on mouse clicks and
movements

o if the user clicked on the bin panel, then the MousePressed and MouseReleased event objects are created
(instances of the MousePressed and MouseReleased case classes)

e These patterns check for the type of event object given to it. For example case e: MousePressed matches
anything that is an instance of the MousePressed case class. As seen here, it is possible to match on more
than one type of event in a single handler by using multiple event types.

o If the pattern is matched, the handler actions that correspond to this event in the code would be executed (the
code after =>)

Scala's pattern matching expressions can use constructors as patterns, which can be very useful for GUI applications. The
example below uses patterns of the form Constructor (varl, var2) where Constructor is a case class
constructor and varl and var?2 are variables. In a handler, the object is first checked if it is an instance of the named
case class, then the constructor parameters are checked. The constructor parameters offer a way to provide more specific
conditions in a pattern.

33

In the constructor pattern below the variable checkComponent is passed as the source : Component argument. The
underscore signifies the wildcard, so those arguments are ignored in the pattern. Only a MousePressed event object
created by clicking on that specified component produces a match, clicking on anything else does not produce a match.

case s: MousePressed(‘checkComponent’, , , ,)
More arguments can be passed for “deeper” checking, such as only matching when the specified component is clicked
exactly twice:

case s: MousePressed(‘checkComponent’, , ,2,)

In conclusion, event handling in Scala seems to be more powerful and concise due to the use of concepts mentioned
above: publisher/subscriber, partial functions, pattern matching in conjunction with case classes.

6.1.4. Collections Transformations in Scala

Scala’s collection methods allow for more concise syntax compared when transforming collections. The example code
below comes from the PropertiesWindow class and illustrate that Scala does not require the use of loops or explicit
iterations to perform collection transformations. In the first example, the array list of constraints in the layout
specification is transformed into a list minus the constraints without an owner. The underscore is a placeholder for one or
more parameters, so _.Owner==null is very short notation for a function that checks whether the constraint’s owner
is null or not. In the Java version, a new array list created, a for-loop goes through each constraint and adds only those
whose Owner is not null. This process that takes up 6 lines of code in the Java version is achieved in one line in Scala.

userConstraints = le.getLayoutSpec.getConstraints filter (_ .Owner == null)

The second example illustrates the use of map on a collection. Here the array list constraintLabels contains a list
of type scala.swing.Label but it needs to be transformed into an array list containing the names of its
corresponding javax.swing.JLabel. Instead of iterating through a for-loop and changing each item one at a time,
the map transformation is applied:

constraintLabels map (_ .name))

6.1.5. Making a Custom Wrapper Class in Scala

Due to the enormous number of JComponents available, not all wrapper classes are provided for their Scala counterparts.
In this subsection we describe the steps involved in making a custom wrapper class (Section 6.1.5.3). We begin by
introducing concepts relevant to its creation, namely: Scala traits (Section 6.1.5.1) and the Scala wrapper system (Section
6.1.5.2).

6.1.5.1. Scala traits

The trait construct is unique to Scala inspired by Java’s interfaces and Ruby’s mixins. In addition to abstract members,
they can also have full method definitions (concrete value members) and allow for the inheriting classes to possess
multiple traits. The notorious diamond problem produced by multiple inheritance is avoided in traits by the way they are
treated in an inheriting class. Traits are not true superclasses but are actually mixins as in the concrete value members are
treated as though they belong in the inheriting class. Therefore there is no inheritance path ambiguity, thus avoiding the
diamond problem. If two traits have the same method (hame, parameter, return type), the inheriting class will use the
method from the “dominant” trait. For example, for the following class, Trait1 is dominant because it was declared
first.

class TestClass (number:Int) extends Traitl with Trait?2

In this way, many traits can be mixed into the class by using the extends keyword for the superclass or predominant
trait and any number of traits after it using the with keyword.

34

6.1.5.2. Scala Swing Hierarchy and Wrapper System

1dV ®|BaS 8yl wouy paidod Ajpoalip ase sytew uoieionb ul sjuswiwod ayl -Buiquasap ase Asyy Jaquiaw 10 uswgd ay) 01 Bunuiod saxoq suym
Ul aJe Sluswwo) "xoq an|q e Aq papuno.ins are abexoed Buims xenel syl woly sasse|d Juswa|a Bulmseeds ayl Mojag xog MmojjaA syl ul
pa3sl| aJe SiaquusWl 818J0U0J pue X0q PaJ 8yl Ul pals| aJe siaquiawl 1oelsae ay | “xoq ajdind e ui s Jaquiaw Jaad 81812U03 B Y1IM 3SOU] B]IYM
X0q Uaaib e ul siaquiaw Jaad 10vJ1SgR UR YlIM 3S0y) :Sasse|d Buimseeas ayl “T-& ainbi4 Jo walsAs Buipoda-1nojod ay) Smojjo) ainbiy syl

wiaysAs Jaddeam ejeas ay £-9 aunbi4

unipyladng
s nuadndodr ff

saad [es dzE] BplLUSAD

(SumseEas) {Furmse|eas) {Summse|E3s) {Buums e L L A —
jBuEd _/_;_ segnuam ¥ nus _/__ _m_._mn_son_./u nuzdndod f.nf

W EurpLuEAD
Aq paziwogsno agq
Al UED 12yl Spoyaw asodes o

[Iy
5 Ex.Ehn...ﬂ:!EnEeO& — -
Jaddes ssuiEues woly [weuodwoa]bas] - Iny=sn 2EQ pus saddeim auyy
SUrKIL oY SISQUIEL BNJEN B130U0D

muEquod 3yt saaejdas sueluogenuEnbes woly % 01 J53d AU WoUL 5|8 UIELED
uonewswa|du) J3Yng S130u0sD Sd 1IENpal O] PESN 5| Y20 5L,

[[awsuodwon] Jagng sW=IU0 | g
_ s2d Suims Suiksapun ayL _I.I Jusuodwoor Suwesenel 18ad JEp 1Densqy wsuodwoor Sums xene __./ U__
-
{saddesp suizjuojEnuanbag) A
BIqEINW Jou JElauiEjuon [Enuanbas Suiddelm Jop e Agan,, T saddeam !
‘SluEquod Jo uselusws|dw bag asiauon
4
[w=uodwas]bas :auauss = b4
[ausucdwen]imyna:sauaiueD j3p Peusqy Jzad wusuodwosr Sulmeenal 2g 1Ny
wauoduwsody Suims xenel i32d g2p pEnsgy e are a0 o9 e wauodwoy e snel iaad j2p ensqy jusuoduiogr Jzad jen Aze
e —
{Jaddesm sauEnd) m*r 10 sj3usd Moy 5B YIns ‘Fsuss IA S (SumsE(Eas) - LHOpULIM E Ul pade|daip 3g uea
Jaddesm v SE{ELW USIPIYI 40 JBPI0 [EQUSNbEE JaurEzuoo|enuenbas | Jusuodwod AEUL SUBLUB 1N |12 404 55212 B5EG AYL,
E 2IyM 10y JSUIEIN0D ¥, -

o SELUBL SUEIUOT FYR

40 UCOESWSELI 3 FEINLIL UE SHPIMDID
-saguleaued Suiddeam Jop 320 Ann, o sse(a Jaddesm ejeag g
[wzuodwen]bas :su=Iuod Jap 2Ry p
uzuodwarame-eseliaad j2p pensqy -
ASIUEUCELOD UIEIW0T UEY mw. el Ejeas =
— JBUIEIHOD | +
1EY3 SJUBIWE|D |1 104 SLIEIL A5G Y, ° iy .
g Y
S5E[3 BAR[[|]
G
" I
waucdwoyme enefszad Jap Nensqy |E
LSWSWE[E EIELSIU) 135N ||B 40 12N A58 YL, _| WAWEEIN w._.—. '
wa)sAs 1addeim Suims ejeas ﬂw_
o

Figure 6-3 gives an outline of a section of the Scala Swing hierarchy and shows where the custom-made PopupMenu is

situated within this structure. UTElement, Container and SequentialContainer are all traits which define

members for their specific purposes. UTE1ement is the base class and defines concrete members needed by all GUI

member contents (immutable sequence of child components) which is implemented by Container.Wrapper, a

utility trait for wrapping Container. The SequentialContainer refines the abstract member in Container to
35

components such as background, size, repaint, and reactions. The Container trait has the abstract

become a mutable buffer of child components, which allows for addition and removal in a specific order.
SequentialContainer.Wrapper extends SequentialContainer, implements its contents member, and thus
has a mutable buffer to store its child components. It also inherits from the Container.Wrapper trait and mixes in
some concrete value members it.

Components which require a sequential ordering of its child components (e.g. BoxPanel, Menu, and MenuBar)
extends the SequentialContainer.Wrapper trait and each of them can make use of the concrete contents
member. In contrast, child components of the Panel class is stored in a sequence and is immutable, because sequential
ordering is not necessary. In summary, a programmer can make use of the various properties provided by these traits to
make a customized component. For example the component should inherit SequentialContainer.Wrapper if
sequential ordering of its child components makes sense but inhert Container.Wrapper if the list containing its
child components should not be modified.

6.1.5.3. Creating a PopupMenu Wrapper class

A PopupMenu wrapper class was created for this project as no wrapper exists for JPopupMenu. Two important
inherited members are the contents mutable buffer (from SequentialContainer.Wrapper, already mentioned
above) and the peer member (from Component) (highlighted with red boxes in Figure 6-3). Notice that the
JPopupMenu Mmixes in the Supermixin trait, which overrides methods within javax.swing Component such as
paintComponent, paintBorder and paintChildren; itis used to redirect certain calls from the peer to the
wrapper component.

These are the main steps required for defining a custom wrapper class (with the PopupMenu as an example). 1) It must
extend scala.swing.Component, S0 it can be classified as a Ul Component and make use of the related
functionalities. 2) It needs to inherit traits that define concrete methods needed for the class. The PopupMenu extends
Component With SequentialContainer.Wrapper, S0 it has the ability to have sequential ordering of child
components and to add them using the contents . += construct. 3) Most importantly, the peer member has to be
overridden with a class from the javax. swing package with SuperMixin, in this case it is
javax.swing.JPopupMenu 4) The last step is to create peer methods, in this example it is JPopupMenu. show
which makes the right click menu visible in the position of the click. The code for the wrapper class is shown below:
/**Custom wrapper for JPopupMenu since PopupMenu no longer exists 1in scala*/

class PopupMenu extends Component with SequentialContainer.Wrapper {
override lazy val peer: JPopupMenu = new JPopupMenu with SuperMixin

// create peer methods here
def show (component: Component, xPos: Double, yPos: Double): Unit =
peer.show (component.peer, xPos.asInstanceOf[Int], yPos.asInstanceOf[Int])

}
6.2. Refactoring ALE

6.2.1. General Refactorings

Several common refactoring techniques mentioned in the refactoring catalogue defined by Fowler et al [14] were applied
in this study and is referenced in this subsection in square brackets, e.g. [move class].

Before major changes to the ALE class system was made, some smaller changes were made in the classes to improve
inefficient, complex, or hard-to-understand code. The update method was a long method extracted to become
areaUpdate and constranintUpdate methods containing code related to area and constraint update, respectively
[extract method]. The old implementation had one popup menu for all menu items in editing mode and checked the mode
to determine which one to display. Two separate popup menus were created in the new implementation, one for each
mode [extract field]. Some simple methods were only called once, therefore it the method was removed and its code

36

integrated into the correct position in the code (Remove middle man). The PropertiesWindow class was moved from
alm package into alm.editor package, since it is a part of the editor [move class]. Other refactoring such as
[renaming methods/ fields/classes] (e.g. BinPanel renamed as Palette, ALMEditor renamed as
ALMEditorCanvas to better reflect their true purpose), [encapsulate field/method] was also performed.

One example of refactoring to improve the efficiency of a method is the getAreaYTabSelected method. It finds
whether the mouse clicked on the top YTab or the bottom Y Tab of the selected area, within a given tolerance (TOL). It
takes in a parameter representing the currently selected area (selectedArea) and a point representing the mouse click
position (point). The unrefactored method called the get YTabSelected method, which looped through all
X/YTabs in the layout specification and returned the first found YTab with the position corresponding to the mouse press
position (within a certain distance given by the tolerance). Then, if the clicked YTab is either the top or the bottom
border of the area, it is returned. This method is called every time the mouse is pressed and is clearly inefficient since its
worst case complexity is O(n) where n is the number of X/Y Tabs in the layout specification, i.e. every time the mouse
does not click on a YTab.

def getAreaYTabSelected (selectedArea: Area, point: Point): Variable = {
// Call a minimum search algorithm for the nearest YTab
val selected¥YTab: YTab = getYTabSelected(point) .asInstanceOf[YTab]
// Check that the nearest YTab is either the top or bottom border of the
currently selected area
if (selectedArea.getTop == selected¥YTab || selectedArea.getBottom ==
selectedYTab) return selected¥YTab
else return null

}

The refactored version is shown below. It minimizes the steps for the search by only considering the top YTab and the
bottom YTab for the selectedArea. It simply checks whether the mouse press point corresponds to the top YTab or
the bottom YTab position within a certain distance given by the tolerance. This algorithm always requires only a constant
number of steps and this should increase the performance of ALE, especially in a larger example with more variables in
the layout specification. Figure 6-4 is a pictorial representation of the position of each variable used in the method, for
example selectedArea.getTop.getValue + TOL indicates a y-coordinate a certain distance (TOL) below the
top border of the area (selectedArea.getTop.getValue). The mouse click must be within the region
highlighted in blue to select the top border YTab.

def getAreaYTabSelected (selectedArea: Area, point: Point): Variable = {

// test if it is the top tabstop

if (point.y >= selectedArea.getTop.getValue && point.y <=
selectedArea.getTop.getValue + TOL) return selectedArea.getTop

// test if it is the bottom tabstop

if (point.y >= selectedArea.getBottom.getValue - TOL && point.y <=
selectedArea.getBottom.getValue) return selectedArea.getBottom

// otherwise: no tabstop

return null

Selected area
area.getTop.getValue

area.getTop.getValue + TOL % : ToL

textBox1
Y b

area.getBottom.getValue - TOL
area.getBottom.getValue

Figure 6-4 The important variables in the refactored getAreaY TabClicked method

37

6.2.2. Separation of Concerns

Separation of Concerns (SoC) is a design principle for separating a program into distinct parts such that each part
addresses a different concern. A concern has been defined as a part of a program “relevant to a particular concept, goal,
or purpose” [52]. Since ALE is a GUI application, it was refactored so that each part (a GUI top-level container class)
contains all its child components (Section 6.2.2.1); and also contains all the necessary methods and fields to perform
well-bounded functionalities (Section 6.2.2.2). The advantages of such a structure is further explored in (Section 7.1.1.1).

6.2.2.1. Separation of GUI Components

*(@ Before refactoring > \ @ After refactoring >—

(©) AmEditor

® Mode
@ BinPanel

@ ALMEditorCanvas I:B:I

‘ @Popupl\ﬂenu |
Pl =] [@ -
@ alette H‘} B= @Componentln&ln

@ EditorMode

@AreaPaneI

1o axilach
i ey
@ AreaPanel

Lety kh ¥ Righe

=)
Tep 12 191 Boum
.

@ ConstraintEditingPanel
5

I
3
@ ConstraintsPanel t

“Wadth fHeight
@GonstraintEditingPanel
@-Prcpertleszndow :“5 | = | | SR .
ST g [T
Top [t %] gomem [I
Area Constraints Wonmeer L7 L%
=] 'CQ ConstraintsPanel
m
[[2]
=0 =N] : -
\&= PropertiesPanel @ Propertieswindow
—gx
Area Constraints
Conaraim

Figure 6-5 Separation of components before and after refactoring

Note that for completeness, this figure also shows the modified and newly implemented features described in Section 6.3. Edit
operations n and o, plus the changed appearance of the components in the palette.

Figure 6-5 shows the distribution of components across the classes in the alm.editor package (where each class is
encased with a black border) before and after refactoring. This figure follows the conventions used in Section 5.5 in that
the features and operations are indexed by letters contained in grey and yellow circles, respectively.
PropertiesWindow was split it into two classes: PropertiesWindow, which contained the code that a Frame
(Window) needs to use (i.e. the menu bar), and PropertiesPanel, which contains the remaining code. Most of the
components in the PropertiesWindow class was then moved into other classes. After refactoring, the
PropertiesPanel class contains the tabbedPane and points to AreaPanel and ConstraintsPanel. The
area panel’s child components (combo boxes, labels, Palette, areaScrollPane) were moved to the AreaPanel
class; it also points to the Palette class. The constraints panel’s child components (Buttons, Labels,
ConstraintsListPanel, and constraintsScrollPanel) were also moved into the ConstraintsPanel
class; it also points to the ConstraintsEditingPanel class.

38

6.2.2.2. Separation of Functionalities

A © Before refactoring >——< (= After refactoring)

(1) MouseListener

listenTo(selection)

=l (g\: apply

k. (1 JMouseMotionListener
@ MousePressed @ MousaClicked ® " Moved

ouseMove
@ MouseEnteled@ MouseExited @ MouseDragged

@ MouseReleased -
f T .
1

@ ALMEditor

@ALMEditorCanvas PP P— Seit frem Verbesly
nE|, T ,,| °~E| it frea Vertical |

‘Cr; it q b
o)
C o Swap d Resize K o Moty
hl: = -
% =

— .
= Constraint

Swuitch b Edit Modke
Show Inset Tabs
Femove Area Content

IistenTo{ALMEditorCan\.ras]
G}_ MousePressed I= MouseMoved

I= MouseReleased f= MouseDragged

. . rea | = I

@Propertleszdow [_, ConstralntsPaneI] b I
—~ — @ AreaPanel o eg,_\' -
I—\I i A—lw (1) I_l\ﬁl—l’A\g;—l ™ e = mlg'"::: =
A0 e Coveraine | Peree Sk el | [— o —— T = 1

ReatBand i
i wrtort | et Java dl |:||]:| e insert | listenTo(Palette)
@ BinPanel oa class @ Palette =

ik Tast
Bt

Java interface

Ci
@ Java reaction
=
€
@

G\: MousePresschl_ MouseReleased

ek Tastianl

Scala class

@ ConstraintEditingPanel

@ConstramtEdltmgPanel
T m—/hé\—w—m

Crm l:l:(h)

Operation
(Scala class)

Scala reaction

Figure 6-6 Separation of features/operations before and after refactoring

Note that for completeness, this figure also shows the modified and newly implemented features described in Section 6.3. Edit
operations n and o, plus the changed appearance of the components in the palette.

Figure 6-6 shows the distribution of functionality in each class (where each class is encased in a black box) before and
after refactoring. The components are indexed with the functionality they perform. This figure follows the conventions
used in Section 5.5 in that the features and edit operations are indexed by letters contained in grey and yellow circles,
respectively. Most of the functionality contained in the ALMEdi tor class was factored out into edit operation classes (as
Figure 6-6 shows that the code becomes ALMEditorCanvas plus many operation classes). Similarly, the insert edit
operation was moved out from PropertiesWindow but is now associated with the Palette, as it needs to listen to
events fired from the palette panel. The methods and fields performing functionality in properties window was further
separated into ConstraintsPanel (featuresiand j) and AreaPanel (feature e) because they are associated with the
components now contained within these classes.

Before refactoring, ALMEdi torCanvas extended MouseListener and MouseMotionListener;
PropertiesWindow also extended MouseListener and overrode the eventXHandler methods for reacting to
user action. The code for the edit operations was spread out across the
MousePressed/Released/Moved/Dragged Scala event handling cases in the ALMEditorCanvas class. After
refactoring, the code belonging to each operation is in its own edit operation class, therefore achieving separation of
functionality. The edit operation classes which provide functionality for ALMEditorCanvas can be separated into two
groups. The first group (classes for operations f, I, m, n, o) all contain the code corresponding to an action executed after
clicking a menu item. As such, they all extend the Action abstract class and implement the app 1y method and listen to
the selection object provided by the Combo box class. The second group (classes for operations c,d,k) listens to the
ALMEditorCanvas and simply installs more reactions for the canvas (by using += method to add more event handling

39

capability). They do not extend the Action class but instead contain code for their specific editing operation within the
MousePressed/Released/Moved/Dragged Cases.

Below is the example code for the RemoveArea (operation f) operation class showing the general structure of the first
group of operations:

class RemoveArea (canvas: ALMEditorCanvas) extends Action ("Remove area
content") {
// 1f this menultem is pressed, call apply
canvas.areasPopupMenu.contents += new Menultem(this)

// install reactions for direct manipulation invocation of this operation
canvas.reactions += {

case e: MousePressed if (canvas.editorMode == EditorMode.AreaEdit)=>
// select area under mouse
case e: MouseReleased if (canvas.editorMode == EditorMode.AreakEdit)=>

// If the mouse is released outside of the main window
// then call apply
}

/**
* Removes the area, adds the content to the bin and refreshes the GUI.
*/

def apply {
// some code //

}

It extends Act ion which takes a string parameter as the name

e The popup menu for the area mode (areasPopupMenu) is accessed from ALMEdi torCanvas. A new menu
item is created by passing the RemoveArea class itself (an Action class) as an argument. It is then added to
the popup menu.

o Reactions related to detecting the removal of components/areas are installed for ALMEditorCanvas

e The apply method is implemented to contain code which removes the area/component

Below is the example code for SwapAreas (operation c) operation class showing the general structure of the second
group of operations:

class SwapAreas (canvas: ALMEditorCanvas) {
//install reactions for the canvas
canvas.reactions+={
case e: MousePressed if (canvas.editorMode == EditorMode.AreaEdit)=>
// the mouse cursor is changed to MOVE CURSOR, the area underneath the
mouse cursor 1is found and assigned to selectedArea
case e: MouseReleased if (canvas.editorMode == EditorMode.AreaEdit &&
canvas.selectedArea != null) =>
// the area under the initial mouse click (selectedArea)
// and the area the mouse 1is currently over which is also the area at
the position of mouse release (mouseOverArea)
case e: MouseDragged if (canvas.editorMode == EditorMode.AreakEdit) =>
// the area underneath the mouse cursor when being dragged is found and
assigned to mouseOverArea
case e: MouseMoved if (canvas.editorMode == EditorMode.AreakEdit) =>

// the area under the mouse while moving is detected and assigned to
mouseOverArea

}

e Itinstalls reactions for the canvas and then specifies the event cases

e Together, the code within the MousePressed/Released/Dragged/Moved cases contain all the
necessary steps for swapping an area

40

e The area under the initial mouse press is assigned to selectedArea. The area under the mouse as it moves is
detected by MouseDragged/Moved and assigned to mouseOverArea. When mouse is released, the two
areas swap.

Then, the edit operation class is instantiated in ALMEditorCanvas:

// Installing the removeArea editing operation in ALMEditorCanvas
val removeArea = new operations.RemoveArea (this)

// Installing the swap areas editing operation in ALMEditorCanvas
val swapAreas = new operations.SwapAreas (this)

6.2.3. Refactoring ALMEditorListener and BinListener

2 1 \) :
&) Before refactoring = After refactoring
C |) ALMEditorListener G(::) ALMEditor b C"g AddSelectedConstraintTab
tabAction(ALMEditorTahEvent e) addListener method(ALMEditorListener) List of Click addConstraint menultem
— T Adds the passed ALMEditorListener ALMEditorListenrs
/_{:c /j PropertiesWindow 4 to an arraylList of ALMEditorListeners - !)
InformEditorListeners() call updateConstraintText()
source is EditorWindow L=
alMEditorCanvas. addListener(ihi<) Click addConstraint menultem Event type: add [N I% Ee el ConeaimTob
Overridden tabAction method|() Click removeConstraint Menultem Event type: re Click removeConstraint Menultem
Case 1 EE"ET‘t t\’ze Add):) Meodified a distance or ratio constraint Event type: updated
call updateConstraintText() by dragging a XTab/YTab :
Case 2 (Event type Remove): | call updateConstraintText()
call updateConstraintText() H
Case 3 (Event type Updated): H C k\= ModifyConstraints
call updateConstraintText() For each listener in the arrayList, H
Call setConstraint() ‘ ‘ Invoke tabAction i Meodified a distance or ratio constraint

by dragging a XTab/YTab

(€C) ALMEditorTabEvent

Source
ndo call updateConstraintText()

@Con;truc‘tcr(Source, Variable, Type)
Call setConstraint()

2N] & I
&) Before refactoring X (= After refactoring
— ! a
|
|
— |
((c) ZEY !
(C) ALMLayout i i il
& ayo W { E) PropertiesWindow i f g'= Inserting
H
PropertiesWindow addListener method(BinListener) 5 . ‘ i Mouse press on an item in bin
Adds the passed BinListener e ;
editForm. addListener() . - m—— |
to an arrayList of BinListener ' .
nothing
. InformBinListeners(): ‘ the editi
At) BinListener source is EditorWindow mouse rejease on. e editing
. canvas (ALMEditor panel)
newBinAction(BinEvent e) Mouse press on an item in bin Event type: Pressec
— T And mouse relezse on the editing Event type: Rele
o - ' canvas [ALMEditor panel) ! Swap the component from bin with
‘.\C / ALMEditor i the component in the area on release
Overridden newBinAction method()
Case 1 (Event type Pressed):
For each listener in the arrayList,

Case 2 (Event type Released): Invoke newBinAction

nothing ‘

Swap the component from bin with ' E) BinEvent
the component in the area on release ——
@ Constructor(Event, MouseEvent, String)

@ Enum Event

Figure 6-8 Refactoring the BinListener system

Before refactoring, two custom Listener classes and two custom event classes were used to respond to the
adding/removing/updating of constraints (ALMEditorListener and ALMTabEvent) and to pressing/releasing the
mouse on the bin panel (BinListener and BinEvent). After refactoring, the same functionality is achieved by
removing the custom listener and event classes and integrating their functionality into the correct classes (Inline class).

ALMEditorListener/ALMEditor TabEvent (Figure 6-7): PropertiesWindow implements the
ALMEditorListener interface. Its instance in ALMEditorCanvas is added to an array list of

41

ALMEditorListeners by using the addListener method defined in ALMEditorCanvas. Whenever
addConstraint or removeConstraint menu items are clicked, or when a constraint is modified by dragging an
X/YTab, informEditorListeners is called and is passed a new ALMEditorTabEvent as a parameter. It passes
the event type add, remove or updated for add constraint, remove constraint, or the modification action, respectively.
Next, the tabAction is called for each listener in the ALMEditorListeners array list (note there is only one). Finally,
the tabAction method defined within PropertiesWindow will perform a particular action depending on each
event type. After refactoring, the necessary code is simply inlined into the edit operation classes designed for
adding/removing/modifying a constraint.

BinListener/BinEvent (Figure 6-8): Similar to the above situation before refactoring, ALMEditor implemented the
BinListener and PropertiesWindow contained the list of listeners, the addListener and
informListeners methods. An instance of ALMEditor was added to the list of BinListeners in the ALMLayout
class. Again, in the new implementation everything is simplified by inlining the code immediately (within the Inserting
operation class, in MousePressed and MouseReleased reaction cases).

6.2.4. Conclusion

This section has addressed the research question: “How can a complex GUI application (such as ALE) be refactored?”
We have shown that general refactoring techniques can be applied to a complex GUI application like ALE. We have also
demonstrated that functionality from a component required to handle many events (like ALMEditorCanvas) can be
extracted into smaller classes. Our experiences finds Scala’s reaction handlers useful for breaking reaction handling code
into separate “concerns” each dedicated to a single functionality. Finally, we showed that removal of custom listener
systems in a complex GUI application like ALE can be achieved by studying the call hierarchy and inlining the code.

6.3. Modifying Existing and Implementing New Functionality

6.3.1. Split Area Horizontally/Vertically

=l =1 - %
bl | b2 j bl | b2 i bl | b2 1 bl | b2
AextBoxl . . dextBoxl
b3 | b4 ! b3 | b4 |textBoxl i b3 | bd HEox ! b3 | b4
b5 | b6 s b5 | b6 | b5 | b6 b5 | b6
[richTextBors 12X [richiextBort -1 [richTextBoxt -
ThatkD richTextBoxl Box checkl | richTextBox- Box richTextBoxl Box

listviewl

listviewl

listWiewl 2

listviewl

label2 |label3;

0 Split Area Vertically

label2 !label3} label2

Iabe\li Iabellf label3] Iabelli Iabe\zi

N g | Split Area Horizontally

Figure 6-9 Newly implemented edit operations usable in both modes
Split area horizontally (Figure 6-9n)

The textBox1 in figure Figure 6-9n left is the old area. A new area is created (top half of the old area, highlighted in
green in Figure 6-9n right and the old area is shrunken to become the current selected area (bottom half of the old area,
highlighted in red in Figure 6-9n right). This was implemented by these steps:

e Create anew YTab

e set the value of the YTab halfway between the top and bottom borders of the old area

e Make a new area half the height of the old area and set the content to be null, it will be the top half of the old
area

e Set the preferred size of the new area to be the same width as the old area but half the height of the old area

e Change the selected area’s top tab to be the new tab created (thus the selected area is now on the bottom half of
the old area)

Split area vertically ((Figure 6-90)

42

The textBox1 in Figure 6-90 left is the old area. A new area is created (right half of the old area, highlighted in green in
Figure 6-90 right and the old area is shrunken to become the current selected area (left half of the old area, highlighted in
red in Figure 6-90 right). This was implemented by these steps:

e Create a new XTab

o set the value of the XTab halfway between the left and right borders of the old area

e Make a new area half the width of the old area and set the content to be null, it will be the right half of the old
area

e Set the preferred size of the new area to be the same height as the old area but half the width of the old area

e Change the selected area’s right tab to be the new tab created (thus the selected area is now on the left half of the
old area)

6.3.2. Changes to the Appearance of Components Added to the Bin

- -~
Boxl textBox1
textBox textBox1 textBoxl
L 3 v
e -~
textBox1
T richText e —
rchle; OX.
richTextBox Box1 richTextBox1
v v
™y Y
textBox1
label1l labell
labell richTextBox1
S labell b

Figure 6-10 Contrasting the appearance of text boxes, buttons and labels in the old implementation versus the new
implementation

In the old implementation, a custom JLabel was made for every component. A square was made containing the
component name in the centre, with the background colour as background colour of the component. Another JLabel was
placed next to the custom JLabel and everything was arranged using gridBagLayout layout manager (Figure 6-10 left
panels). In the new implementation, buffered images are used so the direct images of the actual component (capturing the
actual size in the layout) can be seen in the bin (Figure 6-10 right panels).

6.3.3. Changes to Insertion into an Already Occupied Area

Figure 6-11 shows the differences between the old and new implementation for inserting into an already occupied area.
In the old implementation, an array list was used to store the JComponents in the bin while two hash maps were used to
link the JComponent to its insets or horizontal/alignments. Therefore when removing a component/area, the
corresponding entry had to be removed from the array list and hash maps and when inserting a component/area the
corresponding entry had to be added to them. In the new implementation, the properties (content, insets,
horizontal/vertical alignments) are set up in the class ComponentInBin (which contains all information belonging to a
particular bin item). The steps involved with swapping the selectedArea (area in edit canvas in the mouse released
position) with the binItem (item selected in the bin) is therefore much simpler in the new implementation as
everything can be accessed from the ComponentInBin class. Furthermore, the new implementation no longer uses
BinListener and BinEvent, and the code has been separated into edit operation classes; hence the new
implementation is easier to understand.

43

‘(¢ dais dems) (3sTTUTGUIIUSUOCdWOD) ISI| BY) WOJ) WSITUTQ

ay1 anowal ‘Ajjeutd ‘(z deis dems) ‘pey ajgerieA W= TUTC gyl Jeym yolew 0} uoljewopul Juawubije [ediuaA/[eluoziioy‘1asul s)i arepdn pue (3usuodwood *we3TUTJ) Ulg Ul PalIa|as auo ayl 03
d]geleA BSIYPS30STSS 8y} Ul JUIBIU0D 3Y1 18S ‘IXaN (T dals dems) ajgelren eexype310Tos ay) 199]4a4 01 sendadoud sy ayepdn pue uTguIIusuodwod Mau a1esl) :uolreluswsaldwi MaN
‘(¢ days dems) sdew pue 11| 8Y1 WO PaAOWa) S WSITUT ‘Ajeuld ‘(z deis dems) a|gelteA we3 TUTJ sy} WOJS UOITRWIOLUI JuswUBIfe [ed1BA pue [eIUOZII0Y ‘18SUl JUSIU0T By} YlIM

pa1epdn si g|qelien esxypa30aTas ay) ‘IxaN (T deis dems) uiq sy 1oy sdew/isi| 8yl 01 pappe SI UOIeWIojUl B2IYPa109TaS pue Paj[ed Sl poylsll TOIFUOCDSTITS TAUIPPE ayl ‘poylewl

SIU) UIYIIA JUDAFQNS , PISBI[Y,,

Ay} yim pajed Surdq poyew uoTIoyuTgmau ay) 01 dn Buipes| /-9 ainbi4 ul pauljino sdais smojjos B uoiresado Jo Buluuibag sy :uoireyuswajdwi pjo

5 NOILVd3dO
"UIg 8y} JoJ 31| BU) 0} pappe

pue (wsu uig suo Bunussaidal) apew s UTgUI IusuodwoD sy) JO SIURISUI MBU B (Pa]|ed SI SSejd UOTIDY sy} JO poylaw A Tdde ay) 1daoxa aAoge Se swes :uolyelusws|dwil maN “ulq sy}
J1oj sdewisi| ay1 01 UOITRLWIIOJUI B2 IYPSAOWSI ppPR 0] POYlaW TOIFUODSTATS TAUIPPR S||RI YIIYM POylall UMOJSSTIOIUS1Uo)2A0WS T 9y SIabBL) uonoe Jssn :uoneluswsadwi pjo

4 NOILvd3dO
"uIq ayy 104 sdewysisi| ayl siussaldal 1xa1 ang

‘(3 uonresado) uoneiado uouasui Jo (6 uoleiado) eAowal ayl SWI0Ad JBYIIS YIIYM SPUBLULLOD JO UIeYd B SUBIS YJIYM apod syl AQ pPalosiap SI Jeyl Uolloe Jasn Juasaldal saxoq papunod Aaib ay

eaJe pardnaoo Apeadfe ue ojul Builaasul Usym JnolAeYag Ulg pajipow ayl Jo Arewwng T1-9 ainbi4

i
SSEJ B5E7 UMIIEA BJEIS m.m.v || s oy paAwR Wl wig -
| ¢ das dems [auawus)
POYIEW UOII8EI,, BRET @ H {wayuig)arowarsuswEysgIE - W] EXHEA USRI LN A5 BIVPEREEE =
@ IEMUIGUNUEUC0W0T WL WaNUIG 3NOWSY © “ mEMuS_—mﬁemmEm_“_._ g B ST ——— . [ua
PO z dags dems (L2 - 3 WS Y[EOTLIOH) [EIUO0ZI0 1S EaIYPEIIa[a5
@ SNWEURLBLOIWOD 01 30URISU| PRV © ! ' sherouarsoneasan « (- Wiy ao u_r_ame. S WE _u__E
. g 03 pa SW .
(ajqeLE uEs plals | 4 WBWUEESUSNERIVPAMWET ! | g o3 pappe 5| 2aspARRRS B @ LUE|UIg B SADWSE [NEl © iy vﬂwﬂ_mm.uﬁquwﬂ_w_u.m
T |_...w|z L [AUBLUEEN JURLUSITIEIOILOY ERVEIATWRL « ! 1 days dems 701 paddew Eou 3y pulE =
. LA waN g uEw oS Y ENLEAIRE BRITPELEEE SIEUERIVREROUWEL - || swspedjuig i pa1apes way wagjuig (w=nuig) RuoIAs BT pEDREs -
[y WEUOTESIVRANORL | semuEzuUl Jadsinofie] woy eie AUl 3oW3Y © LWL S Py
WIEIOZTIIOH WA [EIU0ZIOHIRE BEIYPEISEE = =uod mm_twn_n._mum.m “ uo paseafa asnow eage == FREIEES WAL ENUSNEIIYIANMUA] - PUE 351] 5|aRUO3|qiEL Ul IE ySnoapon ©
<UIgURUEUOGWETET qls1Esupas BERIYPIRAES PUE UIFURUSUOHWOG MBU mu.ﬂu".“_n_n ! PanOWE) 3 0] BIE ESIYDIACLUZ WHWUSIVEIUCZUOY ERIVRAAMUR . i —
peg (L= THTET S T {wsuoduwoy LI WSNCIIRS BERIVPEDE[EE = (Ve @ | S1FEUERIVPANGWE] a @
UIgulE wodlund o SUEISUL WE 51 LU o (Whpdde | IUSQUOTERITPANCWRL =
‘m-.ld L MOPULY 40 SPEEIND PESES(EI S5NoW Y © ! s5ed PUE [CUUOIHGISUIpPE |23 © L
£l = S U AUodWaD 0 SIUFEISUL PPY < __ﬁcwﬁmm:nE_vmmmw_wmwm:uEﬂw | (JumegasnopzuzguoIaNowW=l ® WEWUSIFENUANEAIYPEDEES -
WEWUSYENLEN ERIVDEIEES . SUDOIER SEAUED | WL SIUOZIOY EAIYDEIEES -
JUSWUS| Y EIU0ZUOY BEIYPEIERE = ! - SISTUIEAIYPEEEE
uEiwE:
wswuEiEILE, |y [. [JAdd= ; ! [, | . { Ao OO IINoTRA0 WL R ERypEDEEE -
z 1 ws) ITE3E pase o
WRULEIVENOIOH |y RN BRIVPED2IES - PERIN R WEnUR SRy EowE i “uswuSiyeorUoy "aEsy B e e e | s7ed pue jouooEqsAUIpRe IED =
. | A N {aummaesnowjpasesieuemonr 1)
mEsul sanuadoud sy 32 pue SEALED i “aucdwWan || NeoE| qISIALIpRE @) .
{Lu=y)usg) B3UElEY LKgUIUBLOOWDD MEU S1ERID © ! | IuMCO3sNoMRUEILCoSNOWS BRI Y ©
i € E ! wisgnuspEsyEnoWSs |} [ruzaguiEUSTIVLIBMEY @
- ! |«[ln2l0 wauedwesr=dewysed
i — | — | i - =
sSewipauagng |y Surpasu) Imu EaIvaADIIZY] U I SquBwREy _ —|A ASUPRNTY (= M v
|
(30} uoipsogAmeIp [y L | =@ uauodwoor=dewysey = T
4 L] | SpEEUERITEIgISIALL § =
haaorlar 3 {ju=d JoypaiiTy) s=nue e swsuodwadr:isn e czgt”.“.”_m_ﬂé i Jm.&mma._._mo
B Cree Supa ayuo 1 asnow puy =, UECD BAIY SADLWA1 DI JO u-n.r I sjanuogspqsiaug § W00 BRI SADWEI B3 U0 = | CURINTY]
M .__/_. 1 H
ulguUsuodwEy J L TR ¢ ST | mopuL 3o 1no Jusucdwod Seig ! o 30 100 Jusucdiwan S2ig =,
! mopuwsziuadosg ﬁ.u U L
H =
— - H
21dN330 E3E) La3sU| =g ﬁ!!ll.l. = ! ; T == : B
I 1 | | T [330 E3IE) LiBEU| =
- [p— R R B _ 1 e 5 pad) usul =g
T | inesfuir i f i | UV L
T I L ! b |] bt . et
=1 - T !] 1 1 1] - il =
1 verm A dL L= .r:!_q | T o 13 w1
p“ ey = 1_4x._+ Tw “ ET) " W.M_ ||||||| T =
1 ey w [m i @
I_. |I|“III i rllnllll - m |19 I _|_ IIIIIII 9| &= - T =
wo— e — e — “ T JETHET 1
[®O-— =0 —
]
]
I
uoijejuawa|dun map @ . { uoneyuawajdwi pjo @

44

6.3.4. Inserting into an Unoccupied area

T
1
- D=l | —Ax
bl [b2 | A~ i : bl | b2 - !
b3 | b4 i - buttonL ¥ . b3 ba 1 richTextBox1
b5 | B6 | toxtmoxt VN | text | Content Butiont hd ! b5 | BS | textpox1 text
checkl Box Row : 1 checkl | Box |
T i - Column - T -
el ‘2\\ e [9] mgm B[] L lstviewl 2
! Top [top Bottom [Y12 [W¥ 1 i
! i \ Width/Height 77 2 1 | I
i Il] i i
labell] label2 {label3| TignTextBoxl — | Jabel1! label2 1label3
i 1 1 1
gg Insert (area unotccupjed) !
; ; =
- 1
[= === - !
_______________________________ B LT T —
1
— =% - X 1 =]
- 1
bl | b2 | o T 1 bl { b2 |
b3 b4 e buttonl v 1 b3 b4 | —richfextBoxt— |
b5 b6 | textBaxy. "N text Content buttonl ;_ : b3 b6 | toxtBox1 text
checkl Row heckl | lmox
e:c listViewl fox. Column hd " s e‘:c listViewl Bax
T let Lleft [W] gigne [X9 [¥] ' -
\ Top top | W] gottom | V12 |V 1
i ! Width/Height 7T 2%] ' : .
label1 label2 ! label3; @ 1 label1| label2 ! label3)
\ | . 1 | !
i richTextBox1 1
d ; 1
Bg Insert (area unoqcuplrd} NG '
—_ - 1
1

Figure 6-12 Comparing the two version of the bin feature of placing a component back into an area that has no content

The remove area editing operation (operation f) in the old implementation removes the entire area from the layout
specification and also removes the top, bottom, left, right tabStops bordering the area. However this caused the
overlapping of the remaining components and was dysfunctional. To simplify the operation in the new implementation,
only the component is removed from the layout specification and the area remains. This is achieved with steps similar to
swap steps 2 and 3 outlined in Error! Reference source not found.. The user clicks on a particular item in the bin, and
he corresponding ComponentInBin instance (binItem) is found. The component, its horizontal/vertical alignments
and inset information is extracted from the binItem variable and assigned to the selectedArea variable. Inserting
into an empty area makes the component fill the entire space (Figure 6-12 top).

However the more ideal behaviour for this editing operation is “docking”: instead of having the component occupy the
entire area, it is able to fill the area partially, which requires the addition of new tabStops. As an intermediary step to
achieving the ideal implementation for this operation, insertion into an empty area should involve the creation of a new
area. Subsequently, its borders set to be the nearest X/Y Tab stops. Figure 6-12 bottom illustrates what the GUI should
look like after this operation.

45

6.3.1. Classes Diagram for the New Implementation of ALE

uoneuswsa|dwi Mau 8yl ul 3V 4o weabelp sse|d £1-9 a4nbi4

Jup)
pun:(uewubiy EuozuoH huswubiyeuoz uoHIas+

arpa) uswubiyg el

Iun:(sesu|)sesulas+
UM BaA R BN05+
U800 8:(1U0d)2 DI0HBBUD+

B WG BIUOZH O IS BIIEIUGZ UoL +

TUSIUByENpa, JUsLUbIy Eoans

EIEETRALETT
=N TIENY

‘suneJedo oy pew e ebeyaed
Buasu)

WU PSR [y 0 JLIOAIED o A BEND 2D
pury:(hue diogepdn-

N ggsaude.s usuodwoueds
TUUONFE0 gis

abew|paseyng sbewypalagng+
WL UOISOA MBS+

Buig e+
Juauodwonriuauoduose

10| WEabexIEq
uiguussodwon

<u|guijuauodweds s U Iguiueuoduess
Iojpa WiE: sbeyoeg
ansEd

pron:(}gdde

SLIDGRIB00"ICY| PR LR BURREd
B2 MR dS

pron:(Jpdde
SLIOHE: 10]IpaT W abENDBY
[BJUOZUOHRANIES

pion:(Mdde

UonElS

T Ioppe e ehenIed
nﬂtc_m:ﬂ._oouso!mw!éEa\m\

pron:{ Mpdde
SUOEIado S0 Ipe WIE. o =)
B LMIENSUDPSIRIeSPRY

S |ELSUODPPE

SBANPPE —
nofepas -

senqisuadsey

BIUENEA (B adAlji e] ManalEaI-
nuriBug)pauaoppe

ur:(JseenysEpdn
[SEAUEJIINY Ty SEALE OIPyy 1B |

wogoquogredh | lopisdgxogoquo uojeiadopying-
XOEOWODNT IXOFoqUIODSEIGEYE ABE|Ndod-
10100 BumS Lol DajqeLE ARG

auodrsond s

S IXOGOqUCTHIgBUEY
punswsuodwod o ysayass

(X0EOQWOD B|gEEA, |SEXOE OO 48| QEVE ABADLIE-

WU JSanBAJUIRNSUC) AT BU+
NUNE(UaA JUONIY) PRILONSUOIE
nn Jpabuey;

<B|GELUEA> SB|QELEA-
WIBASUOD RS UCD-

JO)pe WiE. abeRied
puedBunpISIWEISUDD

[o]

JBuBsWE
agDepap|s

suopesedo Joype w e eiejiey
seangdems

SUDHERCC JO)pe Wie:BBEyIed
Buz)say

SUONEIBC00 JOYPS e BEEYIE
wensuoippop

o IV TV Ta Ty TV V=T o
NGRETN T INOAE+

o) ns
Wyl)akes-
B pe

oppawie abeydeq

apopoupg
sLnug e

JOYIpE WE..B0EIE]
nuapdndog

WuN:(BENoa ' a|gnog ALt WODIMOYS

[

T TIEMEA 00 T80 |
N[JsamELBABERdN:
wuns2desusuodwaniueds
ajgeues (U iUt sanae Biab
BigeUE): (UDd Ay)paa|egaEL A X eI IaE
SIFENEN: (W dIpeRaagae LA/ a0
ERN(W0 g Ba YR8 @ g pul

WAoL-

JOjpe e

SRAUBUOIPIWTY

CEEE=]

———

|Buegsapadory

SKBNSUDDPRE —
SEBINYPPE -

Inodeqies -

\ safqisuodsay
TNV L0 [UEAE00 Jpa e[og oiepans
nundueisuonpapespseiueye
o un(isuensuodaepdns

ncAe T yanofETS BN SU0D-
Toyipe e sbeNIEg
|BUBGSIUIERSUOD

WU MopUAEHEIS S
Wy e

JAUIEIUD AU Euodjuaieds

Jaype e ehERIEd
MOPUIASS) B0 0L

wauodwos

wieabeyoed
nakEN Ty

awel 4

Figure 6-13 gives an overview of the important ALE classes in the new implementation. All classes are situated in the

alm.editor package.

More information on the new implementation of ALE is in the Appendix: See Appendix E for the containment hierarchy

of the windows, Appendix F for the structure of the windows and Appendix G for the flow diagram of class instantiation

after switch to editing mode.

46

6.4. Creating an IntelliJ Plugin

3 Project - D e | e I ©) Testjava x
SeETTETETES ” - e —
D idea il — 1| buttons. J|[buttona |Fex=5oxt | | [reas| Constrants
- + : i 1 Ares buttont
© & Test Butond)| bttt : | Content [buttonl
3| untitleds.iml || buttons J:| buttons frextBoxs c:Ii:m
. : richTextBoxL :
il External Libraries e ! Left =3 wight W
A ... S SO Top top Bottom Y12
htven: s et C— —
|abel i Iabel2 label3
Text | ALE
] a

Figure 6-14 The Ul of the prototype IntelliJ plugin of ALE

IntelliJ IDEA a premier IDE for Java, Groovy and Scala. A plugin is a separate module that allows the extension of the
IntelliJ IDEA core functionality. There are many types of plugins, including: language support (for example the Scala
plugin used in this project), Version Control System integrations (e.g. CVS), code inspections and refactoring, and utility
plugins. Figure 6-14 shows the appearance of the ALE IntelliJ prototype made in this study. It belongs to the custom
editor type, which supports the addition of a tabbed editor to a file in IntelliJ. The ALE plugin associates an ALE editor
tab for every java file: the java class file can be edited in the “Text” tab while the testing GUI and the properties window
is in the “ALE” tab (currently selected in Figure 6-14). The Ul is split into two parts: the left panel which contains the
testing GUI (TestEdit1) and the right panel which contains the PropertiesPanel. The IntelliJ IEA Open API
library included in the Plugin Development Package provides interfaces and classes for developing plugins.
Implementations of the FileEditorProvider and FileEditor interfaces were used to make this prototype
(collectively hereon referred to as the IntelliJ editor system).

6.4.1. Intelli] UI Designer Plugin from the Community Edition

Since IntelliJ IDEA has an open-source Ul Designer plugin, it was studied to determine how GUI editor plugins should
be written for IntelliJ. At the time of writing this report, this was the only open-source Ul designer plugin. The GUI of
the IntelliJ Ul Designer is as follows: there is a component tree and property editor in the left-side tool window, editing
panel in the centre (several JPanels layered on top of each other), and palette in the right-side tool window. Components
can be dragged and dropped from the palette to the desired location on to the editing panel where they can be further
manipulated. The Ul Designer plugin implements its own FileTypeFactory interface (.form file) which allows the
entire visual editor to appear as a new tab. For this project, the objective was to create a simple prototype and therefore
the editor system was chosen instead of the elaborate system used by the IntelliJ Designer.

47

6.4.2. Intelli] Editor System

I | FileEditorProvidar S —
O > T
]
oF = g - : = ' clas
. Plugin.xml (1] c) MyFileEditorProvider | 2 | 5
<extensions defaultExtensions = “tomintellij= accept(Project, File) -
' o Accept jave files layout "“_"Elnfm"m
O <fileEditorProvider implementation = @ createsditor{Project, File) vanable
O Create MyEditor(Project, File) Flow of contral
- _— n
:@c:l MyGUI —— - - 1Pznel) O <tart et mode
' E'_ | FileEditor > O Creation of new
testWindow propertiesPanel | Instance of dass
. - |
@ Constructor|Project, File) zc:l MyFileEditor CY e Java class with
Omstwindmu-eatemstr:diu{] <_/ :::::—;::te';ud
o testwindow.adit{testwindow) [i] [i] .
[call edit for myFile mwyEditor 1\5)1 Java class
iesPanel = testiWindow.le.propertiesPanel
propert FIoRE 0 @ Constructor{Project, File)
o setBorderlayout o Check that module exists 1 Java interface
o Add testwindow to the Ccenter o myFile=File p
Add propertiesPane to the i , _ _
= 2 o the right — O myEditor =Create MycUI {1‘5 scala class
@ getComponent{)/
:I TestEditl —Panel | z) :} getFreferredFocusCompanant]) © Constructor
o return myEditor
pEtName{]
- - o return “ALMEditor” = method
I:.l:lnstn.u:t-:r{l — Adding
= setlayoutile) [j ALMLayout — —Layouthanager | ?::I} ::} component
o |s.addArsa/Constraing KTb T3k " [3] [] .
- \ | nil Numbering the
o Ie.setLE'_.'.:-ht:pe:[Isln. " s e - ordar in which
o add components to itself propertiesPanel layoutspec e the classes are
J_l_ @=etL= poutspec (Is) instantiated
_ o layoutSpec= Is
@} Layoutspec — linearspec | 3 } Ocdl tf . L
. . a la'.tlu‘ISpBH:!h.'Ell 2
o Store layout information O)) Plusin sl file
(¥Tzhs, ¥Tabs, constraints, anzas) Create PropartiesPanal| , this) ~ Lgr
yGUl
| Center might |
TesEditl FropertiesFane|

Figure 6-15 Steps for registering the editor in IntelliJ, creation of the editor panel, and start of edit mode

Below are the steps used to create the prototype plugin (summarized in Figure 6-15):

Registering fileEditorProvider as an extension in IntelliJ: P1ugin.xml is the plugin configuration file containing
information such as its version number, id, version, vendor, description, and change notes. In particular it contains xml
tags to define actions and extensions. Extensions provide a means to extend the functionality of the IDEA core. The first
step was to declare the FileEditorProvider within the <extensions> section in Plugin.xml by filling in the

path to the FileEditorProvider file within the project (eg. FileEditorProvider implementation

MyEditorProvider).

48

Implementing a class that extends FileEditorProvider: This class receives two important parameters automatically
from IntelliJ: a reference to the project, and a reference to the file that the editor is created for. The method accept needs
to be overridden with code that checks whether the FileEditorProvide can create avalid FileEditor for the
type of file (by calling the method getFileType on the reference to the file). Currently it is accepting Java files, but
this can be changed as IntelliJ offers a number of constants in the class StdFileTypes. The method createEditor needs
to be implemented to return an instance of a class implementing FileEditor. Other methods to dispose editor,
read/write state, and to getEditorTypeId/Policy were also implemented.

Implementing a class that extends FileEditor: This class also receives the parameters project and file. Within the
editor, the file is checked if it contains to a module. If not, an illegal argument exception is thrown. Whatever
JComponent returned by getComponent () and getPreferredComponent () is the JComponent displayed
by the editor’s UI and the component in focus when the editor is opened, respectively. For both methods, an instance of
the MyGUT class is returned therefore whatever is contained in that JPanel is displayed in the editor tab. Other methods
implemented include getName () (returns as string for the display name of the editor), get/setState,
isModified/Valid, select/deselectNotify, add/removePropertyListener, and dispose.

Implementing MyGUI class which extends JPanel: This class contains an instance of TestEdit1 and an instance of
PropertiesPanel. In the constructor, an instance of TestEdit1 is instantiated and edit is called. The
propertiesPanel reference within the ALMLayout instance associated with test window is retrieved. Next, border
layout is set as the layout manager. Finally, the TestEdit1 and propertiesPanel JPanels are added to the border
layout center and right, thus they appear next to each other and fill up the entire space. The bottom of Figure 6-15
summarizes the containment hierarchy.

Initializing editing mode: The only difference between this version and the refactored version is that the editing mode
initializes an instance of PropertiesPanel instead of PropertiesWindow, since a JPanel is required instead of a
JFrame. The rest of the steps are not presented here but are illustrated in Appendix Figure 8 and Appendix Figure 9.

6.4.3. Conclusion

IntelliJ plugin development was initially difficult due to the lack of documentation compared to the extensive
documentation and tutorials available for plugin development in another popular IDE, Eclipse. Therefore despite
Intelli)’s advantage of having Swing support, some developers are sometimes overwhelmed by the large learning-curve
involved in understanding the plugin development environment. It is hoped that experiences gained from making this
prototype will help simplify the learning curve for future programmers working on the ALE plugin.

The creation of this plugin prototype is the first step in integrating ALE as a tool to be used in IntelliJ. In the future more
tools and activities can be added to complement each other and make development more efficient.

49

Chapter 7. Evaluation

First, an evaluation of our refactoring efforts is presented. Its impact is assessed by comparing the internal quality metrics
of ALE in the old vs the new implementation. In doing so we address the research question: “In how far does refactoring
help to improve the quality of a complex GUI application (such as ALE)?” Also, the advantages and disadvantages of
converting the code base to Scala is explored and thus we also address the research question: “Does converting a

complex GUI application (such as ALE) from Java to Scala improve its code base?”

7.1. Evaluation of Program Quality

7.1.1. Internal Attributes of New Implementation of ALE

7.1.1.1. Cohesion, Coupling and Encapsulation

©

Old implementation

—((c]

PropertiesWindow

[;*._F

ALMEditor (504)

Aecukad methodi

Sicncadfthinged isitindg vasiskled

Pakiad @ a6 dn argumen n mithad

ConstraintsEditingPanel (10]
Acciiaed’ctanied nitance varabhls
Acciised matheds

Fassad it 85 dn gegamant is mithod Péssed itas an agumint in =sathad
Added Ftanerns 1e i Addied listarrs 2o it
cupaint rapaint
fureaPanel 2] Bin 1(5)
assiedd it a6 @n argument in satsod
fccassed methods
ConstraintsPane [3) Pasked it ik s argasant in mathed

Ardded litesri b it

ALMEditorListensen|1)

Frighiesants aive clii

GE) mr:stmimspanel

@) |

Properties\Window|10+)

Ascaiied inflante varabks

ALMEditor

ALMEditorTabEwvent(1)
Paiiad @ as an ergument is method
,
Container; [10+] "
Aeeiiiad =t hod *
Y
AL ayowt “
=
{IE) Arearanel (a ;}
[y PropertiesWindow(20)
LS Secaiiad isntancg wiriabled

BinListemen|1)
Implie=ants o dads
BinEwent| 1)

Passed it as an angumest in =athod

AlMLayout {ZI] BinListener b
PropertiesWindow(504) | ———

Agpiriiad nstance var bl
Betprkiind S

(e T einevem)

BinPane]

(O

Findd i
—-
'-‘_"']

(O] 5 cirmr—)]

(2

New implementation

@mﬁm

o)

PropertiesPanel{0] Container/TestEditl|s)

Accaisied methods

l

ALMLayout
|
i - T
@ PropertiesFanel '_4\'_}
AreaPanel[z) ALMLayout Container, TestEditl[5)
Accuviad mathodi i Aecwiwad methods
_ AI.!-'Edrl:ortarruaﬂﬂ Pausd it i4 i argurmant is mathod
ConstraintsPanel{2) Accassed muthads supaint
Accaiaed matheds gt

——
)

@ ALMEditorCanvas

AreaPanel

& @

-
[|
"xs.z'

@ ConstraintsPanel

PropertiesPanel(1)

PropertiesPaned(5) ALMEditorCanvas (30+)

PropertiesPanel(5) ALMEditorCanvas(2) ALMLayout i
fcenssed inglasos varabie changed istance viriables Aectiriiind St Accassed inslascs variatie Accasiidfchasged inilascs variabls
| & LM Liryat) supaint l ALMLayaut) rapiint
ConstraintsEditingPanel[5) Palette(0]
r— € [e fE 'i,E
Pasiad it as in srgument is method i L . . " — —
| o | e [e @)
AreaPanel{D]
Z_ - — - AlLMEditorCamvas and] I
= I\-?JI :;:edj."ﬁ::iﬂléxﬂu variables F‘alEl'tEiZEl] ms[g'
ALMEditorCanvas| 10/ - Aeceiiad fchanged Chanpad instance variabbe
gt ﬂ] “_d ods . Bam instance variabhes Aecwswad methodi
Passed it a5 an argument in methad - Passind it a5 i5 asga=uant in method

50

Figure 7-1 Diagram showing coupling (the number of references to other classes) within each class

Within each class box, its instance variables are highlighted in purple; the number of times it is referred to in the current class beside it
in brackets; the ways in which it is referred to is listed below it (e.g. accessing methods). The references to the classes from the custom
listener system are highlighted in magenta.

Due to the absence of metric calculation support for the Scala language, most of the OO metrics could not be precisely
determined. It is hard to estimate whether the Coupling between Object classes (CBO) metric increased or decreased
after refactoring. Here one coupling is defined as one class using methods or instance variables of another object. At the
package level, import coupling was reduced by moving PropertiesWindow to the same subpackage as the rest of the
editor classes.

Figure 7-1 is a pseudo dependency diagram showing how a particular class (illustrated as a box) interacts with other
classes (class names in bold purple font) in certain ways (the ways are listed in black below the purple class names) how
many times (numbers in brackets). In the old implementation, PropertiesWindow was coupled to eight classes and
had many dependencies and can be thought of as “spaghetti code” due to its high complexity. It is also what is commonly
known as a “god class” since it provided the functionality for many classes, especially for editing the canvas (i.e. features
i,0,j,€ in Figure 6-6). In contrast, classes like AreaPanel, ConstraintsPanel and BinPanel were devoid of
functionality (Section 6.2.2.2). AreaPanel and ConstraintsPanel referenced JComponent instance variables in
PropertiesWindow for setting up their layouts. ALMEditor was also heavily dependent on PropertiesWindow
(indirectly retrieving it from its instance of ALMLayout) and also referred to the BinListener and BinEvent
classes. Otherwise, BinPanel and ConstraintsEditingPanel did not reference any other classes.

The bottom half of Figure 7-1 shows that coupling is markedly reduced in the PropertiesWindow and
PropertiesPanel classes, now only calling methods from AreaPanel and ConstraintsPanel or
ALMEditorCanvas to set them up upon instantiation. AreaPanel and ConstraintsPanel only refer to
PropertiesPanel to access its layout instance. ConstraintPanel refersto ALMEditorCanvas only to repaint
and to update its selectedConstraint instance variable. Code in AreaPanel for editing area properties (feature
e) still has 30 references to ALMEditorCanvas; most of the references are just to access the currently selected area in
the canvas and modify the area’s properties. Coupling between the PropertiesPanel and ALMEditorCanvas
classes was reduced by removing the custom listener system described in Section 6.2.3. Low coupling is generally
considered to be more beneficial because it makes individual modules easier to maintain and test [28].

The various operation classes can be thought of as plugins for the ALMEdi torCanvas, which extend its editing
capabilities. The operations heavily use methods and modify fields within ALMEditorCanvas, however,
ALMEditorCanvas does not depend on the edit operation classes. These operations can be easily added/removed to
increase/decrease functionality with little side effect.

Finally, different parts in the PropertiesWindow GUI were separated in the containment hierarchy, making its
internal structure and the coupling between different parts of the GUI clearer. For example, PropertiesWindow
includes PropertiesPanel, which includes ConstraintsPanel, which in turn includes
ConstraintEditingPanel. This structure better reflects the visual containment of the GUI and modularizes its
different parts. It achieves a greater degree of hierarchical modularization compared to before refactoring, in which the
modules are layered so that the layers above are aware of the layers below it but not the other way around. Such a
structure also increases encapsulation as the outer modules encase the inner modules and limit their access. This type of
modularization is considered to be better quality code compared to the type of structure in before refactoring [53].

Since the metric LCOM is too difficult to calculate by hand, the cohesiveness of the program was estimated qualitatively.
As Section 6.2.2.1 and 6.2.2.2 showed, the refactoring process was achieved both the separation of concerns both by
placing the components within its own panel/window by separating the functionality into the logical classes (functional
cohesion, where parts of a module are grouped together because they all contribute to a well-defined task). As a result, in
the new implementation the fields and methods in each class are highly correlated to produce behaviour that is more

51

cohesive. High cohesion indicates good class subdivision and reduces complexity, thereby decreasing the chance of
errors arising during development [31]. Furthermore, such programs are easier to maintain because each change is
localized in a single cohesive module, and each module can be easily reused. Although the degree of cohesion could not
be estimated, since functional cohesion has been shown to be the most powerful form of the cohesion types [54], this
provides good evidence for the effectiveness of the modularization achieved in the new implementation.

7.1.1.2. Complexity

Old Implementation: Number of Methods per Class

&0

Nomber of Methods in Class

New Implementation: Number of Methods/Reaction Cases per Class

£
B
=
5
-
E
o
=

Figure 7-2 Graphs showing the number of methods per class before and after refactoring

The main quantitative measurement to estimate complexity was the number of methods since there are no tools to
measure WMC for Scala classes. The total number of methods in each class was a metric that was somewhat hard to
measure in the new implementation since much of the functionality was moved to Scala reactions but they are not
counted as methods. To compensate, each case class in Scala was counted manually and added to the total count; the
normal methods are coloured blue and the Scala cases are coloured orange in Figure 7-2. In the old implementation,
ALMEditor and PropertiesWindow contained over 90% of the methods (Figure 7-2). In the new implementation,
the number of methods has reduced to about half for ALMEJi tor and to about a tenth for PropertiesWindow.
Although the exact cyclomatic complexity for a particular method could not be measured, the Scala-style checker
indicated that there were several methods in the ALMEditorCanvas class both before and after refactoring that
exceeds the recommended CC of 10. Therefore some improvement can still be made there.

Furthermore, in the new implementation there is a more uniformity in the distribution of methods across classes. This,

together with the evidence for increased cohesion and decreased coupling presented in Section 7.1.1.1 indicate increased
modularity- and thus a reduction in complexity. In the old implementation, the total number of methods was 148 while in
new implementation, total number of methods (including the Scala cases) is 129. Reduction in number is due mostly due

52

to removal of unused methods and integrating methods into code, which also help simplify the code and increase
comprehensibility.

7.1.1.3. Inheritance

In total, the program before refactoring extended eight interfaces and inherited from five. After refactoring, it extends
five interfaces and inherits from five, plus five operation classes that implement the app1y method from the abstract
Action class. Extending a smaller number of interfaces does not reduce the functionality since all the code within the
eventXhandlerMethods have been moved into reaction cases after conversion to Scala. The inheritance depth of
the existing classes generally did not change, as now they are inheriting from Scala swing instead of Java swing. From
examining Figure 3-1 we can see that most components has three ancestors in Java they are JComponent,
Container, and Object; and most components has four ancestors Scala they are Component, UIElement, and
Proxy, and Any. A class with deeper inheritance hierarchy is regarded as more complex since it inherits a larger
number of methods and its behaviour becomes hard to predict [55]. It also requires greater planning and design time
since more methods and classes are involved [27]. The edit operation classes increases the total number of inheriting
classes in the new implementation, inheriting the app1y method from the Action class. However we believe this
actually simplifies code and avoids the need to create an anonymous Action class in the constructor of the new
MenuItems. Also, since the Action class directly inherits from the root class AnyRef, it should not complicate the
code to a great extent.

7.1.1.4. Number of Classes, Lines of Code (LOC), Comment Percentage

Table 4 summarizes some general statistics for the classes in the editor package before and after refactoring. Firstly, the
number of classes increased from 14 to 23. This is due to the addition of the edit operation classes, ComponentInBin
class, EditorMode enum class, and PopupMenu class. As mentioned previously, the addition of operation classes
increases the cohesiveness and reusability while simplifying code due to the clear separation of components and
functionality. The ComponentInBin class helps with the simplification of the bin functionality (Section 6.3.3), the
Enum class also achieves better separation of concern while the PopupMenu class is required as a custom wrapper class.
Therefore we believe that this increase in the number of classes achieves better design while maintaining same (or better)
functionality.

Secondly, LOC was measured in several ways, including counting physical lines of code with/without blank or
commented lines. Figure 7-3 shows that the LOC per class follows a similar trend to and methods per class (Figure 7-2),
in that the numbers are more uniform in the new implementation. The class with the greatest initial LOC (ALMEditor)
also had the greatest reduction, to about half of its original amount in the new implementation. These reductions can be
attributed to removal of redundant code, moving the variable declaration and instantiation to be on the same line, and the
more concise Scala syntax. It is generally accepted that between projects designed to achieve the same functionality,
projects with less LOC is easier to maintain and understand [34, 56]. Both the total LOC and code LOC has reduced
significantly in the new implementation even in the face of slightly increased functionality, suggesting that the refactored
code is of higher quality.

Lastly, the comment percentage was calculated by dividing total number of comments by the total lines of code (without
the number of blank lines), as is the usual convention (Table 4). However due to the limitation of the metric calculation
tool used, the on-line comments are not counted (so only the stand-alone comments are included in the statistics. It has
been found by SATC that a comment percentage of approximately 30% is most effective, and assists in attributes of
comprehensibility, reusability and maintainability. The comment percentage in the new implementation is higher at 31%
and is therefore likely better documented.

53

Statistic/Metric Old Implementation New Implementation
Number of Java/Scala classes 14/0 5/18

Blank LOC 538 225

% blank 10% 6%

Comment LOC 1215 1093

% comment 26% 31%

Code LOC 3501 2419

9% code 67% 65%

Total LOC 5254 3737

Table 4 Summary statistics for the ALE in the old vs the new implementation

Old Implementation: Total LOC per Class

C incClass

ola| Lo
|
in] !
&] ;
) = 1 i
T I
e I
&
v,}(y I

o — —
3
& F p r & s & & £ & . . bq@‘.‘ l_b{\é}
L L R
o o e = & 2 3 3 [& o & o X
i A " ks “ ¥ e A o
on \.\C & el @, P \j-(i & Ly
o fis o & - &
L i b & o
?\w \13\ & I3 QGF
7 s

New Implementation: Total LOC per Class

Tota| LoC inc ks

Figure 7-3 Graphs showing total LOC per class before and after refactoring

7.1.2. Influence on Overall Quality
Conclusions from this section about software quality are supported by research linking certain internal attributes/metrics
to external quality attributes (Section 2.1).

The cohesiveness of the code has increased and coupling has decreased, which indicates improved maintainability since
each class can be maintained separately from another. It also improves readability and comprehensibility as each section
is logically organized. It also increases the reusability of the code by separating it into operation classes (both

54

functionally and the components) with minimal coupling, everything belonging to a particular operation is together, so if
in the future the code needs to be used somewhere, it be done easily. It is also more extensible, due to the editing
operation classes which act as a type of “plugin”, more functionality can easily be added in the future.

Complexity has reduced due to a number of reasons: improved cohesiveness, reduced LOC and number of methods, the
use of the simpler Scala syntax and constructs (e.g. collection transformations can be done in as few as one line), and
better documentation of the source code through commenting. This is beneficial to many attributes, including
adaptability, maintainability, comprehensibility, and reusability.

Usability has improved after modifying the old implementing features. The appearance of the bin items in the old
implementation did not allow the user to see how large the component was before adding to the bin. The use of buffered
images in the new implementation allows the user to see the exact appearance and size of the GUI component in the bin
and makes making reinserting the bin item more intuitive. In addition, removing bin menu makes the editing less
confusing. Removing by dragging and dropping outside the window is more intuitive and should be the only action
needed.

In conclusion, refactoring ALE has improved a number of quantitative internal measures and we believe this
improvement in quality can also be percieved on the external level. In particular, the following attributes seem to have
improved: maintainability comprehensibility, readability, reusability, adaptability, extensibility and usability. These
findings are in line with most previous work that claims that refactoring is beneficial for software development and
quality (Section 2.1).

7.2. Evaluation of the Conversion to Scala

Firstly, the evidence provided in Section 7.1 above indicates that internal quality attributes have improved. In particular
the total LOC and SLOC has reduced significantly. A large part of this improvement is due to Scala Swing’s more
concise syntax. There is no need for anonymous listener classes as the appropriate code for each event can be defined in
the less verbose pattern matching statements (Section 6.1.3). Also, the collections transformations negates the need for
explicit for-loops (Section 6.1.4).

Scala’ GUI hierarchy categorises the Components more finely compare to Java’s system and is ideal for creating custom
components. They allow for the mixing and matching of general constructs to achieve a more complex one. The custom
class can inherit from a number of traits to get the concrete members it require for its particular purpose. It also has a
more powerful collections system with transformation methods that can manipulate collections without the need to
explicitly define loops. The use of case classes and partial functions is a powerful system for event handling and removes
the need for the complex task to define anonymous classes and override different eventxHandler methods as in Java.
Moreover, the reactions handler block mean it is possible to define all handler reactions in one place, simplifying the
code and improving readability. Alternatively, handler code can be separated if needed due to the simplicity of installing
reactions in Scala, which benefits the separation of concerns (see Section 6.2.2). It is primarily through the creation of the
edit operations that Cohesion, Coupling was improved and complexity reduced.

It is easy to transition to Scala from a Java background due to its complete interoperability with Java. A beginner can
always start with Java code and migrate slowly to using Scala constructs. However one disadvantage of using Scala is the
rather steep learning curve, further hindered by the difficult APl and lack of code samples compared to Java. It was
especially difficult adapting the existing simple code examples to a complex GUI application. We found that the
command line and interactive interpreters, while useful for learning concepts, did not help in providing clues on how to
solve problems in a complex GUI application. Our experiences are similar to those described by the subjects in [40]
which found that Scala is more difficult to understand and the documentation lacking.

Furthermore, there is little support for the IntelliJ Scala plugin and the initial step in converting Java to Scala yielded
many errors (see appendix C) which were difficult to solve. Scala is also disadvantageous for the fact that some missing
features in Scala means that javax.swing peer must be called and even then sometimes the peer member does not exist
and a wrapper class has to be written manually.

55

Overall we believe that converting the code base of ALE to Scala produced many benefits for the code base, improving
its maintainability and comprehensibility especially in conjunction with the correct refactoring techniques. Therefore it
may be summarized that in general that complex GUI applications written in Java will achieve benefits by conversion to
Scala. No studies to date have evaluated programmer experience with the Scala language in the context of GUI programs.
It is hoped that these conclusions will help programmers in the future who work on complex GUI applications like ALE.

7.3. Threats to Validity

The quality evaluation demonstrated that cohesion has increased, while coupling, complexity, and LOC have reduced and
inheritance has remained the same. These changes have led to improved characteristics and an overall better quality
program as described above. It is obvious that the ability to generalize from one particular case study is extremely
limited. Since validation was based on the work of one programmer on one short-term project, the findings may not be
applicable in a different context. Similarly, the evaluated advantages of converting the code base to Scala is based on one
programmer’s experiences and is a small, subjective sample and may not be representative of the general opinion.
Moreover, the long-term effects of ALE’s refactoring, such as whether it increases development speed or decreases bugs
in the program, still remain to be seen.

The experimental design of the evaluation contains a few flaws. The study was not completely controlled: the refactored
code also contains code improving or adding functionality, so not all changes can be attributed to refactoring or
conversion to Scala. Also, since both the conversion and refactoring were applied to ALE simultaneously, the positive
effect of one cannot be separated from the other. The ideal method to answer the question “in how far refactoring
improves quality” would be by comparing a program before and after refactoring where changes are due to refactoring
techniques alone, as was the method of previous studies (Section 2.2). To answer the question, “does converting to Scala
improve program quality?”, better experimental design would involve a more extensive empirical study like the one in
[40] with two groups working on the same program in Java and Scala for a more valid comparison. Consequently, more
specific questions such as whether it is easier to perform refactoring in Scala compared to Java, whether it is easier to
implement new features in Scala compared to Java, can be assessed.

Furthermore, the identification of problematic locations in code that would benefit from refactoring was based on human
intuition much like the notion of “bad smells” as described in [14]. The ability of one programmer to detect such
locations may be limited and tool support is often necessary. In the future, tools could be used to aid decisions on
refactoring such as the one described in [23] which detects potential design flaws by analysing metrics.

Lastly, the object-oriented metrics used in this study to represent internal quality attributes may not be sufficient, since
there are strong functional programming capabilities that have to be taken into account when measuring the quality of
Scala programs. Functional programming metrics for complexity have been explored in the literature [57, 58]. More
recently, metric sets have been suggested for measuring modularity in a functional programming system and validated
for Scala Systems [59, 60]. These should be incorporated into future evaluations to assess the extent of good functional
programming practices.

56

Chapter 8. Future Directions

Currently, ALE Java Version does has not implemented all the edit operations and features which exist in the original
C++ version [2]. Notably, the rows and columns abstraction is missing and some of the edit operations are not fully
functional. As described in Section 6.3.4, inserting into an unoccupied area fills the entire area instead of docking the
component that is smaller than the area by snapping it to a XTab or YTab. Furthermore, it does not support the filling of
empty “gaps” after the removal of a component. It is also missing the ability to specify the preferred, minimum,
maximum sizes of areas and soft constraints.

Unlike the original ALE which, always ensures the areas are non-overlapping, this criteria is not always satisfied in the
current implementation. Other missing functionality and bugs are outlined in Appendix K.

Instead of having to define all components of the GUI in the source code of an application, ALE should support the
addition of new GUI components from a palette onto the canvas. The ability to support custom components also needs to
be included, as well as the ability to easily import, export and share GUIs. The work on the initial IntelliJ prototype
should be expanded upon. For example, the plugin needs to support better integration with the IntelliJ IDEA, such as
allowing for the editing and use of a created GUI in an IntelliJ project.

Chapter 9. Conclusion

This paper has presented ALE as a case study for investigating questions relating to refactoring and the use of Scala. GUI
programs such as ALE can become complex and hard to maintain over time. Refactoring is a technique that has been
shown in literature to improve software quality. However there is a general lack of empirical evaluation done about the
effect of refactoring on a complex GUI application such as ALE. Scala Swing is claimed to help alleviate most of the
disadvantages of Java Swing for writing GUI applications. Our data corroborate the previous refactoring studies and
show that refactoring improves the internal metrics: cohesion, coupling, and complexity. It also seems to overall software
understandability, reusability, extensibility and maintainability.

We have also demonstrated a method for increasing the separation of concerns in a complex GUI application such as
ALE by using the reactions member in Scala’s event handling system. We found that Scala Swing is indeed more
powerful than Java Swing, providing the programmers more flexibility by offering Scala’s enhanced API while still
providing the option to use the underlying Java peer elements. Our experiences with Scala mostly support the claims
about Scala’s benefits. We found it to be more concise and clearer than Java, especially in the use of the functional style,
e.g. the pattern matching and collection transformation methods. In addition event handling in Scala was found to be
more intuitive and less verbose than Java. Therefore the conversion to Scala seem to aid software understandability,
readability and maintainability.

We have also added functionality to ALE and modified some of its exiting functionality, however there are still missing
edit operations that needs to be added in the future. In addition, it can be improved by allowing for the creation of GUls
from scratch and supporting import, export and sharing options. Finally, we developed a plugin for IntelliJ IDEA by
implementing its editor interfaces. This is an import first step to achieve full integration of ALE into IntelliJ.

57

Bibliography

[1]
[2]

[3]

[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]

[14]
[15]

[16]

[17]

[18]
[19]
[20]
[21]

[22]

[23]
[24]
[25]
[26]

[27]

C. Lutteroth, R. Strandh, and G. Weber, "Domain specific high-level constraints for user interface layout,"
Constraints, vol. 13, pp. 307-342, 2008.

C. Zeidler, C. Lutteroth, G. Weber, and W. Stirzlinger, "The Auckland layout editor: an improved GUI layout
specification process,” in Proceedings of the 13th International Conference of the NZ Chapter of the ACM's
Special Interest Group on Human-Computer Interaction, 2012, pp. 103-103.

D. Draheim, C. Lutteroth, and G. Weber, "Graphical user interfaces as documents,” in Proceedings of the 7th
ACM SIGCHI New Zealand chapter's international conference on Computer-human interaction: design centered
HCI, 2006, pp. 67-74.

J. Kim and C. Lutteroth, "Multi-platform document-oriented guis," in Proceedings of the Tenth Australasian
Conference on User Interfaces-Volume 93, 2009, pp. 27-34.

M. Odersky, L. Spoon, and B. Venners, Programming in Scala: a comprehensive step-by-step guide: Artima Inc,
2008.

T. Mens and T. Tourwé, "A survey of software refactoring," Software Engineering, IEEE Transactions on, vol.
30, pp. 126-139, 2004.

B. Du Bois, S. Demeyer, and J. Verelst, "Refactoring-improving coupling and cohesion of existing code," in
Reverse Engineering, 2004. Proceedings. 11th Working Conference on, 2004, pp. 144-151.

Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, "A quantitative evaluation of maintainability enhancement by
refactoring,” in Software Maintenance, 2002. Proceedings. International Conference on, 2002, pp. 576-585.

R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi, "Does refactoring improve reusability?," in Reuse of Off-the-
Shelf Components, ed: Springer, 2006, pp. 287-297.

M. Bruntink and A. van Deursen, "An empirical study into class testability,” Journal of Systems and Software,
vol. 79, pp. 1219-1232, 2006.

F. Dandashi, "A method for assessing the reusability of object-oriented code using a validated set of automated
measurements," in Proceedings of the 2002 ACM symposium on Applied computing, 2002, pp. 997-1003.

T. Gyimothy, R. Ferenc, and I. Siket, "Empirical validation of object-oriented metrics on open source software
for fault prediction," Software Engineering, IEEE Transactions on, vol. 31, pp. 897-910, 2005.

J. Bansiya and C. G. Davis, "A hierarchical model for object-oriented design quality assessment," Software
Engineering, IEEE Transactions on, vol. 28, pp. 4-17, 2002.

M. Fowler, Refactoring: improving the design of existing code: Addison-Wesley Professional, 1999.

K. Stroggylos and D. Spinellis, "Refactoring--Does It Improve Software Quality?,” in Software Quality, 2007.
WoSQ'07: ICSE Workshops 2007. Fifth International Workshop on, 2007, pp. 10-10.

B. Du Bois and T. Mens, "Describing the impact of refactoring on internal program quality,” in International
Workshop on Evolution of Large-scale Industrial Software Applications, 2003, pp. 37-48.

B. Du Bois, S. Demeyer, and J. Verelst, "Does the Refactor to Understand Reverse Engineering Pattern Improve
Program Comprehension?," in Proceedings of the Ninth European Conference on Software Maintenance and
Reengineering, 2005, pp. 334-343.

B. Geppert, A. Mockus, and F. Robler, "Refactoring for Changeability: A way to go?," in Software Metrics, 2005.
11th IEEE International Symposium, 2005, pp. 10 pp.-13.

D. Wilking, U. F. Kahn, and S. Kowalewski, "An Empirical Evaluation of Refactoring," e-Informatica, vol. 1, pp.
27-42, 2007.

R. Leitch and E. Stroulia, "Assessing the maintainability benefits of design restructuring using dependency
analysis," in Software Metrics Symposium, 2003. Proceedings. Ninth International, 2003, pp. 309-322.

E. Stroulia and R. Kapoor, "Metrics of refactoring-based development: An experience report,” in OOIS 2001, ed:
Springer, 2001, pp. 113-122.

R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi, "A case study on the impact of refactoring on
quality and productivity in an agile team," in Balancing Agility and Formalism in Software Engineering, ed:
Springer, 2008, pp. 252-266.

L. Tahvildari and K. Kontogiannis, "Improving design quality using meta-pattern transformations: a metric-based
approach,” J. Softw. Maint. Evol.: Res. Pract, vol. 16, pp. 331-361, 2004.

M. Alshayeb, "Empirical investigation of refactoring effect on software quality,” Information and software
technology, vol. 51, pp. 1319-1326, 2009.

J. C. Coppick and T. J. Cheatham, "Software metrics for object-oriented systems," in Proceedings of the 1992
ACM annual conference on Communications, 1992, pp. 317-322.

R. Carapuca, "Candidate metrics for object-oriented software within a taxonomy framework," Journal of Systems
and Software, vol. 26, pp. 87-96, 1994.

S. R. Chidamber and C. F. Kemerer, "A metrics suite for object oriented design," Software Engineering, IEEE
Transactions on, vol. 20, pp. 476-493, 1994,

58

[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]

[37]

[38]

[39]
[40]
[41]

[42]

[43]
[44]

[45]
[46]

[47]
[48]

[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]

[58]
[59]

L. C. Briand, J. W. Daly, and J. K. Wust, "A unified framework for coupling measurement in object-oriented
systems," Software Engineering, IEEE Transactions on, vol. 25, pp. 91-121, 1999.

T. J. McCabe, "A complexity measure," Software Engineering, IEEE Transactions on, pp. 308-320, 1976.

F. B. e Abreu, "The MOOD metrics set," in proc. ECOOP, 1995, p. 267.

N. E. Fenton and S. L. Pfleeger, Software metrics: a rigorous and practical approach: PWS Publishing Co., 1998.
C. Sant’Anna, E. Figueiredo, A. Garcia, and C. J. Lucena, "On the modularity of software architectures: A
concern-driven measurement framework," in Software Architecture, ed: Springer, 2007, pp. 207-224.

I. Jacobson, Object-oriented software engineering: a use case driven approach: Pearson Education India, 1992.
M. Lorenz and J. Kidd, Object-oriented software metrics: a practical guide: Prentice-Hall, Inc., 1994.

ISO/IEC, " ISO/IEC 9126 - Information Technology - Software Product Evaluation/ Quality Characteristics and
Guidelines for Their Use," International Orgaization for Standardization/ International Electrotechnical
Commission, 1996.

V. R. Basili, L. C. Briand, and W. L. Melo, "A validation of object-oriented design metrics as quality indicators,"
Software Engineering, IEEE Transactions on, vol. 22, pp. 751-761, 1996.

A. Sewe, M. Mezini, A. Sarimbekov, D. Ansaloni, W. Binder, N. Ricci, et al., "new Scala () instance of Java: a
comparison of the memory behaviour of Java and Scala programs,” ACM SIGPLAN Notices, vol. 47, pp. 97-108,
2013.

S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R. Bentzur, et al., "The DaCapo
benchmarks: Java benchmarking development and analysis,” in ACM SIGPLAN Notices, 2006, pp. 169-190.

M. Denti and J. K. Nurminen, "Performance and energy-efficiency of Scala on mobile devices," in Next
Generation Mobile Apps, Services and Technologies (NGMAST), 2013 Seventh International Conference on,
2013, pp. 50-55.

V. Pankratius, F. Schmidt, and G. Garret6n, "Combining functional and imperative programming for multicore
software: An empirical study evaluating Scala and Java,” in Proceedings of the 2012 International Conference on
Software Engineering, 2012, pp. 123-133.

R. Hundt, "Loop recognition in c++/java/go/scala,” Proceedings of Scala Days, vol. 2011, 2011.

M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, et al., "An overview of the Scala
programming language,” Citeseer2004.

Scala-lang.org. (2009, 01/24). Scala in the Enterprise. Available: http://www.scala-lang.org/old/node/1658

B. Venners, "Twitter on Scala," Artima Developer. http://www. artima. com/scalazine/articles/twitter_on_scala.
html. Retrieved, pp. 06-17, 2009.

D. B. Skillicorn and D. Talia, "Models and languages for parallel computation," ACM Computing Surveys (CSUR),
vol. 30, pp. 123-169, 1998.

K. Davis, Y. Smaragdakis, and J. Striegnitz, "Multiparadigm programming with object-oriented languages,” in
Object-Oriented Technology ECOOP 2002 Workshop Reader, 2002, pp. 154-159.

M. Schinz and P. Haller, "A Scala tutorial for Java programmers,"” ed: December, 2007.

C. J. Tauro and K. Dhanashree, "Expressing Object-Oriented Thoughts Functionally,” International Journal of
Computer Applications, vol. 65, 2013.

D. Ghosh and S. Vinoski, "Scala and lift functional recipes for the web," Internet Computing, IEEE, vol. 13, pp.
88-92, 20009.

M. S. Bhat, D. G. Nair, D. Bansal, and J. Vaishnavi, "Data structure based performance evaluation of emerging
technologies—A comparison of Scala, Ruby, Groovy, and Python," in Software Engineering (CONSEG), 2012
CSlI Sixth International Conference on, 2012, pp. 1-5.

M. C. Lewis, Introduction to the art of programming using Scala: CRC Press, 2012.

H. Ossher and P. Tarr, "Using multidimensional separation of concerns to (re) shape evolving software,"
Communications of the ACM, vol. 44, pp. 43-50, 2001.

M. P. D. Chowhan and S. Dhande, "Comparative Study of the Modularization Techniques used for an OOS
System to Achieve Quality," International Journal of Advanced Research in Computer Science and Electronics
Engineering (IJARCSEE), vol. 2, pp. pp: 181-185, 2013.

S. McConnell, Code complete: O'Reilly Media, Inc., 2004.

D. A. Gustafson and B. Prasad, Properties of software measures: Springer, 1992.

R. V. Hudli, C. L. Hoskins, and A. V. Hudli, "Software metrics for object-oriented designs," in Computer Design:
VLSI in Computers and Processors, 1994. ICCD'94. Proceedings., IEEE International Conference on, 1994, pp.
492-495,

K. Van den Berg and P. van den Broek, "Static analysis of functional programs,” Information and Software
Technology, vol. 37, pp. 213-224, 1995.

C. Ryder, "Software Measurement for Functional Programming,"” Citeseer, 2004.

M. N. Gubitosi, M. Basavaraju, and A. M. Asadullah, "Metrics for Measuring the Quality of Modularization of
Scala Systems," in APSEC Workshops, 2012, pp. 9-16.

59

http://www.scala-lang.org/old/node/1658
http://www/

[60]

B. Muddu, A. Asadullah, V. Bhat, and S. Padmanabhuni, "Metrics for Modularization Assessment of Scala and
C# Systems,™ 2013.

Appendices

Appendix A - Tools Used in this Study

1)
2)

3)

4)

5)
6)

IntelliJ IDEA was used for developing the project in Java (and with the Scala plugin for developing in Scala)
All images were drawn from scratch using Microsoft Powerpoint by the author(except for Figure 1-1 and Figure
6-14, which are screenshots). The class diagrams were drawn with Umlet 12.2.

Basic statistics (lines of comments, lines of code, total lines of code) were calculated using cloc statistic tool
(compatible with both Java and Scala)

The rest of the statistics were either calculated from existing statistics (% of code, % of comments) or manually
counted (number of methods)

Scala-style was briefly used to detect potential problems in the code and to gauge the CC metric

NotePad++ in association with word was used to display properly formatted code in the text.

First, the Scala syntax highlighting has to be activated by downloading the scala distribution

Second, copy and paste userDefineLang.xml from scala-dist/tool-support/src/notepad-plus/userDefineLang.xml
to %AppData% \Roaming\Notepad++ and restart

Third, in word and in the main document go to insert> object > object > openDocument text (this will create
another document in a new window: this contains the code snippet)

Fourth, in NotePad++, open the java/scala file containing the code snippet you want and go to
plugins>NppSupport> copy all formats to clipboard.

Finally, press paste back in the new document created in word, edit the snippet and press save

The snippet should show up in the main document

Appendix B - Setting up Scala

Download the Scala plugin by going to File>Settings>Plugins> Browse repositories>Search and select the Scala
plugin > press “download” and restart

Also download Scala Imports Organizer plugin the same way > click close > OK> will be prompted to restart
IntelliJ to activate the plugins > Restart

Project Settings > Project > Project SDK> Click “New” and select the directory to the Java JDK for example:
C:\Program Files\Java\jdk1.7.0_45

Download Scala from http://www.Scala-lang.org/download/ (version used in this project is 2.10.2.

File > Project structure > platform settings> Global library: Click the “add” button > Select Java> go to the
folder containing the Scala download >select its “lib” folder and click “ok”. Now the Global library list should
have “C:\Scala-2.10.2\lib” within it

Similarly in File > Project structure > Project settings > libraries, do the same as above (click add button and
add the lib folder from the Scala download)

File > Project structure > platform settings> Modules > press the “+” arrow and add the Scala facet. Make sure
compiler library is set to be the download version of Scala (in this project version 2.10.2) and the compile order
is mixed. Also make sure that the module SDK is set to be IDEA 1C-133.331

File > Project structure > platform settings> Modules > make sure compiler library is set to be the download
version of Scala (in this project version 2.10.2) and the compile order is mixed.

Clicking the run button should build and compile the project too and IntelliJ will say “using an external compiler”

60

http://www.scala-lang.org/download/

Appendix C - Errors Encountered when Converting Java to Scala

Error 1:
Scala: no-symbol does not have an owner
Scala: uncaught exception during compilation: Scala.reflect.internal.FatalError
Scala: Error:

while compiling: C:\Users\Renn\Desktop\ALMfolder\src\alm\other\ALMEditorCanvas.Scala

during phase: global=explicitouter, atPhase=erasure

library version: version 2.10.3

compiler version: version 2.10.3
reconstructed args: -classpath C:\Users\Renn\Desktop\ALMfolder\output;C:\Program
Files\Java\jdk1.7.0_45\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.7.0_45\jre\lib\deploy.jar;C:\Program
Files\Java\jdk1.7.0_45\jre\lib\Javaws.jar;C:\Program Files\Java\jdk1.7.0_45\jre\lib\jce.jar;C:\Program
Files\Java\jdk1.7.0_45\jre\lib\jfr.jar;C:\Program Files\Java\jdk1.7.0_45\jre\lib\jfxrt.jar;C:\Program
Files\Java\jdk1.7.0_45\jre\lib\jsse.jar;C:\Program Files\Java\jdk1.7.0_45\jre\lib\management-agent.jar;C:\Program
Files\Java\jdk1.7.0_45\jre\lib\plugin.jar;C:\Program Files\Java\jdk1.7.0_45\jre\lib\resources.jar;C:\Program
Files\Java\jdk1.7.0_45\jre\lib\rt.jar;C:\Program Files\Java\jdk1.7.0_45\jre\lib\ext\access-bridge-64.jar;C:\Program
Files\Java\jdk1.7.0_45\jre\lib\ext\dnsns.jar;C:\Program Files\Java\jdk1.7.0_45\jre\lib\ext\jaccess.jar;C:\Program
Files\Java\jdk1.7.0_45\jre\lib\ext\localedata.jar;C:\Program Files\Java\jdk1.7.0_45\jre\lib\ext\sunec.jar;C:\Program
Files\Java\jdk1.7.0_45\jre\lib\ext\sunjce_provider.jar;C:\Program
Files\Java\jdk1.7.0_45\jre\lib\ext\sunmscapi.jar;C:\Program
Files\Java\jdk1.7.0_45\jre\lib\ext\zipfs.jar;C:\Users\Renn\Desktop\ALMfolder\libs\Ipsolve55j.jar;C:\Users\Renn\Desktop
\ALMfolder\libs\commons-math3-3.0.jar;C:\Users\Renn\Desktop\ALMfolder\libs\matlabcontrol-
4.0.0.jar;C:\Users\Renn\Desktop\ALMfolder\libs\opt4;-
2.7.jar;C:\Users\Renn\Desktop\ALMfolder\libs\pdstore.jar;C:\Program Files (x86)\JetBrains\IntelliJ IDEA Community
Edition 13.0\lib\junit-4.10.jar;C:\Program Files (x86)\Scala\lib\akka-actors.jar;C:\Program Files
(x86)\Scala\lib\diffutils.jar;C:\Program Files (x86)\Scala\lib\jline.jar;C:\Program Files (x86)\Scala\lib\Scala-actors-
migration.jar;C:\Program Files (x86)\Scala\lib\Scala-actors.jar;C:\Program Files (x86)\Scala\lib\Scala-
compiler.jar;C:\Program Files (x86)\Scala\lib\Scala-partest.jar;C:\Program Files (x86)\Scala\lib\Scala-
reflect.jar;C:\Program Files (x86)\Scala\lib\Scala-swing.jar;C:\Program Files (x86)\Scala\lib\Scalap.jar;C:\Program Files
(x86)\Scala\lib\typesafe-config.jar -bootclasspath C:\Program Files\Java\jdk1.7.0_45\jre\lib\resources.jar;C:\Program
Files\Java\jdk1.7.0_45\jre\lib\rt.jar;C:\Program Files\Java\jdk1.7.0_45\jre\lib\sunrsasign.jar;C:\Program
Files\Java\jdk1.7.0_45\jre\lib\jsse.jar;C:\Program Files\Java\jdk1.7.0_45\jre\lib\jce.jar;C:\Program
Files\Java\jdk1.7.0_45\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.7.0_45\jre\lib\jfr.jar;C:\Program
Files\Java\jdk1.7.0_45\jre\classes;C:\Program Files (x86)\Scala\lib\Scala-library.jar
last tree to typer: Ident(ex)

symbol: value ex (flags: <triedcooking>)
symbol definition: val ex: Scala.runtime.NonLocalReturnControl[Boolean @unchecked]
tpe: ex.type
symbol owners: value ex -> method checkForOverlap -> class ALMEditorCanvas -> package other

context owners: value e -> method mousePressed -> anonymous class $anon -> constructor ALMEditorCanvas ->
class ALMEditorCanvas -> package other
== Enclosing template or block ==
DefDef(// override def mousePressed(e: Java.awt.event.MouseEvent): Unit
<method> override
"mousePressed"
I
/I 1 parameter list
ValDef(// e: Java.awt.event. MouseEvent

<param>

nar

<tpt> // tree.tpe=Java.awt.event. MouseEvent

<empty>
)
<tpt> // tree.tpe=Unit
Try(// tree.tpe=Unit

Apply(// final def removeContentMenultem_MouseDown(): Unit in class ALMEditorCanvas, tree.tpe=Unit

ALMEditorCanvas.this."removeContentMenultem_MouseDown" // final def
removeContentMenultem_MouseDown(): Unit in class ALMEditorCanvas, tree.tpe=()Unit

Nil

61

CaseDef(// tree.tpe=Unit
Bind(// val el: Exception, tree.tpe=Exception
Ilelll
Typed(// tree.tpe=Exception
" " /] tree.tpe=Exception
<tpt> // tree.tpe=Exception

)

)
Apply(// def printStackTrace(): Unit in class Throwable, tree.tpe=Unit
"el"."printStackTrace" // def printStackTrace(): Unit in class Throwable, tree.tpe=()Unit
Nil
)
)
)
)
Fix 1:
Caused by the presence of inner classes, fixed by removing the inner classes

Error 2:
warning: [options] bootstrap class path not set in conjunction with -source 1.6

Fix 2:
File>Project structure> project> change project language level to 7.0
Useful links:

http://docs.oracle.com/Javase/7/docs/technotes/tools/solaris/Javac.html#xlintwarnings
https://blogs.oracle.com/darcy/entry/bootclasspath older source
http://stackoverflow.com/questions/15882586/bootstrap-class-path-not-set

Error 3:
Exception in thread "main" Java.lang.
UnsupportedClassVersionError: aim/TestEditl : Unsupported major.minor version 51.0
at Java.lang.ClassLoader.defineClass1(Native Method)
at Java.lang.ClassLoader.defineClassCond(ClassLoader.Java:631)
at Java.lang.ClassLoader.defineClass(ClassLoader.Java:615)
at Java.security.SecureClassLoader.defineClass(SecureClassLoader.Java:141)
at Java.net. URLClassLoader.defineClass(URLClassLoader.Java:283)
at Java.net. URL ClassLoader.access$000(URLClassLoader.Java:58)
at Java.net. URLClassLoader$1.run(URLClassLoader.Java:197)
at Java.security.AccessController.doPrivileged(Native Method)
at Java.net. URLClassLoader.findClass(URLClassLoader.Java:190)
at Java.lang.ClassLoader.loadClass(ClassLoader.Java:306)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.Java:301)
at Java.lang.ClassLoader.loadClass(ClassLoader.Java:247)
at Java.lang.Class.forNameO(Native Method)
at Java.lang.Class.forName(Class.Java:171)
at com.IntelliJ.rt.execution.application.AppMain.main(AppMain.Java:113)
Fix 3:
File>Project structure> project> set project SDK to 1.7
File>Project structure> SDKs> set JDK homepath to jdk 1.7 path
File> settings> compiler> Java compiler>
Use compiler: Javac
set additional commandline parameters:
-target 7 -bootclasspath C:\Program Files\Java\jdk1.7.0_45\jre\lib\rt.jar
Run> edit configurations> application (and then choose your application) > tick “use alternative JRE” and set path to
C:\Program Files\Java\jdk1.7.0_45

Error 4:
Exception in thread "AWT-EventQueue-0" Java.lang.UnsatisfiedLinkError: no Ipsolve55j in Java.library.path

62

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/javac.html#xlintwarnings
https://blogs.oracle.com/darcy/entry/bootclasspath_older_source
http://stackoverflow.com/questions/15882586/bootstrap-class-path-not-set

Fix 4:

Fixed the error by putting the Ipsolve55j.dll and Ipsolve55.dll from the readme file into Windows/System32
And leaving out the "VM options" in Run Configurations

(Run>EditConfigurations> leave the textbox in VM options blank)

Appendix D - Scala Code Syntax and Concepts Introduction

class PropertiesPanel (val parentContainer: java.awt.Container, layout:
ALMLayout) extends Panel {

/** Example auxillary constructor */
def this(val parentContainer: java.awt.Container, layout: ALMLayout, tol:
Int) {
this (parentContainer, layout)
// some code //
}

//Member in Panel class
preferredSize = new Dimension (800,600)

// Panels for tabbed pane in properties window, for selecting and using the
different editing modes

var areaPanel: AreaPanel = new AreaPanel (//...//)

var constraintsPanel: ConstraintsPanel = new ConstraintsPanel (//...//)

/** Example call to peer to add content*/
peer.add (new TabbedPane ({

// some code //

}

peer.setVisible (true)
} .peer)

/** Example method */

private[editor] def example(flag:Boolean): String = {
// some code //
"example return"

}

e The code example above illustrates several new concepts in Scala, they are:

e There is no need for a semicolon at the end of each line, it is automatically inferred by the compiler.

e Unlike Java, in Scala the type comes after the variable name, for example e : ChangeEvent signifies a
parameter named e of type ChangeEvent.

e In Scala, constants (immutable) are declared with the keyword val while mutable variables are declared with
the keyword var.

e Scala classes have one primary constructor and any number of auxillary classes. The primary constructor is
simply the entire class body while any number of auxillary classes can be created by defining a method called
this. An auxillary constructor must call either an auxillary constructor that has been defined before it, or call
the primary constructor. In the example the auxillary constructor allows the passing of one more parameter.

e All constructor parameters become private instance constants (vals) so they can be accessed within methods. To
make them public, either puta var or val declaration in front of them. In the example, parentContainer
is a public instance constant while 1ayout is a private instance constant.

e Anexample method is provided, all methods uses the de £ keyword and are public by default unless decorated
with the private keyword. The parameters come after the method name, followed by a colon and the return
type. In Scala, the last line of a method will be returned so there is no need for the return keyword.

63

e Scala has more powerful access modifiers than Java. The example method is access-restricted to both the
enclosing class and the enclosing editor package.

e The method notation is largely simplified. Calling a method without parameters does not require brackets at the
end, for example aLMEditorCanvas.repaint. Furthermore, += and -= are also methods denoting addition and
removal. In pages += new Page (..), the += method is called by the member pages for adding another
page to itself.

e Scala Swing classes provide a number of methods which can be used to specify GUI properties. In the example
the preferredSize variable is being assigned.

e Inthe example parentContainer is declared as of type java.awt.Container instead of just
Container asthereisalsoa scala.swing.Container. To reduce confusion and to prevent Scala GUI
Components from being hidden, the entire scala.swing package was imported and Java AWT or Swing
classes are only used if they are declared explicitly.

e The 1istenTo method can be passed any object extending the Publisher trait. In this example, the
listenTo method is called in the tabbedPane anonymous class with the itself passed as the parameter. The
defined reactions will react to any event in fired from the tabbed pane.

e Calling peer.add means the PropertiesPanel Scala class is treated as its corresponding peer. As a
JPanel, it calls the add method, which adds the tabbedPane as a JPanel.

Appendix E - Containment Hierarchy (New Implementation)

thtg Norm,
labgj, ! | Remwzset Tab,

al Mo,
RS

JCO
Mpop,
labej : = coﬂtent ent

JPOpupMen
u |

Appendix Figure 1 Containment hierarchy for the testing window (new implementation)

64

Appendix Figure 3 Containment hierarchy for the properties window (constraints mode) (new implementation)

Appendix F - Structure of the Windows (New Implementation)

ALMEditorCanvas Switch to Normal Mode PopupMenu
Show Inset Tabs

T
button1 | button2 | textBoxl | 5 c
Operations Insertin; " s o (e Fomees Split Area Horizontally | Operations.SplitAreaHorizontal
erations.| 3 . .
P € S ‘-][fb . Sp|lt Area VertlcaIIL —— Operations.SplitAreaVertical
button5 | button6 textBox2 | | 17 ey o —-==
e [---- richTextBox1 - - - - - I B S Add Tab to Constraint . — Operations.AddSelectedConstraintTab
ListBox1 | === | Remove Tab from Constraint | Operations.RemoveSelectedConstraintTab
- ; [EEEE constraintsPopupMenu
Operations.Resizing — j o] i]
1 i] I Component
i i
Operations.SwapAreas : |
labell | label2 label3! Switch to Normal Mode [addSwitchMenultem()
Operations.ModifyConstraints - 5 : Show Inset Tabs I addTogglelnsetTabMenultem()
: ! Remove Area Content | —————— Operations.RemoveArea
i
i [Split Area Horizontally
! : . . PopupMenu
L i Split Area Vertically pup
i

areasPopupMenu

Appendix Figure 4 Diagram of the testing window after refactoring, containing the variable names of all components in the
code (new implementation)

65

AreaPanel

arealabel, areaBox — — Arag button1 v
controllabel, controlBox — Content buttonl v
areaRowLabel, areaRowBox —— Row v
areaColumnLabel, areaColumnBox——— — Column v V
leftLabel, leftBox = Left left | v I Right X9 v |_ rightLabel, rightBox

toplabel, topBox ——& Top Bottom n
i Waigh] | e

AreaScrollPane
richTextBox1 I Palette

bottomLabel, bottomBox

textBox1

ScrollPane
label2 ﬂ' Panel

Appendix Figure 5 Diagram of the properties window (area mode) after refactoring, containing the variable names of all
components in the code (new implementation)

ConstraintsPanel
ConstraintsScrollPane
ConstraintListPanel

2(X9)+-1(X10)=0.0Penalty=Infinity error=1.425E-4 JPanel

2(Y12) + -1(Y13) = 0.0penalty=Infinity error=7.105E-15

constraintLabels
(list of JLabels)

1(Y12) + 1(Y13) + -1(Y14) = 0.0penalty=Infinity error=4.263E-14

o] [w[=Twl[2520 | Penaity=[iy [+]_] | CONstraintsEditingPanel

1 1(bottom) = 461.0penalty=Infinity error=2.273E-13 \ ScrollPane

1(left) = 0.0penalty=100.0error=4.080E-7

1(top) = 0.0penalty=100.0error=1.400E-7

1(left inset) + -1(left}= 0.0penalty=100.0error=8.736E-7 B JLabel

adstwConstrsmtBuﬂuﬁ |—— removeConstraintButton
! \

i 10 IvI = vI 484.0 |Penalty= '\\

constraintCoeffs constraintvars ~OperatorCombo ‘ penalty removeVariableButton
(list of JTextBoxes) (list of JComboBoxes) rightSide addVariableButton

Appendix Figure 6 Diagram of the properties window (constraints mode) after refactoring, containing the variable names of
all components in the code (new implementation)

66

Appendix G - Switching a GUI to Editing mode (New Implementation)

_ | PropertiesWindow |5

@'f TestEdit1 panel (1)
[LayoutSpec] [AlLMLayout]
Is le
maini)

o Create and show JFrame
o Add itself (JPanel) to contentPane

@Constructort]

o setlayout(le)

o Is.addArea/Constraint/XTab/YTab
o lesetlayoutSpec(ls)

o Add components to itself

@ actionPerformedi()

le.edit|i] [call edit for

C | layoutSpec — s linearSpec {:2:}

—

o Store layout information
(XTabs, YTabs, constraints, areas)

ALMPanel JPanel

(©)

(C | ALMLayout ——LayoutManager | Z_'?\

[y

editForm layoutSpec
@ setlLayoutSpec (ls)
o layoutSpec=1Is @'
edit()
o layoutSpec.solve() @
O (]‘J:Fate PropertiesWindow(, this)
Jd L - @
@Pmpﬁﬁesﬁ’mdm—*ﬁame | ST\ @
[PropertiesPanel] [ALM[&I".‘CH.It] [
propertiesPanel layout

@Constructor{ , layout)

O Create PropertiesPanel| , layout) lfkl _:I
o Add propertiesPanel to itself
o Create and add MenuBar to itself

Reference to
class

Mame of instance
variable

Flow of control

Start edit mode

Creation of new
Instance of class

Java class with
main method
{runnable)

Java class

Scala class

Constructor

method

Adding
component

Numbering the
Order in which
the classes are
instantiated

“extends”

Appendix Figure 7 Showing the initialization of the editing mode by clicking the “Switch to Edit mode” menu item and the
instantiation of LayoutSpec, ALMLayout and PropertieswWindow classes. (new implementation)

/_‘/%\ PropertiesPanel —— Panel (a)
NS -

[AreaPanel] [Constraintsl’anel]

[ALMEditorCanvas] [AI.MI.ayout }

aLMEditorCanvas

@Constructor(

Create AreaPanel (this, aLMEditorCanvas|

layout

, layout)

O ConstraintsPanel(this, aLMEditorCanvas)
< Add both to a tabbedPane
O Create ALMEditorCanvas(layout)

o Remove components from

and then add almEditorCanvas in its place
_ | [

% ALMEditorCanvas —— Component (5)

IMLayout

Constructor({layout)

Create Areas/Constraints PopupMenu

Add Menultems to both PopupMenus
Paint the X/YTabs and red/green rectangles

o

o

=]

GE AreaPanel ——Panel

&=
)

[Pmperﬁespanel] [ALMEditorCanvas

PropertiesPanel _TJ.“‘ -~

propertiesPanel aLMEditorCanvas

@Cnnstructor(pmperties, canvas)
o Create areaScrollPane

O Create Palette(this)

and add to areaScrollPane

P (a)
J = \5 ‘Cm%ms)
=Y p P,

5 Areabang el

0

@ ConstraintsPanel — Panel (5)

[Plopertiespanel J [ALMEd'rtorCam:as

)

propertiesPanel aLMEditorCanvas

ConstraintEditingPanel

@Constructor{properties, canvas)
o Create constraintsScrollPane
o Create constraintListPanel and add

to constraintsScrollPane

O Create ConstraintEditingPanel(this)

Clicks on particular JLabel

And add to constraintListPanel when mouse

A

-5 -
-4
=9
i

iy

__|/ALMEditorCanvas |,

\J Pmpe"hspmel

JCDmpone
Isbel1
text
Box
2

listviswl

Appendix Figure 8 continuing the initialization of the editing mode: the instantiation of PropertiesPanel, ALMEditorCanvas,

AreaPanel, ConstraintsPanel classes. (new implementation)

67

7 - 4 Y I - i £\
[.&i AreaPanel —— Panel (5) [.ﬁg_ ConstraintsPanel —— Panel (5 |

o -\ Far o N - i,
- f= Palette —— Panel | E'J \L_fﬂl ConstraintEditingPanel — Panel (7 | j
[AreaPanel ConstraintsPanel

areaPanel constraintsPanel

@ paintComponent(Graphics2D) o Shows after clicking on a constraints label

o paint the bin components o Setflow layout
addToBin() o Add all the components

o add the bin components

@ J) cm%mﬂnei
ibras
A straip tsj.:mupane m

| |
s = Constraintjsg - |I |Iﬁj
\5) hﬁmwane . 5 ane| :;'«J [

[. 4 1l

) ‘ Cons‘train%sEditingPanel | ‘ ConstraintsPanel

._S" ""’t‘aPan“

Appendix Figure 9 final of the initialization of the editing mode: the instantiation of Palette and ConstraintEditingPanel classes
(new implementation)

Appendix H - Setting up Intelli] Plugin Development Environment

1.
2.

6.

File> New Project> Java > IntelliJ Platform Plugin

File > Project structure > platform settings> SDKs> press the “add” button > choose “IntelliJ platform plugin
SDK”. (its name should be for example IDEA 1C-133.331)

ClassPath: In the “IntelliJ Platform Plugin SDK home path” select the path to the current installation of the
IntelliJ community edition, for example: C:\Program Files (x86)\JetBrains\IntelliJ IDEA Community Edition
13.0.1

When the “Select internal Java platform” dialog pops up, select the desired Java SDK version (the
recommended version is 1.6 but 1.7 was used and found to be fine for this plugin development).

Repeat steps 4 to 8 from Setting up Scala section in Appendix B (this will set up Scala so that the Scala files
from the new implementation of ALMEditor can be used)

File>Settings> IDE Settings> Ensure PluginDevK:it is enabled

Now in the external libraries, should have IDEA 1C-133.331 and Scala

To test the plugin:

1)
2)

3)
4)
5)

Run>Edit Configurations> Use Class path of module > set it to the current module

Press run and a new instance of IntelliJ should start up. Make a new project as normal (only have to do this the
first time), setting the project jdk.

Make a new java class. The editor tab should automatically show up near the bottom of the window.

If it doesn’t show, check the edit menu for a menu item called "Put action here..."

If it’s not there, it means the Actions/Extensions have been registered properly, or IntelliJ is not recognizing
them.

Appendix I - Checking out Intelli] Community Edition

Since IntelliJ IDEA has a open-source Ul designer plugin, it could be useful in providing a reference to how GUI editor
plugins could be written for IntelliJ. At the time of writing this report, this was the only open-source Ul designer plugin.
Therefore the community edition source code had to be imported into IntelliJ.

68

e The latest version of Git was downloaded from: http://git-scm.com/download/win
e Then, the path to Git.exe was set up by selecting: File>Settings>Project Settings>Version Control>Git
e In Path to Git executable, write down the complete path to Git.exe (for example: C:\Program Files
(x86)\Git\cmd\git.exe)
e Then, the source code was checked-out by selecting:
VCS>Check out from version control> Git
e Pasting this URL into Git Repository URL: https://github.com/JetBrains/IntelliJ-community

e Clicking “clone” will start the process of making a copy of this repository.

Appendix | - Errors Encountered During Plugin Development (Section 6.3.4)

Error 1:
Run configuration error: Wrong jdk type for plugin module

Fix 1:
File> Project structure> Project settings> Modules > Dependencies> Set Module SDK to IDEA IC- 133.193

Error 2:
Run Configurations> Use classpath of module is None

Fix 2:
Go to the .iml file and change from <module type="JAVA_MODULE"
to <module type="PLUGIN_MODULE"

Error 3:
Java.lang.lllegal ArgumentException: attempt to register provider with non unique editorTypeld: ui-designer

Fix 3:
The above error is caused by the id not being unique
For example in the tool window example in community edition:

<extensions defaultExtensionNs="com.IntelliJ">

<I-- Add your extensions here -->

<toolWindow id="Calendar" secondary="true" icon="/general/add.png" anchor="right"
factoryClass="myToolWindow.MyToolWindowFactory" >

</toolWindow>h
</extensions>

The toolWindow id “Calendar” is not unique, so produces this error. Have to change the id to something more unique
like tools.Calendar

Error 4:

Error message: Could not create the Java virtual machine. when trying to run a plugin (this happens on machines which
operate on 32-bit)

See: https://IntelliJ-support.jetbrains.com/entries/23393413

Fix 4:
Go to editConfigurations> VM Options>

there will be some text which says something similar to:
-Xms128m -Xmx550m -XX:MaxPermSize=350m -XX:ReservedCodeCacheSize=96m -XX:+UseCodeCacheFlushing

Reduce the Xmx 100m at a time until the plugin runs

Error 5:
Cannot find path to Git.exe

Fix 5:

69

http://git-scm.com/download/win
https://github.com/JetBrains/intellij-community
https://intellij-support.jetbrains.com/entries/23393413

This occurs because IntelliJ expects Git.exe for VCS
Download Git.exe from http://git-scm.com/downloads
and go to File>Settings>Version control>Git> and change the path to git executable to point to git.exe

For example:
C:\Program Files\Git\cmd\git.exe

Appendix K- TODOs

Need to convert the rest of the components to Scala components in the ConstraintEditingPanel class
The areas sometimes start to overlap after some resizing and swapping. The CheckForOverlap method in
ALMEditorCanvas might not be compatible with the changes made in the code during this project
binAreaInsets and binAreaAlignments hash mapsin AreaPanel and itemsInBin in Palette
need to be removed as their function for storing the JComponents, insets and alignment of bin items was
replaced by the ComponentInBin class.

Currently the contents and areas are linked in the AreaPanel and have the same display name. However the
user should be able make an area contain different content

Within the area panel, the “add new tab” option can be selected in the left, right, top, bottom combo boxes
however it is not fully functional

A very minor problem but in the left, right, top, bottom combo boxes, the different X/YTabs are not displayed as
different colours. Within ConstraintEditingPanel, the overriding of the method
getListCellRendererComponent With generic parameters is extremely difficult in Scala. See
http://www.Scala-lang.org/old/node/10687

Concerning the edit operation classes: there isn’t a complete separation of concerns since some code are needed
by more than one edit operation. Instead of just putting the code in one of the classes, need to put the code
within a general reactions registration section in ALMEditorCanvas. What if two classes need to assign to
the selectedArea variable? This code may need to be be in the general MousePressed case in
ALMEditorCanvas.

Make a more efficient method for updating the widgets in ConstraintEditingPanel. Right now, if
variables are added or removed to the editing constraint (addvariableButton or
removeVariableButton), refreshGUIComponents is called which removes all the GUI components
and inserts all of them again. This involves a code duplication; a better way would be to just keep the old
components and insert or remove the variables (and updating the list) dynamically.

There needs to be some way to scroll through the constraint editing panel when the widgets added to it exceeds
the amount of space provided by the Panel.

The load and save functionality in the properties window needs to be tested as they were not considered in this
study.

70

http://git-scm.com/downloads
http://www.scala-lang.org/old/node/10687

