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ABSTRACT
Layout managers provide an automatic way to place con-
trols in a graphical user interface (GUI). With the wide
distribution of fully GUI-enabled smartphones, as well as
very large or even multiple personal desktop monitors, the
logical size of commonly used GUIs has become highly
variable. A layout manager can cope with different size
requirements and rearrange controls depending on the new
layout size. However, there has been no research on how
the distribution of additional or lacking space, to all con-
trols in the layout, effects aesthetics.

Much of the previous research focuses on discrete changes
to layout. This includes changing the layout elements [15],
or swapping around layout elements [7]. In this paper
we focus strictly on the optimization of resizing of GUI
components, and in this area we focus on rather subtle
changes. This paper describes and compares strategies
to distribute available space in a visual appealing way.
All strategies are modeled with a constraint-based layout
manager, since such a layout manager can be used to de-
scribe a wide range of layouts. Some aesthetic problems
of constraint based layout managers have been identified
and solutions have been provided.

In a user evaluation three solving strategies, equal dis-
tribution, weighted distribution and a minimal deviation,
have been compared. As a result, the minimal deviation
approach seems to be a good strategy for large and small
layout sizes. The minimal deviation and the equal dis-
tribution strategy is best at large layout sizes while the
weighted distribution approach seems to perform better
at small layout sizes. Furthermore, the evaluation shows
that layouts with a high degree of symmetry are clearly
preferred by the users.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Evaluation/methodology
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Experimentation, Measurement, Performance
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1. INTRODUCTION
In early GUI frameworks, controls such as buttons or

text views had to be placed manually at a fixed position
and with a fixed size, e.g. in Microsoft Foundation Class
library (MFC). This can become very tedious as soon as
new controls have to be inserted or the layout of exist-
ing controls has to be modified. Modern GUI frameworks
solve this problem by offering layout managers which allow
developers to position the controls in a user interface more
abstractly. Rearranging and modifying a GUI can become
easier and a re-layout of the GUI at different window sizes
can be done automatically by the layout manager. Fur-
thermore, the use of a layout manager often leads to more
consistent GUIs since it can make sure that the controls,
the layout items of the layout, are well aligned and consis-
tently spaced.

To setup a GUI using a layout manager, the developer
has to specify a set of layout specifications. To keep things
as simple as possible for the developer, the layout speci-
fications that are required to define a layout with good
visual appearance should be small. This means that lay-
out specifications usually do not specify every single detail
about a layout, but leave some of the details to the lay-
out manager. Interesting are the cases when the available
space in a GUI is insufficient or when there is more space
available than needed. Both cases happen regularly when
windows are resized, e.g. to adjust a GUI to the size of
the available screen space. For example, consider a sim-
ple layout containing just two controls in a horizontal row,
spanning the complete window size (Figure 3). Depend-
ing on the window size, the layout manager has to decide
what control width is the best to yield a visually appeal-
ing result. An important hint for that decision can be the
control’s preferred size, which describes the size preferred
by the control in the absence of any other constraints.

This paper addresses the following overall research ques-
tion: how should the space available in a GUI be dis-
tributed among the layout items? To answer this ques-
tion, we need to consider what layouts are perceived as
aesthetically pleasing, as well as the solving strategies that
determine the layouts. We motivate a minimal deviation
strategy to distribute the available space. In a constraint
based layout system this can be implemented by using a
quadratic solving strategy and we show how this solving
strategy is superior to a linear solving strategy. In this
paper we focus on a subproblem of this general question.
We focus on a very restricted class of layouts, and we are
considering a restricted class of GUIs, namely GUIs that
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are comprised solely of buttons. This is worthwhile since
it allows us to isolate possible cross-influencing factors.
Our restricted experiments yield interesting results that
can now be tested in other more general classes of layout.

In the field of typesetting and document layout much
research has been done about how to create accessible and
clear document layouts using automated layout systems
[9]. However, no study has been undertaken as to how dif-
ferent solving methods compare to each other with respect
to aesthetics. The compared solving strategies are equal
distribution, weighted distribution and minimal deviation.
All solving strategies were implemented and evaluated us-
ing the Auckland Layout Model (ALM) [11] a constraint
based layout manager. However, the results presented in
this paper are not limited to the ALM and can be ap-
plied to other layout managers as well. A constraint based
layout system is able to model all interesting layouts and
solving strategies for our research. Pitfalls of the solving
strategies are analyzed and solutions for them are pre-
sented.

We performed a user evaluation where the equal distri-
bution, weighted distribution and minimal deviation strate-
gies were compared to each other. Our study shows that
the minimal deviation strategy gives good results for small
and large layout sizes, while the other solving strategies
only demonstrate their strength either at small or at large
layout sizes.

In the next section an introduction to layout managers
and the different types of common layout classes is given.
Section 3 gives an overview of related work, including how
other layout manager distribute available space and how
Gestalt principles are used in other fields to get visually
appealing results. A detailed description of constraint
based layout and how systems of layout constraints can
be solved using linear and quadratic objective functions
is given in Section 4. Section 5 compares the effect of lin-
ear and quadratic objective functions on the visual quality
of the layout. In Section 6 a user evaluation is presented
that provides answers to the research question. It shows
how the layouts produced by different solving approaches
are perceived aesthetically by users. The results indicate
which solving strategies generally lead to more beautiful
layouts.

2. LAYOUT MANAGERS (OVERVIEW)
In early GUI developer toolkits, GUI items had to be

placed manually in certain fixed position. This static ap-
proach can be tedious and error prone, especially during
the design process where GUI items are moved around
quite often. In this case, already placed items have to be
rearranged when inserting a new element. A layout man-
ager assists the developer in setting up dynamic graphical
user interfaces. GUI items managed by a layout manager
are placed automatically following certain rules.

Furthermore, the layout manager can adjust the layout,
e.g. when the user resizes a window. In this case a layout
manager repositions GUI items dynamically to fit into the
new size. Another case is a font change or a change of the
application language, e.g. from English to German. Gen-
erally, in both cases the displayed text will change its size
and thus requires the rearrangement of GUI items. Using
a static approach makes it frustrating for the developer
to handle such cases. However a layout manager handles
these use cases with ease without further work from the
developer.

Anything that can be placed into a layout is called a
layout item. The most important layout items are GUI
controls, e.g. buttons or text labels. Other important lay-

out items are spacers, which are invisible and can be placed
between other layout items. A spacer can occupy a fixed
amount of space or can act like a spring to push other
layout items aside. In this way, a spacer can be used to
refine a layout and give it the desired shape. In order to
create nested layouts it is important to have an item that
can hold another layout. This can easily be achieved by
treating a layout as a special layout item. In the following
we assume that layout items are rectangular.

In general a layout item has a minimal, a maximal and a
preferred size. The preferred size is the size the layout item
should assume if there are no other constraints for the item
size. This can be illustrate with a pinched sponge which,
after releasing it, expands to its original or preferred size.
From the size values for each layout item in the layout,
the corresponding size values of the complete layout can
be calculated. Similar to a single layout item, the preferred
size of a whole layout is the size it should assume if there
are no other constraints. Notice that in a layout of minimal
size, not all layout items may have their minimal size. This
is because other larger layout items may be preventing
the layout from shrinking further. In general, a layout or
a layout item has a size different from its preferred size.
Thus, there is a size discrepancy between the actual size
and the preferred size.

There are different existing types of layout in various
frameworks (see Section 3). Most of these frameworks
provide special layout classes for special types of layout
problems, e.g. group layout, grid layout or flow layout.
Usually these special layouts can be combined by creat-
ing nested layouts. These most common layout classes are
described briefly in the following sections.

2.1 Group Layout
A group layout is a simple 1-dimensional layout that can

hold items side by side in a single row or column. There
are two main variants of this layout, a horizontal group
layout which can hold a row of items and a vertical group
layout which can hold a column of items.

By nesting horizontal and vertical group layouts many
useful layout configurations can be created. However, this
type of layout is not sufficient for more complex layouts,
e.g. a link between layout items in two different group
layouts is not possible.

2.2 Grid (Bag) Layout
Some of the shortcomings of a group layout can be avoided

by using a grid layout, also known as a table layout. Here,
a layout item can be placed in a 2-dimensional table. A
layout item can occupy more than one cell in the grid, and
thus it is possible to create complex layouts. Furthermore,
it is possible to create a link between items not directly
adjacent, e.g. by placing them in the same row or column.
This makes the grid layout reasonably flexible and power-
ful.

The grid layout can be tuned by giving the rows and
columns special weightings. This is useful in specifying
which row and column should use more space compared
to the other rows and columns.

2.3 Flow Layout
A flow layout is basically a horizontal group layout that

can span over multiple rows if items do not fit into one row.
This is comparable with a line of text in a word processor:
if the end of the line is reached, the text is continued in
the next line. An example of a flow layout is a button bar
that becomes a multi-line button bar in case the window
becomes smaller than the button bar width.
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2.4 Constraint-Based Layout
In a constraint-based layout, the layout specifications

are described by constraints using linear equalities and
inequalities. An example for a simple GUI constraint for
a horizontal two-button layout is

button1right = button2left.

There are two types of constraints: hard constraints, which
have to be satisfied, and soft constraints, which can be vio-
lated if necessary. The way how soft constraints are solved
depends on the implementation of the constraint solver
and can be used to control the final visual appearance
of the layout. Layouts created with a group or grid lay-
out can alternatively be created using a constraint-based
layout manager. However, constraint-based layout man-
agers support even more complex layouts, which makes
them very powerful. For example, in a grid layout, lay-
out items are always aligned to a outer fix grid while in a
constraint-based layout a layout item can be aligned rela-
tive to another layout item and so is not bound to the fix
grid. Constraint-based layouts are discussed in detail in
Section 4.

3. RELATED WORK

3.1 Layout Managers
Some of the most prominent GUI frameworks that pro-

vide layout mangers are Qt 1, Java AWT [16], Cocoa 2,
Windows Forms [13], GTK+ 3 and wxWidgets 4. Most of
these layout managers distribute available space in a sim-
ple way, however, different managers use different methods
of distribution. How exactly available space is distributed
is neither well documented nor is there any explanation
why a particular method of distribution has been chosen.

For example, the Grid Bag Layout from the Java AWT
framework distributes the layout size discrepancy using
weights which can be assigned to columns and rows (weighted
distribution). This means generally that an item grows or
shrinks by

∆sizeitem = discrepancy · weightitem /
∑

i∈items

weighti.

The Qt toolkit follows a different approach and distributes
or takes available space available space equally from all
items in the layout (equally distribution):

∆sizeitem = discrepancy /#items

Another approach is implemented in the Haiku OS5. Here,
for all items in a group layout the sum of the quadratic
item discrepancies is minimized (minimal deviation). This
is described in more detail in Section 4.3.2.

Similar to the ALM layout manager used in this research
(see Section 4), the Java layout class SpringLayout and the
layout manager of the Mac OS Cocoa API, Auto Layout,
is based on constraints. In Auto Layout, the programmer
can specify linear constraints in the form y = m · x + b
between two variables x and y. These variables could, for

1Qt – a cross-platform application and UI framework, 2011
http://qt.nokia.com/products/
2Cocoa Auto Layout Guide, 2011 http://developer.
apple.com
3The GTK+ project, 2011, http://www.gtk.org/
4wxWidgets Cross-Platform GUI Library, 2011, http://
www.wxwidgets.org
5The Haiku Operating System, 2011, http://www.
haiku-os.org

example, be the width or the edge of a layout item. How-
ever, this approach is not as powerful as general constraint-
based layout managers such as ALM, which allow to spec-
ify more complex constraints and make it possible to create
layouts in a more abstract way. For example, constraints
with multiple variables or variables not connected to any
layout items are not possible. A wide overview of different
techniques for solving GUI constraints is given in [1].

Besides methods of distributing the discrepancy, other
approaches have been tried to adapt a layout to different
sizes. Supple is an automated system that can adapt lay-
outs to changes in display size, in particular to different
devices. The system supports discrete changes of layout
items, i.e. it changes the controls that are used within an
input form depending on the available space [15]. Opti-
mizations of more experimental layouts has been studied
for the GADGET framework [7]. For example, GADGET
targets problems like how a GUI can be automatically gen-
erated using certain optimization rules.

3.2 Layout Aesthetics
The scientific field of Gestalt psychology [10] covers prin-

ciples about the perception of shapes and groups of shapes.
For example, the law of equality states that similar shapes
are perceived as a group, and the law of proximity states
that shapes which are placed close to each other are per-
ceived as a group. These findings can be transferred to
user interfaces, where aligned controls are perceived as a
group. The law of equality can be applied when items
are placed in the same row or column and share the same
height or width. When items are aligned close to each
other the law of proximity can be applied. This can be
used to group related controls [8] to achieve a clear lay-
out appearance. Gestalt psychology is the basis for many
fields and is used in most aesthetics related papers.

Gestalt principles can also be applied to conventional
typography [9] as well as to web documents [3]. Here they
can help to structure a document to make it easier to read
and understand. Another application is the pagination
problem, which targets the question how to best distribute
content over multiple pages, e.g. how to place figures and
text in a complex document to produce visually pleasing
results [14]. In the field of graph layout, a set of similar
layout aesthetics has been used to optimize graphs [4].

The knowledge of Gestalt principles can help to layout
UI objects in a more pleasant way [3]. Layout mangers
often make it easier to set up good layouts, without hav-
ing to define the final layout in all its details. However,
they do not apply Gestalt principles all by themselves: if
Gestalt principles are used depends on how a GUI designer
specifies a layout, not on the layout manager.

4. CONSTRAINT-BASED LAYOUTS
In a constraint-based layout manager, user interface lay-

outs are specified mathematically as constraint problems.
This makes it possible to create complex and flexible lay-
out specifications, and calculate actual layouts using nu-
merical constraint solving methods [12]. The Auckland
Layout Model (ALM) [11] is the constraint-based layout
manager used for this research, and a suitable representa-
tive of constraint-based layout in general. ALM was cho-
sen because all common layout specifications and solving
strategies can be emulated using ALM. The discrepancy
distribution methods discussed here can also be used with
other constraint-based layout managers.

Each layout item in ALM is connected to a tab on each
of its four borders; a tab is a horizontal or vertical grid
line in the layout. Relations between tabs, and so between
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different layout items, can be specified using layout con-
straints. For example, to place two buttons beside of each
other, the right border of the left button shares a tab with
the left border of the right button. A rectangular space,
surrounded by tabs, that is occupied by a layout item is
called an area.

The developer is able to add arbitrary constraints to the
layout specification. For example, an additional constraint
like

widthbutton1 = 2 · widthbutton2

could be used to ensure that the width of button1 is two
times as big as the with of button2. Compared to a grid
layout where rows and columns have a fixed order, tabs do
not have a strict order which allows more flexible layouts.

There are two kinds of constraints used to specify a lay-
out. First, hard-constraints are needed to set the fixed
properties of a layout item, such as its minimum and max-
imum size. Secondly, soft-constraints are used to give a
hint how a layout item should look like, e.g. the item size
should be close to the preferred item size. The actual in-
fluence of the soft-constraints on the final layout varies
depending on the solving strategy used.

4.1 Specifying Constraints
Constraints that have to be satisfied exactly are called

hard-constraints. A hard-constraint could be either an
equality or an inequality constraint, and can be described
by

Ai · x = bi i ∈ equalities

Ai · x ≥ bi i ∈ inequalities

Here A is the constraint matrix, x is the tab or variable
vector and b is a constant vector.

Soft constraints are specified in the same way as hard
constraints, but because they can be violated, it is often
possible to prioritize them. In case of a conflict between
soft constraints, the constraint with the smallest priority
will be violated most. Similar to hard constraints, devel-
opers may add custom soft-constraints to a layout specifi-
cation.

The most important use case for soft constraints is the
specification of preferred sizes for layout items. Preferred
size constraints are a common way to give layout items
a reasonable size, i.e. make them as close to their pre-
ferred size as possible, while still accommodating size ad-
justments. For example, the preferred width of a button
is the width needed to display the button label plus some
extra space for the border. This border is actually not
completely needed and labels can be abbreviated, so the
button could be narrower than the preferred width. Sim-
ilarly, it is possible to make the button wider than the
preferred width. The solver has to decide which width is
the best, considering that the item needs to fit into the
overall layout, e.g. that it aligns with its neighbors. Using
a preferred width soft constraint, it will choose a size as
close to the preferred width as possible. The mathemati-
cally description of soft-constraints depends on the objec-
tive function used, and is discussed later in Section 4.3.

4.2 Rows and Columns
A layout item is always connected to two horizontal and

two vertical tabs. The two horizontal tabs can naturally
be regarded as a row, and the two vertical tabs as a col-
umn. Multiple layout items sharing the same horizontal
or vertical tabs also share the same row or column, respec-
tively. In this way there can be interruptions in a row or
a column, e.g. there could be another item between two

items in a row that is only connected to one or even none
of the horizontal row tabs. This is not the traditional def-
inition of rows and columns but allows a simple grouping
of the generally unordered tab system.

4.3 Layout Optimization
A suitable constraint solver for user interface constraints

must be able to solve the hard-constraints (Section 4.1)
and must also handle soft-constraints. Soft-constraints are
described separately from hard-constraints by a scalar ob-
jective function. In general, this objective functions is min-
imized while satisfying the hard-constraints at the same
time.

4.3.1 Linear Objective Function
The simplest approach for an objective function is a lin-

ear objective function, which can be utilized to describe
soft-constraints and optimized using linear programming.
Technically, this is done by first adding a hard-constraint
for each soft-constraint, of the form∑

i

asoft,i · xi + sshrink − sgrow = bsoft.

Here, sshrink and sgrow are two new positive slack vari-
ables which express that the soft-constraint can be violated
in both direction. The goal is to keep both slack variables
as small as possible to violate the soft-constraint as little
as possible. The penalty factors pshrink and pgrow can be
used to prioritize a soft constraint, with a large penalty
factor meaning that growing or shrinking away from the
optimal values is suppressed.

Finally, this leads to the linear objective function, which
is the weighted sum of all slack variables, and which must
now be minimized [11]:∑

i∈soft

pgrow,i · sgrow,i + pshrink,i · sshrink,i → min. (1)

A suitable solver for this purpose is lp solve [2], which uses
the simplex algorithm [5].

One of the problems of a linear objective function is that
minimizing (1) generally leads to many valid solutions;
the linear approach is non-deterministic. This means that
not all soft-constraints are violated in a uniform way, e.g.
only a few constraints are violated and its not clear which
constraints are violated.

4.3.2 Quadratic Objective Function
A deterministic approach is to minimize the square of

the deviation from a desired target value. For simple pre-
ferred size constraints this can be written as∑

i∈soft

(xi − prefi)
2 → min.

More general, the soft-constraints in matrix form

Asoft · x = bpref

can be used to form the quadratic objective function

1

2
xTAT

softAsoftx− bTprefAsoftx→ min.

Replacing AT
softAsoft = G and −bTprefAT

soft = gT this
could be simplified to:

1

2
xTGx + gTx→ min

This is a known quadratic programming optimization
problem and could, for example, be solved using the Active
Set method [6]. To use the Active Set method, first a valid
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base solution for the hard constraints has to been found.
Continuing from that base solution, the Active Set method
minimizes the quadratic objective function, while staying
in the solution space of the hard-constraints.

Soft constraints can be weighted by a penalty p. For the
simple preferred size constraints, this leads to the objective
function ∑

i∈soft

p2i · (xi − prefi)
2 → min.

Constraints with larger penalties p will be violated less
than constraints with smaller penalties. Notice that com-
pared to the linear objective function only one penalty
factor for growing and shrinking can be applied. Thus the
developer can not specify if a layout item is more likely
to grow than to shrink. However, by combining two soft
inequality constraints, e.g. x > b and x < b, a similar
growing and shrinking behavior can be achieved.

A soft inequality constraint is an inequality constraint
that can be violated if necessary. Soft inequality con-
straints are not directly supported using a quadratic objec-
tive function but can be constructed from a hard inequal-
ity constraint and a normal soft constraint. To construct
a soft inequality constraint a positive slack variable s has
to be added to the basic inequality. For example,∑

i

cixi < ri becomes
∑
i

cixi − s < ri,

∑
i

cixi > ri becomes
∑
i

cixi + s > ri.

This means s can always be chosen to satisfy the inequal-
ity. However, only if other constraints require to violate
the soft inequality constraint, then s should be greater
than zero. This can be achieved by adding the soft con-
straint s = 0 with a sufficient high penalty.

5. AESTHETICS PROBLEMS OF
CONSTRAINT-BASED LAYOUT

Describing soft-constraints using a linear or a quadratic
objective function leads to different behaviors when dis-
tributing the size discrepancy to the layout items. In this
section, the behavior of preferred size soft-constraints is
discussed from an aesthetic point of view.

5.1 Linear Objective Functions Cause Non-
determinism

An example for a simple homogeneous layout is a lay-
out containing just three buttons with exactly the same
properties. Figure 1 a) shows the resulting layout solved
by lp solve (linear objective function). As expected, all
hard-constraints are satisfied. The soft-constraints for the
first two buttons are matched exactly, meaning the height
is equal to the preferred size of the buttons. The only vi-
olated soft-constraint is the preferred height of the third
button.

From the aesthetic point of view, this layout configura-
tion looks odd. Because all buttons have the same prop-
erties, one would expect that all buttons take the same
amount of space. The height ratio between the different
buttons is not specified by the layout, but is a result of
how the solver solved the constraints. It is theoretically
even possible for the ratio to changes nondeterministically
during resizing. Following Gestalt principles, the three
buttons with identical properties should be perceived as a
group, which is not the case here.

One solution to this problem is to manually specify a
size relation between the related items, but this is extra

(a)

(b)

Figure 1: Simple three button layout with all but-
tons having the same properties. The layout is
solved using a) a linear and b) a quadratic objec-
tive function.

work for the developer. A better solution is to leverage
the advantages of a quadratic objective function, which
minimizes the deviation to the preferred item size for each
item, not just the sum of deviations over all the items.
Figure 1 b) illustrate how a quadratic objective function
leads to the desired uniform result.

5.1.1 Proportionality Scale Variables
The problem of the linear objective function, as de-

scribed above, could partially be solved by introducing
additional free scaling variables s. These scaling variables
can be used to make the size of a layout item proportional
to their preferred size. To do so, the preferred size soft
constraints have to be rewritten to:

x− xpref · s = 0.

However, the approach can only be used in special cases,
i.e. when all layout items can get a size proportional to
their preferred size. In case this requirement is not satis-
fied anymore, the soft-constraints have to be violated again
which leads to the same problem of non-determinism as
described previously.

5.2 Spring Effects
One disadvantage of minimizing the deviation to the

preferred sizes is that this sometimes leads to an unwanted
spring effect. This is an analogy between preferred size
constraint and mechanic springs, pulling or pressing an
item to its preferred size.

The problem occurs when multiple “springs”are coupled
and thus their strengths combined to a resulting force.
Such a coupling could, for example, be observed in a multi-
row layout like in Figure 2. In the first row three “springs”
and in the second row two “springs” are coupled. Because
each button has the same preferred height, this results in
the same descriptive spring force Fs for each button. Thus
the first row has a “spring” force of 3 · Fs and the second
row a force of 2 ·Fs. For the solved layout this means both
rows have a different height.

This is certainly a limitation of constraint-based layout
because since all items have the same properties one would
expect, according to the equality Gestalt law, two equal
sized rows. In such a case a relation between rows has to
be specified explicitly, e.g. by applying a hard-constraint
that keeps the height of both row constant. Another, more
general solution is to define preferred size constraints on
whole rows and columns only.
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Figure 2: Spring effect: Three buttons in the first
row pulling stronger to their preferred size than
the two buttons in the second row.

A row or column is defined by two tabs and at least
one layout item between these tabs. Rows are bordered
by horizontal tabs and columns by vertical tabs. Layout
items connected to the same two tabs are associated with
the same column or row (Section 4.2).

To solve the spring effect problem, the preferred size
constraint is only applied for rows and columns and not
for each layout item. Since there could be multiple items
in a row or a column, the weighted average of the preferred
sizes of the items is used, using penalties as weights. In
the upper example, this has the affect that both rows have
the same preferred height, and thus get the same height
when solving the layout.

6. EVALUATION
There are many ways to place layout items in a lay-

out. Similar to a typesetting system, an important goal
is to to create layouts that are aesthetically pleasing for
the user [9]. In this section, we evaluate different solving
strategies with regard to aesthetic perception.

The difference in the perceived aesthetics of layouts gen-
erated by different solving strategies are small and difficult
to measure. For some users it may not be obvious what
the differences are between the same layout rendered with
different solving strategies. Furthermore, the criteria of
aesthetics are subjective and vary between users.

An important aspect of this evaluation is the analysis
of the resize behavior of a layout. Layouts should look
pleasing at different sizes, not just for a particular initial
size. Therefore, the evaluation will consider different sizes
of the same GUI, a small size close to the layout minimum
size and a large size approximately twice as large as the
preferred layout size. Here, three solving strategies that
place items in a 1-dimensional and 2-dimensional layout
are analyzed. All layouts and solving strategies described
in the following were implemented using ALM’s constraint
system.

6.1 Single-Row Layouts
A very simple layout is a layout consisting of just a single

row, e.g. a group of buttons arranged besides each other.
Three different solving strategies to distribute the size dis-
crepancy to the buttons in the row are evaluated.

First, equal distribution gives each item the exact same
amount of space in a line. Here the preferred size of an
item is not take into account. Note that the theoretical
minimum size of a layout can generally not be reached
here, i.e. when one of the layout items reached its minimum
size then the other ones cannot be made smaller either.
In practice this can be solved by violating the equality
constraint once an item reaches its minimum size.

Secondly, weighted distribution keeps the size ratio be-
tween items in a line constant. This means a weight is
assigned to each item. The layout item sizes are given by

Sizeitem = Sizelayout · witem/
∑

i∈items

wi.

For this evaluation, the item weight is chosen as the rela-
tive item size at a small initial layout size, where the items
are close to their preferred size.

Thirdly, the item sizes are determined by calculating
the minimal deviation from the preferred size for each lay-
out item. This can be achieved with a solving strategy
that uses a quadratic objective function (see Section 4.3.2).
For very large layouts, the minimal deviation approach
converges to the equal distribution approach because the
preferred size becomes small compared to the actual item
size. For layout sizes close to the layout’s preferred size,
the result is close to the weighted distribution because the
weights are chosen to match the preferred size.

An example for a simple two-button row at small layout
size is shown in Figure 3. For simplicity, no item maxi-
mum size is taken into account. Maximum sizes result in
more complex layouts and thus make the analysis of the
evaluation results more complicated. For example, when
the maximum of one layout item in an equally distribution
layout is reached, the layout cannot be resized any further.

(a)

(b)

Figure 3: Two different solving strategies for a sim-
ple two-button layout: (a) minimal deviation and
(b) equal distribution.

6.2 Multi-Row Layouts
Another interesting question is how the three different

solving strategies from the previous section perform in
a multi-row layout. In this evaluation, a two-row and a
three-row layout is evaluated with regard to its perceived
aesthetics. The two-row layout has three buttons in the
first row and two button in the second row. In the three-
row layout, another row with two buttons is appended.

The first case we considered in this study is a minimal
deviation approach, where the sizes of the items are chosen
as close to their preferred sizes as possible. However, as
shown in Figure 4 (a), this leads to an irregular, staggered
appearance, which is unusual for multi-row layouts. In
multi-row layouts, the items are usually aligned in a grid,
which comes naturally when using common grid-based lay-
out managers. Therefore, we also evaluate some layouts
where the items are aligned in a grid, with each item taking
up as many cells as seems natural for their given preferred
size. More specifically, we want to compare two different
solving strategies for the grid-aligned layouts: either the
space of the items in the first row uses an equal distribu-
tion, as in Figure 4 (b), or it uses a weighted distribution,
as in Figure 4 (c). The sizes of the items in the second and
third row follow from their alignment with the first row. If
the minimal deviation approach were used for the first row,
with the items in the second and third row being aligned
to the first row, the resulting layout would look very sim-
ilar to the cases (b) and (c), depending on the layout size,
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Question Score
I easily saw the difference between the layouts. 1.3
It was easy to judge the different layouts. 0.6
I have experience with designing UIs. 1.3
I have graphics design experience. 0.3

Table 1: Average questionnaire ratings on a stan-
dard 5-point Likert-scale (−2 to +2).

therefore we did not examine this case in separation.

(a)

(b)

(c)

Figure 4: Three row layout at small layout size. (a)
Minimal deviation without alignment. (b) Equal
distribution with alignment. (c) Weighted distri-
bution with alignment.

6.3 Methodology
Participants were asked to compare various single- and

multi-row layouts shown on paper. Each layout was ren-
dered at two different width: a small width close to the
minimal width, and a larger width about twice as wide
as the small width. The participants were asked to judge
the layouts by their visual appearance and rank them ac-
cordingly, which is expressed by a score: the worst lay-
out got zero points, the layout in between got one point,
and the best layout got two points. The participants were
instructed to consider if every button gets a reasonable
amount of space for its label. Furthermore, the personal
preferences for the button placement and size should be
taken into account.

After judging the different layouts, the participants were
asked to fill in a questionnaire. The questionnaire used a
standard 5-point Likert-scale, followed by open questions
asking the participants to describe the criteria for their
layout preferences.

6.4 Results
The study had 15 participants. All of them had a Com-

puter Science background, and most of them had experi-
ence in designing graphical user interfaces but only casual
experience in graphics design. While it was easy for them
to see the differences between the given layouts, it was not
easy for them to judge them (see Table 1). To determine
the significance of the differences in preference, a one-sided
Welch t-test is used.

6.4.1 Significant Preference Differences
For all the single-row layouts, there is no significant

difference between the minimal deviation and the equal
distribution layouts. For large layouts, this is expected
because minimal deviation and equal distribution layouts
look almost identical. For the three-button layout in its
large size, the minimal deviation and the equal distribu-
tion layouts are significantly (p < 0.05) better than the
weighted distribution layout.

For the multi-row layouts, the grid-aligned layout is
clearly preferred over the unaligned minimal deviation lay-
out. For the two-row layout, the deviation layout gets only
10% for the small size, and 15% for the large size. The
scores were even worse for the three-row layout, where
only two participant liked the minimal deviation layout.

This is an interesting finding and means a symmetrical
layout where the layout items borders are aligned to each
other is more pleasant than a layout where each individual
item gets the space closest to its preferred space. This can
be explained with Gestalt psychology: objects that are
aligned to each other are perceived as a group, thus it
is easier for us to understand the layout, which makes it
preferable [8]. For the usage of constraint-based layout
managers like ALM, this indicates it is better to reuse
existing tabs to create more alignment in layouts.

6.4.2 Preference Trends
Apart form the clear findings of the previous section,

some other interesting observations can be made from the
taken data. First, a similar tendency as in the multi-row
layouts can be seen for the single-row layout in the large
size: for large layout sizes, the equal distribution layout is
more liked than the weighted distribution layout. When
combining the results from the two- and the three-rows
layouts, this tendency is significant at the p < 0.1 level.

A contrary tendency can be seen at small layout sizes.
For the multi-row layouts at small layout sizes, the weighted
distribution layout is preferred over the equal distribution
layout. When the two- and three-row layout results are
combined, this is significant at the p < 0.1 level. In the
small single-row scenario, where minimal deviation layout
and weighted layout look identical, this observation can-
not be made. However, at least it could be said that the
equal distribution layout does not lead to better results
than the weighted distribution layout.

To sum up, there is a tendency that at small layout
sizes weighted distribution layouts are more preferred than
equal distribution layouts. At large sizes, the equal distri-
bution and minimal deviation layouts are preferred above
the weighted distribution approach. This means that the
minimal deviation approach, which is equal to the weighted
distribution at small layout sizes and very similar to the
equal distribution at large layout sizes, is well-suited for
all the sizes, small and large. Furthermore, the minimal
deviation solution scales smoothly down to small layout
sizes where it seems to be important that each item gets a
fair amount of the size discrepancy. For large layouts, the
minimal deviation approach roughly distributes all layout
item equally, which has been found to be the most pre-
ferred solution for large layouts.

6.4.3 Qualitative Responses
When asked about the criteria for preferring one lay-

out over another, the most frequent answer from the par-
ticipants was that alignment of the buttons is an impor-
tant factor (6 participants). For others, enough space for
the button labels and the button margins was important
(3 participants). Furthermore, three participants stated
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that they prefer layouts with equal button size.
These qualitative statements are consistent with the find-

ings from the quantitative layout evaluation. First, aligned
multi-row layouts are preferable over unaligned layouts.
Secondly, for small layout sizes, there is the trend that
minimal deviation layouts, where the size discrepancy is
uniformly distributed on the button margin, are more liked.
Thirdly, for large layout sizes, each layout item should get
the same amount of space, which is the case in equal dis-
tribution and minimal deviation layouts.

7. CONCLUSION
Layout managers are a convenient way to arrange items

in a layout, independent from the actual layout size. All
layout managers need to define a strategy to distribute ad-
ditional or lacking space, i.e. the discrepancy between the
preferred and the actual layout size. Looking at principles
such as the Gestalt laws, it is clear that the distribution
strategy is likely to affect the aesthetics of a layout. How-
ever, our review of existing layout managers shows that
there is no agreement on how this is best done.

Using constraints is the most powerful approach for lay-
out management, and all other approaches can be reduced
to it. To deal with conflicting constraints such as pre-
ferred sizes, constraint solvers have to optimize an objec-
tive function. We have identified two issues that affect
constraint-based layout managers: a linear objective func-
tion can lead to nondeterministic layouts, and spring ef-
fects can lead to layout distortions. For the latter one, we
have identified a solution that makes sure preferred size
constraints are specified for rows and columns rather than
for individual items.

In an empirical evaluation, we have investigated the ef-
fects of three layout solving strategies – equal distribu-
tion, weighted distribution and minimal deviation – on
aesthetics. The evaluation shows that while a weighted
distribution tends to be preferred at small layout sizes, an
equal distribution is preferred at large layout sizes. As a
good tradeoff, the minimal deviation approach yields aes-
thetically pleasing results at small and large layout sizes.
Another finding is that users prefer GUI layouts in which
the items are aligned over layouts with less alignment – a
finding that is consistent with the Gestalt principles.
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