An Evaluation of Advanced User Interface Customization

Clemens Zeidler
University of Auckland
Auckland 1010, New Zealand
clemens @cs.auckland.ac.nz

ABSTRACT

Many graphical user interfaces (GUISs) are customizable.
While there are many approaches to user interface cus-
tomization, most of them are fairly simplistic, e.g., they
only allow users to customize menus and toolbars. How-
ever, one can think of more advanced customization
approaches that allow more complex GUI layout cus-
tomizations and even functional customization. Func-
tional customization goes deeper into the application
logic and makes it possible to change the behavior of an
application. In this paper we target two open questions:
(1) Are technical users able to use such advanced cus-
tomization approaches? (2) Would technical users apply
such approaches in practice?

We introduce prototypical systems for layout and func-
tional customization of GUIs. In a user study, these
systems were evaluated to address the research ques-
tions mentioned above. 18 technical users were given
customization tasks for three layout and two functional
customization scenarios. The participants were observed
during the tasks and were asked to complete question-
naires. The results indicate that users are able to use the
proposed customization systems, and would also employ
them in practice. This suggests that it would be benefi-
cial to include such customization facilities into current
and future applications.

Author Keywords
layout customization; functional customization; user
study; adaptable user interfaces

ACM Classification Keywords
H.5.2 User Interfaces: Evaluation/methodology

INTRODUCTION

It is an old and well-known challenge that applications
may have to be customized to fit different needs [1}
11} /19]. Different users naturally have different require-
ments, e.g., depending on their role, preferred workflow,
expertise, visual acuity and motor skills, and the devices
they use. For example, professional users may want to
streamline a GUI in order to make work more efficient.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OZCHI’13, November 25-29, 2013, Adelaide, SA, Australia.

Copyright 2013 ACM 978-1-XXXX-XXXX-X/XX/XX...$10.00.

Christof Lutteroth
University of Auckland
Auckland 1010, New Zealand
christof @cs.auckland.ac.nz

Gerald Weber
University of Auckland
Auckland 1010, New Zealand
gerald@cs.auckland.ac.nz

Developers cannot anticipate all the users’ needs, and
changing a GUI after release may not be possible or too
expensive. Giving users the ability to do their own cus-
tomization may solve this problem and lead to a better
user experience. An obvious potential issue with cus-
tomization is that it might disrupt vital functionality of
an application. However, this may be addressed by intro-
ducing options for explicit limitations of customization,
and is not part of the scope of this study.

Previous work mostly addressed customization of menus
and toolbars (see related work). However, more ad-
vanced customization, covering all aspects of layout and
also addressing functionality, are largely unexplored. In
this paper, we focus on two advanced customization sys-
tems that allow users to change applications at run-
time. The first system allows users to do complex lay-
out editing, by rearranging, adding and removing ar-
bitrary widgets. The second system enables users to
change the behavior of an application, by adding, re-
moving and rewiring functional components of the ap-
plication. For both systems, the intended target popu-
lation is that of technical users, i.e., technically skilled
users that spend a considerable time using certain appli-
cations. The customization systems were implemented
for the Haiku open-source operating systenﬂ

In particular, we are addressing the following two re-
search questions:

R1 Are technical users able to use customization ap-
proaches for layout and functionality?

R2 Would technical users apply customization ap-
proaches for layout and functionality in practice?

Answering these questions helps us to understand
whether such approaches would be useful.

To target these questions, a user evaluation was con-
ducted, based on the two customization systems for lay-
out and functionality. Both customization systems were
demonstrated to 18 technical users, who were asked to
perform customization tasks for three layout and two
functional customization scenarios. The scenarios were
designed to represent real-world customization use cases.
The participants were observed during the tasks and
given questionnaires at the end.

Most participants stated user interface customization is
useful and they would use it if available. In general it
was easy for them to customize an application, and they

1haiku—os.org

haiku-os.org

easily understood how a problem could be solved using
the customization systems. Participants stated that they
encountered non-optimal GUI layouts during their daily
work, and that they would like to be able to remove wid-
gets, add non-standard functionality or optimize a layout
using layout customization. Similar for functional cus-
tomization, participants encountered applications where
they would have liked to alter the behavior. Some par-
ticipants feared that a customized application would not
work properly, which illustrates the importance of a cus-
tomization system to keep an application in a sound
state. Furthermore, participants came up with inter-
esting suggestions, e.g., that the system could be used
to create GUI mockups or to enable non-programmers
to create new applications.

The next two sections briefly introduce the prototypes
used for layout and functional customization. This is fol-
lowed by a discussion of related work. Finally, the layout
and functional customization prototypes are evaluated
and the results are discussed.

LAYOUT CUSTOMIZATION

Layout customization gives the user the ability to rear-
range, add and remove widgets in a layout. The under-
lying layout model used for our customization prototype
is the constraint-based layout model. This layout model
is very powerful and can describe layouts that cannot
be described with most other layout models . The
customization prototype uses the edit operations of the
Auckland Layout Editor (ALE) to edit constraint-
based layouts. These edit operations leave a constraint-
based layout in a sound state, i.e., the layout stays solv-
able and non-overlapping. Furthermore, all edit opera-
tions keep widgets automatically aligned to each other,
which increases the productivity when specifying a new
layout or editing an existing layout .

To customize a layout, the following drag and drop edit
operations can be used (see also) Existing widgets
can be moved to an empty area in the layout. Here, a
moved widget is aligned to existing widgets. A widget
can also be moved between two other widgets or between
a widget and a layout border. A widget can be resized by
dragging a border of that widget to the border of another
widget. Dragging a widget onto another widget swaps
the positions of the two widgets. Furthermore, widgets
can be removed from the layout by dragging them out of
the layout, and added back in again if desired. Similar to
the move operation, new widgets can be inserted into an
empty area, between two widgets or between a widget
and a layout border. All operations can be undone if
necessary.

The prototype lets users switch an application into an
editing mode at runtime, using a special keyboard short-
cut. This is shown in Figure [I] for a media player appli-
cation. In the editing mode, the GUI becomes editable,
using the operations outlined above. A properties win-
dow assists in the editing process, letting the user change
the layout properties of the widgets. This window also

Virtual Void - BeOS Crew.mp3
MediaPlayer Audio ‘Video Attributes

G — 126
= v o —0— W

Properties
File

Layout Item = Components
Metadata View
Record Button

["] Show X Tabs [| Show Y Tabs [] Free Placemeant

Figure 1. Media Player: Users are able to rearrange wid-
gets, remove widgets and add hidden widgets.

contains a list of widgets that have been removed from
the layout, or were not part of the initial layout.

FUNCTIONAL CUSTOMIZATION

Our customization prototype is built on top of a com-
ponent framework, i.e., the application to be customized
is composed of components that are connected to each
other . Functional customization lets users
change the functionality of an application by adding, re-
moving and rewiring components.

In a component framework, e.g., COMEI or CORBAEI,
components usually have one or more interfaces that de-
fine their properties, methods and events. We imple-
mented a simple component framework that is inspired
by OpenBinderﬂ The component framework provides
a unified way to access properties and to call meth-
ods. Events and methods both have parameter signa-
tures, and an event can be connected to a method with
the same signature. Whenever an event is emitted from
within a component, all connected methods are called.
This can be done in a synchronous or an asynchronous
manner; by default we use asynchronous events so that
concurrent events can be handled in parallel. This keeps
the user interface responsive and the user cannot create
GUI deadlocks by creating circular connections.

Sometimes the connections between two components can
be complex, i.e., if the communication between the com-
ponents involves a complex protocol. The simple mecha-
nism of event-method connections would be too low-level
and tedious in this case. For that reason we introduce
the concept of socket-interface connections that allows to
connect a whole set of functionality to a component. A
component A can have multiple sockets and each socket
is associated with a certain interface. If a component B
implements the interface of a socket, then B can be wired
to that socket. The component A can then use function-
ality of the connected component B through this inter-
face. However, how A uses B’s functionality cannot be
directly controlled by the user. It is similar to a plug-in
that adds functionality to an application.

Similar to layout customization, the user can switch an
application into an editing mode using a special key-
board shortcut. In this mode, there is an additional com-
ponent layer window that shows all customizable compo-
nents of the running application (see Figure |2| from the

2

microsoft.com/com/default.mspx
3omg . org/spec/
Yangryredplanet.com/~hackbod/openbinder

microsoft.com/com/default.mspx
omg.org/spec/
angryredplanet.com/~hackbod/openbinder

Message Composer example explained later on). To add
a new component, the user can select from a list of avail-
able components that can be instantiated. The available
components are usually part of the application but could
also be provided by third-party libraries. A new compo-
nent can be integrated into an application by dragging
it into the component layer window and then wiring it
to existing components. Components can be wired us-
ing simple drag and drop operations. By dragging at an
event slot and dropping at a compatible method slot (or
vice versa), a connection between compatible events and
methods can be established. Analogously, a socket can
be connected to an interface.

HeaderAdder
IDemoTextModifier

IDemoTextProducer
TextHook (IDemoTextModifi... =

ProcessText

Button

linvoker
IViewContainer

ComposeText

signatureAdder

Identifier IDemoTextModifier
Setldentifier
Miew ProcessText
CreateConfigview

Layoutitem

RemoveSelf

TestEvent

Figure 2. Functional customization: Methods are listed
on the bottom-left and events on the bottom-right of a
component. Interfaces are shown on the top-left and sock-
ets on the top-right.

RELATED WORK

Various reasons have been identified that can trigger cus-
tomization [18]. For example, external events may re-
quire users to customize their system to adapt to a new
workflow. Furthermore, social factors can trigger cus-
tomization, e.g., a customization may be suggested by
friends or colleagues. Other triggers are software up-
dates, the need to fix issues, internal factors such as
spare time to tinker with software, and “bloated” appli-
cations that have more functionality than needed by the
user [22]. Users are more likely to customize if they are
made aware of the customization features [1]. However,
customizing a system by removing functionality can also
lead to a loss of awareness of that functionality, poten-
tially decreasing the performance for new tasks [8].

A previous evaluation explored how users customized a
text processor (Word Perfect) [23]. They found that
users actually use macros, customize toolbars and to
some extent change the appearance of a GUI It was
also shown that the performance of an application can
be improved by customizing its GUI |7, [21]. Customiza-
tion can also lead to a higher sense of control and identity
with an application [20].

Early work already enabled users of different skill levels
to customize a software system to their needs. The sys-
tem Buttons tries to make it easier for users to learn cus-
tomization skills by allowing users of different skill levels
to customize a system [19]. Here, application functions

can be assigned to buttons, and normal users can rear-
range the buttons on the desktop to simplify a certain
task. Advanced users (“tinkerers”) can edit parameters
and attributes of the functions, while experts can use
a programming language to further customize or create
completely new buttons.

Adaptive approaches automatically optimize GUIs [4}
9, 110, 11). For example, an adaptive system can add
or remove buttons depending on the previous usage of
the buttons in a toolbar [6]. However, it is not clear if
adaptive GUIs are superior to customizable (adaptable)
GUIs. For this reason, mixed-initiative approaches have
been proposed that combine the two [2} 3 |7]. Here, the
system merely proposes a GUI customization; the user
is still in control and may apply or modify it. While
previous work mostly looked at how menus or toolbars
can be customized, our work enables the user to do more
complex layout customization. An example of such cus-
tomization is the ISATINE system [16|, which is able
to propose changes to more complex layouts, e.g., users
can switch to a minimal representation of a dialog. More
comparable to our approach are User Interface Fagades,
which allow users to compose a new layout by cloning
and integrating visual areas from arbitrary windows in
a single layout [25].

Mashup tools allow users to combine existing web re-
sources and widgets in a new application [13], using a
web component framework such as Google Gadgetﬂ
The web resources or widgets do not need to make pro-
visions for interoperability, i.e., the approach is very
lightweight. For example, mashups can display infor-
mation from different web pages in a single view. To
make heterogeneous resources work together, adapters
are used that achieve compatibility with the mashup
tool. In a mashup editor, end-users can manipulate and
wire different mashup components. Notable here is that
there is often no difference between the design and the
runtime phase [13|. This approach is quite similar to
our functional customization prototype where users are
allowed to modify applications at runtime. Setting up
the communication between components is sometimes
considered too hard for end-users. However, this can
be addressed with approaches for auto-wiring of compo-
nents [26].

The idea to wire predefined components at runtime is
already quite old |14]. Node-based programming tools
such as Quartz Composerﬁ and LabVIEWEI are fre-
quently used for domain-specific applications, e.g., in
multimedia and engineering. Block-based visual pro-
gramming tools such as Scratch [24] and StarLogo [5]
have been used for teaching programming to children.
They allow users to assemble procedural programs from
visual instruction blocks that behave similarly to puzzle

Sdevelopers.google.com/gadgets/docs/spec

8developer.apple.com/technologies/mac/
graphics-and-animation.html

‘ni.com/labview

developers.google.com/gadgets/docs/spec
developer.apple.com/technologies/mac/graphics-and-animation.html
developer.apple.com/technologies/mac/graphics-and-animation.html
ni.com/labview

pieces. While easier for novices than textual program-
ming languages, these approaches are still too hard to
use for average end-users.

EVALUATION

We investigated the two research questions in a user
study. Each participant went through two evaluation
parts, one for layout customization and one for func-
tional customization. The participants had never used
the customization systems before. Each part consisted
of a guided walkthrough as a structured training and
tasks participants had to complete, followed by a ques-
tionnaire.

The detailed schedule of each part was as follows. In a
short introduction, participants were made familiar with
layout and functional customization in a number of cus-
tomization scenarios. These scenarios covered the re-
moval and insertion of widgets and functionality, as well
as the optimization and simplification of UI layouts. For
each scenario a customizable example application was
given. The applications were chosen from a wide range of
different domains to convey a representative impression
of the many possibilities of Ul customization. First, par-
ticipants were given time to explore the customization
features of the application themselves, until they were
comfortable using them. Then, they were asked to per-
form some customization tasks. If a participant got stuck
during a task, the participant was helped by the exper-
imenter. Participants were encouraged to ask questions
anytime. After finishing all tasks, they were asked to
fill in a questionnaire with Likert-scale and open-ended
questions.

Methodology: Layout Customization

The first part of the evaluation covered layout cus-
tomization. In a short introduction, participants got an
overview of the use-cases for layout customization cov-
ered by the evaluation. These use-cases are that layout
customization can be applied to:

a) remove unneeded widgets,
b) add desired widgets that are hidden,
c) optimize a layout, e.g., by simplifying it.

The first example application was a media player with
a layout that was completely editable (see Figure [1)).
Furthermore, there were two widgets available, a record
button and an MP3 tag view, which were not part of
the initial layout. After letting the participants play
with the editing functionality, they were asked to adjust
the interface to their personal needs. In a second step,
they had to add the hidden widgets, the record button
and the MP3 tag view, to a position in the layout that
they thought appropriate. Figure [3] shows examples of
customized media players. These tasks covered all the
use-cases a), b) and c).

The second application was a mail application with an
editable mail header interface (Figure@). The initial lay-
out of this application was not optimal, i.e., it used a lot

[] wirtual Void - BeOS Crew.mp3]
MediaPlayer Audio ‘video Attributes

E| B1lg m mﬁg

[] WVirtual Void - BeOS Crew.mp3 T
MediaPlayer Audio Video Attributes

O 021 e virtusl void

| TR | II” Artist: Be0S Crew
Album: RS @

) e fFp——— I-| Year, 2000

Figure 3. Examples for layout customization of the Media
Player. Top: the interface was reduced to only a few
widgets. Bottom: a record button and an MP3 tag view
were added and the layout was rearranged.

of space and there was a very uncommon text encoding
field. The participants were asked to simplify and im-
prove this interface, which covered the use-cases a) and

c).

MEw signature Irasn

[

From: | Mr.smith: <smith@Provider.org> -| Encoding: |

Subject: ‘

‘ [

Figure 4. Mail application with customizable mail header
interface.

While the first two scenarios used customizable versions
of standard applications of the Haiku operating system,
the last scenario used a mockup for a typical enterprise
application, Employee Manager. This application shows
a list of employees and an editable view of their at-
tributes (left of Figure[5)). There were two ways to select
an employee: by directly selecting an entry of the em-
ployee list, or by using the up and down buttons below
the list.

Employee Manager
List of Employees:
-] peter smith -] Peter smith
start Date: [27312012 | Occupation: [sofware § start Date: [27312012 | ccupation: [sofware §
Solary: offce Room [#302 | Solary offe Room [R302 |
Vegetarian [] Vegetarian egetarian »
| 1
[L @ |
[|] vegetaran [|

Figure 5. Employee Manager: The left side shows the
original layout of the application. On the right side, the
vegetarian checkbox has been moved beside the down but-
ton. This shortens the mouse path between both widgets
and the task can be performed much quicker.

The following user story was presented to the partici-
pants: The chef of a company wants to know the ex-
act number of employees who are vegetarian. So far
this information was only stored in a general text com-
ment field, and thus it cannot be easily queried from
the database. In an upgrade of the Employee Manager,

a new checkbox for vegetarian choice was added, which
should now be used for the existing data records. In
order to do so, somebody has to go through the whole
database manually, read the comment field and tick the
vegetarian checkbox if applicable. This task only has
to be done once and the GUI is not optimized for this
use-case, i.e., the mouse path between the vegetarian
checkbox and the employee list is quite long, which has
a significant impact on performance. However, the GUI
layout can be optimized for the task, e.g., by moving the
checkbox next to the employee list or the up and down
buttons, making the task much quicker and easier.

The layout was designed so that a clear performance im-
provement can be achieved by optimizing it. The ques-
tion is not how much faster the participants perform the
task after the customization, but if the participants are
able to see the usability problem and customize the lay-
out accordingly, targeting use-case c¢). The participants
were first asked to do the checkbox-ticking task once
without customization, and then customize the layout
and do the task a second time. The participants were
not told how an optimized layout could look like.

Finally, the participants were asked to fill in a question-
naire with the following 5-point Likert-scale questions.

General questions:

Q1 T often use computers in my everyday life.

Q2 I would like to theme a GUI or change its look and
feel.

Q3 If there are alternative widgets to control an appli-
cation, I would like to choose between them.

Questions about the layout customization tasks:

Q4 T understood the Media Player example.

Q5 I understood the Mail example.

Q6 T understood the Employee Manager example.

Q7 It was easy to customize the GUI layouts.

Q8 I think I would be able to do my own GUI layout
customizations using the customization system.

Q9 I understood what layout customization is.

Opinions about layout customization:

Q10 I would use layout customization.

Q11 Layout customization is useful.

Q12 I would use layout customization for applications I
am using frequently.

Q13 I would use layout customization for applications I
am using rarely.

Q14 T see no need for layout customization.

Use-cases for layout customization:

Q15 I have encountered GUI layouts which are not op-
timal for my purposes.

Q16 I have encountered layouts that did not contain all
the functionality I needed.

Q17 I would use layout customization to add non-
standard functionality to a layout, i.e., add “hidden”
widgets (similar to adding a record button to Media
Player).

Q18 Applications have more functionality than I nor-
mally use.

Q19 I would use layout customization to remove widgets
from a layout that I do not use (similar to the peak
view in Media Player or the encoding field in Mail).

Q20 I would use layout customization to optimize cer-
tain tasks (similar to the Employee Manager example).

Reusing layouts and expected customization problems:

Q21 T would like to share my customized layouts with
other users.

Q22 T see the problem that my customized layouts could
not work properly.

Q23 Layout customization is complicated.

Q24 Depending on the task I would like to have different
layouts for the same application.

There were also some general open-ended questions:

e Can you give examples where you wanted to change
the layout of a GUI?

e Can you give examples where you wanted to add ad-
ditional widgets to an application?

e Can you give examples where you wanted to change
the appearance of a layout, e.g., by rearranging wid-
gets or removing unused widgets?

e Can you give examples where you wanted to change a
layout to improve productivity for your purposes?

Methodology: Functional Customization

One of the goals of the functional customization evalu-
ation was to find out whether participants are able to
understand how to manipulate components to achieve a
certain functionality (see R1). There were two exam-
ple applications: a simple “Bitmap Viewer” and a more
complex “Message Composer”.

Bitmap Viewer was a very simple image viewer, compris-
ing an image with a reload button situated below that
image. When switching to the editing mode, the compo-
nent layer window already contained a “bitmap input”
component that loads a bitmap image from disk, and
a “bitmap view” component to display a bitmap image.
The widget palette contained another bitmap view and a
“gray-scale filter” component, which could be connected
to a bitmap view.

First, the participants were asked to connect the bitmap
input with the bitmap view component in order to dis-
play the bitmap. Then they had to insert a new bitmap
view component into the layout and connect it to the ex-
isting bitmap input component, so that the bitmap was
shown twice. In the next step, a gray-scale filter had
to be added and connected to one of the bitmap views.
The resulting application displayed the same bitmap im-
age twice: once as a color image and once as a gray-scale
image (Figure [6).

Message Composer was a simple chat application: it had
a text view for entering a chat message, a “New Text”

Layers

Bitmap Viewer

Bitmaplnput

IViewContainer
IBitmapView

Input (IBitmapReader) =

Filter (ImageFifter) =

IBitmapReader
Filter (ImageFilter)

SetTo
GetBitmap

dentifier
Setldentifier
MEw) GreyScaleFilter
CreateConfigview

Layoutitem limageFilter
RemoveSelf

Reload Filter

Figure 6. Bitmap Viewer: A second bitmap view was
added to the layout in the left window. By connecting it
to a gray-scale filter in the component layer window on
the right, a gray-scale image was displayed next to the
color image.

button for clearing the text view, and a “Send” but-
ton for sending the message entered into the text view.
When switching into editing mode, the component layer
window contained components for the aforementioned
widgets, as well as a “text composer” component, which
was used to format and embellish the text entered in
the text view. After pressing the “Send” button, the
entered text got modified by the text composer and was
redisplayed in the text view.

The widget palette contained a new “timer view” widget,
which implemented timer functionality. This widget was
to be used to generate message timestamps, and show the
timestamp of the last message. Furthermore, there was
a set of “adder” components that could be connected to
the text composer component to add text to messages:
a header adder to automatically add a message header,
a signature adder to add a signature at the end, and
a timer adder to add a message timestamp obtained by
connecting the adder to the timer view (Figures[7]and 2).

Message Composer Layers

ITimer
NiewContainer

ereeHeader: TextComposer

IDemoTextProducer
TextHook (IDemoTextModifi.

ComposeText

Headeradder

CreateConfigview
Layoutitem IDemoTextModifier

RemoveSelf

ProcessText

TimeTaken

FTW\E‘ 00‘01‘3503 send

Figure 7. Message Composer: On the left side of the
component layer window the timer view can be seen.
This component is connected to the “New Text” and the
“Send” button to start and stop the timer (the button
components are not shown here). On the right side a
header adder is connected to the text composer.

The participants were asked to add and connect the
header and signature adders to the text composer. After-
wards, they had to add the timer view to the layout, and
connect the “New Text” button to the restart method
and the “Send” button to the stop method of the timer
view. In order to add the composing time to the mes-
sage text, they had to add the timer adder component
and connect it to the text composer and the timer view.

After each step, they were able to test if their customiza-
tion worked as intended.

Finally, the participants were asked the following 5-point
Likert-scale questions:

Q25 I understood what functional customization is.

Q26 I understood the difference between functional and
layout customization.

Q27 T understood the functional customization exam-
ples.

Q28 There is need for functional customization.

Q29 I have used applications that did not have the be-
havior that I expected.

Q30 I would use functional customization.

Q31 I would have liked to change the behavior of some
applications I have encountered (similar to adding a
gray-scale filter to the Bitmap Viewer).

Q32 T would have liked to add more functionality to
some of the applications I have encountered (similar
to adding a timer view to the Message Composer).

Q33 Functional customization is not necessary.

There were also some general open-ended questions:

e Can you give examples where you wanted to change
the behavior of an application, similar to the example
of adding a gray-scale filter?

e Can you give examples where you wanted to add func-
tionality to an application, e.g., by adding new com-
ponents?

e Comments? Suggestions?

RESULTS AND DISCUSSION

The evaluation was conducted during a user meeting
of the Haiku community (BeGeistert 026, November
2012). During this meeting, 18 participants were re-
cruited. They were all male, between 19 and 43 years
old (average age 34). All of them were technical users,
and 11 of them had programming experience. The me-
dia player and the mail application used in the study are
standard applications of Haiku. Hence, we could assume
that participants had seen or even used these applica-
tions before.

Often use computers. (Q1) ‘

Like to theme a GUI / change look and feel. (Q2) _:I:|
Like to choose between alternative widgets. (Q3) -
T \
O 5 10 15

W Strongly disagree @ Neutral

O Strongly agree
B Disagree O Agree

Figure 8. General questions (Q1 - Q3).

While only roughly half of the participants were inter-
ested in changing the look and feel of an application, over
two-thirds stated they would like to choose between dif-
ferent alternative widgets if available (Figure . One
interpretation for that is that people are less interested
in purely visual changes, but see the possible benefits
of alternative widgets, which could potentially offer new
functionality.

Observations: Layout Customization

It seemed to be easy for the participants to change the
layout of the media player. They rearranged, removed
and added new widgets to the layout without problems.
This is consistent with the findings of an earlier evalua-
tion of the layout edit operations used [28].

For the mail application, participants came up with a
variety of interesting layouts. For example, two partici-
pants recreated a layout they knew from other mail ap-
plications, e.g., Outlook. Other participants removed
widgets they were not using frequently, e.g., the CC,
BCC and the encoding widget. One user made the lay-
out very space efficient by using only two rows.

For the Employee Manager application there were two
main customizations that participants performed to op-
timize the GUI. The most common customization was to
move the vegetarian checkbox directly beside the list box
(9 participants). The second-most common customiza-
tion was to move the vegetarian checkbox beside the up
and down buttons (4 participants). One participant up-
dated his initial customization by moving the vegetar-
ian checkbox from beside the list view next to the up
and down buttons after he realized that this might be
an even better customization. The customizations show
that participants understood the problem and were able
to solve it using layout customization.

Questionnaire: Layout Customization

Understood the Media Player example. (Q4) ‘

Understood the Mail example. (Q5) ‘

Was easy to customize the GUI layouts. (Q7) - ‘

Able to do own GUI layout customizations. (Q8) ‘ ‘

|
|
Understood the Employee Manager example. (Q6) . ‘ ‘
|
|
|

Understood what layout customization is. (Q9) ‘
T T T]

0 5 10 15

B Strongly disagree B Neutral
B Disagree O Agree

O Strongly agree

Figure 9. Questions about the layout customization tasks

(Q4- Q9).

All participants understood the layout customization
tasks (Figure[0} Q4 -Q6). Almost all of them stated that
it was easy to customize the layouts (Q7). All partici-
pants agreed they would be able to do their own layout
customizations (Q8) and understood what layout cus-
tomization is (Q9).

These results indicate that the tasks were easy to under-
stand and that the participants got a good understand-
ing of layout customization. This is in agreement with
the observations made. The participants had no prob-
lems using the layout customization system, and would
likely also be able to use the system without the help of
the experimenter.

There was a wide agreement (89%) that layout cus-
tomization is useful (Figure Q11), and conversely
a wide disagreement (89%) that there is no need for

Would use layout customization. (Q10) - ‘ ‘
Layout customization is useful. (Q11) -

Would customize frequently used apps. (Q12) _:I:l
Would customize rarely used apps. (Q13) _:D
No need for layout customization. (Q14) -

0 5 10 15

W Strongly disagree B Neutral
B Disagree O Agree

O Strongly agree

Figure 10. Opinions about layout customization (Q10 -

Q14).

layout customization (Q14). Over 75% of the partici-
pants stated they would use layout customization (Q10).
While 66% of the participants stated they would use it
for frequently-used applications (Q12), 44% stated they
would also use it for rarely-used applications (Q13).

While it was not surprising that people found layout cus-
tomization useful, it is interesting that most users also
found they would use layout customization in practice.
Many participants stated they would not only use it for
frequently used applications, but also for rarely used ap-
plications. This indicates that there is an actual demand
for layout customization.

Encountered non-optimal GUI layouts. (Q15) ‘ ‘

Encountered apps with missing functionality. (Q16) ‘ ‘

|
|
Would add non-standard functionality. (Q17) - ‘ ‘
|
|
|

Applications have unneeded functionality. (Q18) - ‘
Would remove unused widgets. (Q19) . ‘
Would optimize certain tasks. (Q20) - \

0 5 10 15

W Strongly disagree B Neutral
B Disagree O Agree

O Strongly agree

Figure 11. Questions about use-cases for layout cus-
tomization (Q15 - Q20).

There was wide agreement (100%) that the participants
had encountered applications with non-optimal layouts
(Figure Q15). All participants had encountered lay-
outs with missing functionality (Q16), and 72% would
use layout customization to add non-standard function-
ality to a layout (Q17). Over 80% of the participants
said they used applications which had more functional-
ity than necessary for them (Q18), and almost all agreed
that they would remove such functionality using lay-
out customization (Q19). Furthermore, over 85% stated
they would use layout customization to optimize a layout
for a certain task (Q20).

These results indicate that layout customization is con-
sidered valuable. Almost all participants said they had
encountered applications which would benefit from lay-
out customization, and agreed that they would use it.
All three suggested use-cases, i.e., adding widgets, re-
moving unused widgets and optimizing a layout, were
considered relevant in practice.

There was no clear agreement whether users would like
to share their customized layouts with other users (Fig-

Like to share customized layouts. (Q21) _:l:l

See problems with customized layouts. (Q22) _:l:l

Layout customization is complicated. (Q23) _:l

Like different layouts for the same app. (Q24) _:I:l
0 5 ‘ ‘

10 15

M Strongly disagree B Neutral
B Disagree O Agree

O Strongly agree

Figure 12. Answers for questions (Q21 - Q24).

ure Q21). According to Q21, many participants seem
to think that their own customized layouts can also be
useful for others. However, it is not clear if users would
also like to use customized layouts from others. The
results from (Q24) suggest that many participants can
imagine managing multiple layouts for an application,
e.g., to optimize it for different tasks. Only three par-
ticipants disagreed that they would like to use different
layouts for the same application (Q24).

Most participants disagreed that layout customization is
complicated (Q23), which is compatible with the con-
verse question (Q7). While 33% of the participants did
not see dysfunctional layouts as a result of customization
as a problem, 28% had concerns about them (Q22). For
example, users fear that modified layouts may break or
hide an application’s functionality, or reduce their pro-
ductivity. The participants of this study were technical
users, so one might expect stronger concerns from less
experienced users. This indicates the importance for a
customization system to leave the layout sound and the
application in a functional state.

Observations: Functional Customization

The observations for the functional customization sce-
narios were similar to those of layout customization.
Most participants had a clear idea of how to approach
the customization tasks. A common problem was that
participants forgot to connect some of the components.
However, the participants had no big difficulties finding
the problem when trying out the application, at most re-
quiring a short comment from the experimenter to point
them into the right direction. Some participants did
not even need the full task explanation from the experi-
menter, e.g., one participant asked if certain components
need to be connected even before the task was explained.

Questionnaire: Functional Customization

Almost all participants understood what functional cus-
tomization is; only one participant was neutral on this
point (Figure Q25). Only one participant did not
understand the difference between layout and functional
customization (Q26). All participants understood the
two functional customization examples (Q27). Only one
participant disagreed and 72% agreed that there is need
for functional customization (Q28). This is consistent
with question 33, were 66% disagreed that functional
customization is not necessary. 78% of the participants
had used an application that did not have the behavior
they expected (Q29). Roughly 60% would use functional

Understood what functional customization is. (Q25) . ‘
Understood the difference to layout custom. (Q26) . \

|
|
Understood the func. custom. examples. (Q27) ‘ ‘ ‘
|
|

There is need for functional customization. (Q28) - ‘
Used applications with unexpected behavior. (Q29) -
Would use functional customization. (Q30) _:I:l
Like to change the behavior of some apps. (Q31) _:|:|
Like to additional functionality. (32) [| |

Functional customization is not necessary. (Q33) _

T T T 1
0 5 10 15

W Strongly disagree B Neutral
B Disagree O Agree

O Strongly agree

Figure 13. Questions about functional customization
(Q25 - Q33). Note: one participant did not answer Q33.

customization (Q30). Questions Q31 and Q32 had simi-
lar responses: only 1-2 participants disagreed, while 66%
agreed that they would have liked to change or add func-
tionality to an application.

From the responses we can say that the introduction to
functional customization was generally sufficient to fa-
miliarize participants with it and make them understand
what the difference to layout customization is. Further-
more, participants seemed inclined to use functional cus-
tomization in practice and would have liked to change or
extend the functionality of some applications. Although
functional customization is typically more complex than
layout customization, most participants still wanted to
use it in practice. However, the participants saw a lesser
need for functional customization than for layout cus-
tomization.

Feedback

There were many comments given in the open-ended
questions of the questionnaire. Participants listed many
applications where they would have liked to change the
layout or the functionality. In the following, only the
most frequent and interesting comments are summa-
rized.

About layout customization, one participant said he
“would like to use the layout customization system to
create mockups for applications.” Another participant
mentioned he already changed the GUI of an applica-
tion by modifying the source code, since no customiza-
tion options were available. There were many comments
stating that participants would like to add widgets (e.g.,
menu items) for certain functionality to applications. As
examples of where unused widgets should be removed,
two participants mentioned complex application such as
Photoshop, Gimp and Blendexﬂ

One participant suggested that functional customization
could work well as a simple way for non-programmers to
build basic applications, given that a sufficiently large
component library is provided. Moreover, there were
many examples where participants wanted to enhance

Sphotoshop. com, blender.org, |gimp.org

photoshop.com
blender.org
gimp.org

the functionality of an application. Two participants
wanted to exchange data between different applications.
Another interesting example was to add consistency
checks before sending a mail to specific recipients. One
participant wrote that he would like to be able to execute
a macro after a certain event occurred.

Threats to Validity

There are some internal threats to validity. At the be-
ginning of the user meeting where the evaluation was
conducted, the experimenter gave a talk about layout
and functional customization, and also showed some cus-
tomization examples. Some participants did not attend
this talk, so they may have had a disadvantage compared
to the participants who attended. However, during the
experiment no difference between the two groups was ob-
served and all participants understood the tasks. Hence,
we can assume that the talk had no significant impact
on the results of the evaluation.

The functional customization prototype was in a very
basic state, e.g., the component layer window showed
a lot of irrelevant information and connecting compo-
nents was implemented in an unintuitive way. Despite
these limitations, participants had no major difficulties
in performing the functional customization tasks. One
would expect even more positive results for a more ma-
ture functional customization prototype.

Another potential issue is that most participants were
part of the Haiku community. The experimenter, who
had implemented the prototypes for Haiku, is also part
of that community, which could lead to a social desirabil-
ity bias. This means the participants could have been
influenced in favor of the customization prototypes. Al-
though some questions were asked twice with different
formulations to counterbalance this effect (Q11 and Q14,
and Q28 and Q33), one must be aware of this fact when
interpreting the results.

An external threat to validity is that most participants
were technical users or even programmers. It is difficult
to say if the results would be the same for less experi-
enced users. However, layout and functional customiza-
tion targets mainly experienced, technically-skilled users
who are interested in adapting their applications.

In the evaluation, there were in total five examples of
layout and functional customization. This limited set
of examples may have conveyed an incomplete picture
to the participants of what layout and functional cus-
tomization is. To avoid this problem, the examples had
been designed to cover a broad spectrum of customiza-
tion use-cases. From our own experience with user in-
terface customization, we believe the use-cases in this
study were representative enough to allow generalization
of the results to other common use-cases of layout and
functional customization.

Finally, there could be a difference between the self-
reported motivation for customization and the actual

motivation in a practical situation. Some of the Likert-
scale questions are hard to disagree with (e.g., Q15 and
Q16) and may not be a good indicator of customization
in practice. To overcome such limitations, a field study of
customization in practice would have to be conducted.

CONCLUSION

Previous work about customization by users focused on
simple customization such as for toolbars and menus,
leaving more advanced customization approaches largely
unexplored. We presented prototypical systems for lay-
out and functional customization and a user study with
theses systems, exploring whether technical users are
able to use such advanced customization approaches
(R1), and whether they would apply them in practice
(R2). The study was performed with 18 participants and
customization tasks for five different plausible scenarios.

The results suggest that technical users are able to use
advanced customization approaches for layout and func-
tionality. According to our observations, it was easy
for the participants to perform the given layout and
functional customization tasks. The results also indi-
cate that technical users would customize their applica-
tions in practice. Most participants stated that they do
encounter use-cases for both layout and functional cus-
tomization in the applications they are using, that they
would customize layout and functionality, and that they
consider such customization useful. More specifically,
they agreed that they would like to add functionality
to Uls that did not contain all the functionality they
needed, remove unused widgets, and optimize layouts
for their tasks.

Several participants had concerns that customized lay-
outs may not work properly. Customization can indeed
potentially render an application unusable, so it would
be important to develop safeguards against this. This
could be done by making sure that important widgets
cannot be removed, or that a sound application state
can always be restored. Customization may also lead to
user documentation getting out of sync with the current
application Ul, and it may interfere with keyboard-based
interaction. These problems constitute interesting ques-
tions for future research.

While this study provides some initial insight into the
research questions, a long-term field study including av-
erage users could provide more general insights into cus-
tomization, its application in practice and its long-term
benefits. In many comments participants expressed that
they would like to use layout and functional customiza-
tion in many of the applications they were using. Some
of the suggested use-cases would lead to entirely new ap-
plications, such as using layout customization to create
UI mockups, or using functional customization as a tool
for non-programmers to create basic applications. Ex-
ploring the long-term uses and benefits of customization
is future work.

REFERENCES

1.

10.

11.

12.

13.

14.

Banovic, N., Chevalier, F., Grossman, T., and
Fitzmaurice, G. Triggering triggers and burying
barriers to customizing software. CHI (2012),
2717-2726.

. Bunt, A., Conati, C., and McGrenere, J. What role

can adaptive support play in an adaptable system?
In TUI (2004), 117-124.

. Bunt, A., Conati, C., and McGrenere, J.

Supporting interface customization using a
mixed-initiative approach. IUT (2007), 92-101.

. Cockburn, A., Gutwin, C., and Greenberg, S. A

predictive model of menu performance. CHI (2007),
627-636.

. Colella, V., Klopfer, E., and Resnick, M.

Adventures in Modeling: Exploring Complez,
Dynamic Systems with StarLogo. Teachers College
Press, Columbia University, 2001.

. Debeve, M., Meyer, B., Donlagic, D., and Svecko,

R. Design and evaluation of an adaptive icon
toolbar. User Modeling and User-Adapted
Interaction 6, 1 (1996), 1-21.

. Findlater, L., and McGrenere, J. A comparison of

static, adaptive, and adaptable menus. CHI (2004),
89-96.

. Findlater, L., and McGrenere, J. Beyond

performance: feature awareness in personalized
interfaces. International Journal of
Human-Computer Studies 68, 3 (2010), 121 — 137.

. Findlater, L., Moffatt, K., McGrenere, J., and

Dawson, J. Ephemeral adaptation: the use of
gradual onset to improve menu selection
performance. CHI (2009), 1655-1664.

Gajos, K. Z., Czerwinski, M., Tan, D. S., and Weld,
D. S. Exploring the design space for adaptive
graphical user interfaces. AVI (2006), 201-208.

Greenberg, S., and Witten, I. H. Adaptive
personalized interfaces — a question of viability.
Behaviour & Information Technology 4, 1 (1985),
31-45.

Heineman, G. T., and Councill, W. T., Eds.
Component-based software engineering: putting the
pieces together. Addison-Wesley, 2001.

Hoyer, V., and Fischer, M. Market overview of
enterprise mashup tools. In Service-Oriented
Computing — ICSOC, vol. 5364 of Lecture Notes in
Computer Science. 2008, 708-721.

Kantorowitz, E., and Sudarsky, O. The adaptable
user interface. Commun. ACM 32, 11 (1989),
1352-1358.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Lau, K.-K., and Wang, Z. Software component
models. IEEE Transactions on Software
Engineering 33, 10 (2007), 709-724.

Lépez-Jaquero, V., Vanderdonckt, J., Montero, F.,
and Gonzalez, P. Towards an extended model of
user interface adaptation: The ISATINE
framework. In Engineering Interactive Systems.
2008, 374-392.

Lutteroth, C., Strandh, R., and Weber, G. Domain
Specific High-Level Constraints for User Interface
Layout. Constraints 13, 3 (2008).

Mackay, W. E. Triggers and barriers to customizing
software. CHI (1991), 153-160.

MacLean, A., Carter, K., Lovstrand, L., and
Moran, T. User-tailorable systems: pressing the
issues with buttons. CHI (1990), 175-182.

Marathe, S., and Sundar, S. S. What drives
customization? Control or identity? CHI (2011),
781-790.

McGrenere, J., Baecker, R. M., and Booth, K. S.
An evaluation of a multiple interface design
solution for bloated software. CHI (2002), 164-170.

McGrenere, J., and Moore, G. Are we all in the
same “bloat”? In Proc. Graphics Interface 2000
Conference (2000), 187-196.

Page, S. R., Johnsgard, T. J., Albert, U., and
Allen, C. D. User customization of a word
processor. CHI (1996), 340-346.

Resnick, M., Maloney, J., Monroy-Hernédndez, A.,
Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B., and
Kafai, Y. Scratch: programming for all. Commun.
ACM 52, 11 (2009), 60-67.

Stuerzlinger, W., Chapuis, O., Phillips, D., and
Roussel, N. User interface fagades: towards fully
adaptable user interfaces. UIST (2006), 309-318.

Tian, S., Weber, G., and Lutteroth, C. A
tuplespace event model for mashups. OzCHI
(2011), 281-290.

Zeidler, C., Stuerzlinger, W., Lutteroth, C., and
Weber, G. The Auckland Layout Editor: An
improved GUI layout specification process. UIST
(2013).

Zeidler, C., Stuerzlinger, W., Lutteroth, C., and
Weber, G. Evaluating direct manipulation
operations for constraint-based layout. INTERACT
(2013).

	Introduction
	Layout Customization
	Functional Customization
	Related Work
	Evaluation
	Methodology: Layout Customization
	Methodology: Functional Customization

	Results and Discussion
	Observations: Layout Customization
	Questionnaire: Layout Customization
	Observations: Functional Customization
	Questionnaire: Functional Customization
	Feedback
	Threats to Validity

	Conclusion
	REFERENCES

