
Comparing the Usability of Grid-bag and
Constraint-based Layouts

Clemens Zeidler, Johannes Müller, Christof Lutteroth, Gerald Weber
Department of Computer Science

University of Auckland
Private Bag 92019, Auckland

New Zealand
{czei002, jmue933}@aucklanduni.ac.nz and {lutteroth, gerald}@cs.auckland.ac.nz

ABSTRACT
While the usability of GUI design methods has been studied in gen-
eral, the usability of layout specification methods is largely unex-
plored.

In this paper we provide an empirical comparison of two popu-
lar GUI layout models, grid-bag layout and constraint-based lay-
out. While the grid-bag layout is a powerful layout model, the
constraint-based layout is able to generate even more general and
flexible layout configurations. We performed a controlled exper-
iment with postgraduate students of Computer Science and Soft-
ware Engineering, measuring efficiency, accuracy and preference
for typical layout specification and editing tasks.

The results show significant differences between both layout mo-
dels: the initial specification of GUIs is faster with a grid-bag lay-
out whereas editing of existing complex layouts is faster and more
accurate with a constraint-based layout. The study shows that con-
straint-based layout, although it may seem more complicated at first
glance, can compete with and in some cases even outperform more
conventional techniques in terms of their usability.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Evaluation/methodology

General Terms
Experimentation, Measurement, Performance

Keywords
Layout, API, Usability, Empiric Evaluation

1. INTRODUCTION
Developing and maintaining Graphical User Interfaces (GUIs)

is complex and time consuming, therefore it is important that de-
velopers have tools that are easy to use. In early Graphical User
Interface (GUI) toolkits the developer had to position widgets man-
ually at fixed positions with fixed widths and heights. This was not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OZCHI ’12, November 26-30, 2012, Melbourne, Victoria, Australia
Copyright 2012 ACM 978-1-4503-1438-1/12/11 ...$10.00.

only tedious but also inflexible. It was difficult to create resize-
able GUIs that look good at different layout sizes, and also layout
editing was complicated because generally many widgets had to be
repositioned after a change, e.g. after a new widget was inserted.
This also caused usability problems for end-users: GUIs were less
likely to be resizable and more likely to contain layout errors.

Layout managers are a solution to these problems as they auto-
mate the layout of widgets in a GUI. Anything that can be placed
into a layout is called a layout item. Editing a layout specifica-
tion can be done on a higher abstraction level which makes it un-
necessary to handle low level details such as moving layout items
around. Layout managers can support various layout models, e.g.
the 1-dimensional group layout model1, the grid-bag layout model
[23] or the constraint-based layout model [14], to mention some of
the most popular ones.

Note that the existence of GUI Builders does not make the study
of layout models less relevant. Although there are graphical GUI
builders [15] to support the design of GUIs, many developers still
prefer to specify a layout programmatically. This may have vari-
ous reasons, apart from the personal developer preferences, for in-
stance: no suitable GUI builder for the used toolkit or platform is
available, used layout items are not supported by the GUI builder
or layout specifications are changing at runtime. Furthermore, GUI
builders are still using certain layout models and it is usually nec-
essary for the developer to understand these models when using a
GUI builder.

A frequently applied type of layout model is the grid-bag layout
model. In this layout model layout items are organized in the cells
of a grid [14]. This approach allows the definition of a large class
of layouts by aligning items in the grid. However, this simplicity
precludes the specification of layouts with more complex depen-
dencies between widgets. For example, it is not possible to specify
the size of a layout item as a multiple of another item’s size.

Such dependencies can be specified with a constraint-based lay-
out by applying linear constraints. The class of possible grid-bag
layouts is a subset of the class of possible constraint-based layouts
[21], therefore the constraint-based layout is the more powerful lay-
out model.

Constraint-based layout models have been studied for quite a
while in the research community [1, 11, 14, 18, 22] and recently at-
tracted a lot of attention because of a newly introduced constraint-
based layout model in the Cocoa API of Apple’s Mac OS X2.

1See for example: Qt – a cross-platform application and UI frame-
work, 2012 http://qt.nokia.com/products/
2Cocoa Auto Layout Guide, 2012 http://developer.
apple.com

1

However, even though the constraint-based layout model is more
powerful than the grid-bag layout model, this does not mean it is
more usable. So far it is unclear whether either of them has any
advantages in terms of usability. Hence, in this paper we study the
question how the constraint-based and the grid-bag layout models
differ in terms of usability. Specifically, we study the following
research questions:

• How does the usability of the grid-bag and the constraint-
based layout models differ for specifying layouts?

• How does the usability of the grid-bag and the constraint-
based layout models differ for editing layouts?

Here we analyze just the bare layout models and do not look at
nested layouts.

To answer these questions we conducted a controlled experiment
with postgraduate students of Computer Science and Software En-
gineering. To operationalize the abstract term usability for our
study, we investigate it as the efficiency and accuracy with which
a task can be completed and the preferences users have [10]. The
efficiency is measured as task completion time, the accuracy as the
number of errors made, and the preference with standardized items
on a Likert-scale. The experiment was paper-based to abstract from
concrete API implementations and directly compare the underly-
ing layout models. Participants performed several specification and
editing tasks on layouts.

From our user evaluation we found that the grid-bag layout model
is more efficient than the constraint-based layout model when spec-
ifying a layout from scratch. When it comes to editing an exist-
ing layout that is reasonably complex, the constraint-based layout
model is significantly faster. With regard to the accuracy, the con-
straint-based layout model results in less errors when specifying
and editing layouts. This becomes significant when editing more
complex layouts. Overall, the participants preferred the constraint-
based layout model, especially for editing a layout.

Section 2 gives an overview over the grid-bag layout model and
the constraint-based layout model. Furthermore, this section de-
scribes the complexity for editing layouts using these layout mo-
dels. Related work is discussed in Section 3. Section 4 describes
the methodology of our study. The results are presented in Sec-
tion 5. Section 6 discusses the results and analyses threats to valid-
ity. The conclusions are summarized in Section 7.

2. GRID-BAG AND CONSTRAINT-BASED
LAYOUTS

In the following section we discuss how a layout can be speci-
fied using the grid-bag layout model and the constraint-based lay-
out model. During the design process it is sometimes necessary to
edit an already existing layout specification. This can, for example,
happen if an additional button has to be inserted into a layout or
the size of an item needs to be adapted. Editing a layout can have
a different complexity for different layout models. To quantify this
edit complexity we use the following simple definition. The edit
complexity of a layout is the number of layout items that have to be
updated during an edit operation for one single change.

2.1 Grid-Bag Layout
One of the most prominent layout models is the grid-bag layout

model. This layout model is for example used in HTML tables3

and almost all available GUI toolkits support this layout model.
In a grid-bag layout a layout item can be placed in a 2-dimen-

sional grid. Beside the row and the column that specifies where an
3D. Raggett. RFC1942: HTML Tables, 1996.

item is placed, a row-span and column-span specifies how many
rows and columns a layout item occupies. Using row- and column-
spans for one item makes it possible to create complex layouts.
Furthermore, it is possible to create a link between items not di-
rectly adjacent, e.g. by placing them in the same row or column.
Figure 1 shows an example for a grid-bag layout. Here all layout
items occupy one or more cells in the grid.

The grid-bag layout can be tuned by giving the rows and columns
weightings, for specifying which row and column should use more
space compared to the other rows and columns.

c1

r1

r4

r2

r3

c2

Figure 1: Layout using grid-bag layout specifications.

Editing a Grid-bag Layout.
Whenever an edit operation causes the change of the row and col-

umn number of a grid-bag layout, other items in the layout might
be affected and need to be updated. There are two cases that make
this update necessary. First, items to the right or further down from
the inserted layout item get a higher row or column value. Sec-
ondly, the row- or column-span of items which are intersecting in
the vertical or horizontal direction have to be updated. Figure 2
illustrates these two cases, i.e. after the insertion of Button 2 the
column number of Button 1 changes from 1 to 2 and the column-
span of the progress bar changes from 1 to 2. The simple case of
an insertion into an empty cell does not change the row and column
number and so does not effect any other layout items.

2.2 Constraint-Based Layout
In the constraint-based layout model, the layout specifications

are described by constraints using linear equalities and inequalities.
Constraint-based layouts have attracted much attention in research
and industry in recent years [1, 17, 14]. In the following the nomen-
clature of the constraint-based layout model ALM (Auckland Lay-
out Model) [14] is used. However, in general any constraint-based
layout model such as the Java SpringLayout,4 is suitable for the fur-
ther usability study. It only has to provide an easy way to connect
borders of layout items together.

In ALM, the variables in constraints are called tabstops, which
represent horizontal or vertical boundaries of layout items. Other
frequently used names for the same concept are aligners, snap lines,

4Spring Layout API documentation, 2012 http://docs.
oracle.com/javase

2

c1

r1

r2

c1

r1

c2

r2

before

after

Figure 2: Grid-bag layout: Button 2 is inserted left beside But-
ton 1. The existing Button 1 is moved from c1 to c2 and the
column-span of the progress bar changes from 1 to 2.

guides, or anchor lines. The edges of each layout item are con-
nected to two horizontal (top and bottom) and two vertical (left and
right) tabstops. Through this, items can be aligned by connecting
them to the same tabstops. The rectangular layout area, i.e. panel or
window, has four tabstops that are connected to the layout borders
to facilitate alignment with the layout boundaries.

A simple constraint-based layout is shown in Figure 3. For ex-
ample, to make sure that the two buttons stay on the right of the list
view the left side of the buttons share the same tabstop x1.

L
T

R

B

L

y1

y2

y3

x1

Figure 3: Layout using constraint-based layout specifications.

Editing a Constraint-Based Layout.
While changes in a grid-bag layout can effect items anywhere

in the layout, in a constraint-based layout changes are more lo-
cal. This means only layout items which have to be connected to a
newly added tabstop have to be updated. In the example in Figure 4
a list box is added between a text view and three buttons. Here, a
new tabstop x2 is connected to the right of the text view and only
this item has to be updated. The three buttons on the right do not
need to be updated. From this example, one can see how many
layout items have to be updated depends on where the new tabstop
is inserted, i.e. if x2 had been inserted on the right side of the list

view and x1 stayed at the right side of the text view all three buttons
would need to be updated.

To specify the position of a layout item uniquely, the layout item
has to be connected to at least one horizontal and one vertical tab-
stop which are directly or indirectly connected to a layout border
tabstop. Indirectly connected to a layout border tabstop means that
there are some constraints that set a relative position between the
tabstop and a border tabstop, which is necessary to specify the lay-
out in a unique way. For example, if a layout item is not connected
to any layout border tabstop, it is not clear where the item should
be positioned within the layout; all positions are valid.

A layout specification is well defined if all layout items have to
be directly or indirectly connected to at least one horizontal and
one vertical layout border tabstop. Well-definedness limits the edit
complexity of a constraint-based layout. Usually a designer places
a layout item either beside another layout item or between two lay-
out items, or adjacent to a window border. In this way at least one
horizontal and one vertical border of the layout item is connected
to an existing tabstop, e.g. if a new button should be aligned to the
top-right of another layout item, it is connected to the top and right
tabstop of this item. Figure 4 shows an example where only a sin-
gle tabstop (x2) has to be inserted. This limits the edit complexity
to the number of layout items, which have to be connected to a
maximum of two new tabstops.

L
T

R

B

L
T

R

B

x2 x1

x1

y2

y1

y2

y1

before

after

Figure 4: Constraint-based layout: The list view is inserted be-
tween the text view on the left and the three buttons on the right
side. After the insertion, only the right of the text view has to
be connected to the new tabstop x2.

3. RELATED WORK
In our study we are interested in the differences of the usability

of two layout models: the grid-bag layout model and the constraint-
based layout model. An often applied research method in Software
Engineering to identify such effects are controlled experiments [2].
In a systematic literature survey Sjøberg et al. identified a total of
1.9 % of published papers in leading Software Engineering venues
that conducted controlled experiments [19]. However, to the best
of our knowledge none of them investigates GUI layout.

Within the HCI community, a research stream of API usability
evaluation is emerging, which argues that for programmers the API
of frameworks, Software Development Kits (SDKs) and libraries
are a user interface to computers. It has therefore to be designed
according to some usability criteria [16, 4, 6]. Usability studies
for APIs were, for example, conducted in the domain of Service
Oriented Architectures [3], or specifically for the use of language

3

constructs such as names [5], patterns [7] or the content of API
documentation [12].

There is also some work in the program comprehension commu-
nity related to API usability. Hou and Li conducted a case study
about problems programmers have with the use of the Java Swing
API [8]. They conducted an empirical evaluation of newsgroup
posts and identified a set of API obstacles.

In the domain of GUI APIs little research has been done about
usability so far. An experimental study about the usability of no-
tations for XAML and Windows Forms was conducted by Kosar
et al. [13]. Their experiment mainly focused on the understand-
ing of the notations of the APIs and their usability. They did not
analyze the usability of layout models of both frameworks. Their
study also differs from our study in the methodology. In our exper-
iments, participants actively specify and change layouts. In their
study, participants were only ask to evaluate existing GUI specifi-
cations in XAML and Windows Forms. Hence they only measured
accuracy but not efficiency as we do.

No work exists that directly compares the usability of layout mo-
dels. Even though industry begins to adapt the constraint-based lay-
out model from an empirical point of view, it is still unclear whether
this model is more usable than well established models such as the
grid-bag layout model.

4. METHODOLOGY
We first conducted a pilot study to better understand the effects

the constraint-based layout model has on usability. With this expe-
rience we formulated concrete research hypotheses, for which we
designed a main study.

4.1 Pilot Study
Based on our own experience with the constraint-based and grid-

bag layout models, we expected that specifying or editing layouts
with a constraint-based layout is faster and less error prone. When
specifying a layout item in a grid-bag layout, the correct row and
column-span has to be counted. We expected that if the row- or
column-span of a layout item is high this should take more time
and should be less accurate. Moreover, when editing a constraint-
based layout, just the surrounding tabstops have to be considered,
whereas in the grid-bag layout the whole grid has to be checked for
changes (see Section 2).

To investigate this assumption we designed a pilot study that was
primarily focused on layout specification and only secondarily on
layout editing. The participants had to perform 12 tasks once for
the grid-bag layout model and once for the constraint-based lay-
out model. Half of these tasks where training tasks similar to the
main tasks. From the six main tasks, four tasks were to specify a
layout and two tasks were to edit two of the previously specified
layouts. The tasks were quite simple with only a few layout items
to be specified, and only marginal changes in the layout specifi-
cation were required when editing a layout. The evaluation was
paper-based to reduce programming-related influences such as the
factor of different programming skills, and to focus the study on
the different underlying concepts of both layout models.

However, after a few participants performed the tasks it became
clear that the usability of aconstraint-based layout is not better with
respect to all usability parameters, contrary to our initial assump-
tion. First, the measured task completion times were clearly in fa-
vor of a grid-bag layout. Secondly, it became clear that larger row-
or column-span values are not a real problem when specifying a
layout item; in most cases the values seemed to be trivial to deter-
mine.

4.2 Hypotheses
Based on the experience gained in the pilot study, we were able

to formulate research hypotheses about the differences between
both layout models, as potential answers to our research questions.
The hypotheses are as following:

H1 The grid-bag layout model is faster for layout specification.

H2 The constraint-based layout model is faster for layout editing.

H3 The constraint-based layout model is less error-prone for lay-
out specification.

H4 The constraint-based layout model is less error-prone for lay-
out editing.

H5 The constraint-based layout model is perceived as being easier
to use.

To test these hypotheses we refined the design of our pilot study
for the main study.

4.3 Main Study
In our pilot study we noticed that our tasks were too easy and

focused too much on layout specification to reliably discriminate
between both layout models. Therefore, for our main study we in-
creased the layout complexity of all tasks and included more layout
editing tasks.

The experiment had a within-subject design [9], which means
that each participant had to work with the constraint-based layout
and the grid-bag layout. Each participant had to conduct the same
three tasks using a constraint-based layout and a grid-bag layout.

For each layout model, first some background was given and then
the technique was explained. The participants then had to perform
a training task in which they were allowed to ask clarification ques-
tions. The explanations of the experimenter were supported by a
printed one page how-to, which remained as a reference for the
participant during the whole experiment.

Afterwards two tasks followed for which the task completion
time was measured by an experimenter. The experiment closed
with a post questionnaire. To minimize order bias, the participants
alternately started either with the constraint-based layout or the
grid-bag layout. The design of the study is depicted in Figure 5.

Figure 5: Sketch experimental design of the main study

The tasks were subdivided into three subtasks. In the following
we refer to a certain subtask as Task.X.Y, where X is the number
of the main task and Y the number of the subtask. The first subtask
of each task was to specify a given layout with the means of the
respective layout model. The layout was presented as a printed

4

screenshot. The specification had to be done on a sheet of paper
with a table for all layout elements, similar to the tables shown in
Figures 1 and 3. The layout items in the table were displayed in an
iconized form to make it easy for the participants to identify them.

The following two subtasks were about editing the initial lay-
out specification according to changes of the layout presented in a
new screenshot. In the table the new layout item had an extra row
which was then uncovered. In this way the participant was able to
specify the new item and update the specification of the existing
items in the same table. This mimics a real design process where
a developer has done the initial layout specification and then edits
this specification. To distinguish between the specifications of the
different editing subtasks the participants used pens in different col-
ors for each subtask. For each subtask the time that the participant
needed to specify or edit a layout was measured.

The participants were asked to complete each subtask in two sep-
arate steps. First they had to become familiar with the layout they
had to specify. That was done by sketching and labeling either, in
the case of grid-bag layout, a suitable grid into the given screen-
shot or, in case of constraint-based layout, the required tabs. In the
second step they were asked to derive relevant parameters (e.g. the
rows and columns of the layout items) from the layout and write
them into a provided table.

In the following we describe the experimental material (tasks and
questionnaire) and how we conducted the experiment.

4.3.1 Tasks and Questionnaire
The training task was similar to the main tasks. It was designed

to be sufficiently complex and to cover all interesting pitfalls the
participants could run into while doing the main tasks, e.g. the
training layout contained an empty area where it might be unclear
where a tabstop or a row or a column should be inserted (see Fig-
ure 6 (a)).

Task 1 (Figure 6 (b)) was designed as a relatively simple task.
The first insertion was a text view in the middle and the second
insertion was a “Button” between two existing buttons. For the
first insertion subtask, the edit complexity for the constraint-based
layout was two or three, depending on where the new tabstop was
added (see Section 2.2). For the second inserting subtask the edit
complexity was two. The edit complexity for the grid-bag layout
was four for the first insertion subtask and five for the second inser-
tion subtask.

Task 2 (Figure 6 (c)) was more complex than the previous one.
It mimicked a window of a chat application. The editing subtasks
were designed to be part of a possible development process. The
first edit subtask was the insertion of a “video call” button beside an
existing “audio call” button. This subtask had an edit complexity of
one for the constraint-based layout and an edit complexity of six for
the grid-bag layout. In the second insertion subtask, another button
had to be added with an edit complexity of two for the constraint-
based layout and of eight for the grid-bag layout respectively. This
means that the second task, while still relative simple, was more
complex than the first task.

The questionnaire contained three demographics questions (gen-
der, age, occupation), eleven 5-point Likert-scale questions with
predefined answers and one open-ended question. The Likert-scale
questions were:

Q1 I often use computers in my everyday life.
Q2 I understood the task and was able to perform it.
Q3 It was easy to specify and edit the layouts using grid-bag

layout.
Q4 It was easy to specify and edit the layouts using constraint-

based layout.

1

2

(a)
1

2

(b)
1

2

(c)

Figure 6: Task layouts after the second insertion subtask. The
first and second inserted layout items are marked with a “1”
and “2” respectively. (a) Training Task (b) Task 1 (c) Task 2

Q5 I have experience with designing user interfaces.
Q6 I have used or known grid-bag layout before, e.g. HTML ta-

bles.
Q7 I have used or known constraint-based layout before.
Q8 As a programmer I would like to use constraint-based layout

in the future.
Q9 As a programmer I would like to use grid-bag layout in the

future.
Q10 Specifying and editing a layout using constraint-based layout

was difficult.
Q11 Specifying and editing a layout using grid-bag layout was

difficult.

Each experimental session took approximately one hour and took
place in a lab where we closed door and blinds to minimize distur-
bance from external sources. We had two experimenters. To min-
imize the experimenter bias we decided to do the first four experi-
ments with both experimenters. One of them was the main experi-
menter who interacts with the participant. The other one observes
the main experimenter and also measured the time.

5. RESULTS
We recruited 12 participants who were students of Computer Sci-

ence at least at Masters level. The sample contains three female and
nine male participants. Figure 7 summarizes the experience level
of the participants. All participants were heavy computer users and

5

most of them had experience with GUI design. Most of them were
familiar with grid-bag layout, whereas more than a half of the sam-
ple were not familiar with constraint-based layout. They all under-
stood the tasks they were asked to do.

Know GB (Q6)

Know CL (Q7)

UI experience (Q5)

Understood task (Q2)

Use PC often (Q1)

0 2 4 6 8 10 12

Strongly disagree
Disagree

Neutral
Agree

Strongly agree

Figure 7: Frequencies of experience related answers

5.1 Efficiency
To compare the efficiency for the specification and editing tasks,

we calculate the completion time difference

∆T ime = tconstraint − tgrid

for each participant. It turned out that all the completion times of
all tasks were likely not normally distributed. Hence, we applied
a Wilcoxon rank sum test to calculate the significance of our hy-
potheses. Table 1 depicts the mean of ∆T ime, the standard devia-
tion σ of ∆T ime and the Wilcoxon test statistic pwrs value.

Table 1: Test statistics for H1 and H2
∆T ime σ pwrs

Task 1.1 (H1) 12.50 * 22.97 0.05
Task 1.2 (H2) -5.42 19.25 0.24
Task 1.3 (H2) -8.25 36.65 0.47
Task 2.1 (H1) 16.50 ** 16.00 <0.01
Task 2.2 (H2) -25.00 ** 25.28 <0.01
Task 2.3 (H2) -37.00 ** 28.46 <0.01

Our first hypothesis (H1) is that specifying layouts with the grid-
bag layout model is faster than with the constraint-based layout
model. Figure 8 depicts the boxplots of the task completion times
for the specification tasks (CL means constraint-based layout and
GB means grid-bag layout). For both tasks the task completion

60 80 100 120 140 160

Time (s)

Task 2.1 GB

Task 2.1 CL

Task 1.1 GB

Task 1.1 CL

95±20

112±25

69±15

82±22

∆Time ± σ

Figure 8: Boxplots of the task completion times for the specifi-
cation tasks

time was higher for the constraint-based layout model. From the

resulting pwrs-values for Tasks 1.1 and 2.1 (Table 1) we can con-
firm the H1 hypothesis. These results match our experience from
the pilot study.

Beside the task completion time for layout specification, we are
also interested in the effect of the constraint-based layout model
on the task completion time for editing tasks. Our hypothesis H2
is that the constraint-based layout model allow faster layout edit-
ing. However, from the measured completion times shown in Fig-
ure 9 this is not quite clear. Task 1.2 seems to have been completed

●

●

●

●

40 60 80 100 120 140 160

Time (s)

Task 2.3 GB

Task 2.3 CL

Task 2.2 GB

Task 2.2 CL

Task 1.3 GB

Task 1.3 CL

Task 1.2 GB

Task 1.2 CL

108±25

71±22

84±21

60±17

90±32

82±22

76±21

71±18

∆Time ± σ

Figure 9: Boxplots of the task completion times for the editing
tasks

faster with the grid-bag layout model, but all other tasks seem to
have been completed faster when using the constraint-based layout
model. Table 1 shows the results for editing tasks. The tests show
that Tasks 2.2 and 2.3 were completed faster with the constraint-
based layout model on a 0.1 % significance level. The results for
Task 1.2 and 1.3 are less clear, here the null hypothesis can only
be rejected with less statistical significance. The more complex
Tasks 2.2 and 2.3 support H2 whereas this is not so clear for the
easier Tasks 1.2 and 1.3.

5.2 Accuracy
The accuracy is another important factor which indicates how

usable a layout model is. For both, the specification and the editing
task, we counted each item that has not been specified correctly as
one error. This means multiple wrong values for a single layout
item, e.g. wrong row and wrong column span, are counted just as
one error. For the editing subtasks, values specified wrongly in the
preceding specification or editing task are not counted as mistakes
for the current subtask.

The accuracy is high if the number of layout specification er-
rors E in a certain task is low. We measured the accuracy for the
specification and the editing tasks to test H3 and H4. Similar to
the efficiency, the difference between the error rate of the con-
straint-based layout model and the grid-bag layout model ∆E =
Econstraint − Egrid is calculate and a Wilcoxon rank sum test is
applied (Table 2).

Hypothesis H3 says that when specifying layouts using the con-
straint-based layout model the error rate is lower. This hypothesis
can be tested using the observations from Task 1.1 and 2.1. The
boxplots in Figure 10 give no clear picture. The specification sub-
task of Task 1 contains more errors for the constraint-based layout,
but that changes for Task 2 where the grid-bag layout model seems
to generate more errors. From Table 2 it can be seen that the pwrs-
value of 0.07 is quite low but still not significant. Therefore, we

6

Table 2: Test statistics for H3 and H4
∆E σ pwrs

Task 1.1 (H3) 0.08 0.67 0.72
Task 1.2 (H4) -0.42 0.79 0.09
Task 1.3 (H4) -0.25 0.97 0.20
Task 2.1 (H3) -0.25 0.45 0.07
Task 2.2 (H4) -0.33 0.65 0.09
Task 2.3 (H4) -1.08 * 1.68 0.03

cannot significantly confirm H3 but the data indicates that the hy-
pothesis is true.

●●

0.0 0.5 1.0 1.5 2.0

Error rate

Task 2.1 GB

Task 2.1 CL

Task 1.1 GB

Task 1.1 CL

0.5±0.7

0.2±0.5

0.2±0.4

0.2±0.5

∆E ± σ

Figure 10: Boxplots of the error rates for the specification tasks

Hypothesis H4 claims that the error rate is lower when editing a
constraint-based layout than a grid-bag layout. We test this hypoth-
esis with the observed errors of the editing tasks (Figure 11). Here,
the boxplots give a rather clear picture. The error rate seems gen-
erally higher for the grid-bag layout model. However, conducted
statistical tests in Table 2 confirm this assumption only for the most
complex editing Task 2.3. Here we can reject the null hypothesis to
a 5 % significance level and can accept H4.

●

●

●●

0 1 2 3 4

Error rate

Task 2.3 GB

Task 2.3 CL

Task 2.2 GB

Task 2.2 CL

Task 1.3 GB

Task 1.3 CL

Task 1.2 GB

Task 1.2 CL

1.4±1.5

0.3±0.7

0.3±0.7

0±0

0.6±0.7

0.3±0.5

0.4±0.8

0±0

∆E ± σ

Figure 11: Boxplots of the error rates for the editing tasks

5.3 Preference
With hypotheses H1 – H4 we studied the actual behavior of the

participants. With hypothesis H5 we try to understand their sub-
jective impression of the usability of the constraint-based layout
model. For that we asked several questions for which the frequen-
cies of the answers are depicted in Figure 12.

Use GB in future (Q9)

Use CL in future (Q8)

GB difficult (Q11)

CL difficult (Q10)

GB easy (Q3)

CL easy (Q4)

0 2 4 6 8 10 12

Strongly disagree
Disagree

Neutral
Agree

Strongly agree

Figure 12: Frequencies of answers to impression questions

To test H5 we included two question pairs (“is easy” and “is
difficult”) into the questionnaire. The results of a Wilcoxon rank
sum test are depicted in Table 3. HereL is the value from the Likert
scale which goes from -2 for strongly disagree to 2 for strongly
agree. According to these results, for the first question pair, we can
reject the null hypothesis on a significance level of 1 % and for the
second question pair on 5 % significance level. These results are

Table 3: Test statistics for H5
∆L σ pwrs

Q3 - Q4 -0.83 ** 0.94 0.01
Q11 - Q10 0.67 * 1.15 0.04

also backed up by many comments from the participants who said
that editing a constraint-based layout is much easier and faster than
editing a grid-bag layout.

6. DISCUSSION
For the effectiveness the data shows that specification is faster

for the grid-bag layout model. For Task 1.1 it was on average 12.5s
and for Task 2.1 it was on average 16.5s faster (Table 1). There are
two possible explanation for that behavior. First, when specifying
a constraint-based layout for all layout items, the four surrounding
tabstops have to been found. Similar to that, a layout item in a
grid-bag layout is specified by the four values column, row, row-
span and column-span. However, in a grid-bag layout items often
have a small row- and column-span which makes it very easy to
determine the span values, e.g. a layout item in a single cell has a
row- and column-span of one. Secondly, the grid-bag layout model
is more familiar to the developers (Figure 7) and thus they need less
time to perform this task.

However, for the editing tasks the picture changes. For the easier
tasks the constraint-based layout was slightly, but not significantly,
faster. When the tasks became more complex (Task 2.2 and 2.3)
editing a layout was clearly faster in the constraint-based layout
model. The main explanation for that observation is that the edit
complexity for the constraint-based layout remained almost con-
stant whereas the edit complexity for the grid-bag layout increased.
This is mainly because changes in a constraint-based layout are
local: changing a layout item only affects the surrounding layout
items, while for the grid-bag layout in the worst case the whole
layout has to be updated (Section 2).

The measured accuracy showed a similar behavior. For Task 1
the results are not clearly in favor of the constraint-based layout

7

model, but for the more complex Task 2 the error rates for specifi-
cation and editing are dropping considerable. For Task 2.3 the error
rate was significantly lower. Again, the main reason we identified
is that the edit complexity is smaller for a constraint-based layout
than for a grid-bag layout.

The objectively measured data for efficiency and accuracy mat-
ches the subjective impressions the respondents reported in the ques-
tionnaire. The participants perceived the constraint-based layout
model as easier to use. This is interesting because most of the par-
ticipants had known the grid-bag layout model before. Even in a
short training session the participants became comfortable with the
new layout model and experienced its advantages.

The results of the experiment suggest that the constraint-based
layout model can compete with well-established layout models such
as the grid-bag layout model, and can outperform them for more
complex editing tasks. These interpretations have to be seen in the
light of some possible threats to their validity.

Internal Validity
Since we applied a within-subject experimental design, we could
face an order bias. To minimize this possible threat, we alternated
the order in which the layout models were used.

Another threat could be that because we only used two main
tasks for the evaluation not all interesting layout configurations are
covered. Since the experiments took already about an hour we were
not able to introduce another task. Since both tasks show the same
pattern (specification is slow with constraint-based, editing is fast)
we assume that the tasks capture the general effects and are hence
adequate to study the differences in usability of both layout mo-
dels. Furthermore, we designed the subtasks in such a way that
they became successively more complex, hence covering a range
of different complexities.

Many of the participants already knew the grid-bag layout model.
That could have introduced an advantage for the grid-bag layout
model. We minimized this threat by abstracting from a concrete
API implementation to a paper-based experiment and with an ex-
tensive training phase.

A final internal threat could be social desirability bias which
could stem from the fact that some participants knew about our
work in the field of constraint-based layout models. They could
therefore have been positively biased in the questionnaire answers
about the constraint-based layout model. We minimized this threat
by including these questions twice but with other formulations in
the questionnaire. Even though this measure can help reducing the
bias, we have to be aware of this problem in the interpretation of
the results.

External Validity
The study poses some threats to its external validity. First, it can
be an issue that our abstraction from concrete API implementations
did not reflect the usability of a real-world API. However, the objec-
tive of our study was to understand the differences in the usability
of the layout models. A specialization to a concrete implementa-
tion is not intended and may in fact endanger the generalizability of
the results. Nevertheless, it can be assumed that differences in us-
ability of layout models translate to similar differences in usability
of well designed APIs that implement these layout models.

Another threat is the selection of the sample which consisted
solely of students. However, we only selected students at least at
master’s level. For them we can assume sufficient knowledge in
Computer Science to consider them as software developers. This
assumption is also supported by a recent study about the represen-
tativeness of students for professional software developers [20].

Finally, the task design is an issue. The tasks were rather small
compared to real-world GUI layouts.However, we designed the
tasks in such a way that they reflect typical problems of real-world
development situations (e.g. empty cells in a layout or introducing
new layout items). Layouts in practice may replicate these prob-
lems several times, but the cognitive process to handle them is the
same. We believe therefore that we can extrapolate our results to
such more complex cases.

7. CONCLUSION
Two of the most versatile layout models are the grid-bag layout

model and the constraint-based layout model. While the grid-bag
layout is quite popular, the constraint-based layout is lesser known
although it is the more general and flexible layout model. We con-
ducted an experimental study comparing the usability of these two
layout models. The usability was measured considering the factors
efficiency, accuracy and preference. These factors where measured
in various tasks, which included the specification of new layouts
and the editing of existing layouts with different layout and edit
complexities.

We found that it is faster to specify new layouts with the grid-
bag layout model. However, when it comes to editing the pre-
viously specified layouts, the constraint-based layout model out-
performs the grid-bag layout model. Especially for more complex
layouts, constraint-based layout is significantly faster and has a sig-
nificantly higher accuracy. From the questionnaire, the participants
preferred the constraint-based layout and, consistent with the ex-
periment, found it much easier for editing a layout.

The results of this study are quite promising and are clearly in
favor of the more powerful constraint-based layout model. A next
step would be to test the usability on widely used API implemen-
tations. For that purpose, even more complex programming tasks
could be designed.

Our empirical study substantiates the effort of the industry to im-
plement constraint-based layout models in their GUI APIs (e.g. Co-
coa’s Auto Layout or Java’s SpringLayout). This model has clear
advantages over common layout models, and it is worth to give it a
try. Only time will tell if the constraint-based layout model will be
widely adopted — at least it has the potential.

8. REFERENCES
[1] Greg J. Badros, Alan Borning, and Peter J. Stuckey. The

Cassowary linear arithmetic constraint solving algorithm.
ACM Transactions on Computer-human Interaction,
8:267–306, 2001.

[2] Victor R. Basili, Forrest Shull, and Filippo Lanubile.
Building Knowledge through Families of Experiments. IEEE
Transactions on Software Engineering, 25:456–473, 1999.

[3] Jack K. Beaton, Brad A. Myers, Jeffrey Stylos, Sae
Young (Sophie) Jeong, and Yingyu (Clare) Xie. Usability
evaluation for enterprise soa apis. In Proceedings of the 2nd
international workshop on Systems development in SOA
environments, SDSOA ’08, pages 29–34, New York, NY,
USA, 2008. ACM.

[4] Steven Clarke. Usability of software tools impacts developer
efficiency. Dr. Dobbs, 2004.

[5] J.M. Daughtry. The style and substance of api names. In
Visual Languages and Human-Centric Computing
(VL/HCC), 2010 IEEE Symposium on, pages 259 –260, sept.
2010.

[6] John M. Daughtry, Umer Farooq, Brad A. Myers, and Jeffrey
Stylos. Api usability: report on special interest group at chi.

8

SIGSOFT Software Engineering Notes, 34(4):27–29, July
2009.

[7] Brian Ellis, Jeffrey Stylos, and Brad Myers. The factory
pattern in api design: A usability evaluation. In Proceedings
of the 29th International Conference on Software
Engineering, ICSE ’07, pages 302–312, Washington, DC,
USA, 2007. IEEE Computer Society.

[8] Daqing Hou and Lin Li. Obstacles in using frameworks and
apis: An exploratory study of programmers’ newsgroup
discussions. In Proceedings of the 2011 IEEE 19th
International Conference on Program Comprehension, ICPC
’11, pages 91–100, Washington, DC, USA, 2011. IEEE
Computer Society.

[9] D.C. Howell. Statistical Methods for Psychology. Psy 613
Qualitative Research and Analysis in Psychology. Cengage
Learning, 2012.

[10] ISO 9241-11:1998. Ergonomic requirements for office work
with visual display terminals (VDTs) – Part 11: Guidance on
usability. ISO, Geneva, Switzerland.

[11] Noreen Jamil, Johannes Müller, Christof Lutteroth, and
Gerald Weber. Extending linear relaxation for user interface
layout. In IEEE 24rd International Conference on Tools with
Artificial Intelligence, ICTAI 2012, Athens, Greece,
November 7-9, 2012, 2012. to appear.

[12] Andrew J. Ko and Yann Riche. The role of conceptual
knowledge in api usability. In Visual Languages and
Human-Centric Computing (VL/HCC), 2011 IEEE
Symposium on, pages 173–176, 2011.

[13] Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria
João Varanda Pereira, Matej Crepinsek, Daniela Carneiro
da Cruz, and Pedro Rangel Henriques. Comparing
general-purpose and domain-specific languages: An
empirical study. Computer Science and Information Systems,
7(2):247–264, 2010.

[14] Christof Lutteroth, Robert Strandh, and Gerald Weber.
Domain specific High-Level constraints for user interface
layout. Constraints, 13(3), 2008.

[15] Brad Myers, Scott E. Hudson, and Randy Pausch. Past,
present, and future of user interface software tools. ACM
Transactions on Computer-human Interaction, 7:3–28,
March 2000.

[16] Mary Beth Rosson. Human factors in programming and
software development. ACM Computing Surveys,
28(1):193–195, March 1996.

[17] Veit Schwartze, Sebastian Feuerstack, and Sahin Albayrak.
Behavior-sensitive user interfaces for smart environments. In
Vincent Duffy, editor, Digital Human Modeling, volume
5620 of Lecture Notes in Computer Science, pages 305–314.
Springer Berlin / Heidelberg, 2009.

[18] Adriano Scoditti and Wolfgang Stuerzlinger. A new layout
method for graphical user interfaces. In Science and
Technology for Humanity (TIC-STH), 2009 IEEE Toronto
International Conference, pages 642–647. IEEE, 2009.

[19] Dag I. K. Sjøberg, Jo Erskine Hannay, Ove Hansen,
Vigdis By Kampenes, Amela Karahasanovic, Nils-Kristian
Liborg, and Anette C. Rekdal. A Survey of Controlled
Experiments in Software Engineering. IEEE Transactions on
Software Engineering, 31:733–753, 2005.

[20] Mikael Svahnberg, Aybüke Aurum, and Claes Wohlin. Using
students as subjects - an empirical evaluation. In Proceedings
of the Second ACM-IEEE international symposium on
Empirical software engineering and measurement, ESEM
’08, pages 288–290, New York, NY, USA, 2008. ACM.

[21] Gerald Weber. A Reduction of Grid-Bag Layout to Auckland
Layout. In Australian Software Engineering Conference,
pages 67–74, 2010.

[22] Clemens Zeidler, Christof Lutteroth, and Gerald Weber.
Constraint solving for beautiful user interfaces: how solving
strategies support layout aesthetics. In Proceedings of the
13th International Conference of the NZ Chapter of the
ACM’s Special Interest Group on Human-Computer
Interaction, CHINZ ’12, pages 72–79, New York, NY, USA,
2012. ACM.

[23] John Zukowski. Java AWT reference. O’Reilly & Associates,
Inc., 1997.

9

