
A Tuplespace Event Model for Mashups
Sheng Tian

School of Engineering
University of Auckland

New Zealand
shengt@gmail.com

Gerald Weber, Christof Lutteroth
Department of Computer Science

University of Auckland
New Zealand

{gerald, christof}@cs.auckland.ac.nz

ABSTRACT
Inter-widget communication is essential for enterprise
mashup applications. To implement it, current mashup
platforms use the publish/subscribe pattern. However, the
way publish/subscribe is used in these platforms requires
a lot of manual wiring between widgets. In this paper, we
propose a new Unified Widget Event Model (UWEM),
which is conceptually an extension of Linda tuplespaces.
UWEM separates event publishers and subscribers in
space, time, and reference. Using the Keyboard-Level
Model (KLM) we show that UWEM requires fewer
operations to build typical mashups than conventional
mashup platforms. We have implemented UWEM in a
popular enterprise mashup framework, and performed an
empirical study that compares UWEM with the
established approach for creating mashups. The study
confirms the KLM predictions, and shows that UWEM is
significantly more efficient than the established approach.

Author Keywords
Tuplespace, mashup, widget, event model

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g.,
HCI): Miscellaneous.

INTRODUCTION
One of the most empowering user interface technologies
currently available on the Web is that for creating
mashups. A mashup is a web page or application that uses
and combines data, presentation or functionality from two
or more sources. Mashups integrate content and
functionality that is available through open Web APIs
(application programming interfaces) and reusable
services. They were initially conceived as a means for
business users to create their own applications, starting
from public APIs such as Google Maps. Today, a large
amount of content, such as photos, videos, news, maps,
weather forecasting, and e-commerce can be combined in
a mashup.

A mashup application is a situational application, i.e.
“good enough” software created for a narrow group of
users with a unique set of needs. Unlike traditional
applications, situational applications try to solve those

requirements on the long tail of all the enterprise
requirements. These applications are usually too costly to
build using the traditional way, or have a lower priority
than the strategic applications of an enterprise, as shown
in Figure 1.

Figure 1. Situational applications (Carrier, 2008)

Mashup building is a kind of integration and composition
technology. Integration itself has been a main focus of
software development methods and technologies for the
last 30 years. We can distinguish between two main
classes of mashups: data mashups, and presentation
mashups. These classes correspond to two important
classes of integration: data integration and user interface
(or, more broadly, presentation) integration. In this paper,
we focus on the presentation mashups.

Presentation mashups use widgets as UI components. A
widget is an interactive single-purpose application that
can be installed and executed by an end user. By wiring
multiple widgets, data and applications can be integrated
quickly and easily, effectively creating new applications
that provide an added value in their own right.

Widgets run in widget containers (Sire, 2009), which are
the widgets’ runtime environments. In order to support
interaction and communication between widgets, models
for events and event handling have been introduced.
Inter-widget communication (IWC) is essential in
presentation mashup applications, as it allows widgets to
communicate with and react to other widgets. However,
the concepts of widget events and event handling are
often considered too complex for end users, and therefore
they are often only made available to developers. The aim
of our research is to make IWC also accessible for the
average end user.

We will use the following running example in this paper.
Pat is going to Auckland to attend a conference next week.

OZCHI 2011, Nov 28 – Dec 2, 2010, Canberra, Australia.
Copyright the author(s) and CHISIG
Additional copies are available at the ACM Digital Library
(http://portal.acm.org/dl.cfm) or ordered from the CHISIG secretary
(secretary@chisig.org)
OZCHI 2011 Proceedings ISBN: 978-1-4503-1090-1

She needs to know the weather in Auckland, and wants to
find a hotel that is close to the conference. She builds a
mashup application to help her plan the travel, which is
shown in Figure 2. First, Pat puts a conference detail
widget (A) on the page to show the conference. Then she
adds a hotel search widget (B), and wires it with the
conference detail widget. As a result, the hotel search
widget accepts the conference address from the
conference detail widget as its input parameter and shows
all hotels nearby on the map. Finally, Pat adds a weather
forecast widget (C) that accepts the conference address
and date as its input parameters, showing the weather
forecast during the conference in Auckland.

Figure 2. Conference mashup scenario

In this example, the conference location information is
broadcasted. Widget B receives the location and shows
hotels nearby on the map. Widget C receives the location
and shows information about the weather in the area. For
the sake of illustration, the conference date is unicasted to
widget C, as widget C needs both the location and the
date from widget A to query data from a weather forecast
web service. When changing the conference details, the
hotel search widget and the weather forecast widget will
be changed accordingly. Hence, the above mashup
application can also be used to plan other conference
travels, so Pat can share it with her colleagues.

Current widget specifications have many limitations
when it comes to IWC. Many widget specifications only
support unicast interaction, e.g. IBM Mashup Center
iWidget (Ketter et al., 2009). Other specifications, such as
iGoogle Gadgets (Casquero et al., 2008) and Netvibes
UWA (Kaar, 2007) require additional middleware to
support IWC. All IWC implementations are unique and
incompatible with each other.

We argue that creating the mashup in the given example
with current IWC technologies is not as easy as it should
be. The wiring that was manually created in the example
above is the natural default for that scenario; hence there
should be a larger degree of automation in creating it. We
propose a new and extended event model, the Unified
Widget Event Model (UWEM), which achieves a much
higher degree of automation than existing approaches.
UWEM satisfies the following requirements:

 Flexible Communication Patterns: An event model
should support different routing schemes, including
unicast, multicast and broadcast, so that it can be used
in the existing mashup platforms.

 Automatic Configuration: An event model should
enable a “plug and play” approach to support automatic
wiring between the widgets in a mashup, in a way that
makes manual wiring unnecessary for most
applications.

The new widget event model is based on Linda
tuplespaces (Gelernter, 1985). Linda is a programming
language that is intended for distributed systems.
Messages are added in the form of tuples to a global data
store called a tuplespace (TS). In the TS, tuples exist as
named independent entities that can be read and
consumed by processes. Linda is fully distributed in both
time and space, and by introducing TS into mashup
applications, the communication between widgets
becomes decoupled in time, space and reference. The TS
approach to events in mashups is compatible with the
existing IWC models, so that existing applications can be
integrated with the TS. Furthermore, the TS approach
makes it possible to build mashups with minimal or zero
manual wiring.

The paper is organized as follows. The next section
presents the capabilities and limitations of the
communication models used in the current mashup
frameworks. Afterwards, we introduce the Unified
Widget Event Model (UWEM), and describe how the
communication patterns of existing frameworks can be
specified in the new model. Then, we present an
evaluation that compares UWEM with existing event
models, and we discuss the advantages and disadvantages
of the new model. Finally, we offer conclusions and point
out future directions.

RELATED WORK
There are many areas of research involving IWC event
models. The following sections give an overview of the
history of event models, different routing schemes,
communication patterns, and the main approaches of
IWC. This overview helps to understand why IWC is
often considered too hard to understand for end users. It
also shows what functionality a new event model such as
UWEM needs to consider in order to be useful for real
applications.

Events and Event Models
The concept of an event is used in different ways in
different software contexts. For example, GUI operating
systems use events to interact with applications. In
concurrent programming, programs set and reset events,
which are process synchronization primitives such as
semaphores and mutual exclusions (mutexes); events are
basically flags that one process can set and another can
read. A popular object-oriented design pattern, the
observer pattern, is based on events. Programming
languages (e.g. .Net, Java) also use the term event to
denote actions or entities of various kinds, in which
events are often associated with event sources, event
objects, and event listeners.

Publish/subscribe based event models were first
introduced in the data and business domain as complex
event processing (Rosenblum and Wolf, 1997; Cugola

and Margara, 2011). These models support content-based
filtering mechanisms. The programming language
community investigated language primitives for
supporting publish/subscribe models (Eugster, 2001). In
this approach, events are treated as first-class objects in
an object-oriented programming language, so they have a
type and can be processed like ordinary data. Subscribers
specify the class of objects they want to receive.

In general, an event is defined as an instantaneous, atomic
(i.e. happening completely or not at all) occurrence of
interest (Chakravarthy, 1994). An event model is a
software architecture that determines how components
can: create and describe events, trigger events, distribute
events to interested components, subscribe to event
sources, react to events when received, and remove the
subscription to event sources when desired.

Cugola identified three classes of event-based systems
according to event structures (Cugola, 2002):

 Events as Tuples, where fields are distinguished by
position. Linda TS based communication falls into this
category.

 Events as Records, i.e. sets of typed fields
characterized by a name and a value. Within this
category, different event-based infrastructures can be
further classified depending on the richness of the type
system they offer. These event systems are seen mostly
in Web application, in which components use JSON as
a record-based event structure (Crockford, 2006).

 Events as Objects that have both a state and a set of
methods.

The structure of events has an impact on how easily they
can be understood by users, as opposed to developers. For
example, events as objects may require a user to
understand programming concepts such as methods.
Tuples may be familiar to users as a concept from
elementary mathematics.

Event Dispatcher Architectures
An important factor that has an impact on performance
and scalability of event-based infrastructures is the
internal architecture of the event dispatcher. Cugola
classified event dispatcher architectures according to the
following categories (Cugola, 2002):

 Direct Connection. No explicit event dispatcher exists.
Events are directly dispatched by the event sources to
the interested parties. This architecture is popular in
unicast environments.

 Broadcast. Events are always sent out to all parties.

 Centralized. There is a single dispatcher that all events
are sent to, which takes care of the deliveries to the
interested parties.

 Distributed. A number of interconnected dispatching
servers cooperate to deliver events.

 Mixed. This refers to a combined approach, such as the
use of broadcasting to deliver events within certain

groups of nodes, and the use of other approaches to
deliver them between the groups. Such a mixed
approach is used, for example, in networks: messages
within a LAN are broadcast, whereas a different
approach is used to deliver messages between different
LANs in a WAN.

While the choice of event dispatcher architecture seems
to be a very technical decision, it does have consequences
for mashup developers. More complex architectures make
it harder to understand - and change - the flow of events
in an application.

Routing Schemes
The notion of routing as known from networks (Medhi,
2007) can also be used to characterize IWC. Routing
schemes differ in their delivery semantics:

 Unicast delivers a message to a single specified node.

 Multicast delivers a message to a group of nodes that
have expressed interest in receiving the message
(Ramalho, 2000). The terms multicast and narrowcast
are often used interchangeably, although narrowcast
usually refers to the business model whereas multicast
refers to the actual technology used to transmit the data.

 Broadcast delivers a message to all nodes in the
network.

 Anycast delivers a message to any one out of a group of
nodes, typically the one nearest to the source (Abley,
2006).

Many event models implement unicast, multicast and
broadcast. As a consequence, a new event model such as
UWEM should support at least these three routing
schemes.

Inter-Widget Communication
The idea of inter-widget communication (IWC) is not
new. Sire proposed a JavaScript messaging API for inter-
widgets communication (Sire, 2009) that wires widgets
with a drag-and-drop metaphor within the browser. Wu
proposed a similar web widget communication
framework (Wu, 2010). In both approaches events can be
predefined browser events, or application-specific events
that are defined by the developer. Event data are passed
between widgets when events associated with those
widgets occur.

Several professional mashup solutions with IWC features
were proposed. Google provides a gadget-to-gadget
communication framework in its iGoogle Gadget
specification (Casquero et al, 2008). The
publish/subscribe framework allows publisher gadgets on
iGoogle to communicate changes to subscriber gadgets
that have declared interest in those changes.

IBM Mashup Center provides a similar publish/subscribe
framework called iEvent. For every iEvent, the widget
container has to explicitly declare a wiring relationship
between the source widget and the target widget. iEvent
is compatible with OpenAjax Hub (OpenAjax Alliance,

2009), which is a client-side Ajax component
communication standard based on publish/subscribe.

The IWC provided by iGoogle Gadgets and IBM
iWidgets are limited. Both support only event distribution
patterns that can be modeled with the publish/subscribe
mechanism. Furthermore, widgets communicating on
these platforms are all tightly coupled in time, which
means messages cannot be delivered if the receiver
widget has not yet been put into the mashup application.

BISSA (Wickramasinghe, 2010) is an IWC solution
specifically for Google gadgets that is related to UWEM.
It introduces a TS into the browser, and allows gadgets to
coordinate themselves with other gadgets through the TS.
However, BISSA does not address our requirements.
Compared to UWEM, BISSA addresses implementation
issues of a TS on a lower level. Most importantly, it does
not answer the questions of how to simplify wiring for
end users. In principle, UWEM could be implemented on
top of BISSA - something that we might investigate in the
future.

UNIFIED WIDGET EVENT MODEL
The Unified Widget Event Model (UWEM) extends the
Linda TS with new features to make it suitable for
mashup environments. Figure 3 shows a system overview
of UWEM. It includes two parts: the first part is the
extended TS (blue area in Figure 3), which is
implemented with the Dojo toolkit as a platform-
independent JavaScript library. This library can be used
in any web mashup framework. The second part is the
integration of UWEM with existing widget specifications
(green area in Figure 3). This integration is platform
related, and there are implementations for widget
specifications of different mashup platforms.

Figure 3. UWEM system overview

In the following, we first describe the original TS
concept, and then how UWEM extends it to support
communication patterns and automatic configuration.

The Linda Tuplespace
Linda (Gelernter, 1985) is a distributed programming
language that provides a model of coordination and
communication among several parallel processes.
Processes communicate among each other using shared
tuples in a TS. Several operations are defined on the TS:

1. Insertion: write(N, P2, ..., Pj) inserts the tuple N, P2, ...,
Pj into the TS.

2. Blocking read and delete: take(N, P2, ..., Pj). If there is
a tuple in the TS whose first component is N, then the
tuple is withdrawn from the TS. If no matching tuple is
available in the TS, take() blocks until one is available.

3. Blocking read: read(N, P2, ..., Pj) is the same as the
take() statement, but the tuple remains in the TS.

In the above operations, N is an actual parameter
specifying a name, and P2, ..., Pj is a list of parameters
each of which may be either an actual or a formal
parameter. The TS, as the middleware, decouples three
orthogonal dimensions involved in IWC:

 Reference decoupled. Widgets communicate with each
other by writing tuples to and reading tuples from the
TS. They do not need to have knowledge of each other
in order to communicate.

 Time decoupled. Widget communication can be
completely asynchronous. A TS stores event data so
that it can be read long after the event occurred.

 Space decoupled. Widget can be run in different
domains as long as they can access the same TS.

UWEM Event Tuples
In UWEM, an event tuple (ET) is a triple:

<event-tuple> := (<event-id>,
<event-metadata>, <payload>)

<event-id> is a string that is globally unique and
identifies an ET. <payload> is the event data produced or
consumed by widgets. <event-metadata> is a tuple which
contains necessary metadata for UWEM to support
different message passing patterns. The metadata includes
the following information:

 Source (optional) is the sender widget’s identity.

 Target (optional) is the target widget’s identity. It can
be one widget’s identity or a list of identities.

 Topic (optional) is a string that is only used during
multicasting. With the topic, UWEM can support the
publish/subscribe communication pattern, as explained
later.

 Timestamp (optional) encodes the time when the event
occurred. It is used for time-aware communication,
such as for the message queue communication pattern.
This will be explained later on.

Figure 4. Basic operations of a TS and UWEM

UWEM Operations
UWEM extends the original TS and defines several
operations in the widget container to support common
event communication patterns. For sending an event,
UWEM offers the following operations:

 unicast(event-tuple) sends the ET to another widget.
The receiver widget is defined in the Target field of the
<event-metadata> parameter. After all receiver widgets
receive the ET, the ET will be removed from the TS
automatically.

 multicast(event-tuple) is the same as the publish
operation in publish/subscribe event systems. The event
topic is defined in the <event-metadata> parameter.
The ET will not be removed from the TS until the gc()
operation is explicitly invoked.

 broadcast(event-tuple) broadcasts the ET to all the
widgets in the page, and keeps the ET available in the
TS for later widgets. The ET will not be removed from
the TS until the gc() operation is explicitly invoked.

The following operations are offered for receiving events:

 receive(tuple-template) reads all ETs matching the
tuple-template. This is similar to the basic TS operation
read().

 subscribe(topic) receives an ET that was emitted from a
sender widget with multicast(), given that sender and
receiver specify the same topic.

 read/takeLaterThan(tuple-template) reads or takes an
ET from the TS that matches the tuple-template, or
matches it except for a later timestamp.

 read/takeLatest(tuple-template) reads or takes the latest
ET (i.e. with the newest timestamp) that matches the
tuple-template from the TS.

 readUnmarked(tuple-template) reads an ET from the
TS that the caller has not seen before.

Each receiving operation has a blocking version and a
non-blocking version. Similar to the original TS
operations, a tuple-template can contain actual as well as
formal parameters. That is, developers can either specify
the value for an ET property to select the ETs they need,
or leave it open and read the value when an ET arrives.

Broadcast and multicast ETs will not be removed by any
of the operations above, so we need an operation to clean
garbage ET periodically:

 gc(age) removes all broadcast or multicast ETs from
the TS which are older than the given age.

Figure 4 shows the relationship between the UWEM
operations and the basic TS operations. All UWEM
operations are implemented with the basic TS operations
take, read, and write. Each widget has the methods
monitorUnicast(), monitorMulticast() and monitorBroad-
cast(), which can be overwritten to receive ETs that were
sent with the corresponding operations.

The operations are implemented in the widget container,
and the implementations are therefore platform
dependent. However, the operations’ method signatures
are the same across platforms, so all widgets can use the
same interfaces to access them.

Modelling Communication Patterns
The existing publish/subscribe event models support
multicast, but do not natively support broadcast and
unicast. UWEM supports different routing schemes
including broadcast, multicast, and unicast. It can also be
extended to support some more advanced features such as
queuing. This section gives more details of how these
patterns are implemented in the TS, so that the
requirement for flexible communication patterns can be
satisfied.

Unicast transmission is the sending of events to a single
widget. In UWEM, the sender widget knows the receiver
widget and puts the receiver widget’s ID into the ET to
indicate that only the widget with given target ID can
receive it.

Figure 5.: Unicast in UWEM

Multicast is the delivery of an event to a group of
receivers. In UWEM, this can be done using the unicast()
and the receive() operations, by providing several target
widget IDs as argument for unicast(). The TS collects
data about which widget has already read an ET. Once all
target widgets have read the ET, the ET is removed from
the TS. Alternatively, the multicast() and subscribe()
operations can be used, applying the publish/subscribe
pattern. Figure 6 illustrates how ETs are published and
subscribed by widgets.

Figure 6. Multicast in UWEM using the
publish/subscribe approach

Broadcast is similar to multicast. The difference is that
the broadcast ET is transferred to all recipients instead of
just some of them. The receiving widgets read the ET
without removing it, so that every receiver gets the same
copy of the ET. To differentiate broadcast from publish,
the Target and Topic fields in the broadcast ET are kept
blank, so that all widgets can receive the ET. Old ETs are
removed by calling gc().

Queuing. An ET can exist in the TS even after the sender
was removed (i.e. time decoupled), as it stays in the TS.
Consequently, ETs can accumulate in the TS. For some
widgets it is important that the ETs are received in the
same order they were sent, e.g. for stock tickers. In the
queue pattern, the time order of messages is preserved.
UWEM supports queuing by using the Timestamp field
of the ETs. The TS makes sure that all read operations
return ETs in order of their timestamps. This is illustrated
in Figure 7.

Figure 7. Queuing in UWEM

Automatic Configuration
In current mashup builder implementations, sender and
receiver widgets are wired together by widget ID and
event topic. Widget wiring needs to be configured by the
mashup creator. However, such configuration is not easy
to understand and hence error-prone. Even if two widgets
are wired together (one subscribes the other’s event
topic), the communication between them can still fail

because the event subscriber does not know if the
incoming event can really be consumed. It could happen
that an event is received, but does not contain the
expected payload. UWEM addresses this issue by using
event content sniffing. Unlike the traditional
publish/subscribe event model, an ET in the TS is
available to receiver widgets before they commit to
processing the ET. A receiver can read and test the ET to
see if it can be consumed before processing it.

Every widget is preconfigured to listen to a set of topics
that it naturally consumes. This means that widgets that
produce ETs with a certain topic and widgets that
naturally consume ETs of that topic are automatically
wired (i.e. “plug and play”). This saves people who create
mashups much of the effort and complexity of manual
configuration.

Because of the full separation of event sender and
receiver, ETs are communicated even if the event source
was removed. This makes widgets in mashups more
independent from their environment. Adding and
removing widgets does not have such a strong impact on
the whole mashup application as with conventional event
models, where this can be very disruptive. This behavior
makes a mashup more robust during mashup creation and
editing.

For example, consider the travel plan scenario from the
introduction. With UWEM, the conference details widget
emits the location data ET before the hotel search map
widget is added. The hotel search map widget is
preconfigured to read ETs with the “location” topic, and
uses monitorMulticast() to get and show the
corresponding map immediately. This means the map
widget is plugged into the mashup application
automatically and reacts to the available ETs, as soon as
it is added to the page. No manual configuration is
necessary for the wiring. If a widget cannot be wired
automatically, users still have the option to configure it
manually.

EVALUATION
We implemented an extended TS as a platform-
independent JavaScript library that can be used in any
web mashup framework, and integrated it with IBM
Mashup Center (IBM MC) by extending its widget
specification. The UWEM should simplify the widget
communication configuration on this mashup platform.

Hypotheses
UWEM provides full routing schemes support for
mashup platforms, and in most cases, widgets are
automatic wired with other widgets. Therefore, our first
hypothesis is that building mashups on the UWEM
platform requires fewer operations than on a nonUWEM
platform:

HTaskOpNum: TaskOpNumUWEM < TaskOpNumnonUWEM

Our second hypothesis is that building mashups on the
UWEM platform requires a smaller completion time than

on a nonUWEM platform:

HTaskCompTime: TaskCompTimeUWEM <
TaskCompTimenonUWEM

Experimental Set Up
To evaluate UWEM, we used IBM MC to create two test
mashup scenarios (travel plan and customer analysis),
and used the Keystroke-Level Model (KLM) (Card,
1983) to predict the task execution time from the
scenarios. The test scenarios are realistic; they are in fact
similar to showcase applications on the IBM MC website
(but they are in no way specific to IBM MC).

We created an analysis of the task with the KLM model
and we performed an empirical study with twelve
participants, where a comparison of the task completion
times between building mashups with and without
UWEM was made.

The first scenario is a travel plan mashup application. It is
similar simpler than the example in the Introduction
section. The scenario includes three widgets on the
canvas. They are Destination InputBox Widget, Weather
Widget, and Map Widget. In the scenario, Destination
InputBox Widget connects the other two widgets and
sends related data to the others.

Figure 8. Travel plan mashup

The second test scenario is a mashup application for
salesmen to do customer analysis. The scenario includes
five widgets on the canvas. They are Customer List
Widget, Stock Widget, Map Widget, Website Displayer
Widget, and Weather Widget. In this scenario, Customer
List Widget connects to the other four widgets and sends
data to them.

The participants first do the scenarios on the normal IBM
MC, and then they do the same task on the extended
version of IBM MC using UWEM. Because the result of
the KLM prediction might vary between expert users and
normal users, we removed the time of the mental act of
routine thinking operations in KLM. We took
recommended operation times (Kieras, 2001) for each
operation in the KLM prediction. For realistic testing,
each participant was trained to use IBM MC before doing
the tasks. The task completion time, mouse click number,
keystroke number, and mouse track length were recorded
using a Firefox extension.

Figure 9. Customer analysis mashup

Each participant filled out two questionnaires, one before
and one after the experimental tasks. In order to measure
demographics, participants were asked to declare their
gender, age and occupation in the pre-questionnaire. The
main body of the pre-questionnaire consisted of 3 Likert-
scale items, and the post-questionnaire consisted of 5
Likert-scale items and two open questions. The Likert-
scale items were using a 7-point scale with standard
labels, with a value range from 1 for “strongly disagree”
to 7 for “strongly agree”. Participants had to rate their
agreement with the following statements:

Pre-questionnaire:

1. I often use computers in my everyday life.

2. I frequently use mashup builder to build mashup
applications.

3. I wire widgets every time when I am building mashup
applications.

Post-questionnaire:

4. I understand the tasks.

5. I enjoyed using mashup builder to build applications.

6. It was easy to perform the tasks on the original IBM
Mashup Center.

7. It was easy to perform the tasks on UWEM support
IBM Mashup Center.

8. I prefer to use UWEM support IBM Mashup Center
rather than the original one.

Item 1 measures the frequency of computer use. Item 2
and 3 measure the frequency of mashup builder use. Item
4 measures the validity of the results. Item 6 and 7
measure the perceived usability of UWEM in IBM MC.
The two open questions asked the participants what they
liked about UWEM, and what they did not like about
UWEM (with a note to give suggestions for
improvement).

Prediction with Keystroke-Level Model
Building mashups is a complex task. There are several
common tasks involved in building mashups. These tasks
are as follows (all these tasks are platform dependent,
which means the prediction might vary on different
platforms):

 Drag and drop (D&D) widget from drawer to canvas

 Wire two widgets

The KLM predictions for these two tasks are:

 Tdnd = P + 2×B = 1.1 + 2 × 0.1 = 1.3sec

 Twire = 3×P + 8×BB = 3×1.1 + 8×0.1 = 4.1sec

All actions use the recommended average time in KLM.
For the first scenario, the action sequence is as follows:

1. Point to the widget drawer P

2. Click widget drawer BB

3. Point to the Location widget P

4. Drag and drop Location widget from the widget
drawer to the canvas D&D

5. Point to the widget drawer P

6. Click widget drawer BB

7. Point to the Map widget P

8. Drag and drop the Map widget from the widget
drawer to the canvas D&D

9. Point to the widget drawer P

10. Click widget drawer BB

11. Point to the Weather forecast widget P

12. Drag and drop the Weather forecast widget from the
widget drawer to the canvas D&D

13. Wire the Location widget with the Weather forecast
widget Wire

14. Wire the Location widget with the Map widget Wire

15. Point to the input box in Location widget P

16. Input the location in the Location widget T(12) = 12
K

17. Point to the “Show Details” button P

18. Click “Show Details” button BB

Ttotal_nonUWEM = 8P + 8B + 12K + 3D&D + 2Wire

 = 8×1.1 + 8× 0.1 + 12× 0.28 + 3×1.3 + 2×4.1sec

 = 25.06 sec

On the extended version of IBM MC, the action sequence
to build the scenario is the same as the action sequence
above except step 13 and 14 are omitted. The total
prediction time for this action sequence is:

Ttotal_UWEM = 8P + 8B + 12K + 3D&D

 = 8× 1.1 + 8× 0.1 + 12× 0.28 + 3×1.3 sec

 = 16.86 sec

The same analysis of prediction is made for scenario 2.
The completion time of nonUWEM case is 36.2 seconds,
compared with 19.8 seconds for UWEM case.

Demographics
There were 12 participants in the study, with a gender
distribution of 1 female, 11 males. The age ranged from
22 to 42, with a median of 28.5. All participants were
frequent computer users, as measured by item 1 of the
questionnaire. The responses for this item ranged from 1
to 4 (on a scale of 1 to 7), with a median of 4 and an
average of 6.9. None of the participants had used mashup
builder before.

The participants were recruited in the campus. As a result,
all participants were students. The labs are located in the
Science Faculty, and hence most participants were
studying a science related subject.

Results
Table 1 and 2 shows the results for the dependent
variables as measured during the experimental tasks. The
test probabilities for the differences between the UWEM
and nonUWEM conditions are shown in the column Pdiff.

Variable Average Std.
Dev

Pdiff

MouseClicksnonUWEM 23.4 6.2

MouseClicksUWEM 10.1 3.2 0.0004**

MouseTrackLennonUWEM 9358 4287

MouseTrackLenUWEM 3000 2884 0.001**

CompletionTimenonUWEM 75.4 33.6

CompletionTimeUWEM 23.6 12.8 0.001**

Table 1. Descriptive statistics and test results for task 1

The table 2 shows the results for task 2.

Variable Average Std.
Dev

Pdiff

MouseClicksnonUWEM 34.8 14.7

MouseClicksUWEM 16.5 6.9 0.000976*

MouseTrackLennonUWEM 18913 11583

MouseTrackLenUWEM 8900 10766 0.001953*

CompletionTimenonUWEM 112.4 54.2

CompletionTimeUWEM 42.4 38.2 0.000976*

Table 2. Descriptive statistics and test results task 2

The results show that the completion time for UWEM is
significantly smaller (on average by 52%) than for the
nonUWEM condition, so that HTaskCompTime can be
accepted. Also the mouse click times and mouse track
length for UWEM is significantly smaller (on average by
62% and 52%) than for the nonUWEM condition, so
HTaskOpNum can be accepted as well.

Question 1 2 3 4 5 6 7 8

Avg.
rating

6.9 1.2 1.8 6.4 5.8 4.3 5.8 6.1

Std.
Deviation

0.3 0.4 1.7 1.7 1.6 1.9 1.8 1.5

Table 3. Descriptive statistics for the questionnaire.

Table 3 shows the results of the Likert-scale items of the
questionnaire.

The responses to the open questions of the questionnaire
were analyzed by performing a frequency count of
sufficiently equivalent answers. One participant did not
fill in the open questions section. 11 participants made
positive comments about UWEM. The three most
common positive comments about UWEM were:

1. No complex configuration is needed to setup
communication among widgets.
(5 participants, 41%)

2. Automatic wiring makes the task much easier.
(5 participants, 41%)

3. It saves time to build mashups.
(2 participants, 16%)

Other positive comments include very intuitive, No need
to remember all links that requires to wire.

7 participants made negative comments about UWEM.
The two most common negative comments about UWEM
were:

1. No choice in case of ambiguities in wiring.
(5 participants, 42%)

2. It would be better to perform the wiring while visually
showing which fields are being connected.
(3 participants, 28%)

The most common suggestion with regard to comment 1
was to make wiring configuration visible if there are more
than one event sources are available.

Discussion
By applying KLM to the scenario, we obtained the
prediction that the number of mouse clicks with UWEM
should be less than half the number of nonUWEM, and
the total time in the UWEM scenario should be about half
the time in the nonUWEM scenario. This is of course
mainly due to the fact that the wire tasks are not needed
in the UWEM scenario. The empirical study produced a
promising match with these predictions.

Many participants mentioned that the auto wiring makes
the mashup platform less configurable to handle some
complex mashup scenarios, which contains multiple event
senders and receivers in one event. However, the UWEM
doesn’t replace but coexist with the existing widget event
models. If the auto wiring among widgets is not possible,
the user can still choose the existing wiring approach.
Furthermore, the UWEM also provides a chance for the
mashup user to explicitly edit the wiring of the widgets.

CONCLUSIONS AND FUTURE WORK
As event-based inter-widget communication is
increasingly gaining attention, we addressed the issue that
the strict event model does not fit mashup application
well. Event models have a major impact on the flexibility
and usability. Therefore, we introduced Linda and
Tuplespace in mashups to provide a flexible event model
to specify the existing message passing patterns and to
extend the current mashup builder capability. Overall,
UWEM can deliver a simpler plug and play experience of
building mashup application for users.

The empirical study has given green light for a larger
study of the efficiency of UWEM. For the larger study we
are improving the instrumentation of the usability test
setup so as to record the individual operations in the
KLM model.

UWEM also has some issues that need to be addressed in
future works:

 Data Integration and Normalization. The main
challenge in building mashups is data integration and
normalization. UWEM provides a chance to do data
normalization within its TS.

 Transaction Management. In many circumstances,
inter-widget communication is transactional. If the
receiver fails in processing the data, the whole
transaction can be rolled back. So the tuple in UWEM
will be re-written into the TS if the taker widget fails.

REFERENCES
Abley, J., Lindqvist, K. and Abley, J. RFC 4786:

Operation of Anycast Services. IETF, 2006.

Card, K., Thomas, T. P., and Newall, A. The psychology
of human-computer interaction. Lawrence Erlbaum
Associates, 1983.

Carrier et al. The business case for enterprise mashups.
IBM White Paper, 2008.

Casquero et al. iGoogle and gadgets as a platform for
integrating institutional and external services. 1st
Workshop on Mash-Up Personal Learning
Environments (MUPPLE), 2008, 37–41.

Chakravarthy, S. and Mishra, D. Snoop: an expressive
event specification language for active databases. Data
& Knowledge Engineering, 14(1):126, 1994.

Crockford, D. The application/JSON media type for
JavaScript object notation (JSON), 2006.

Cugola, G. and Margara, A. Processing flows of
information: from data stream to complex event
processing. ACM Computing Surveys, 2011.

Cugola, G., Nitto, E. D., and Fuggetta, A. The JEDI
event- based infrastructure and its application to the
development of the OPSS WFMS. IEEE Transactions
on Software Engineering, 27, 9 (2002), 827–850.

Eugster, P. T., and Guerraoui, R. Content-based
publish/subscribe with structural reflection. 6th
USENIX Conference on Object-Oriented Technologies
and Systems, 2001.

Gelernter, D. Generative communication in Linda. ACM
Trans. Program. Lang. Syst. 7, 1 (1985), 80–112.

Kaar, C. An introduction to widgets with particular
emphasis on mobile widgets. Computing, Oct. 2007.

Ketter et al. Introducing an agile method for enterprise
mash-up component development. IEEE Conference on
Commerce and Enterprise Computing, 2009, 293–300.

Kieras, D. Using the keystroke-level model to estimate
execution times, University of Michigan, 2001.

Ma, C. and Bacon, J. COBEA: a CORBA-based event
architecture. 4th USENIX Conference on Object-
Oriented Technologies and Systems, 1998.

Medhi, D. and Ramasamy, K. Network routing:
algorithms, protocols, and architectures. Morgan
Kaufmann, 2007.

Namoun, A., Nestler, T. and Angeli, A. Conceptual and
usability issues in the composable web of software
services. Current Trends in Web Engineering, vol.
6385, Springer, 396-407.

OpenAjax Alliance, OpenAjax hub 2.0 specification,
2009.

Ramalho, M. Intra-and inter-domain multicast routing
protocols: a survey and taxonomy. Communications
Surveys & Tutorials, IEEE, 3(1):225, 2000.

Rosenblum, D. S. and Wolf, A.L. A design framework
for internet-scale event observation and notification,
6th European Software Engineering Conf.
(ESEC/FSE). LNCS 1301. Springer, 1997.

Rozsnyai, S., Schiefer, J., and Schatten, A. Concepts and
models for typing events for event-based systems.
Inaugural International Conference on Distributed
Event-based Systems, ACM, 2007, 62–70.

Sire, S., Paquier, M., Vagner, A., and Bogaerts, J. A
messaging API for inter-widgets communication. 18th
International Conference on World Wide Web, ACM,
2009, 1115–1116.

Tran, P., Gosper, J. and Yu, A. JXTA and TIBCO
rendezvous – an architectural and performance
comparison, 2003.

Wickramasinghe et al. BISSA: empowering web gadget
communication with tuple spaces. Gateway Computing
Environments Workshop (GCE), 2010, 1-8.

Wu, X., and Krishnaswamy, V. Widgetizing
communication services. IEEE International
Conference on Communications (ICC), 2010, 1–5.

