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ABSTRACT
3D digital models have become an important part of diverse
applications ranging from computer games, virtual reality,
architectural design to visual impact studies. One common
method to create 3D models is to create a point cloud using
laser scanners, structured lighting sensors, or image-based
modelling techniques, and then construct a 3D mesh, and
texture-map it using photographs of the observed scene. At-
tributed to the inherent properties of general 3D scenes such
as occluded or inaccessible parts, reflective surfaces, lighting
conditions or poor-quality inputs, 3D models produced by
these approaches often exhibit unsatisfactory and erroneous
mesh regions. In many cases, it is desirable to identify and
extract such regions so that they can be constructed or cor-
rected through other means. While much effort has been
invested into the problem of 3D reconstructions, the task
of evaluating existing models and preparing them for sub-
sequent enhancement processes has been largely neglected.
In this paper, we present a novel method for automatically
detecting and segmenting mesh regions with low confidence
in their correctness. The confidence estimation is achieved
by exploiting and integrating various uncertainty measures
such as geometric distances, normal variations and texture
discrepancies. Low-confidence mesh regions are isolated and
removed in such a way that the extracted region’s bound-
ary is as simple as possible in order to facilitate subsequent
automatic or manual improvement of these regions. Seg-
mentation is achieved by minimising an energy function that
takes the genus and boundary length and smoothness of the
extracted regions into account.
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1. INTRODUCTION
There is an increasing amount of applications that necessi-
tate high quality 3D representations, e.g. for arts, commerce,
virtual heritage, training, education, computer games, vir-
tual environments, documentation, exchanging information,
and social networking applications. The introduction of spe-
cialised hardware, such as laser and structured lighting sen-
sors [5], and the emergence of various sophisticated image-
based modelling techniques [2, 4, 6, 7, 11] has simplified the
creation of virtual 3D models from real physical objects.

Although these approaches enable the reconstruction of plau-
sible and comprehensive 3D models, the reconstruction qual-
ity often hinges on various additional factors such as lighting
and surface materials when a laser scanner is used or insuf-
ficient input images and unfavourable lighting conditions in
the case of image-based methods. Violation of these require-
ments often results in degraded regions in the resultant 3D
models. While much interest has been invested in improv-
ing the status-quo of general 3D reconstruction techniques,
aiming to further refine existing techniques, not much at-
tention has been spent on identifying and correcting mesh
regions which have a high likelihood of being incorrect. We
were unable to identify any previous research providing a
confidence or uncertainty measure for 3D reconstructions.
Several authors have tried to identify problematic steps in
the reconstruction process and to address them during the
reconstruction process. For example, Shan et al. [10] iden-
tify sparse regions in the point cloud due to occlusions and
incorporate that information in the Poisson surface recon-
struction by identifying contours and estimating depth val-
ues for the occluded regions.

We propose a novel method for classifying and extracting
uncertain mesh regions in a reconstructed 3D model. Our
method employs and fuses various uncertainty measures for
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the detection of regions with low-confidence. Once iden-
tified, these regions are isolated and removed through a
boundary-energy-minimising process, which defines a mesh
region that contains low-confidence mesh sections, and
which has the lowest possible genus and boundary length
and the highest possible boundary smoothness. Determin-
ing a mesh section with a simple shape enclosing the low-
confidence mesh regions is important for subsequent post-
processing steps improving these regions, i.e. by sketch-
based modelling [1]. The need for simple boundaries of low-
confidence regions is demonstrated by that fact, that many
surface interpolation techniques are energy-minimising and
performed poorly in our experiments when applying them
to complex contours.

The remainder of this paper is organised as follows. In sec-
tion 2, we present our algorithm for identifying low-confidence
mesh regions. Section 3 discusses our mesh segmentation ap-
proach. Results are shown in section 4. Section 5 concludes
this paper and gives an outlook on future work.

2. MESH CLASSIFICATION
The mesh confidence classification is accomplished through
the integration of three measurements: geometric distance,
normal deviation, and texture discrepancy. In the following
sections, a detailed description of each of these measure-
ments will be presented and discussed.

2.1 Classification by Geometric Distance
Meshes are frequently compared using geometric distances.
A popular measure to compare two polygon meshes A and
B is the two-sided Hausdorff distance which is defined as:

D(A,B) = max

{
h(A,B), h(B,A)

}
(1)

h(A,B) = max
a∈A

{
min
b∈B

{
d(a, b)

}}
(2)

where d(a, b) denotes the distance between two faces: a and
b. We assume that we are dealing with a mesh obtained
by creating a 3D point cloud, which is subsequently inter-
polated, e.g. using Poison Surface reconstruction. In many
application scenarios, the point cloud has sparse areas and
the surface reconstruction technique introduces errors, e.g.
by using a smoothing process.

We hence propose as a confidence measure of the reconstruc-
tion quality the geometric distance σdistance(F ) between the
point cloud and each face F of the resulting polygon mesh.
The measure will produce a large value (uncertainty) in ar-
eas where the polygon cloud is sparse (since many mesh
polygons do not have any nearby points). The distance mea-
sure will also be relatively large in areas where the surface
reconstruction method performs a large amount of smooth-
ing, but it will be small where the point cloud is dense and
the surface interpolates the point cloud well.

To compute the distance between a 3D point to a particular
face, we employ the point-triangle distance algorithm pre-
sented in [3]. The computation is sped up using a spatial
subdivision scheme.

Figure 1: 3D point clouds of a historic building using
an image-based modelling technique with 21 input
images.

Figure 1 depicts the point cloud of a historic building, pro-
duced by an image-based modelling technique using 21 input
images showing the front and sides of the house. The back
and the top side of the building were not accessible.

The uncertainty measure using geometric distance for the
mesh produced by interpolating this point cloud is shown in
figure 2. Red colours signify regions with high uncertainty,
and are most visible for the roof and the back of the building,
where the point cloud is very sparse. Thus, by scrutinising
the geometric distances between a face and its closest 3D
vertex, we can effectively identify missing regions of a given
3D structure.

Figure 2: The 3D reconstruction of the historic
building in figure 1 colour coded with our distance
measure for estimating the uncertainty in the sur-
face reconstruction accuracy. The colour scale on
the right indicates the point-polygon distance as a
percentage of the diagonal of the bounding box of
the model. Errors of equal or greater than 0.37%
are indicated in red.

2.2 Classification by Normal Direction Distri-
bution

In some 3D acquisition methods a point cloud with vertex
normals is obtained. For instance, in image-based mod-
elling, normals are often generated by averaging viewing vec-
tors from a 3D point to all observing camera centres. For
other 3D reconstruction techniques, such as laser scanning-
based 3D reconstruction, the point cloud does not have nor-
mals and surface normals are defined after a surface mesh
has been created by triangulating/interpolating the point
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cloud. In both cases, rapid normal direction changes are of-
ten an indicator of mesh regions deviating from the original
3D model, e.g., because complex surfaces are more difficult
to reconstruct, sensor sample rates are often insufficient to
capture geometric details, and because mesh errors are of-
ten associated with sudden jumps in the normal direction.
For this reason, the distribution of mesh normal directions
σnormal(F ) for a face F can be exploited to provide an esti-
mate for the accuracy of the reconstructed surface.

The task of classifying and segmenting low-confidence mesh
regions using normal direction is accomplished as follows.
The entire scene is first partitioned into a regular 3D Carte-
sian grid. In our experiments we used 100 grid cells in each
coordinate direction. The points of the 3D point cloud and
the polygons of the 3D mesh are assigned to the grid cell
enclosing them.

In order to estimate the uncertainty of a mesh polygon we
observe that natural objects often exhibit smooth surfaces.
Likewise, surfaces of man-made objects often contain large
flat surfaces with clearly defined, often orthogonal, angles
between them. In the first case normal directions are fairly
regular distributed, whereas in the second case normal direc-
tions are clustered along a few dominant directions. On the
other hand, normal directions of poorly reconstructed sur-
faces tend to exhibit a much higher degree of randomness as
illustrated in figure 3.

Figure 3 displays on the left the mesh triangle normals of
our Saint George Church model. The enlargement shows
that normal directions vary greatly around the window. We
can see from the image on the right that the window should
have sharp corners and the reconstructed surface is indeed
a poor representation of the original object.

Figure 3: Normals of Saint George Model.

In order to separate smooth normal direction distributions,
clustered normal direction distributions, and more random
normal direction distributions, we use the following algo-
rithm: we first approximate the angle between each normal
pair by computing the length of the cross product of each
normal pair. We then compute the mean value and standard
deviation of the resulting values. For smoothly changing
normals and for clustered normal directions there are many
normal pairs with a small angle between them, whereas for
randomly distributed normal directions the standard devia-
tion tends to be larger. We hence use the standard deviation
of the length of the cross products of normal pairs as an indi-
cation of the randomness of normal directions and hence as
an indicator for the uncertainty in the reconstructed surface
for all faces F in the corresponding grid cell.

Figure 4 displays the 3D reconstruction of the Saint George
Model colour coded with our new normal measure for esti-
mating the uncertainty in the surface reconstruction accu-
racy.

Figure 4: The 3D reconstruction of the Saint George
Model colour coded with our new normal measure
for estimating the uncertainty in the surface recon-
struction accuracy. The colour scale on the right
indicates our estimate for the randomness in nor-
mal directions.

2.3 Classification by Texture Inconsistency
Possible wrongly reconstructed mesh regions can also be
identified by determining inconsistencies between input im-
ages and reconstructed textures. We assume that the sur-
face has been parameterised and a texture has been recon-
structed from a set of photographs of the 3D model [8]. The
parameterisation represents a one-to-one mapping between
each face of the model and a 2D triangle correspondence.
An uncertainty value for each polygon of the reconstructed
mesh σtexture(F ) is computed as follows:

Given a face F of the reconstructed 3D model, for each in-
put image, the associated camera parameters are used to
decide if that image is within the field-of-view of the face F .
First, the centre of projection is computed from the camera
parameters. Next, two vectors are constructed. One goes
from the centroid of face F to the centre of projection, and
the other denotes the normal of the face. To determine if a
given face is inside the field-of-view of the current camera,
the angle subtended by those vectors is examined. If it is
above a predefined threshold (empirically set to 50◦) then
that image is outside the field of view of the current camera
and thus ignored.

For each image that passes the field-of-view test, the corre-
sponding texture of the face F from that view is extracted

50



and stored in a list. To extract a patch of texture from a
given image, we project the 3 vertices of F onto the image,
yielding a triangle. Then we can compute an affine trans-
formation that maps this projected triangle to a triangular
region within the parameter space. By the end of this pro-
cess, for each face, there will be a list of texture patches.
The error value of face F is computed as follows:

σtexture(F ) =





∞ if n = 0

αi if n = 1
1
n

∑n−1
i=0

∑n
j=i+1 cos(αi) cos(αj) dij if n > 1

(3)

where n denotes the number of texture patches, αi and αj

are the angles between the face normal and view vector as-
sociated with the input image used to create the texture
patches i and j, and dij represents the discrepancy between
the two texture patches. The dissimilarity score dij of a
pair of texture patches is obtained by comparing their dif-
ferences using appearance space attributes. The following
appearance space attributes are used for comparison:

• RGB color of the patches

• Gradient values in both x and y directions.

• The intensity variance

• The edge counts

Figure 5: Classification of the Saint George model
using texture inconsistency. The red colours show
regions that have error scores above 0.108% of the
length of the model’s diagonal.

The entire information of each patch is at this stage encap-
sulated in a high-dimensional vector. The two vectors are
then projected onto lower dimensions using PCA (8 dimen-
sions) and compared using the norm L2. The clear advan-
tage of attribute space over the conventional Sum of Squared
Differences is that the attribute space approach permits any
meaningful information about the pixels and their surround-
ing to be embedded for comparison purposes. By reducing
the dimensionality, the computation time can be kept man-
ageable.

Figure 5 displays the 3D reconstruction of the Saint George
Model colour coded with our new texture inconsistency mea-
sure for estimating the uncertainty in the surface reconstruc-
tion accuracy.

The total uncertainty is computed as weighted average of
the previously introduced uncertainty measures:

σtotal = 5σdistance + 2σnormal + 1.43σtexture (4)

The weighting factors were determined by analyzing the
three uncertainty measure for a range of models and visu-
ally determining the values where an uncertainty measure
typically corresponds to a poorly reconstructed surface.

3. MESH SEGMENTATION
Once low-confidence regions have been successfully detected,
they are extracted. In our system, the problem of extracting
low-confidence regions is formulated as an energy minimisa-
tion problem, in which the low-confidence region of interest
gradually expands in such a way that the new region con-
tains no hole and its boundary is as short and smooth as
possible. This is accomplished by iteratively expanding the
region while minimising the following objective energy func-
tion:

E = αl + βs+

[
len(h) ∗∞

]
(5)

where l denotes the length of the boundary, and s represents
its smoothness. α and β designate weighting factors and are
set to 0.4 and 0.6, respectively. The values were empirically
determined and reflect that in cases where decisions have
to be made between optimising for smoothness or length,
the smoothness constraint should prevail. h signifies holes
exhibited in the region. By imposing a substantial penalty
for the existence of holes, we ensure that the resulting seg-
mented region will have a genus of zero, i.e. contains no
holes.

The length of a boundary is computed as the sum of all
its edges’ length, while its smoothness is defined as the
sum of all internal angles between neighbouring edges. Fig-
ure 6 shows an example where low-confidence regions are
extracted from the model using our method.

4. RESULTS
We have evaluated our method using a wide range of test
objects, showing how the proposed technique can be applied
to different types of 3D scenes. We also present an assess-
ment on our method’s accuracy using a ground-truth model
obtained by a laser scanner.

To evaluate the effectiveness of our algorithm, we created a
3D model of an owl using the image-based modelling system
described in [7]. A second model was obtained using a Mi-
nolta VIVID 910 3D Laser Scanner. The two models were
aligned using an iterative closest point algorithm [9] and
their differences were computed using the two-sided Haus-
dorff distance.

We then computed a confidence measure for the reconstruc-
tion quality of the model obtained by image-based mod-
elling. This confidence measure was then compared with the
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Figure 6: Segmentation of mesh regions with high
uncertainty: The reconstructed 3D model with sur-
face regions labelled red where the uncertainty mea-
sure exceeds a pre-defined threshold (a). The mesh
regions in red are expanded using the algorithm de-
scribed in section 3 (b) and are extracted (c). Part
(d) of the figure shows the remaining mesh.

actual geometric error compared to the laser scanner-based
model. Figure 7 shows the reconstructed model colour coded
with the actual geometric error (top) and our new confidence
measure for the reconstruction quality (bottom).

Figure 7 shows that our confidence measure is a good in-
dicator of the actual geometric error of the reconstructed
surface.

Figure 8 and 9 illustrate the effectiveness of our method
through the classification of low-confidence regions of a shoe
and a rooster model.

5. CONCLUSION AND FUTURE WORK
We have described a novel method for classifying and remov-
ing mesh regions with a high uncertainty of their geomet-
ric accuracy in a reconstructed 3D model. Low-confident
mesh areas are identified and isolated through the integra-
tion of three separate measures: geometric distance, normal
direction distribution, and texture inconsistency. Once suc-
cessfully identified, these regions are isolated and removed
through a energy-minimising process. The objective is to
make certain that the resulting region has the lowest pos-
sible genus and boundary length, and the highest possible
boundary smoothness.

Our results have demonstrated that our algorithm correctly

Figure 7: The top row: error-encoded model ob-
tained by computing the two-sided Hausdorff dis-
tance between the model reconstructed using our
image-based modelling technique and the laser scan-
ner model. Bottom row: Model colour mapped with
our novel mesh confidence measure. Comparing the
models shows in general a good correspondence be-
tween confidence in the reconstructed model’s cor-
rectness and the actual error when compared to the
laser scanned model. The colour scale from green
to yellow to red indicates an increasing geometric
error. Red colours in this example signify regions
that have error scores above 0.26% of the length of
the model’s diagonal

identifies many poorly reconstructed mesh regions. It is
possible to construct counter examples where the algorithm
would fail. For example, a rough surface would always have
a high value for σnormal and hence at least moderately high
value for σtotal. However, in all our tests using real 3D re-
constructed models our proposed method always achieved
satisfactory results.

In future work we will test our algorithm using a larger range
of models obtained using different sensors and reconstruc-
tion techniques. We also would like to improve the formula
for combining the three uncertainty measures in order to
take into account the different priorities of these measures.
For example, a rocky terrain has a high value for σnormal.
However, if the surface is densely sampled and σdistance is
small, then the surface is likely to have a high accuracy and
σtotal should be small.
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