
A Generic Front-Stage for Semi-Stream Processing

M. Asif Naeem
School of Computing and
Mathematical Sciences,
Auckland University of

Technology
Private Bag 92006, Auckland,

New Zealand
mnaeem@aut.ac.nz

Gerald Weber
Department of Computer
Science, The University of

Auckland
Private Bag 92019, Auckland,

New Zealand
gerald@cs.auckland.ac.nz

Gillian Dobbie
Department of Computer
Science, The University of

Auckland
Private Bag 92019, Auckland,

New Zealand
gill@cs.auckland.ac.nz

Christof Lutteroth
Department of Computer Science, The University of Auckland

Private Bag 92019, Auckland, New Zealand
lutteroth@cs.auckland.ac.nz

ABSTRACT
Recently, a number of semi-stream join algorithms have been
published. The typical system setup for these consists of one
fast stream input that has to be joined with a disk-based re-
lation R. These semi-stream join approaches typically per-
form the join with a limited main memory partition assigned
to them, which is generally not large enough to hold the
whole relation R. We propose a caching approach that can
be used as a front-stage for different semi-stream join algo-
rithms, resulting in significant performance gains for com-
mon applications. We analyze our approach in the context
of a seminal semi-stream join, MESHJOIN (Mesh Join), and
provide a cost model for the resulting semi-stream join al-
gorithm, which we call CMESHJOIN (Cached Mesh Join).
The algorithm takes advantage of skewed distributions; this
article presents results for Zipfian distributions of the type
that appears in many applications.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—
Systems—Query processing

General Terms
Join Operator, Performance

Keywords
Semi-stream join, Performance optimization

1. INTRODUCTION
Stream-based joins are important operations in modern

system architectures, where just-in-time delivery of data is

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.

Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.

http://dx.doi.org/10.1145/2505515.2505734.

expected. We consider a particular class of stream-based
join, a semi-stream join that joins a single stream with a
slowly changing table. Such a join can be applied, for ex-
ample, in real-time data warehousing [13, 9]. In this appli-
cation, the slowly changing table is typically a master data
table and the stream contains incoming real-time sales data.
The stream-based join is used to enrich the stream data with
master data. A common type of join in this scenario is an
equijoin, e.g. on a foreign key in the stream data.

In this work we consider one-to-many equijoins only, as
they appear between foreign keys and the referenced pri-
mary key in another table. This is a very important class
of joins that occurs naturally in data warehousing [9], on-
line auction systems [2] and supply-chain management [20].
That is, we do not consider joins on categorical attributes,
such as gender, in master data.

With the availability of large main memory and power-
ful cloud computing platforms, considerable computing re-
sources can be utilized when executing stream-based joins.
However, there are several scenarios where approaches that
can function with limited main memory are of interest. First,
the master data may simply be too large for the resources
allocated for a stream join, so that a scalable algorithm is
necessary. Secondly, an organization may decide to reduce
the carbon footprint of the IT infrastructure: main memory
as well as cloud-computing approaches can be power-hungry.
Thirdly, low-resource consumption approaches may be nec-
essary when mobile and embedded devices are involved. For
example, stream joins such as the one discussed here could
be used in sensor networks. As a consequence, semi-stream
join algorithms that can function with limited main memory
are interesting building blocks for a resource-aware setup.

In this paper we present a novel caching approach that
works as a front-stage for existing semi-stream join algo-
rithms. It is different from other cache-based approaches [4,
5] in that it uses a tuple-level rather than a page-level cache.
The front-stage significantly improves join performance for
data with Zipfian distributions of the foreign keys, which can
be found in a wide range of applications [1]. To demonstrate
the front-stage, we combine it with MESHJOIN (Mesh Join),
which is a seminal algorithm in the field of semi-stream
joins [15, 16]. The resulting approach – called CMESHJOIN
(Cached Mesh Join) – separates the concerns of optimizing

769

for a particular distribution of stream data and performing
a join under general assumptions. We provide a cost model
and experimental results to clarify the properties and bene-
fits of the approach.

Our main findings can be summarized as follows:
Tuple-level cache: The caching approach in CMESHJOIN
has the granularity of tuples. Every tuple in the cache is
frequent in the stream data, so memory is utilized well.
Higher service rate: For skewed data, as found in many
application scenarios [1] such as data warehousing, CMESH-
JOIN outperforms MESHJOIN. The advantage increases as
the skew becomes more pronounced.
Cost model: We present a cost model for CMESHJOIN
and perform a sensitivity analysis with respect to various
parameters, validating the cost model in the process.

In certain applications it can be natural to use Solid State
Drives (SSDs) for storing the master data in order to gain
performance advantages. However, access to the master
data is sequential in CMESHJOIN, and SSDs have only a
moderately faster sequential access time compared to en-
terprise strength HDD equipment [7]. Hence we did not
consider SDD technology in our discussion. Similarly, we
do not consider the effect of processor cache or other main
memory hardware caches, as main memory access time in
CMESHJOIN is insignificant compared to disk access time.

Section 2 summarizes related work. Section 3 describes
CMESHJOIN and its cost model. Section 4 describes an
experimental evaluation. Section 5 concludes the paper.

2. RELATED WORK
The Symmetric Hash Join (SHJ) algorithm [19, 18] ex-

tends the original hash join algorithm in a pipeline fashion.
The Double Pipelined Hash Join [11], XJoin [17] and Early
Hash Join (EHJ) [12] are further extensions of SHJ for the
pipeline execution of join. All these algorithms take both
inputs in the form of streams while our focus is on joins
between stream data and non-stream data.

A number of tools have been developed for stream ware-
housing that can process stream data with archive data [3,
10, 8, 9]. However, these tools do not provide optimal solu-
tions for the non-uniform characteristics of stream data.

MESHJOIN (Mesh Join) [15, 16] has been designed specif-
ically for joining a continuous stream with a disk-based re-
lation, like the scenario in active data warehouses. The
MESHJOIN algorithm is a hash join, where the stream serves
as the build input and the disk-based relation serves as the
probe input. A characteristic of MESHJOIN is that it per-
forms a staggered execution of the hash table build in order
to load in stream tuples more steadily. The algorithm makes
no assumptions about data distribution and the organization
of the master data. The MESHJOIN authors report that the
algorithm performs worse with skewed data.

R-MESHJOIN (reduced Mesh Join) [14] clarifies the de-
pendencies among the components of MESHJOIN. As a
result, it improves the performance slightly. However, R-
MESHJOIN again does not consider the non-uniform char-
acteristic of stream data.

The partition-based join algorithm described in [5] im-
proves MESHJOIN performance. It uses a two-level hash
table for attempting to join stream tuples as soon as they ar-
rive, and uses a partition-based waiting area for other stream
tuples. However, the time that a tuple is waiting for execu-
tion is not bounded. We are interested in a join approach

where there is a time guarantee for when a stream tuple will
be joined. Moreover, [5] uses page-level cache, so the cache
memory is not fully exploited if some tuples on a cached
page are infrequent in stream data.

Semi-Streaming Index Join (SSIJ) [4] was developed re-
cently to join stream data with disk-based data. Again SSIJ
also uses a page-level cache. The published work does not
include a mathematical cost model. Consequently, the cri-
teria for choosing optimal parameters for SSIJ are unclear.

Some other approaches [6, 9] have considered the problem
of joining stream data with disk-based data, but to the best
of our knowledge they did not propose an algorithm for it.

3. CMESHJOIN
We propose a generic cache component that can be used

as a front-stage for an arbitrary semi-stream join algorithm.
It exploits skewed distributions in the stream foreign keys
in order to improve the service rate. We demonstrate this
concept by adding the front-stage to MESHJOIN, result-
ing in a new algorithm called CMESHJOIN. This section
gives a high-level description of CMESHJOIN; a detailed
walkthrough can be found in Section 3.1. Both the front-
stage and MESHJOIN are hash joins, so the CMESHJOIN
algorithm can be seen overall as possessing two complemen-
tary hash join phases, somewhat similar to Symmetric Hash
Join [19, 18]. One phase, the MESHJOIN, uses R as the
probe input, with the largest part of R typically being stored
in tertiary memory. The other join phase, the front-stage,
uses the stream as the probe input and deals only with a
small part of R. For each incoming stream tuple, CMESH-
JOIN first uses the front-stage to find a match for frequent
requests quickly, and if no match is found, the stream tuple
is forwarded to the MESHJOIN phase.

The execution architecture of CMESHJOIN is shown in
Figure 1. Relation R and stream S are the external input
sources of the join. The key components of CMESHJOIN
with respect to memory size are two hash tables: one stor-
ing stream tuples, denoted by HS , and the other storing
tuples from the disk-based relation, denoted by HR. HR is
the cache that contains the most frequently accessed part of
R. The other main components of CMESHJOIN are a disk
buffer, a queue, a frequency recorder, and a stream buffer.
The disk buffer is used to load parts of R into memory using
equallly sized partitions. The queue stores pointers to the
stream tuples in HS , keeping track of their order and en-
abling the deletion of fully processed tuples. The frequency
recorder records the access frequency of each tuple stored
in HR. The stream buffer is only a small buffer for holding
part of the stream for a while, if necessary. For reference,
we have preserved the original architecture of MESHJOIN
in the MESHJOIN phase, although alternative architectures
are possible (e.g. by using an order-preserving hash table
data structure instead of the queue).

CMESHJOIN alternates between the front-stage and the
MESHJOIN phases. The hash table HS is used to store only
that part of the update stream that does not match tuples
in HR. A front-stage phase ends if HS is completely filled or
if the stream buffer is empty. Then the MESHJOIN phase
becomes active. In each iteration of the MESHJOIN phase,
the algorithm loads a set of tuples of R into memory to amor-
tize the costly disk access. After loading the disk pages into
the disk buffer, the algorithm probes each tuple of the disk
buffer in the hash table HS . If the required tuple is found

770

Frequency
manipulation

Output
.
.

Disk-based
master data

R

If not matched

Disk buffer

Stream
 buffer

Queue

Hash

function

Hash table (HR)
contains frequent

disk tuples

Hash table (HS)
contains stream

If matched

Stream

S
Hash

function

If frequency ≥ threshold value,
switch this tuple to HR.

front-stage
phase MESHJOIN

phase

Frequency recorder

wn . . . w3 w2 W1

Figure 1: Data structures and architecture of
CMESHJOIN

in HS , the algorithm generates that tuple as an output. Af-
ter each iteration the algorithm removes the oldest chunk of
stream tuples from HS . This chunk is found at the top of
the queue; its tuples were joined with the whole of R and
have thus been completely processed at this point. Later
we call them expired stream tuples. As the algorithm reads
R sequentially, no index on R is required. After one probe
step, a sufficient number of stream tuples are deleted from
HS , so the algorithm switches back to the front-stage phase.
One phase of front-stage with a subsequent phase of MESH-
JOIN constitutes one outer iteration of CMESHJOIN. The
front-stage phase is used to boost the performance of the al-
gorithm by quickly matching the most frequent master data.
An important question is how frequently a master data tu-
ple must be used in order to get into this phase, so that
the memory sacrificed for this phase really delivers a per-
formance advantage. In Section 3.2 we give a precise and
comprehensive analysis that shows that a remarkably small
amount of memory assigned to the front-stage phase can de-
liver a substantial performance gain. In order to corroborate
the theoretical model, we present experimental performance
measurements in Section 4. For determining very frequent
tuples in R and loading them into HR, a frequency detection
process is required, which is described in Section 3.1.

3.1 Algorithm
The execution steps for CMESHJOIN are shown in Algo-

rithm 1. The outer loop of the algorithm is an endless loop,
which is common in stream processing algorithms (line 1).
The body of the outer loop has two main parts: the front-
stage phase and the MESHJOIN phase. Due to the endless
loop, these two phases alternate. The MESHJOIN algorithm
has two parameters, the disk-buffer size b and the number
w of stream tuples processed in each iteration, which are
computed once the memory allocation for MESHJOIN and
the size of R are fixed, as described in [15, 16].

Lines 2 to 11 specify the front-stage phase. In this phase
the algorithm reads stream tuples from the stream buffer
(line 4). The algorithm probes each stream tuple t in the
disk-build hash table HR, using an inner loop (line 3). In
the case of a match, the algorithm generates the join output
without storing t in HS (line 6). In the case where t does not
match, the algorithm loads t into HS , while also enqueuing
its pointer in the queue Q (line 8). The front-stage phase
stops once w stream tuples have been loaded into HS .

Algorithm 1 CMESHJOIN

Input: A disk based relation R and a stream of updates S
Output: R �� S
Parameters: w (tuples of S) and b (tuples of R).
Method:

1: while (true) do
2: u← 0 (the number of unmatched tuples)
3: while (u < w) do
4: READ stream tuple t from the stream buffer
5: if t ∈ HR then
6: OUTPUT t
7: else
8: ADD stream tuple t into HS and also place a

pointer to t into Q
9: u← u+ 1
10: end if
11: end while
12: READ b number of tuples of R into the disk buffer
13: for each tuple r in b do
14: if r ∈ HS then
15: OUTPUT r
16: f ← number of matching tuples found in HS

17: if (f ≥thresholdV alue) then
18: SWITCH the tuple r into hash table HR

19: end if
20: end if
21: end for
22: DELETE the oldest w tuples from HS along with

their corresponding pointers from Q
23: end while

Lines 12 to 22 specify the MESHJOIN phase. At the start
of this phase, the algorithm reads b tuples from R and loads
them into the disk buffer (line 12). In an inner loop, the
algorithm looks up all tuples from the disk buffer in hash
table HS . In the case of a match, the algorithm generates
that tuple as an output (line 15). Since HS is a multi-hash-
map, there can be more than one match; the number of
matches is f (line 16).

Lines 17 and 18 are concerned with frequency detection.
In line 17 the algorithm tests whether the matching fre-
quency f of the current tuple is larger than a pre-set thresh-
old. If it is, then this tuple is entered into HR. If there are
no empty slots in HR, the algorithm overwrites an existing
least-frequent tuple in HR using the frequency recorder. Fi-
nally, the algorithm removes the expired stream tuples (i.e.
the ones that have been joined with the whole of R) from
HS , along with their pointers from the queue (line 22). If
the cache is not full, it means the threshold is too high; in
this case, the threshold can be lowered automatically. Sim-
ilarly, the threshold can be raised if tuples are evicted from
the cache too frequently. This makes the front-stage phase
flexible and able to adapt online to changes in the stream
behavior. Necessarily, it will take some time to adapt to
changes, similar to the warmup phase. However, this is
usually deemed acceptable for a stream-based join that is
supposed to run for a long time.

3.2 Cost Model for Tuning
We now show how a cost model can be used to tune

CMESHJOIN theoretically. The notations we use in our
cost model are given in Table 1. We use the assumption

771

Table 1: Notation for CMESHJOIN cost model

Parameter name Symbol

Total allocated memory (bytes) M
Service rate (processed tuples/sec) μ
Size of stream tuple (bytes) vS
Size of disk tuple (bytes) vR
Disk buffer size (tuples) b
Size of HR (tuples) hR
Size of HS (tuples) hS
Disk relation size (tuples) Rt

that the stream of updates S has a Zipfian distribution with
an exponent of 1. In this Zipfian distribution, the frequency
of the second element is half that of the first element. Simi-
larly, the frequency of the third element is 1

3
that of the first

element, and this decreasing pattern continues in the tail of
the distribution [1]. In this case, the matching probability
for stream S in the front-stage phase can be determined us-
ing Equation 1. The denominator is a normalization term
to ensure all probabilities sum up to 1.

pN (hR) =

hR∑

x=1

1
x

Rt∑

x=1

1
x

(1)

We consider the derivative of Equation 1:

dpN
dhR

≈ pN (x+ 1)− pN (x) (2)

MESHJOIN is used in the second phase of CMESHJOIN
(the MESHJOIN phase). The major portion of the total
memory is assigned to the MESHJOIN phase. The memory
for each component relevant to the front-stage phase can be
calculated as follows:

Memory for HR (bytes)=hR · vR
Memory for frequency recorder (bytes)=8hR

Therefore the memory consumption for MESHJOIN can be
estimated as shown in the enumerator of the following equa-
tion. MESHJOIN’s performance is roughly proportional to
the memory available and inversely proportional to the size
of R, therefore the service rate produced in this phase can
be calculated using the following equation.

μdp(M) ≈ M − (8 + vR)hR

RtvR
(3)

Since we are considering Zipfian distributions with finite
skew, there will always be tuples that need to be processed
through the MESHJOIN phase and hence pN (hR) < 1. The
service rate of CMESHJOIN is a function of hR and can be
written as

μcm(hR) ≈ μdp(M)

1− pN (hR)
(4)

Now we take the derivative of the above equation using the
chain rule.

dμcm(hR)

dhR
≈ dμcm(hR)

dpN
× dpN

dhR
(5)

7 8 9 10 11 12 13 14 15
2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

Cache size (MB)

Se
rvi

ce
 ra

te
(tu

ple
s/s

ec
)

measured
calculated

Figure 2: Tuning of the cache module: empirical
measurements vs. estimates based on the cost model

By using Equations 2, 3, and 4 in Equation 5, we get:

dμcm

dhR
≈ M − (8 + vR)hR

RtvR[1− pN (hR)]2
× [pN (x+ 1)− pN (x)] (6)

To ensure that the root of the first derivative corresponds
to a maximum, we consider the second derivative:

d2μcm

dh2
R

≈ 2[M − (8 + vR)hR]

RtvR[1− pN (hR)]3
× [

dpN
dhR

]2 (7)

From here we can determine the value of hR at which the
value of μcm reaches a maximum. Once the optimal memory
size for the front-stage component is determined, the rest
of the memory is assigned to the MESHJOIN components
using the tuning approach presented in [15, 16].

4. EXPERIMENTAL EVALUATION
Hardware and software specifications: We performed

our experiments on a Pentium-i5 with 8GB main mem-
ory and 500GB HDD. All experiments were implemented in
Java, using the org.apache.MultiHashMap as a hash table
data structure with support for multiple values per key.

Measurement strategy: The performance or service
rate of the join is measured by calculating the number of
tuples processed in a unit second. In each experiment, both
algorithms first completed their warmup phase before start-
ing the actual measurements. The calculation of the confi-
dence intervals is based on 1000 to 4000 measurements for
one setting.

Data specifications: We analyzed the service rate of the
algorithms using synthetic, TPC-H, and real-life datasets.
The relation R was stored on disk using a MySQL database.
To measure the I/O cost more accurately, we set the fetch
size for ResultSet equal to the disk buffer size. The syn-
thetic stream dataset was based on a Zipfian distribution.
The synthetic master data was unsorted, did not have an in-
dex, and comprised 100 million tuples (≈11.18GB). We used
disk tuple, stream tuple and queue pointer sizes similar to
the original MESHJOIN (120, 20 and 4 bytes respectively).
For the TPC-H dataset we used a scale factor of 100 with the
table Customer as master data and the table Order as stream
data. The real-life dataset1, which was also used to evaluate
the original MESHJOIN, contains cloud information stored

1Available at: http://cdiac.ornl.gov/ftp/ndp026b/

772

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 104

Memory (% of R)

Se
rvi

ce
 ra

te
(tu

ple
s/s

ec
)

adaptive
5% front−stage
10% front−stage
25% front−stage
50% front−stage
75%front−stage
without front−stage

(a) Effect of cache size

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 104

Memory (% of R)

S
er

vi
ce

 ra
te

 (t
up

le
s/

se
c)

CMESHJOIN skew 1
CMESHJOIN skew 0.75
CMESHJOIN skew 0.5
CMESHJOIN skew 0.25
CMESHJOIN skew 0
MESHJOIN skew 0

(b) Service rate vs memory

20 40 60 80 100
0

2

4

6

8

10

12

14
x 10

4

Size of R (million tuples)

S
er

vi
ce

 ra
te

 (t
up

le
s/

se
c)

CMESHJOIN
MESHJOIN
INLJ

(c) Service rate vs size of R

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 104

Skew

S
er

vi
ce

 ra
te

 (t
up

le
s/

se
c)

CMESHJOIN
MESHJOIN

(d) Service rate vs skew

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

M (% of R)

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

CMESHJOIN
MESHJOIN

(e) TPC-H dataset

1 2 3 4 5 6 7 8 9 10
0

5000

10000

15000

Memory (% of R)

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

CMESHJOIN
MESHJOIN

(f) Real-life dataset

Figure 3: Service rate analysis (Figures (a) to (d) based on synthetic data)

in a summarized weather report format. Weather data from
different months were joined (20 million tuples master data,
6 million tuples stream data, tuple size 128 bytes), using the
common attribute longitude (LON).

Cache size: The cost model predicts that the cache size
hR influences the service rate of CMESHJOIN. In order to
obtain the optimal cache size, we performed experiments
and compared the results with estimates obtained from the
cost model. The results are shown in Figure 2 for a fixed
total memory of 0.11GB and a size of 100 million tuples
(11.18GB) for R. As can be seen there is a close match be-
tween estimates and measurements. To get optimal results,
the memory allocations for the stream-probing phase (cache
module) and the disk-probing phase (MESHJOIN) have to
be balanced. In our experiments, we adjusted the cache size
automatically based on our cost model. Figure 3(a) shows
the effect of the cache size for various memory budgets.

Analysis by varying size of memory: We compared
the service rate of MESHJOIN and CMESHJOIN while vary-
ing the memory size from 1% to 10% of R, with the size of
R being 100 million tuples. For each memory setting we
repeated the experiment, considering different skew values
in the streaming data. In the case of MESHJOIN, we only
considered a skew value of 0 since MESHJOIN performs best
with uniform data (as indicated later in Figure 3(d)). The
results are shown in Figure 3(b). From the figure it can be
noted that due to the front-stage phase CMESHJOIN per-
formed up to 7 times faster than MESHJOIN with the 10%
memory setting. In a limited memory environment (1% of
R), CMESHJOIN still performed up to 5 times better than

MESHJOIN, which makes it an adaptive solution suitable
for memory-constrained applications.

Analysis by varying size of R: We measured the ser-
vice rate for CMESHJOIN, MESHJOIN and INLJ (index
nested loop join) at different sizes of R, with a fixed mem-
ory size (≈1.12GB) and a skew value of 1. Since the size
of R is the only parameter that affects INLJ’s service rate,
we did not include it in the analysis of memory and skew.
From Figure 3(c) we see that CMESHJOIN performed up
to 4.5 times better than MESHJOIN when the size of R
was 20 million tuples. This improvement increased to 6.5
times when the size of R was 100 million tuples. One im-
portant fact that can be noted here is that for CMESH-
JOIN, due to the front-stage phase, the service rate does
not decrease inversely when increasing the size of R, as in
MESHJOIN. CMESHJOIN substantially outperforms INLJ
because of INLJ’s high I/O cost due to random probes to
the master data. Also, INLJ processes one stream tuple in
each iteration, so does not amortize the expensive I/O cost
on fast streaming data.

Analysis by varying skew value: We compared the
service rate of both algorithms while varying the skew of the
streaming data. To vary the skew, we varied the Zipfian ex-
ponent from 0 to 1. At 0 the input stream S is uniform, while
at 1 the stream has a strong skew. The size of R was fixed
at 100 million tuples (≈11.18GB) and the available memory
was set to 10% of R (≈1.12GB). The results presented in
Figure 3(d) show that CMESHJOIN performs significantly
better than MESHJOIN, even for only moderately skewed
data. This improvement became more pronounced for in-
creasing skew values. At a skew of 1, CMESHJOIN performs

773

approximately 7 times better than MESHJOIN. As MESH-
JOIN does not exploit skew in its algorithm, its service rate
actually decreased slightly for more skewed data, which is
consistent with the original MESHJOIN findings. We do not
present data for skew values larger than 1, which would im-
ply short tails. However, we predict that for such short tails
the trend continues. From Figures 3(b) and (d) we can see
that CMESHJOIN only performs worse than MESHJOIN
when the stream data is completely uniform (exponent of
0). However, this difference is a constant factor.

TPC-H and real-life datasets: In these experiments
we measured the service rate produced by both algorithms
at different memory settings. From Figure 3(e) it can be
noted that CMESHJOIN performed about 4 times better
than MESHJOIN for TPC-H data, which is significant es-
pecially for a smaller memory size, 1% of R. Similarly, it
is obvious from Figure 3(f) that CMESHJOIN outperforms
MESHJOIN for the real-life data under all memory settings.

5. CONCLUSIONS
In this paper we have discussed a new semi-stream join

called CMESHJOIN. This algorithm is based on MESH-
JOIN, and extends it with a cache front-stage in order to
exploit skewed distributions. We have provided a theoreti-
cal cost model as well as experimental results that show that
this approach yields substantial speed-ups for Zipfian distri-
butions in the data. This type of skewed, non-uniformly
distributed data is frequently found in real-world applica-
tions.

Our findings suggest that the front-stage in CMESHJOIN
is able to exploit skewed distributions in the data in very
general circumstances and provide the join output for a large
portion of the stream, thus reducing the overall load for the
subsequent stages. We expect that the front-stage is generic
and can be used with any semi-stream join operator to en-
hance its service rate, because it has little overhead and de-
livers substantial speed-up under very general assumptions.
In the future, we will consider many-to-many equijoins and
certain classes of non-equijoins.
Source URL: We have provided open-source implementa-
tions of CMESHJOIN that can be used for further analysis.
https://www.cs.auckland.ac.nz/research/groups/serg/cmj/.

6. REFERENCES
[1] C. Anderson. The Long Tail: Why the Future of

Business Is Selling Less of More. Hyperion, 2006.

[2] A. Arasu, S. Babu, and J. Widom. An abstract
semantics and concrete language for continuous
queries over streams and relations. Technical Report
2002-57, Stanford InfoLab, 2002.

[3] M. H. Bateni, L. Golab, M. T. Hajiaghayi, and
H. Karloff. Scheduling to minimize staleness and
stretch in real-time data warehouses. In Annual
Symposium on Parallelism in Algorithms and
Architectures (SPAA’09), pages 29–38. ACM, 2009.

[4] M. Bornea, A. Deligiannakis, Y. Kotidis, and
V. Vassalos. Semi-streamed index join for near-real
time execution of ETL transformations. In ICDE’11,
pages 159 –170, April 2011.

[5] A. Chakraborty and A. Singh. A partition-based
approach to support streaming updates over persistent

data in an active datawarehouse. In International
Symposium on Parallel & Distributed Processing
(IPDPS’09), pages 1–11. IEEE, 2009.

[6] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A.
Shah. TelegraphCQ: continuous dataflow processing.
In SIGMOD’03, pages 668–668. ACM, 2003.

[7] F. Chen, D. A. Koufaty, and X. Zhang. Understanding
intrinsic characteristics and system implications of
flash memory based solid state drives. In
SIGMETRICS ’09, pages 181–192. ACM, 2009.

[8] L. Golab and T. Johnson. Consistency in a stream
warehouse. In Conference on Innovative Data Systems
Research (CIDR’11), pages 114–122, 2011.

[9] L. Golab, T. Johnson, J. S. Seidel, and
V. Shkapenyuk. Stream warehousing with datadepot.
In SIGMOD’09, pages 847–854. ACM, 2009.

[10] L. Golab, T. Johnson, and V. Shkapenyuk. Scheduling
updates in a real-time stream warehouse. In ICDE’09,
pages 1207 –1210, 2009.

[11] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and
D. S. Weld. An adaptive query execution system for
data integration. SIGMOD Rec., 28(2):299–310, 1999.

[12] R. Lawrence. Early Hash Join: A configurable
algorithm for the efficient and early production of join
results. In VLDB’05, pages 841–852. VLDB
Endowment, 2005.

[13] M. A. Naeem, G. Dobbie, and G. Weber. An
event-based near real-time data integration
architecture. In EDOC’08 Workshops, pages 401–404.
IEEE, 2008.

[14] M. A. Naeem, G. Dobbie, G. Weber, and S. Alam.
R-MESHJOIN for near-real-time data warehousing.
In DOLAP’10. ACM, 2010.

[15] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis,
A. Simitsis, and N. Frantzell. Supporting streaming
updates in an active data warehouse. In ICDE’07,
pages 476–485, 2007.

[16] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis,
A. Simitsis, and N. Frantzell. Meshing streaming
updates with persistent data in an active data
warehouse. IEEE Trans. on Knowl. and Data Eng.,
20(7):976–991, 2008.

[17] T. Urhan and M. J. Franklin. XJoin: A
reactively-scheduled pipelined join operator. IEEE
Data Engineering Bulletin, 23:2000, 2000.

[18] A. N. Wilschut and P. M. G. Apers. Pipelining in
query execution. In International Conference on
Databases, Parallel Architectures and Their
Applications (PARBASE’90), pages 562–562. IEEE,
March 1990.

[19] A. N. Wilschut and P. M. G. Apers. Dataflow query
execution in a parallel main-memory environment. In
International Conference on Parallel and Distributed
Information Systems (PDIS’91), pages 68–77. IEEE,
1991.

[20] E. Wu, Y. Diao, and S. Rizvi. High-performance
complex event processing over streams. In
SIGMOD’06, pages 407–418. ACM, 2006.

774

