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Abstract

We describe a type system for a generative mechanism that generalizes the concept
of generic types by combining it with a controlled form of reflection. This mechanism
makes many code generation tasks possible for which generic types alone would be
insufficient. The power of code generation features are carefully balanced with their
safety, which enables us to perform static type checks on generator code. This leads
to a generalized notion of type safety for generators.
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1 Introduction

Generators are a cornerstone of today’s software engineering, especially in the
area of enterprise application development. A large variety of tools exists for
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the generation of database interfaces, GUIs and compilers, and even CASE
tools can be subsumed under the notion of generators. A generative approach
fits naturally with important enterprise computing paradigms [16].

Besides these very specialized examples of code generation technology, many
systems have been developed that offer a more generic approach to code gener-
ation. Some of these systems allow the user to extend a programming language
with new constructs which trigger the generation of customized code. Code
generation is a particularly powerful decomposition and reuse mechanism.

The use of custom-made code generators based on classic technologies such
as compiler-compilers is a challenging task. Generation typically depends on
other code as a parameter, and the traditional data structure involved, a syn-
tax tree, is not trivial. Code generators require not only firm knowledge of
the theory of compiler construction, but also familiarity with the technicali-
ties of the particular source and target languages involved. From a software
engineering standpoint, this amounts to additional risks concerning the long
term maintainability of such code.

Generators introduce new classes of errors. A generator may work well most
of the time, but may fail with some rare actual parameters. An error may
not be obvious, but express itself in some slightly malformed parts of gener-
ated code. Using generators always bears the risk of introducing hard-to-find
bugs. However a good generator has the potential to provide an economic and
solid solution to a common problem. Complexity in the development of code
generators leads to generators that are more error-prone.

In this article, we show how the concept of code generators can be made
directly accessible to the user in object-oriented languages, and how a type
system can be extended to take generators into account. The aim is to make
generators part of a program rather than part of the compiler while retaining
the safety properties of a typed language. No internal knowledge of the com-
piler would be required, and the generation process should be transparent for
the user. Placing generators in the language itself instead of in a compiler af-
fects the language syntax as well as its semantics and safety. The challenge lies
in integrating the new constructs syntactically without interfering with exist-
ing semantics. Typed languages usually offer a high degree of safety through
the use of type systems, and type checkers are able to detect many poten-
tial execution errors statically. However, with the new concept of generators,
new types of potential execution errors are introduced, namely when code
generation produces ill-typed code. Consequently, code generation poses new
challenges for type systems.

In Sect. 2, we introduce the Genoupe language, which integrates code gen-
erators into the C# language, and give some source code examples. We also
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discuss its general applicability to different problems. Section 3 presents the
Genoupe type system and discusses some malformed examples of Genoupe
code that cannot be given a correct type. It also discusses the limitations of
the type system. Section 4 discusses soundness aspects of the type system, in
particular in relation to the use of imperative code in the Generators. Section 5
discusses how the integration into a novel code repository can alleviate some
of the problems faced in the language definition. Section 6 discusses the rela-
tion between code generators and reflection. Section 7 looks at related work,
and explains how Genoupe is different from similar approaches. In Sect. 8 we
summarize the main findings of our work.

2 Object-Oriented Programming with Parameterized Generators:
The Genoupe Language

Our concept for the integration of generators into object-oriented program-
ming is called Genoupe. It was developed from the language Factory [11],
which integrated reflective generators into Java, and implements a similar but
strongly revised concept for C#. Genoupe introduces a syntax that is reminis-
cent of that of generic types, although it is not limited to classes or interfaces.
As with generic types, the template paradigm is used. But in contrast to sim-
ple genericity, the template can contain generator code written in a special
compile-time level language. This sublanguage is kept in an imperative style
and along the lines of the C# language itself, so that a C# programmer will
understand its meaning intuitively.

Natutrally, the type system used to check generator code requires additional
features that are not found in ordinary type systems. As we will see in Sects. 3,
the new type system makes it possible to detect parts of a generator that can
potentially generate malformed code, in contrast to just detecting code that
is malformed itself. One of the significant features of the Genoupe language
is that calls can be made to ordinary C# code during generation, even if
this code contains non-determinism or side effects. An explanation for why
Genoupe can allow the execution of arbitrary C# code in the generator with-
out compromising type safety is given in Sect. 4.1.

In the Genoupe language a generator can be embedded into the source code
in the same way an ordinary type definition. Generators can have parameters
that are accessible in the generator code through generator variables. Unlike
generic types, these parameters can be used to pass any kind of values into
a generator, and not just types. In contrast to runtime variables, generator
variables hold objects at generation-time and make them accessible in the
generator code. Analogous to the parameters of an ordinary method, each
declared generator parameter is a generator variable, which can be used in
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generator expressions. A generator expression describes a value that is used
at generation time, just as an ordinary expression describes a value that is
used at runtime. It is very similar to an ordinary C# expression in the sense
that most generator expressions are valid C# expressions. One speciality of
generator expressions is that if same values have been assigned to the generator
variables, two structurally equivalent generator expressions describe the same
value. This is guaranteed through the use of memoization during the evaluation
of generator expressions, which is explained further in Sect. 4.1.

Generator expressions are often used to introspect type parameters and extract
or construct the information that is needed for intercession, i.e. information
that represents code that should be made part of the generator output. In
order to make the value of a generator expression part of the generated code,
the generator expression is enclosed in @ characters and placed into the code
template at a position where the entity represented by the expression’s value
is allowed to occur. For example, if we want to generate a certain type in
a declaration of a generated class, we would create a generator expression
that evaluates to a Type object representing the desired type. This generator
expression would be placed, enclosed in @ characters, at the position in the
source code where we would normally place a type name. At generation time,
all generator expressions are evaluated and substituted by the code represented
by their values. That is, if we had a generator expression of type Type, i.e.
one that evaluated to a Type object, Genoupe would replace the generator
expression by the name of the type represented by the type object during code
generation. Genoupe makes use of the standard C# metaobject protocol, so
that it is obvious in most cases which type represents which language entity.

In the following subsections, we will describe important parts of the Genoupe
syntax, and consider some simple examples of Genoupe source code, which will
point up how Genoupe can be used. Some applications for Genoupe, e.g. the
generation of interfaces like GUIs or APIs, are not discussed here. Information
on those and further examples can be found in [14,13].

2.1 Syntax

This section describes the syntax of the Genoupe language, using context-
free grammar rules. After describing the syntax of generator expressions, the
syntax of class generators with method and variable definitions will be given.
Finally we discuss the syntax of statements as they appear in generated meth-
ods and constructors.
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2.1.1 Generator Expressions

Generator expressions are similar to ordinary C# expressions in structure.
However, they are evaluated not during runtime but during generation time.
A generator expression has the following syntax:

ge : id | typeid | @gname((geargs)?)@ | @this@ | @gepart@
geargs : gepart (,gepart)∗

A generator expression is either an ordinary C# identifier id, an ordinary
C# type name typeid, a generator call, the generated type @this@, or an
expression gepart enclosed by @ characters. In the first two cases, we call this
a constant generator expression because the result is always the same identifier
or type name. In the latter three cases, the generator expression may evaluate
to different values depending on the generator parameters. A generator call
may invoke any Genoupe generator with name gname in any of the source
files given to the Genoupe precompiler. @this@ refers to the type that is being
generated. An expression gepart enclosed in @-signs may evaluate to any C#
object. Arguments in a generator expression are comma-separated lists of C#
expressions.

Many generator expressions are composed of partial generator expressions
gepart, which have the following syntax:

gepart : literal | id | gepart.id | typeid.id
| gepart.id((geargs)?) | typeid.id((geargs)?)
| new typeid((geargs)?) | typeof(typeid) | (typeid) gepart

The grammar rule gepart describes a minimal syntax for C# expressions: an
expression is either a literal, an identifier of a generator variable, a field access
on an object, a static field access on a class, a method call on an object, a
static method call on a class, a constructor call, an application of the typeof
operator, or a type cast. For simplicity, other operators are not considered
here since they can be wrapped in methods.

A literal is any of the standard C# literals, such as "hello" for a string, 21
for an integer or null for a null reference. An identifier is either the identifier
of a generator parameter or an identifier of any other generator variable in
the scope. How generator variables enter the scope will be described later on.
A field access on an object can be performed if the expression before the dot
operator denotes a valid object and the following identifier is a valid field name.
A static field access can be performed if there is a valid class identifier before
the dot, and the following identifier is a valid field name. A method call on
an object can be performed if the expression before the dot operator denotes
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a valid object and the following identifier is a valid method name, followed
by optional arguments in brackets. A static method call can be performed if
there is a valid class identifier before the dot and the following identifier is a
valid method name, followed by optional arguments in brackets. A constructor
call consists of the new operator, a type identifier and optional arguments in
brackets. A type cast consists of a C# type name in brackets, followed by an
expression.

A generator expression can be used to generate a program part. This is done
by using that expression instead of the program part in the generator code.
Analogously to an ordinary expression, a generator expression has a type. To
generate a particular program part, the generator expression has to have a
particular type. The following rules apply for the generation of a program
part with a generator expression:

• To generate a type, the generator expression has to be of type Type or
GeneratedType.

• To generate a variable or method identifier, the generator expression has to
be of type String.

• To generate an integer literal, the generator expression has to be of type
Integer.

• To generate a string literal, the generator expression has to be of type
StringLiteral.

All those types, with the exception of StringLiteral, are standard C#
classes. Type StringLiteral is necessary to distinguish string literals from
identifiers: if a generator expression is of type string, then an identifier is gen-
erated (e.g. foo), but if it is of type StringLiteral then a string literal will be
generated (e.g. "foo"). Other literals such as those for Booleans or Doubles
can be generated using a generator expression of the corresponding C# type,
e.g. Boolean or Double.

2.1.2 Generators and Definitions

A class generator has the following syntax:

generator: (modifier)∗ class id((gpars)?) (:supertypes)? { gbody }
gpars: typename id (,typename id)∗

supertypes: ge(,ge)∗

The generator begins with a sequence of modifiers such as public and the
class keyword. The identifier of the generator is given by id. For Genoupe
identifiers, the same rules apply as for ordinary C# identifiers. The generator
parameters are defined in gpars, in the same way as in C# methods as a
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comma separated list of type names and parameter identifiers. There can be
an arbitrary number of generator parameters: the ()? operator in the grammar
above indicates that the parameters are optional; the ()∗ operator indicates
that there can be several other parameters, separated by commas, after the
first one. For simplicity, we assume here that the types are class types. This
is not a limitation as all other types, e.g. primitive types and arrays, can be
wrapped in a class. The generator parameters can only be accessed by the
generator code inside the generator. Similar to methods, the parameter list
can be empty, but the pair of parentheses after the identifier has to remain to
indicate that this is a generator and not an ordinary class. Normal brackets ()
are used instead of the angle brackets <> that are commonly used for generic
types. This stresses that generators can have parameters of arbitrary type
and not just type parameters, and keeps the Genoupe syntax separated from
C#’s syntax for generic types. Generated classes can have supertypes, and a
supertype can be generated with a generator expression ge.

In the following we will look at the syntax for the body of the generator gbody.
This is where most of the generation usually takes place. In general, gbody is
similar to the body of an ordinary C# class:

gbody : (vardef | methoddef | constructordef | gconst | gif
| gfor)∗

vardef : (modifier)∗ ge ge;

methoddef : (modifier)∗ ge ge((pars | gforpars)?) { mbody }
constructordef : (modifier)∗ @this@((pars | gforpars)?) { mbody }
pars : ge ge (,ge ge)∗

mbody : (stat)∗

The generator body can contain an arbitrary number of definitions. Each def-
inition is either a variable definition vardef , a method definition methoddef ,
a constructor definition constructordef , or a generator construct for defining
a constant gconst, conditional generation gif or iterative generation gfor.
A variable definition consists of a sequence of modifiers such as public or
private, a generator expression specifying a type and a generator expression
specifying an identifier. A method definition consists of a sequence of mod-
ifiers, a generator expression for the return type, a generator expression for
the method identifier, and an optional specification of parameters enclosed
in brackets. A constructor definition consists of a sequence of modifiers, the
keyword @this@, which refers to the name of the type that is generated, and
an optional specification of parameters enclosed in brackets. Parameters are
either specified as a comma-separated list of pairs of generator expressions,
one for the type and one for the parameter identifier, or by an iterative gener-
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ation gforpars, which will be described later. A method or constructor body
mbody consists of an arbitrary number of statements, which will be described
in the next section.

We now want to look at the generator constructs that can be used in a gen-
erator body gbody. First of all, we look at the gconst constructs for defining
generation-time constants. If a generator expression is used more than once,
then it is convenient to define a new generator variable that holds the value
of that expression. Instead of repeating the generator expression, the value of
the generator variable can be used. Such a generator variable can be defined
in the following way:

gconst: @const id = gepart;

The new generator variable has the identifier id and the value given by partial
generator expression gepart. The @const keyword indicates that the generator
variable is a constant at generation time. A value is only assigned once after
evaluating the expression gepart.

If variable and method definitions in a class should only be generated under
a particular condition, the gif construct for conditional generation is used. It
has the following syntax:

gif : @if(gepart) { (def)∗ } (else { (def)∗ })?

The condition gepart must be of type Boolean. The first sequence of defini-
tions (def)∗ is generated if the condition is true, the second sequence, after
the else, is generated if the condition is false. The else-clause is optional.

The construct for iterative generation of variable or method definitions in a
class has the following syntax:

gfor: @foreach(id in gepart) { (def)∗ }

gepart must evaluate to a collection type that implements the standard C#
interface for collections ICollection. The standard collections and all arrays
do that. id is the name for a new generator variable that is assigned each of
the elements in the collection successively, and makes the element accessible
in the loop body. The definitions (def)∗ in the loop body are generated once,
for each element in the collection.

As pointed out above, iterative generation can also be used to generate method
parameter specifications, and also to generate method arguments:

gforpars: @foreach(id in gepart) { ge ge }
gforargs: @foreach(id in gepart) { ge }
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As specified in the rules above, gforpars can be used in a method definition
to generate a list of parameter specifications. Analogous to gfor, gepart must
evaluate to a collection type that implements the standard C# interface for
collections ICollection. For each element in the collection, one parameter is
generated. The first generator expression between the curly brackets generates
the parameter type and the second generator expression generates the param-
eter name. Similarly, gforargs can be used in a method call to generate a list
of arguments. For each element in the collection, one argument is generated.
The arguments are generated by the generator expression between the curly
braces. Arguments cannot be iteratively generated for generator expressions,
therefore rule gepart does not contain gforargs in its specification of method
arguments. Iteratively generated arguments are made available for generated
C# expressions only as they appear in methods. This is described below.

2.1.3 Statements

The generator constructs can also be used in a method body to generate
statements. A method body mbody has the following syntax:

stat : me; | ge = me; | return me; | gconst | gstatif | gstatfor

A statement stat is either an expression me followed by a semicolon, an as-
signment, a return statement, the definition of a generator constant gconst,
a sequence of conditionally generated statements gstatif , or a sequence of
iteratively generated statements gstatfor. We only consider some exemplary
statement types; other types of statements work similarly to those presented
here. An assignment consists of a generator expression for the identifier of
the variable to assign the value to, the equal sign, and an expression me for
the value followed by a semicolon. A return statement returns the value of an
expression me.

me : literal | ge | me.id | ge.id
| me.id((args)?) | ge.id((args)?) | new ge((args)?)

| ge(gforargs) | new @this@(gforargs)

| typeof(ge) | (ge) me | this
args : me (,me)∗

An expression me is similar to the aforementioned simple C# expressions de-
fined in gepart. However, there are a few differences. Identifiers are generated
with generator expressions, which may be constant. When accessing a static
field of a type, the type identifier is generated with a generator expression,
which may be constant. Analogously, types for static method calls, construc-
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tor calls, applications of typeof and type casts are generated with a generator
expression as well. For example, the type of a constructor call can be @this@,
referring to the generated type itself. The arguments of a method or construc-
tor call can alternatively be generated iteratively with the aforementioned
gforargs, if the method or constructor was defined in the generated class.
The keyword this can be used to access the current object in a method,
which is not possible in generator expressions as there is no current object
during generation time.

The constructs gstatif and gstatfor for conditional and iterative generation
in methods are almost identical to gif and gfor:

gstatif : @if(gepart) { (stat)∗ } (else { (stat)∗ })?

gstatfor: @foreach(id in gepart) { (stat)∗ }

The only difference from gif and gfor is that the bodies contain (stat)∗ instead
of (def)∗.

explain scoping of generator variables and parameters

2.2 Parametric Polymorphism

One of the simplest applications for Genoupe is parametric polymorphism.
The following generic stack generator has a single parameter T of type Type

and generates a stack class for elements of type T:

1 public class Stack(Type T)

2 {

3 private Stack s = new Stack();

4

5 public void push(@T@ x) {

6 s.push(x);

7 }

8

9 public @T@ pop() {

10 return (@T@) s.pop();

11 }

12 }

In lines 5, 9 and 10, we insert generator expressions containing only the gener-
ator parameter in order to generate correct type declarations and type casts.

In order to generate a statically type safe stack containing String elements
with the Stack generator, one would write a generator expression that applies
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the generator to type String. This generator expression would evaluate to a
Type, so it can be used in a variable definition:

@Stack(typeof(String))@ myStack = new @Stack(typeof(String))@();

A similar generator expression of type Type is used to generate the type name
after the new operator.

2.3 Class Extensions

Genoupe can be used for the generation of useful extensions. In contrast to
ordinary inheritance mechanisms, which also extend classes, a generator can
adapt the extension it generates to the class that is extended. This makes it
possible to address static crosscutting concerns [28].

The following code snippet shows a generator that takes a class T and a list of
field names FNames for that class. It generates a subclass of T that provides a
new method Randomize. This method assigns random values to those fields of
T that have their name mentioned in FNames. This can be useful, for example,
for the generation of test data.

1 public class Randomizeable(Type T, List<String> FNames) : @T@

2 {

3 Random r;

4

5 public void Randomize() {

6 r = new Random();

7 @foreach(F in T.GetFields()) {

8 @if(FNames.Contains(F.Name)) {

9 @if(F.FieldType==typeof(Double)) {

10 @F.Name@ = r.NextDouble();

11 } else {

12 @if(F.FieldType==typeof(Boolean)) {

13 @F.Name@ = (r.NextDouble()>=0.5);

14 }

15 // ...handle other data types...

16 }

17 } }

18 } }

In line 7 we see the @foreach construct for iterative generation of statements,
which is used to iterate through all the fields of T. The iteration variable F

holds the FieldInfo object for the field that is currently processed in the
loop. Only the fields mentioned in FNames should be assigned random values.
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Therefore the @if in line 8 checks that the field name of the current field is
in FNames, and only then a value is assigned. The following @ifs check which
type the current field has, and generate an assignment to set an appropriate
random value. The generator expression @F.Name@ of type String is used to
generate a field access to a field inherited from T.

2.4 Proxies and Wrappers

A common pattern for modifying the behavior of existing classes or bridging
incompatibility is the use of proxies [20] and wrappers. With Genoupe both
of these can be generated automatically, which makes it possible to address
dynamic crosscutting concerns [28].

The following class generator takes a type parameter T and creates a subtype
of T that overrides T’s methods. A class generated by this generator can be
used to create mocking objects for T, i.e. objects that do not implement the
real functionality but are convenient for testing. In this case, the methods only
print out all method calls, which can be useful for debugging purposes.

1 public class Mock(Type T) : @T@

2 {

3 @foreach(M in T.GetMethods()) {

4 @const Pars = M.GetParameters();

5

6 public override @M.ReturnType@ @M.Name@

7 (@foreach(P in Pars) { @P.ParameterType@ @P.Name@ })

8 {

9 Console.WriteLine("Method "

10 +@new StringLiteral(M.Name)@+" called.");

11 }

12 } }

In lines 6 and 7, we use generator expressions to generate the signature of each
of T’s public methods. A list of method parameter declarations is generated by
iterating over all the parameters and generating each parameter declaration
individually. The StringLiteral object constructed in line 10 represents a
generated string literal, opposed to a generated identifier.
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3 Generator Type Safety

When dealing with metaprograms, i.e. programs that process other programs
or themselves in some suitable representation, a whole set of new sources of
execution errors comes into play. Generation errors in generators are those
parts of the generator program that can potentially generate malformed code,
which in turn may cause execution errors. Of course, we also want our gen-
erators to be free of execution errors themselves. In addition to normal type
systems, which can only detect potential forbidden errors in the code that is
type checked, we need a new kind of type system that can also detect parts
in generators that can potentially generate ill-typed code. This requirement
leads to a notion of type safety, which we want to call generator type safety.
This is the property of a generator not to be able to generate ill-typed code,
i.e. code that may cause a forbidden execution error. If a generator is not
generator type safe, it contains one or more generator type errors, i.e. parts
in the generator code that are responsible for the generation of ill-typed code.
We call a type system that can detect generator type errors a generator type
system.

Before we describe the generator type system of Genoupe in the next section,
let us look at examples of malformed generators that can potentially generate
ill-typed code. The following generator generates a class with a single field:

1 class C(Type T)

2 {

3 @T@ x = 1;

4 }

The fact that x is assigned a numerical value restricts its possible type. The
type parameter T however is not subject to any such restriction. This is clearly
a generator type error that leads to some arguments producing type-correct
code and others not.

The next example demonstrates another issue of type compatibility.

1 class C(T istype Component)

2 {

3 @T@ x = new Button();

4 }

The Genoupe keyword istype makes it possible to set a bound for type pa-
rameters, i.e. parameters of type Type. Line 1 signifies that parameter T is a
type parameter and that all possible arguments represent types that are either
class Component itself or one of its subclasses. In the generator body we define
a member variable x with type T, to which we assign a Button object. Button
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is a subclass of Component. But what happens if T is a subclass of Component
but is not compatible with Button, i.e. not either Button itself or one of its
superclasses? The generated code is type correct iff T is Button or one of its
superclasses.

The following example is a class generator that has a string parameter ID.
As the name suggests, the string is used to generate the identifier of a local
variable in a method.

1 class C(String ID)

2 {

3 void m() {

4 int @ID@ = 1;

5 x++;

6 }

7 }

In line 5 we increment a variable x. Since there are no other variable definitions
in the generator, x must be defined in the preceding line where the identifier of
a variable is generated by a generator expression. If the generator is given the
argument "x", the generated code works satisfactorily, otherwise it is ill-typed.
This is also known as the problem of inadvertent capture [30].

The next generator contains a conditional generation.

1 class C(String X)

2 {

3 @if(X.Equals("hello")) {

4 String y = "world";

5 }

6

7 void m() {

8 Console.WriteLine(y);

9 }

10 }

The definition of the member variable y is only generated when "hello" is
the string argument in X. Again, we have cases where this generates an error
and others where it does not.

Our last example illustrates a generator type error that can occur in iterative
generation.

1 class C(Type S, Type T)

2 {

3 @foreach(F in S.GetFields()) {
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4 @F.FieldType@ @F.FieldName@;

5 }

6

7 void m() {

8 @foreach(F in T.GetFields()) {

9 Console.WriteLine(this.@F.FieldName@);

10 }

11 }

12 }

The first generative iteration replicates the field definitions of type parameter
S. The second one in method m generates statements that access and print the
values of fields as defined in type parameter T. Clearly this can only work if T
contains fields with an identical name for all the field definitions in T, which
is of course the case when S and T are bound to the same type.

All these generator type errors also occur in real generators, although usu-
ally they occur in a more subtle way that makes them much harder to find.
Such errors are typically introduced, for example, when applying inconsistent
changes: one part of a generator is changed without adjusting other parts that
are affected by that change.

Note that the Genoupe language has another property which makes its gen-
erators safer than those in many other languages: if all the methods we use
in generator code terminate and we do not use generators recursively, a gen-
erator is guaranteed to terminate. This is because our looping construct, the
@foreach, iterates over collections without modifying them, and the collections
contain, of course, only a finite number of elements. In C++ templates, for
example, we must use recursion when we want to repeat something arbitrarily
often. C++ templates can potentially recurse endlessly, and only a limited
recursion-depth prevents this [10]. In other technologies which use a Turing-
complete language for metaobject manipulation, like CLOS [19], OpenC++ [9]
or Jasper [36,37], generators potentially do not terminate as well.

3.1 The Genoupe Type System

In order to detect generator type errors, we have developed a generator type
system which is compatible with and extends the type system of the host lan-
guage C#. Its notation is similar to the one used in [8]. It consists of rules
with judgments about the correctness of certain program parts in their pre-
and postconditions, and only the programs that can be derived by those rules
are considered type correct. In some respects, however, our type system devi-
ates from the way in which type systems of object-oriented languages usually
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work. We use an environment Γ that keeps track not only of the signatures
of declared runtime variables but also of the signatures of generator variables,
among other things. The signature of a runtime variable can contain genera-
tor expressions because its identifier and type may be generated by them. For
handling conditional and iterative generation of declarations correctly, defini-
tions that are generated conditionally or iteratively have special signatures.
Γ is also used to store additional facts about the code portion that is being
type-checked.

The type system that we present here is provably decidable. The proof is rather
straightforward and we give the main argument here. The naming scheme of
the type rules indicates the order in which the rules will be applied. The
following pseudocode represents the top-level sequence in which the type rules
must be applied: the derivation can be denoted in a tree-like fashion, and the
levels of the tree correspond to nesting levels of the two block concepts of
the generator, namely @if and @foreach blocks. Our nesting depth is the
combined depth for both blocks.

1. Apply [env ...] rules for primitive expressions
2. For each nesting level in the block structure:

apply the [def ...] rules and then the [env ...] rules using
those [def ...] rules.

3. Apply the [generator] rule.

The type system is decidable because we can bind a size metric of the deriva-
tion by a metric of the program: the derivation can be denoted in a tree-like
fashion and the maximum depth of the tree is bound by the maximum nesting
depth of the @if and @foreach blocks.

A derivation always starts with the rule [env ∅] for creating an empty envi-
ronment Γ, which does not have any preconditions and can thus be applied
first:

[env ∅] ∅ � �
The postcondition states that the empty environment is a well-formed envi-
ronment. Usually a judgment of the form Γ � X states that a program part X
in an environment Γ is correct. This rule states only that the environment on
the left side of � is well-formed, so the � on the right side is just a placeholder
for no program part at all.

3.1.1 Generator Expressions

In this section we look at rules for generator expressions. The syntax of gen-
erator expressions is defined by the grammar rules ge, geargs and gepart.
Grammar rule ge treats identifiers id and typeid as constant generator expres-
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sions. For simplicity, the following type rules will not support this. Without
loss of generality, identifiers id and typeid have to be generated explicitly with
constant generator expressions @"id"@ and @typeof(typeid)@. Both can be
derived with the following rules.

The Genoupe precompiler uses a function Generators to keep track of all the
generators in the scope:

Generators:GeneratorIds → (Types)∗

For each generator in the scope, the function maps the identifier of the gen-
erator, which is an element of set GeneratorIds, to the generator signature,
which is an n-tuple of types. For example, the Randomizeable generator de-
scribed above corresponds to an element Randomizeable �→ (Type, String[]).
Generator calls are checked with rule [ge gcall]:

[ge gcall]

generatorname ∈ dom(Generators)

Generators(generatorname) = (type1, . . . , typen)

Γ � gepart1: : type1 . . . Γ � gepartn: : typen

Γ � @gname(gepart1, . . . , gepartn)@: : Type

The precondition requires that generatorname is the name of an accessible
generator with the parameter types type1, . . . , typen, and that gepart1, . . . ,
gepartn are correct partial generator expressions of the same types. The : :
symbol is used to associate a partial generator expression or generator ex-
pression with its type. By contrast, ordinary C# expressions are associated
with a generator expression that generates their type using the : symbol, as
we will see later on. The postcondition contains a generator expression that
is a call to generator generatorname, using the partial generator expressions
as arguments. Since generators generate types, the generator expression is of
type Type.

Rule [ge @this@] can be used to check a generator expression that refers to
the type that is generated:

[ge @this@]
Γ � �

Γ � @this@: : Type

If Γ is a well-formed environment, then @this@ is a correct generator expres-
sion of type Type.

As specified in the syntax rule ge, we can use a partial generator expression
gepart enclosed by @-signs to construct a generator expression:

[ge @gepart@]
Γ � gepart: : t

Γ � @gepart@: : t
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If gepart is a correct partial generator expression of type t, it can be enclosed
in @-signs and the result is a generator expression of type t.

Similarly to ordinary C# expressions, partial generator expressions can con-
tain literals, which are checked with rule [gepart literal]:

[gepart literal]
Γ � � x ∈ Literals(t)

Γ � x: : t

Literals is a function that maps types to their literal values, e.g.

Literals(int) = {. . . ,−1,−, 1, . . .}.
If Γ is a well-formed environment and x is a correct literal of type t, then a
partial generator expression x can be formed that has type t.

Rule [gepart id] checks a partial generator expression that accesses a generator
variable:

[gepart id]
Γ ∪ {id: : t} � �

Γ ∪ {id: : t} � id: : t

If there is a well-formed environment that contains the signature of a generator
variable, then the identifier of the generator variable can be used as a partial
generator expression that has the type of the generator variable. The signature
of a generator variable consists of the variable identifier, the : : sign, and the
variable type.

For all the possible elements in Γ, we need rules that allow us to add them to
Γ. In principle, these rules make it possible to add things to the environment
that are not correctly part of it. However, the rules that derive larger generator
parts, e.g. rule [generator] later on, require that their constituents are derived
in correct environments. So if we derived a generator part using an incorrect
environment, it would no longer be possible to combine that part with other
parts to form a complete generator. Rule [env gvar] can be used to add the
signature of a generator variable, e.g. a generator parameter or the iteration
variable of a @foreach-loop, to the environment:

[env gvar]
Γ � � t ∈ Types (generator variable ID) /∈ Γ

Γ ∪ {ID: : t} � �
The precondition makes sure that Γ is a well-formed environment, that t is a
valid C# type, and that the identifier ID is not already defined as a generator
variable in the environment, which would indicate a collision of identifiers.

Rule [gepart field] is used to derive a partial generator expression that ac-
cesses a field of an object:

[gepart field]
Γ � gepart: : s s has accessible field id: t

Γ � gepart.id: : t
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If gepart is a correct partial generator expression of type t, and t has an acces-
sible field id of type t, then gepart.id is a correct partial generator expression
of type t. The rules to determine whether type s has an accessible field id are
the standard C# rules.

Rule [gepart sfield] is used to derive a partial generator expression that ac-
cesses a static field of a type:

[gepart sfield]
typeid ∈ Types typeid has accessible static field id: t

Γ � typeid.id: : t

If typeid is a correct C# type identifier, and type typeid has an accessible static
field id of type t, then typeid.id is a correct partial generator expression of
type t. The rules to determine whether type typeid has an accessible field id
are the standard C# rules.

Rule [gepart call] is used to derive method calls in partial generator expres-
sions:

[gepart call]

Γ � gepart: : s

s has accessible method id: t1 × . . .× tn → t

Γ � gepart1: : t1 . . . Γ � gepartn: : tn

Γ � gepart.id(gepart1, . . . , gepartn): : t

The precondition requires three things. First, gpart is a correct partial gener-
ator expression of type s. Second, s has an accessible method id taking n pa-
rameters of the types t1, . . . , tn. This is checked using the standard C# rules.
Third, gepart1, . . . , gepartn are n correct generator expressions in the same
environment as gepart and have the same types as the method parameters
t1, . . . , tn. With these requirements satisfied, a partial generator expression can
be derived consisting of a call to method id on gpart using gepart1, . . . , gepartn
as arguments. This partial generator expression has the return type of method
id.

Rule [gepart scall] is used to derive static method calls in partial generator
expressions:

[gepart scall]

typeid ∈ Types

typeid has accessible static method id: t1 × . . .× tn → t

Γ � gepart1: : t1 . . . Γ � gepartn: : tn

Γ � typeid.id(gepart1, . . . , gepartn): : t

If typeid refers to a correct C# type with a static method id that takes n
parameters of the types t1, . . . , tn, and there are n correct partial generator
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expressions in the same environment with the same types t1, . . . , tn, then a
partial generator expression can be formed for a static method call on id. The
availability of an appropriate static method is checked using the standard C#
rules. gepart1, . . . , gepartn are used as arguments and the resulting partial
generator expression has the return type of the method id.

Rule [gepart new] is used to derive constructor calls in partial generator ex-
pressions:

[gepart new]

typeid ∈ Types

typeid has accessible constructor with parameters : t1 × . . .× tn

Γ � gepart1: : t1 . . . Γ � gepartn: : tn

Γ � new typeid(gepart1, . . . , gepartn): : typeid

If typeid refers to a correct C# type with a constructor that takes n param-
eters of the types t1, . . . , tn, and there are n correct partial generator expres-
sions in the same environment with the same types t1, . . . , tn, then a partial
generator expression can be formed for a constructor call on id. Whether
typeid has an appropriate constructor is checked using the standard C# rules.
gepart1, . . . , gepartn are used as arguments and the resulting partial generator
expression has type typeid.

Rule [gepart typeof] is used to derive an application of the typeof operator
in a partial generator expression:

[gepart typeof]
Γ � � typeid ∈ Types

Γ � typeof(typeid): : Type

If Γ is a well-formed environment and typeid is a valid C# type, then we can
derive that typeof(typeid) is a correct partial generator expression of type
Type. The resulting Type object is the one representing type typeid.

Rule [gepart cast] is used to derive an application of the type cast operator
in a partial generator expression:

[gepart cast]
typeid ∈ Types Γ � gepart: : t

Γ � (typeid)gepart: : typeid

If typeid is a valid C# type and gepart a correct partial generator expres-
sion, then (typeid)gepart is also a correct partial generator expression of type
typeid. Note that by their very nature, type casts may fail during runtime.
However, using the standard C# rules, some type casts that are guaranteed
to fail can be detected statically.
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3.1.2 Generators and Definitions

In this section we describe the type rules for checking the correctness of a
generator and the variable and method definitions it generatesd by it. For
simplicity, we omit the rules for the @const generator construct since it is
only syntactic sugar for the generator developer. Using @const to define a
new generator variable with an expression is equivalent to substituting the
expression for the name of the generator variable wherever it is used. For
example, @const T = "x"; int @T@; is equivalent to int @"x"@;. We also
do not consider modifiers in the following type rules.

In the following we will describe the rules for the definitions that can be
generated in the body of the generator, starting with the generation of variable
definitions:

[def var]
Γ � getype: : Type Γ � geid: : String

Γ � getype geid ; ∴ {geid: getype}

This rule can be used to derive a local variable definition in the generator
body. The precondition requires suitable generator expressions for generating
the variable’s identifier and type. The ∴ symbol in the postcondition asso-
ciates a signature with the definition. The signature is a set that contains the
information that needs to be added to the environment so that the variable
can be used in other parts of the generator. For the above variable definition,
the signature contains only the generator expression that generates the vari-
able identifier and the generator expression that generates the variable type,
separated by the : symbol.

Rule [env var] inserts the signature of a generated variable into the environ-
ment, so that it can be used in other parts of the generator:

[env var]
Γ � geid: : String Γ � getype: : Type (variable geid) /∈ Γ

Γ ∪ {geid: getype} � �

The precondition states that we need a correct generator expression of type
String for the variable’s identifier, and a correct generator expression of type
Type for the variable’s type. Furthermore, the generator expression geid must
not already be used to generate another variable identifier in Γ to help avoid
identifier collisions. Note how the symbol between an expression and its type
is used to express whether an expression is an ordinary expression or a gener-
ator expression. In the case of an ordinary expression, the symbol between the
expression and its type is :; in the case of a generator expression the symbol
is : :. In the postcondition the new environment is a conjunction of the old
Γ and the new signature. In a signature, the : symbol associates the genera-
tor expression that generates the identifier of the variable with the generator
expression that generates its type.
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Rule [def method] can be used to derive a method definition in the body of a
generator:

[def method]

Γ � geid: : String Γ � geret: : Type

Γ � geid1: : String, . . . ,Γ � geidn: : String

Γ � get1: : Type, . . . ,Γ � getn: : Type

Γ ∪ {geid: get1 × . . .× getn → geret,

geid1: get1, . . . , geidn: getn} � stati for i ∈ {1, . . . , k}
Γ � geret geid(get1 geid1, . . . , getn geidn) {stat1 . . . statk}
∴ {geid: get1 × . . .× getn → geret}

The precondition requires appropriate generator expressions for the method
identifier, method return type, the identifiers of the method parameters and
the types of the method parameters. Furthermore, it requires k correct state-
ments for the method body. The environment of the statements contains the
signature of the method itself so that it can be called recursively from within
the method body, as well as the signatures of the method parameters. The
postcondition contains a method definition in which all types and identifiers
are generated with – possibly constant – generator expressions. The method
body contains the k statements. The signature of a method, i.e. the set after
the ∴ sign, consists of the generator expression for the method identifier and
the method type, separated by the : symbol. The type consists of a carte-
sian product × of the generator expressions for the parameter types and the
generator expression for the return type, separated by the → sign.

Rule [env method] inserts the signature of a generated method into the envi-
ronment, so that it can be used in other parts of the generator:

[env method]

Γ � geid: : String Γ � geret: : Type

Γ � get1: : Type, . . . ,Γ � getn: : Type

(method geid: get1 × . . .× getn) /∈ Γ

Γ ∪ {geid: get1 × . . .× getn → geret} � �
This requires a generator expression geid for generating the method identi-
fier, generator expressions get1, . . . , getn for generating the method parameter
types, and a generator expression geret for generating the method return type.
The generator expression that generates an identifier has to be of type String,
and the generator expressions generating the types have to be of type Type.
To help avoid identifier collisions, geid must not yet be used in Γ to gener-
ate an identifier of a method with the same parameter types. The result is a
well-formed environment that contains a method signature.
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Rule [def constructor] is used to derive a constructor definition in the body
of the generator:

[def constructor]

Γ � geid1: : String, . . . ,Γ � geidn: : String

Γ � get1: : Type, . . . ,Γ � getn: : Type

Γ ∪ {@this@: get1 × . . .× getn → @this@,

geid1: get1, . . . , geidn: getn} � stati for i ∈ {1, . . . , k}
Γ � @this@(get1 geid1, . . . , getn geidn) {stat1 . . . statk}
∴ {@this@: get1, . . . , geidn → @this@}

Similarly to a method definition, the precondition requires correct generator
expressions for the constructor parameter identifiers and types. However, since
the constructor has the same identifier and return type as the type it is as-
sociated with, no generator expressions for the identifier and return type are
required. Apart from that, the rule works analogously to rule [env method].
The signature of a constructor for the generated type always has identifier and
return type @this@, which is the generator expression denoting the generated
type itself.

Rule [env constructor] inserts the signature of a generated constructor into
the environment, so that it can be used in other parts of the generator:

[env constructor]
Γ � get1: : Type, . . . ,Γ � getn: : Type

Γ ∪ {@this@: get1 × . . .× getn → @this@} � �

The rule is analogous to rule [env method].

Rule [def @if] is used to derive conditional generation of definitions in a
generator body:

[def @if]

Γ � gepart: : Boolean

Γ ∪ sig1 ∪ . . . ∪ sigm ∪ {gepart} � def1 ∴ sig1, . . . ,

Γ ∪ sig1 ∪ . . . ∪ sigm ∪ {gepart} � defm ∴ sigm

Γ ∪ sig′1 ∪ . . . ∪ sig′n ∪ {¬gepart} � def ′
1 ∴ sig′1, . . . ,

Γ ∪ sig′1 ∪ . . . ∪ sig′n ∪ {¬gepart} � def ′
n ∴ sig′n

Γ � @if(gepart) { def1 . . . defm } else { def ′
1 . . . def

′
n }

∴ {gepart → sig1, . . . , gepart → sigm,

¬gepart → sig′1, . . . ,¬gepart → sig′n}
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The precondition requires three things. First, gepart must be a correct partial
generator expression of type Boolean. Secondly, the m definitions def1, . . . ,
defm with signatures sig1, . . . , sigm must be correct in an environment that
contains their signatures and the element gepart. The signatures are con-
tained in the environment because this enables recursive definitions, e.g. a the
definition of a recursive method that calls itself. The element gepart in the
environment of the definitions def1, . . . , defm signifies that the definitions are
generated in the then-clause of a conditional generation where the condition
gepart is true. This element is used later on to make sure that conditionally
generated definitions are only used if the condition under which they were
generated is true. Thirdly, the precondition requires that the n definitions
def ′

1, . . . , def
′
n with signatures sig′1, . . . , sig

′
n must be correct in an environ-

ment that contains their signatures and the element 	 gepart. Analogous to
the second requirement, these definitions are generated in the else-clause of a
conditional generation, and element 	 gepart signifies that in the environment
the condition is false. The postcondition contains the conditional generation
of definitions with a special signature on the right side of the ∴ symbol. The
signatures of the definitions def1, . . . , defm are prefixed with gepart → to ex-
press that the definitions are only accessible when gepart is true, i.e. when
they were actually generated. Analogously, the signatures of the definitions
def ′

1, . . . , def
′
n are prefixed with ¬gepart →.

Rule [env @if] inserts the signatures of conditionally generated definitions into
the environment, so that they can be used in other parts of the generator:

[env @if]

Γ � gepart: : Boolean

Γ � def1 ∴ sig1, . . . ,Γ � defm ∴ sigm

Γ � def ′
1 ∴ sig′1, . . . ,Γ � def ′

n ∴ sig′n

Γ ∪ {gepart → sig1, . . . , gepart → sigm,

¬gepart → sig′1, . . . ,¬gepart → sig′n} � �

If there are both a partial generator expression gepart of type Boolean and
correct definitions, then the signatures of the definitions can be prefixed with
either gepart → or ¬gepart → and inserted into the environment.

Rule [env then] registers in Γ that a partial generator expression gepart eval-
uates to true:

[env then]
Γ � gepart: : Boolean (¬gepart) /∈ Γ

Γ ∪ {gepart} � �
The partial generator expression must be of type Boolean and the opposite,
i.e. that gepart evaluates to false, must not be registered in Γ already. The
rule is used for type checking in the then-clause of an @if construct, where
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the partial generator expression describing the condition of the @if is known
to be true. In such an environment, definitions that were generated under the
condition gepart are accessible, as we will see later. Analogously, rule [env else]
registers in Γ that a partial generator expression gepart evaluates to false:

[env else]
Γ � gepart: : Boolean gepart /∈ Γ

Γ ∪ {¬gepart} � �
The rule is used for type checking in the else-clause of an @if construct, where
the partial generator expression describing the condition of the @if is known
to be false. In such an environment, definitions that were generated under the
condition ¬gepart are accessible.

Rule [def @foreach] derives iterative generation of definitions in a generator
body using the @foreach construct:

[def @foreach]

Γ � gepart: : t t implements ICollection

Γ ∪ sig1 ∪ . . . ∪ sign ∪ {ID: : t, ID ∈ gepart}
� def1 ∴ sig1, . . . ,

Γ ∪ sig1 ∪ . . . ∪ sign ∪ {ID: : t, ID ∈ gepart}
� defn ∴ sign

Γ � @foreach(ID in gepart) { def1 . . . defn }
∴ {∀α ∈ gepart.sig1[α/ID], . . . ,

∀α ∈ gepart.sign[α/ID]}

The precondition requires three things. First, gepart is a correct partial gen-
erator expression with type t. Second, t implements the standard c# interface
ICollection, which means that it is a collection type that can be iterated
over. Third, the definitions def1, . . . , defn with signatures sig1, . . . , sign are
correct in an environment that contains their own signatures, the genera-
tor variable ID of type t, and the element ID ∈ gepart. The signatures of
the definitions themselves are contained in the environment to enable recur-
sive definitions. The generator variable ID is the iteration variable used in
the @foreach-loop that generates the definitions, and hence can be used in
generator expressions occurring in the definitions. The element ID ∈ gepart
indicates that the environment is located in a @foreach-loop that uses an
iteration variable with identifier ID to iterate over a collection gepart. The
postcondition contains a correct iterative generation of definitions, using ID
as the iteration variable and gepart as the collection to iterate over. The loop
body consists of the definitions def1, . . . , defn, which are generated for each
iteration. The iterative generation of definitions has a special signature: it
uses the prefix ∀α ∈ gepart. to signify that, for each element α of the col-
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lection that was iterated over, a definition was generated. After the prefixes,
we have the signatures of the definitions in the loop body, sig1, . . . , sign, with
the identifier of the iteration variable ID replaced by the special universally
quantified variable α. The special symbol α is used instead of ID because the
generated definitions do not depend on the name of the iteration variable; they
merely depend on the collection that was iterated over. Hence, the signatures
are normalized and no longer contain the particular identifier ID. By using
the symbol α, which cannot appear syntactically in a generator, clashes with
other generator variables in the definitions are avoided.

Rule [env @foreach] inserts the signature of an iterative generation of defini-
tions into the environment, so that the definitions can be used in other parts
of the generator:

[env @foreach]

Γ � gepart: : t t implements ICollection

Γ � def1 ∴ sig1, . . . ,Γ � defn ∴ sign

Γ ∪ {∀α ∈ gepart.sig1[α/ID], . . . ,

∀α ∈ gepart.sign[α/ID]} � �

If there is a partial generator expression gepart of type t, t is a collection type,
and def1, . . . , defn are correct definitions, then after replacing any occurrence
of an identifier ID with the symbol α, the signatures can be prefixed with
α ∈ gepart. and inserted into the environment.

Rule [env loop] registers in Γ that an iterator variable of a @foreach contains
an element of a particular collection:

[env loop]
Γ � gepart: : t t implements ICollection (ID ∈ gepart) /∈ Γ

Γ ∪ {ID ∈ gepart} � �

The type t of the partial generator expression must be a collection type and the
element (ID ∈ gepart) must not already be part of Γ. The rule is used for type
checking the body of a @foreach-loop, where the iteration variable contains
an element of the partial generator expression gepart over which is iterated.
In such an environment, definitions that were generated while iterating over
elements of gepart are accessible, as we will see later.

Rule [def gmethod] derives a method definition where the method parameters
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are generated iteratively:

[def gmethod]

Γ � geid: : String Γ � geret: : Type

Γ � gepart: : t t implements ICollection

Γ � gepid: : String Γ � gept: : Type

Γ ∪ {geid: (∀α ∈ gepart.gept[α/ID]) → geret,

∀α ∈ gepart.(gepid: gept[α/ID])} � stati

for i ∈ {1, . . . , k}
Γ � geret geid(@foreach(ID in gepart) { gept gepid })

{stat1 . . . statk}
∴ {geid: (∀α ∈ gepart.gept[α/ID]) → geret}

The precondition requires the following. First, there must be correct generator
expressions for the method identifier and return type. Secondly, there must
be a partial generator expression gepart of a collection type. Thirdly, there
must be correct generator expressions that can be used to generate a param-
eter identifier and parameter type. Fourthly, stat1, . . . , statk must be correct
statements in an environment that includes the signature of the generated
method and the signatures of the generated method parameters. The signa-
ture of the generated method, which is described in detail below, is included
to enable recursive method calls. The signature of the iteratively generated
method parameters is analogous to the signature of the iteratively generated
definitions in rule [def @foreach]. The difference is that the exact nature of
the signature after the prefix ∀α ∈ gepart. is known: the definition is a param-
eter definition, which has the structure of a variable definition as described in
rule [def var]. The precondition consists of a method definition in which the
parameters are generated by iterating over the elements of collection gepart.
The signature of the definition is similar to that of an ordinary method defini-
tion, as described in rule [def method]. However, the parameters are iteratively
generated for each element of gepart. Therefore after all occurrences of the
iteration generator variable ID have been replaced with the special symbol
α for normalization, the generator expression for the parameter types gept is
prefixed with ∀α ∈ gepart., similarly to rule [def @foreach].

Rule [env gmethod] inserts the signature of a method with iteratively gen-
erated parameters into the environment, so that the method can be used in
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other parts of the generator:

[env gmethod]

Γ � geid: : String Γ � geret: : Type

Γ � gepart: : t t implements ICollection

Γ � gepid: : String Γ � gept: : Type

(method geid: (∀α ∈ gepart.gept[α/ID])) /∈ Γ

Γ ∪ {geid: (∀α ∈ gepart.gept[α/ID]) → geret} � �

There must be appropriate generator expressions for the method identifier and
return type. The type t of the partial generator expression must be a collection
type. There must also be appropriate generator expressions for a parameter
identifier and parameter type. There must not be a method signature in the
environment already where geid is used to generate the method identifier and
the parameter types are generated with generator expression gept[α/ID] by
iterating over the elements of gepart.

Rule [env gargs] inserts the signature of iteratively generated method or con-
structor parameters into the environment, so that the method or constructor
arguments can be accessed in the method or constructor body:

[env gargs]

Γ � gepart: : t t implements ICollection

Γ � gepid: : String Γ � gept: : Type

(∀α ∈ gepart.(gepid: gept)[α/ID]) /∈ Γ

Γ ∪ {∀α ∈ gepart.(gepid: gept)[α/ID]} � �

The type t of the partial generator expression must be a collection type. There
must also be appropriate generator expressions for a parameter identifier and
parameter type. There must not be a parameter signature in the environment
already where gepid[α/ID] and gept[α/ID] are used to generate parameters by
iterating over the elements of gepart.

Analogously to rule [def gmethod], rule [def gconstructor] derives a construc-
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tor definition where the constructor parameters are generated iteratively:

[def gconstructor]

Γ � gepart: : t t implements ICollection

Γ � gepid: : String Γ � gept: : Type

Γ ∪ {@this@: (∀α ∈ gepart.gept[α/ID]) → @this@,

∀α ∈ gepart.(gepid: gept[α/ID])} � stati

for i ∈ {1, . . . , k}
Γ � @this@(@foreach(ID in gepart) { gept gepid })
{stat1 . . . statk}
∴ {@this@: (∀α ∈ gepart.gept[α/ID]) → @this@}

The difference to rule [def gmethod] is that the identifier as well as the return
type of generated constructors is @this@.

Analogously to rule [env gmethod], rule [env gconstructor] inserts the signa-
ture of a constructor with iteratively generated parameters into the environ-
ment, so that the constructor can be used in other parts of the generator:

[env gconstructor]

Γ � gepart: : t t implements ICollection

Γ � gepid: : String Γ � gept: : Type

(@this@: (∀α ∈ gepart.gept[α/ID]) → @this@) /∈ Γ

Γ ∪ {@this@: (∀α ∈ gepart.gept[α/ID]) → @this@} � �

The last rule that is applied in a type derivation is [generator], which is defined
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as follows:

[generator]

{id1: : t1, . . . , idm: : tm} � @gepartt1@: : Type

{id1: : t1, . . . , idm: : tm} � get2: : Type, . . . ,

{id1: : t1, . . . , idm: : tm} � getk: : Type

get2 ∈ Interfaces, . . . , getk ∈ Interfaces

{id1: : t1, . . . , idm: : tm} ∪ sig1 ∪ . . . ∪ sign∪
{∀α ∈ (gepartt1.GetFields()).(@α.Name@: @α.FieldType@),

∀α ∈ (gepartt1.GetMethods()).(@α.Name@:

(∀α′ ∈ (α.GetParameters()).@α′.ParameterType@)

→ @α.ReturnType@)} � defi ∴ sigi for i ∈ {1, . . . , n}
∅ � class id (t1 id1, . . . , tm idm) : @gepartt1@, get2, . . . , getk

{def1 . . . defn}

This rule derives a class generator with the name id, m generator parame-
ters id1, . . . , idm with types t1, . . . , tm, k supertypes generated with genera-
tor expressions @gepartt1@, get2, . . . , getk, and n generated member definitions
def1, . . . , defn with signatures sig1, . . . , sign. The precondition of this rule re-
quires three things. First, the generator expressions used to generate the su-
pertypes must be valid and of type Type in an environment that contains only
the generator parameters. Secondly, all but the first generator expression must
generate an interface. This is a requirement of the C# language, and it means
that all but the first generator expression are constant so that it is evident
whether an interface is generated or not. Without loss of generality, the first
generator expression is written as a partial generator expression enclosed in
@-signs. This is because we need to refer to the partial generator expression
that it is made up of later on in the precondition. Thirdly, all the definitions
defi, i ∈ {1, . . . , m} that will be placed into the body of the generator must
be correct in an environment that contains the following signatures: the gen-
erator’s parameters, all the definitions’ signatures and signatures for the fields
and methods that are inherited from the superclass. The environment in which
the definitions must be derived contains exactly those elements that are in the
scope of the generator. If the precondition holds, then the generator is correct.

The environment contains the signature sigi of defi of each definition so that
a definition may use itself recursively, e.g. a recursive method. The fields and
methods of the superclass are included in the environment by pretending that
they are generated iteratively in the generator body, using appropriate col-
lections. This makes it possible to derive accesses to superclass fields and
methods correctly by iterating over the same collections, even though the su-
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perclass is not known statically. According to the first signature after sign,
the superclass’ fields are generated in the generator body by iterating over the
collection gepartt1.GetFields(), with gepartt1 being the partial generator
expression describing the superclass’ Type object. GetFields() returns a col-
lection of FieldInfo objects describing the fields of the superclass. According
to the signature, the identifier of each field is generated using the Name field
of the respective FieldInfo object, and the type using the FieldType field.
A similar approach is taken for the signatures of the superclass’ methods. Ac-
cording to the following signature, the superclass’ methods are generated by
iterating over the collection gepartt1.GetMethods(). GetMethods() returns
a collection of MethodInfo objects describing the methods of the superclass.
According to the signature, the identifier of each method is generated using
the Name field of the respective MethodInfo object, and the return type us-
ing the ReturnType field. The parameter types of each method are generated
by iterating over the ParameterInfo objects of each method, as given in a
collection by the GetParameters method. The parameter is extracted from
each ParameterInfo object by accessing the ParameterType field. By using
@foreach constructs with the same partial generator expressions as in these
signatures, the superclass’ fields and methods are accessible, as will be de-
scribed in the next section.

3.1.3 Statements

In this section we discuss type rules for deriving statements as described in
the syntax rule stat. This section contains the rules for accessing variables
and methods that were generated using generator expressions and iterative
or conditional generator constructs. The general idea is that definitions that
were generated in an @if or @foreach can only be used in an equivalent @if
or @foreach.

In a method or constructor, a correct expression me can be used as a state-
ment:

[stat me]
Γ � me: get
Γ � me;

While expressions are associated with a generator expression get that generates
type using the : symbol, statements are not explicitly associated with a type.
A judgment of the form Γ � stat means that the statement stat is correct in
the given environment.

Assignments are derived with rule [stat assign]:

[stat assign]
Γ � geid: ges Γ � me: get ges compatible with get

Γ � geid = me;

Since all types in the generated class are generated, ges and get are generator
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expressions. If they are constant generator expressions such as typeof(int)
or typeof(Object), then type compatibility can be checked using the existing
C# type rules. Otherwise, they are only considered compatible if the generator
expressions ges and get used for generating the types are equal, i.e. structurally
the same.

Return statements are derived with rule [stat return]:

[stat return]
Γ � me: get return type of method compatible with get

Γ � return me;

If the expression me has a type generated by get that is compatible with the
generator expression describing the return type of the method it should be
returned from, then the return statement can be derived. Analogously to rule
[stat assign], if get and the return type of the method are constant generator
expressions, then type compatibility can be checked using the existing C#
type rules. Otherwise, they are only considered compatible if the generator
expressions used for generating them are equal.

Conditionally generated statements are derived with rule [stat @if]:

[stat @if]

Γ � gepart: : Boolean

Γ ∪ {gepart} � stat1, . . . ,Γ ∪ {gepart} � statm

Γ ∪ {¬gepart} � stat′1, . . . ,Γ ∪ {¬gepart} � stat′n
Γ � @if(gepart) { stat1 . . . statm } else { stat′1 . . . stat′n }

The precondition requires the following. First, the partial generator expression
gepart to be used as condition must be of type Boolean. Secondly, the state-
ments stat1, . . . , statm to be generated in the then-clause of the conditional
must be correct in an environment that contains element gepart. As described
in rule [def @if], this element signifies that the condition gepart is true in
the then-clause. It makes it possible to access variables or methods that were
generated in the then-clause of a conditional with the same condition gepart.
These variables or methods will have a signature of the form gepart → sig.
Thirdly, if there is an else-clause, the statements stat′1, . . . , stat

′
n to be gener-

ated in the else-clause of the conditional must be correct in an environment
that contains element ¬gepart. This element signifies that the condition gepart
is false in the else-clause. It makes it possible to access variables or methods
that were generated in the else-clause of a conditional with the same con-
dition gepart. These variables or methods will have a signature of the form
¬gepart → sig. If all the requirements are met, then the conditional genera-
tion of statements can be derived.
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Rule [stat @foreach] derives iteratively generated statements:

[stat @foreach]

Γ � gepart: : t t implements ICollection

Γ ∪ {ID ∈ gepart} � stat1, . . . ,Γ ∪ {ID ∈ gepart} � statn

Γ � @foreach(ID in gepart) { stat1 . . . statn }
The precondition requires the following. First, the partial generator expression
gepart to be used as collection over which to iterate must be of a type that
implements a collection. Second, the statements stat1, . . . , statm to be gener-
ated in the then-clause of the conditional must be correct in an environment
that contains element ID ∈ gepart. As described in rule [def @foreach], this
element signifies that ID is the iteration variable of a @foreach-loop that
iterates over the element of collection gepart. Such an environment occurs
only in the loop body. It makes it possible to access variables or methods that
were generated in the body of a @foreach-loop iterating over the same col-
lection gepart. These variables or methods will have a signature of the form
∀α ∈ gepart.sig. The derived iterative statement generation can be used, for
example, to execute some code on variables that were iteratively generated
previously. The code could print out the values of the variables, or change
their values.

An expression me can be derived with the following rules. Literal expressions
are derived with rule [me literal]:

[me literal]
Γ � � x ∈ Literals(t)

Γ � x: @typeof(t)@

If Γ is well-formed and x is a value of type t that can be represented as a
literal, then x is a correct expression with a type generated by the constant
generator expression @typeof(t)@.

Rule [me gliteral] derives a literal expression that was generated with a gen-
erator expression:

[me gliteral]
Γ � ge: : t values of t can be represented as literals

Γ � ge: @typeof(t)@

If ge is a generator expression of an appropriate type, then it can be used
to generate a literal of that type. For example, a generator expression of
type Integer generates an integer literal, and a generator expression of type
StringLiteral generates a String literal. Note that generator expressions
of type String are already used to generate identifiers and therefore can not
generate String literals.

The following rules check expressions that consist only of a variable identifier,
i.e. an access to a variable that was defined in the current generator. De-
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pending on how the variable definition was generated, a different rule will be
used. Rule [me var] derives an access to a variable that was neither generated
conditionally nor iteratively:

[me var]
Γ � � (geid: getype) ∈ Γ

Γ � geid: getype

If Γ is a well-formed environment that contains the signature of a generated
variable, as described in rule [def var], then the generator expression geid
that was used to generate the variable identifier can be used to generate an
access to the variable. The resulting expression has as its type the generator
expression getype that was used to generate the variable type.

Rule [me var @if] derives an access to a variable that was generated condi-
tionally:

[me var @if]
Γ � � {gepart, gepart → geid: getype} ⊆ Γ

Γ � geid: getype

The requirements are as follows: Γ must be a well-formed environment that
contains an element gepart (indicating that the environment is in the then-
clause of a conditional generation) and the signature of a conditionally gen-
erated variable, as described in rule [def @if]. The condition gepart in the
environment and the condition in the signature of the conditionally generated
variable are the same. Therefore we can be sure that the variable definition
was generated. Hence, the generator expression geid that was used to generate
the variable identifier can be used to generate an access to the variable, which
has as its type the generator expression getype that was used to generate the
variable type. Analogously, the rule can be formulated with ¬gepart instead
of gepart to access a variable that was generated in the else-clause of an @if.

Rule [me var @foreach] derives an access to a variable that was generated
iteratively:

[me var @foreach]

Γ � � {ID ∈ gepart, ∀α ∈ gepart.(ge′id: ge
′
type)} ⊆ Γ

(ge′id: ge
′
type)[ID/α] = (geid: getype)

Γ � geid: getype

The rule requires the following. Γ must be a well-formed environment that
contains an element ID ∈ gepart signifying that the environment is in the
body of a @foreach-loop iterating over collection gepart. Furthermore, Γ must
contain the signature of a variable that was generated in a @foreach-loop
iterating over the same collection. If all occurrences of the placeholder α in
this signature are replaced by the name of the iteration variable ID in the
environment, then we get a generator expression geid that can be used to
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generate the identifier of the variable and a generator expression getype for the
variable type.

The following rules check expressions that consist only of a call to a method
that was defined in the current generator. Depending on how the method
definition was generated, a different rule will be used. Rule [me method] derives
a call to a method that was neither generated conditionally nor iteratively:

[me method]

(geid: get1 × . . .× getn → geret) ∈ Γ

Γ � me1: get1 . . . Γ � men: getn

Γ � geid(me1, . . . , men): geret

If Γ is a well-formed environment that contains the signature of a generated
variable, as described in rule [def method], then the generator expression geid
that was used to generate the method identifier can be used to refer to that
method in a method call. For the generation of the method call parameters,
there have to be correct expressions with appropriate types. The resulting
expression will have as its type the generator expression geret that was used
to generate the method return type.

Rule [me method @if] derives a call to a method that was generated condi-
tionally:

[me method @if]

{gepart, gepart → (geid: get1 × . . .× getn → geret)} ⊆ Γ

Γ � me1: get1 . . . Γ � men: getn

Γ � geid(me1, . . . , men): geret

The requirements are as follows: Γ must be a well-formed environment that
contains an element gepart (indicating that the environment is in the then-
clause of a conditional generation) and the signature of a conditionally gen-
erated method, as described in the rules [def @if] and [def method]. The
condition gepart in the environment and the condition in the signature of the
conditionally generated variable are the same. Therefore we can be sure that
the variable definition was generated. Hence, the generator expression geid
that was used to generate the method identifier can be used to refer to the
generated method in a method call. For the method call parameters there have
to be correct expressions with appropriate types. The resulting expression has
as its type the generator expression geret that was used to generate the method
return type. Analogously, the rule can be formulated with ¬gepart instead of
gepart to call a method that was generated in the else-clause of an @if.

Rule [me method @foreach] derives a call to a method that was generated
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iteratively:

[me method @foreach]

{ID ∈ gepart,

∀α ∈ gepart.(ge′id: ge
′
t1 × . . .× ge′tn → ge′ret)} ⊆ Γ

(ge′id: ge
′
t1 × . . .× ge′tn → ge′ret)[ID/α]

= (geid: get1 × . . .× getn → geret)

Γ � me1: get1 . . . Γ � men: getn

Γ � geid(me1, . . . , men): geret

The rule requires the following. Γ is a well-formed environment that contains
an element ID ∈ gepart signifying that the environment is in the body of a
@foreach-loop iterating over collection gepart. Furthermore, Γ contains the
signature of a method that was generated in a @foreach-loop iterating over
the same collection. If all occurrences of the placeholder α in this signature
are replaced by the name of the iteration variable ID in the environment,
then we get a method signature that can be referred to in a method call. With
appropriate expressions for the method parameters, a method call expression
can be formed that has type geret, the return type of the method.

The other rules for expressions are very similar to the rules for partial generator
expressions that were described in Section 3.1.1. The following rules derive
expressions with accesses to ordinary C# fields and methods, i.e. fields and
methods that are not generated. Rules [me field] and [me sfield] derive non-
static and static field accesses:

[me field]
Γ � me: ge ge has accessible field id: t

Γ � me.id: @typeof(t)@

[me sfield]
Γ � ge: : Type ge has accessible static field id: t

Γ � ge.id: @typeof(t)@

In both the above rules, ge needs to be a constant generator expression because
otherwise it is generally impossible to determine what fields the type generated
by ge contains.

Rules [me call], [me scall] and [me new] derive non-static and static method
calls and constructor calls:

[me call]

Γ � me: ge

ge has accessible method id: t1 × . . .× tn → t

Γ � me1: @typeof(t1)@ . . . Γ � men: @typeof(tn)@

Γ � me.id(me1, . . . , men): @typeof(t)@
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[me scall]

Γ � ge: : Type

ge has accessible static method id: t1 × . . .× tn → t

Γ � me1: @typeof(t1)@ . . . Γ � men: @typeof(tn)@

Γ � ge.id(me1, . . . , men): @typeof(t)@

[me new]

Γ � ge: : Type

ge has accessible constructor with parameters : t1 × . . .× tn

Γ � me1: @typeof(t1)@ . . . Γ � men: @typeof(tn)@

Γ � new ge(me1, . . . , men): ge
ge needs to be a constant generator expression because otherwise it is generally
impossible to tell what methods or constructors the type generated by ge
contains.

Rule [me gcall] derives a call to a method in the generated class with param-
eters that were generated iteratively:

[me gcall]

Γ � �
{geid: (∀α ∈ gepart.gept) → geret,

∀α ∈ gepart.(gepid: gept)} ⊆ Γ

Γ � geid(@foreach(ID in gepart) { gepid[ID/α] }): geret
As a precondition, the environment must be well-formed and contain the sig-
nature of a method with iteratively generated parameters as well as a signature
for the generated parameters, as described previously for rule [def gmethod].
There is a method parameter for each element in the collection gepart that
can be used as an argument for the method call. In the resulting method call,
the placeholder α is replaced by the identifier of the iteration variable ID.
In this way it is possible to call a method with iteratively generated param-
eters from within a method with iteratively generated parameters, as long as
the collection over which was iterated is the same and the two methods use
equivalent generator expression gept for the generation of the parameter types.

Similarly to the previous rule, rule [me gnew] derives a call to a constructor
in the generated class with parameters that were generated iteratively:

[me gnew]

Γ � �
{@this@: (∀α ∈ gepart.gept) → @this@,

∀α ∈ gepart.(gepid: gept)} ⊆ Γ

Γ � @this@(@foreach(ID in gepart) { gepid[ID/α] }): @this@
The rule works analogously to [me gcall]. The identifier and return type of
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the constructor are @this@ because the constructor is in the generated class,
as described in rule [def gconstructor].

The rules [me typeof] and [me cast] for applications of the typeof operator
and type casts are analogous to the rules for partial generator expressions:

[me typeof]
Γ � ge: : Type

Γ � typeof(ge): @typeof(Type)@

[me cast]
Γ � ge: : Type Γ � me: t

Γ � (ge)me: ge

Instead of permitting only type identifiers, the types used as arguments can
be generated with generator expressions. Note that type casts, by their very
nature, might fail during runtime.

Rule [me this] derives an expression with the keyword this referring to the
current object of the generated class:

[me this]
Γ � � method is non-static

Γ � this: @this@

If the environment is well-formed and the method to place the statement into
is non-static, the keyword this can be used to access the current object of
the generated type @this@.

3.2 Type Derivation Example 1

In the following we type check a simple generator in order to demonstrate how
the type rules are used. All of the used rules were described in the previous
sections of this article. The example we want to type check has a String pa-
rameter ID and generates a class. The generated class contains an int member
variable with the name of the given string, and a method m that assigns the
value 1 to the variable. For simplicity, the constant types int and void and the
method identifier m are created explicitly with generator expressions, so that
the previously described type rules can be applied. In particular, this example
demonstrates how generator expressions are used as part of the environment
Γ.

1 class Example1(String ID)

2 {

3 @typeof(int)@ @ID@;

4

5 @typeof(void)@ @"m"@() {

6 @ID@ = 1;

7 }
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8 }

First, an appropriate environment Γ needs to be created. An empty environ-
ment can be created using rule [env ∅], which has no precondition and thus
can always be used. The generator variable for the String parameter of the
generator is added to Γ with rule [env gvar]:

[env gvar]
[env ∅] ∅�� String ∈ Types (generator variable ID) /∈ ∅

{ID: : String} � �

Γ1 =def {ID: : String}
As described previously, in the environment the : : sign associates a generator
variable with its type. In this case, the generator variable is the generator
parameter ID of type String. The new environment is named Γ1.

Next, the signature of the member variable is added to the environment. Rules
[gepart id] and [ge @gepart@] allow us to use the generator variable in the
environment as a generator expression:

[ge @gepart@]
[gepart id] Γ1��

Γ1�ID::String
Γ � @ID@: : String

Then, a generator expression for type int is derived using rule [gepart typeof]
and rule [ge @gepart@]:

[ge @gepart@]
[gepart typeof] Γ1�� int∈Types

Γ1�typeof(int)::Type
Γ1 � @typeof(int)@: : Type

At this point all the preconditions have been derived that are needed to derive
the signature of the member variable with rule [env var]:

[env var]
Γ1 � @ID@: : String Γ1 � @typeof(int)@: : Type (variable ID) /∈ Γ

Γ1 ∪ {@ID@: @typeof(int)@} � �

Γ2 =def {ID: : String, @ID@: @typeof(int)@}
There is already a generator variable with the name ID in Γ1, but there is
no ordinary symbol that has a name generated by the generator expression
@ID@. Therefore this is not a collision of identifiers. The new environment is
called Γ2.

After deriving the identifier of method m with the rules [gepart literal] and
[ge @gepart@], and deriving its return type with rule [gepart typeof] and rule
[ge @gepart@], method m’s signature is added to the environment using rule
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[env method]:

[ge @gepart@]
[gepart literal]

Γ2�� "m"∈Literals(String)
Γ2�"m"::String

Γ2 � @"m"@: : String

[ge @gepart@]
[gepart typeof] Γ2�� void∈Types

Γ2�typeof(void)::Type
Γ2 � @typeof(void)@: : Type

[env method]

Γ2 � @"m"@: : String Γ2 � @typeof(void)@: : Type

(method @"m"@:→ @typeof(void)@) /∈ Γ2

Γ2 ∪ {@"m"@:→ @typeof(void)@} � �
Γ3 =def {ID: : String, @ID@: @typeof(int)@, @"m"@:→ @typeof(void)@}

The new environment is called Γ3.

The generator expressions for the variable type and identifier of the variable
definition are derived using Γ3 and rules [gepart typeof], [gepart id] and
[ge @gepart@]. Then the variable definition is derived using rule [def var]:

[ge @gepart@]
[gepart typeof] Γ3�� int∈Types

Γ3�typeof(int)::Type
Γ3 � @typeof(int)@: : Type

[ge @gepart@]
[gepart id] Γ3��

Γ3�ID::String
Γ3 � @ID@: : String

[def var]
Γ3 � @typeof(int)@: : Type Γ3 � @ID@: : String

Γ3 � @typeof(int)@ @ID@; ∴ (@ID@: @typeof(int)@)

To derive the assignment in the method m, we first derive its left side and then
its right side. The variable on the left side is derived with rule [me var]:

[me var]
Γ3 � � (@ID@: @typeof(int)@) ∈ Γ3

Γ3 � @ID@: @typeof(int)@

The right side of the assignment is derived using rule [me literal], and rule
[stat assign] then derives the whole assignment:

[me literal]
Γ3 � � 1 ∈ Literals(int)

Γ3 � 1: @typeof(int)@

[stat assign]

Γ3 � @ID@: @typeof(int)@ Γ3 � 1: @typeof(int)@

@typeof(int)@ compatible with @typeof(int)@

Γ3 � @ID@ = 1;@
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Next, the definition of method m is derived with rule [def method], after first
deriving its identifier and return type using Γ3:

[ge @gepart@]
[gepart literal]

Γ3�� "m"∈Literals(String)
Γ3�"m"::String

Γ3 � @"m"@: : String

[ge @gepart@]
[gepart typeof] Γ3�� void∈Types

Γ3�typeof(void)::Type
Γ3 � @typeof(void)@: : Type

[def method]

Γ3 � @"m"@: : String Γ3 � @typeof(void)@: : Type

Γ3 � @ID@ = 1;@

Γ3 � @typeof(void)@ @"m"@() { @ID@ = 1; }
∴ (@"m"@:→ @typeof(void)@)

The signature of the method after the ∴ sign specifies that the identifier of
the method is generated by the constant generator expression @"m"@, that
the method has no parameters, and that the return type is generated by
@typeof(void)@.

Finally rule [generator] is applied to derive the whole generator. Our example
generator does not have generated supertypes. Therefore the rule becomes a
bit simpler:

[generator]

Γ3 � @typeof(int)@ @ID@; ∴ (@ID@: @typeof(int)@)

Γ3 � @typeof(void)@ @"m"@() { @ID@ = 1; }
∴ (@"m"@:→ @typeof(void)@)

∅ � class Example1(String ID) {
@typeof(int)@ @ID@;

@typeof(void)@ @"m"@() { @ID@ = 1; } }

This step concludes the derivation.

3.3 Type Derivation Example 2

In the following a more sophisticated generator is type-checked, which uses the
@foreach construct. It gets a type T as its parameter and iteratively replicates
the public fields of that type. Furthermore, it generates a getter method for
each of the replicated fields. This example demonstrates how the type system
makes sure that only those definitions that have actually been generated can
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be accessed. Note that the two @foreach loops could have been merged; they
were separated to emphasize that they could potentially occur in different
locations within the generator.

1 class Example2(Type T)

2 {

3 @foreach(F in T.GetFields()) {

4 @F.FieldType@ @F.Name@;

5 }

6

7 @foreach(F in T.GetFields()) {

8 @F.FieldType@ @"Get"+F.Name@() {

9 return @F.Name@;

10 }

11 }

12 }

In this example the derivations of the environments and the smaller generator
parts are omitted, as they have been illustrated fully in the previous exam-
ple. The well-formed environment Γ is the environment in the body of the
generator. It is created using [env ∅] as the initial rule, [env gvar] to derive
the elements for the generator parameter T, and [gepart literal], [gepart id],
[gepart field], [gepart call], [ge @gepart@] and [env @foreach] to derive the
signatures of the @foreach loops. The application of the + operator, which
is used to add the string prefix "Get" to the name of the getter method,
is treated as a normal method application in a partial generator expression,
using rule [gepart call].

Γ =def { T: : Type,

∀α ∈ (T.GetFields()).(@α.Name@: @α.FieldType@),

∀α ∈ (T.GetFields()).(@"Get"+α.Name@:→ @α.FieldType@)}

Using this environment and the rules [gepart id], [gepart field], [ge @gepart@]
and [def var], the variable definition in the first loop body can be derived.
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The next step is to derive the first @foreach loop, using rule [def @foreach]:

[def @foreach]

Γ � T.GetFields(): : FieldInfo[]

FieldInfo[] implements ICollection

Γ ∪ {F : : FieldInfo, F ∈ T.GetFields(),

@F.Name@: @F.FieldType@}
� @F.FieldType@ @F.Name@;

∴ {@F.Name@: @F.FieldType@}
Γ � @foreach(F in T.GetFields()) {

@F.FieldType@ @F.Name@; }
∴ {∀α ∈ (T.GetFields()).(@α.Name@: @α.FieldType@)}

The additional elements in the environment of the definition @F.FieldType@

@F.Name@; in the precondition are derived using the rule [env gvar] for the
iteration variable F, [gepart id], [gepart field] and [env loop] for the element
specifying the collection over which F iterates, and [gepart id], [gepart field],
[ge @gepart@] and [env var] for the signatures of the definition in the loop
body.

Now the method definition in the second @foreach loop is derived. The iter-
atively generated variables are accessed in the expression in the return state-
ment of the method body. The derivation of this expression illustrates how
the type system ensures that variables generated in a @foreach loop can only
be accessed from within a similar @foreach loop. This means that only those
variables that were actually generated can be accessed. Additional elements
are added to the environment to express the following: in the scope of the
derived expression, F is an iteration variable of type FieldInfo iterating over
a collection given by the partial generator expression T.GetFields(). The
signature of the getter method in the loop body is also registered. This results
in a new environment Γ′:

Γ′ =def Γ ∪ { F : : FieldInfo, F ∈ T.GetFields(),

@"Get"+α.Name@:→ @α.FieldType@}
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Γ′ is used to derive the expression in the return statement:

[me var @foreach]

Γ′ � �
{F ∈ T.GetFields(),

∀α ∈ (T.GetFields()).

(@α.Name@: @α.FieldType@)} ⊆ Γ′

(@α.Name@: @α.FieldType@)[F/α]

= (@F.Name@: @F.FieldType@)

Γ′ � @F.Name@: @F.FieldType@

This rule ensures that the current scope is that of a @foreach loop analo-
gous to the one in which the derived variable is defined. That is, the partial
generator expression specifying the collection to iterate over is the same, and
the generator expression for the variable identifier is the same except for the
name of the iteration variable. The derived expression can be used in the
return statement:

[stat return]

Γ′ � @F.Name@: @F.FieldType@

return type of method compatible with @F.FieldType@

Γ � return @F.Name@;

Now the method definition in the body of the second @foreach loop is derived:

[def method]

Γ′ � @"Get"+F.Name@: : String Γ′ � @F.FieldType@: : Type

Γ′ � return @F.Name@;

Γ′ � @F.FieldType@ @"Get"+F.Name@() {
return @F.Name@; }

∴ (@"Get"+F.Name@:→ @F.FieldType@)
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The second @foreach loop is derived as follows:

[def @foreach]

Γ′ � T.GetFields(): : FieldInfo[]

FieldInfo[] implements ICollection

Γ′ � @F.FieldType@ @"Get"+F.Name@() {
return @F.Name@; }

∴ (@"Get"+F.Name@:→ @F.FieldType@)

Γ′ � @foreach(F in T.GetFields()) {
@F.FieldType@ @"Get"+F.Name@() {
return @F.Name@; } }

∴ {∀α ∈ (T.GetFields()).

(@"Get"+α.Name@:→ @α.FieldType@)}

Finally, the whole generator can be derived. In the following rule applica-
tion, the two @foreach loops as they were derived above are abbreviated as
foreach1 and foreach2.

[generator]

Γ � foreach1

∴ {∀α ∈ (T.GetFields()).(@α.Name@: @α.FieldType@)}
Γ � foreach2

∴ {∀α ∈ (T.GetFields()).

(@"Get"+α.Name@:→ @α.FieldType@)}
∅ � class Example2(Type T) {foreach1 foreach2}

This step concludes the derivation.

3.4 Type Derivation Example 3

This example is similar to the previous one: the generator gets a type T as its
parameter and generates getters for the public fields in T. However, the fields
of T are not replicated iteratively, but are inherited because the generated
class is a subclass of T. This example demonstrates how inheritance can be
used and inherited fields accessed in a type-safe manner.

1 class Example3(Type T) : @T@
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2 {

3 @foreach(F in T.GetFields()) {

4 @F.FieldType@ @"Get"+F.Name@() {

5 return @F.Name@;

6 }

7 }

8 }

The environment Γ in the generator body contains the signature of the gener-
ator parameter T, the signatures of the fields and methods of the superclass as
specified in rule [generator], and the signature of the @foreach that generates
the getters:

Γ =def { T: : Type,

∀α ∈ (T.GetFields()).(@α.Name@: @α.FieldType@),

∀α ∈ (T.GetMethods()).(@α.Name@:

(∀α′ ∈ (α.GetParameters()).@α′.ParameterType@)

→ @α.ReturnType@),

∀α ∈ (T.GetFields()).(@"Get"+α.Name@:→ @α.FieldType@)}

The method definition in the @foreach loop can be derived similarly to the
previous example. The difference is that in the expression in the return state-
ment of the method body, the inherited variables are accessed instead of
iteratively generated variables. The derivation of this expression illustrates
how variables defined in the superclass can only be accessed from within a
@foreach loop that iterates over the variables of the superclass as obtained
by the reflection method GetFields(). This means that only those variables
that were actually defined in the superclass can be accessed. Analogously to
the previous example, the environment Γ′ in the context of the @foreach loop
body contains additional elements. They express that F is an iteration variable
of type FieldInfo iterating over a collection given by the partial generator
expression T.GetFields(). The signature of the getter method in the loop
body is also registered.

Γ′ =def Γ ∪ { F : : FieldInfo, F ∈ T.GetFields(),

@"Get"+α.Name@:→ @α.FieldType@}
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Now the expression in the return statement can be derived in the same manner
as in the previous example:

[me var @foreach]

Γ′ � �
{F ∈ T.GetFields(),

∀α ∈ (T.GetFields()).

(@α.Name@: @α.FieldType@)} ⊆ Γ′

(@α.Name@: @α.FieldType@)[F/α]

= (@F.Name@: @F.FieldType@)

Γ′ � @F.Name@: @F.FieldType@

The method definition and the @foreach loop are also derived in the same
manner as in the previous example.

Finally, the whole generator can be derived. In the following rule application
the @foreach loop is abbreviated as foreach.

[generator]

{T: : Type} � @T@: : Type

Γ � foreach

∴ {∀α ∈ T.GetFields().

(@"Get"+α.Name@:→ @α.FieldType@)}
∅ � class Example3(Type T) : @T@ {foreach}

This step concludes the derivation.

4 Soundness Aspects of Genoupe

Like many other type systems, the Genoupe type system is restrictive: it
forbids not only generators that lead to incorrect generated code but also those
that violate the type rules, but might still always produce correct generated
code. In the rules for the @if, for example, we require that a conditionally
generated variable must be used in the body of a conditional with an equivalent
condition. Logically it would be enough, though, to require that the condition
of the defining conditional implies the condition of the conditional in which
the variable is used. Analogously, if variables are generated in a @foreach, it
would be sufficient to demand that they are used in a loop that iterates over a
subset of the collection in the defining iteration. It is typical for type systems
to deal with issues by restricting the way a language can be used, without
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limiting the applicability of the language: C# and Java, for example, do not
really check whether a method with a non-void return type always returns a
value; they merely check whether a superset of possible execution paths returns
a value. This is so because in all these cases the class of correct programs can
be undecidable. But the type system should be decidable and therefore has
to reject a certain superset of all incorrect artifacts. It would be possible to
mitigate these issues further using approaches from logical programming such
as, for example, constraint solving and model checking.

Soundness of a generator type safety notion means that the type system should
exclude generators that lead to non-typesafe code at the time of generator ex-
ecution. We focus here on two soundness questions with regard to the use
of Genoupe expressions in the Genoupe type system. The Genoupe system
assumes that expressions that are statically identical in the view of the type
system will also evaluate to the same values, e.g. generate the same identi-
fiers. This assumption is essential and seems daring, but can be solved rather
straightforwardly with a memoization approach, as explained in the next sec-
tion. To increase Genoupe’s applicability and versatility, it should be possible
to generate identifiers freely. However, Genoupe should prevent clashes be-
tween generated identifiers. This is discussed in Section 4.2.

4.1 Type-Safe Generation with Imperative Generator Languages

Intuitively, many people assume that using a language with side effects and/or
non-determinism for the specification of the generator expressions necessar-
ily leads to unsoundness. In the case of Genoupe, this suspicion is tied to
the question of whether structurally identical expressions in the generator
language will evaluate to the same value at generation time. Consider the
following example:

1 public class RandomTypes()

2 {

3 @MyClass.randomType()@ x;

4 @MyClass.randomType()@ y;

5

6 public void m() {

7 x = y;

8 }

9 }

Clearly, the assignment in line 7 is only safe if the types of x and y are
compatible. The types are generated by two generator expressions that are
structurally identical: @MyClass.randomType()@. However, in an imperative
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language such as C# we expect that the generator expressions may have side
effects or show non-deterministic behavior, and therefore potentially produce
a different value each time they are evaluated. In this example particularly,
which uses the static method randomType, we expect the generator expressions
to return two random types that are different from each other.

It is an important finding, and perhaps one of the particularly wide-ranging
messages of this article, that we can circumvent this soundness issue for any
imperative generator language by evaluating all generator expressions using
memoization [34]. This means that during execution, once the variables in a
generator expression are assigned with actual values, each structural identi-
cal generator expression is evaluated only once and the result is memoized.
Memoization works with a look-up table for generator expressions in which all
variables have been replaced by concrete values. Such generator expressions
form the key of the look-up table, and the result of their first and only evalua-
tion are the look-up values. Hence whenever a structurally identical generator
expression is encountered with the same assigned variable values, its value is
retrieved from the look-up table rather than evaluating the generator expres-
sion again. The lifetime of the look-up table can be limited to generation time.
Memoization is a well-known technique in compiler construction [38,18].

Coming back to the example above, using memoization the generator expres-
sion @MyClass.randomType()@ will be evaluated once only. The second time
this expression is encountered during generation, the same value will be used.
As a result, we can guarantee that x and y have the same types. Similarly,
memoization solves the problem for other structurally equivalent generator
expressions with nondeterministic behavior. Even if the result of a generator
expression is influenced by earlier side effects, it is guaranteed that all fol-
lowing structurally equivalent generator expressions using the same variable
values will yield the same result.

Note that the capability of C# to create non-determinism and side effects is
not the motivation for choosing C# as the generator language. The motivation
for choosing C# is the principle of economy, since it is a natural choice to have
homogeneity between the generator and the host language. With memoization,
generator expressions that are structurally identical after their variables have
been replaced by values, yield the same value. As a consequence, it is possible
to use C# also as the generator language.

4.2 Integration with a Host Language and its Costs

During the development of Genoupe certain design decisions were made in
order to maximize its actual usefulness, in addition to its theoretical usefulness
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for software development. One of the central questions for a language extension
such as Genoupe is its compatibility with existing code in the host language
(C# in the case of Genoupe). The developer often might want to use source
code files written in the host language together with source code files using
the language extension. We refer to the former as host language sources and to
the latter as language extension sources. Here we discuss here four approaches
that make the design and implementation of a language extension increasingly
more difficult, but also increase the applicability of the language extension.
For Genoupe we have deliberately chosen the last, most difficult, yet most
applicable and versatile approach.

Source-code incompatibility means that host language sources need to be
changed into language extension sources if they are to be used together with
other language extension sources. For example, each source code file may need
additional code in the header. Such an approach puts a significant burden onto
programmers who want to use the language extension in existing projects.

Source-code compatibility means that host language sources can be used
unchanged in the same project as language extension sources, but the host
language sources need to be recompiled with the language extension compiler.
For example, a pre-compiler of the language extension may need to be run
over all source code to prevent name clashes by adding prefixes to identifiers.

Upstream compatibility means that the compilation products of the host
language sources, e.g. standard libraries, can be used together with language
extension sources, without changes or recompilation. However, all code down-
stream must be compiled with the compiler of the language extension. Down-
stream means that the code depends on language extension sources, i.e. the
code directly or indirectly uses code that was generated by the language ex-
tension. For example, considering C++ as a language extension of C, C++
is upstream compatible in most implementations because C++ code can use
compiled C code, but the converse is not possible. Note that this option is
based on the notion of dependency, which may differ between languages.

Indirect downstream compatibilitymeans that only host language sources
that directly depend on language extension sources need to be recompiled
with the compiler of the language extension. This is a typical case for lan-
guage extensions that affect the signatures of language entities such as types.
For example, code that uses Genoupe-generated signatures indirectly, e.g. by
calling a Genoupe-generated method indirectly, does not have to be compiled
with Genoupe. However, code that uses Genoupe-generated signatures directly
should be compiled with Genoupe because only Genoupe can type check the
accesses to these signatures.
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b.cs

ordinary code

Fig. 1. The Genoupe compilation process.

Direct downstream compatibility means that host language sources can
depend on language extension sources directly and still be compiled with the
standard host language compiler. For example with Genoupe, the host lan-
guage sources can use the signatures that were generated with Genoupe and
still be compiled with the standard C# compiler. For this the generated sig-
natures need to have at least human-readable names, and at best names that
fulfill all the naming conventions that may apply for the generated types.

On the detailed technical level, the Genoupe solution of direct downstream
compatibility is implemented as follows: source code files written in Genoupe
have the name suffix .genoupe and are compiled to ordinary C# source files
with the same name but with a .cs suffix (see Fig. 1). Each time a generator
is applied with new arguments, new types are created, with unique names. If a
generator is applied more than once with the same arguments in a compilation
run, the corresponding code is generated only once.

One of the application scenarios of Genoupe is the generation of APIs, e.g.
for persistence frameworks and patterns. Naming conventions are very impor-
tant for these applications. For example, a persistence framework may have
a naming convention for the properties of data access layer classes that rep-
resent database table columns. Therefore we have chosen direct downstream
compatibility as the approach for the implementation and for the type sys-
tem. However, direct downstream compatibility means that the generator has
to produce string identifiers, and cannot make generated identifiers a priori
distinct from user-defined identifiers.

The possibility of generating arbitrary identifiers with generator expressions
brings about lexical problems. A generated identifier might not be unique,
e.g. it might clash with another identifier of a different definition in the same
scope, or with a keyword of the language. Furthermore, an identifier might be
malformed, i.e. not conform to the syntax of the language. These problems
can be avoided if we restrict the way identifiers are generated. An id genera-
tion scheme is a function that is applied during generation-time whenever an
identifier is generated.
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For example, a simple id generation scheme that is often used to distinguish
identifiers in libraries is a prefix id generation scheme. Whenever an identifier
is generated, this scheme checks whether the identifier clashes with any other
identifiers that are in scope so far. That is, it checks clashes with identifiers
of all inherited members, as well as with all identifiers that have already been
generated. Because id generation schemes operate during generation time, su-
perclasses that were unknown during generator definition time (“mixins”) are
known and can also be considered. If a clash is detected, the prefix id gener-
ation scheme adds a prefix to the generated identifier that makes it unique.
Clashes with keywords and malformed identifiers can be avoided in a similar
manner.

We have not elaborated on this aspect for several reasons. Enforcing a sin-
gle id generation scheme is an unacceptable restriction for Genoupe for two
reasons. First, by not enforcing a single id scheme we will still allow the gen-
erator designer to produce all the generator names necessary in the particular
application domain. An important application of Genoupe is to build gen-
erators that fulfill the naming conventions of particular frameworks. To give
an example that illustrates the language-independence of these questions, in
a Genoupe-style extension for Java we could generate Enterprise Java Beans
from a given class. The Enterprise Java Beans framework has naming conven-
tions that can be expressed as statically checkable rules. These rules require
the breakdown of identifiers, and this is the case with many naming con-
ventions. For example, the classic getter/setter naming conventions require
a breakdown of identifiers as well and therefore cannot be expressed on the
parser-level of language grammars; rather they go down to the level of lexical
analysis.

Secondly, there could be a plethora of possible naming conventions, and Genoupe
is intended to be able to cater for all of them. Therefore there can be no single
id generation scheme that gives us the flexibility to potentially produce all clear
human-readable names. Another reason that such an id scheme is uninterest-
ing is that the more elegant solution would be to circumvent the generation
of textual source code altogether. Hence the generated names would have an
abstract, inherently unambiguous syntax. This approach is discussed in the
following section.

5 Integrating Genoupe into the AP1 System

To be able to use a model-based representation, one needs tools that support
i) model-based storage and retrieval and ii) model-based editing of data. The
AP1 system [32] offers a model-based repository, which is based on the PD
model, and a generic editor, which can be used to edit any data in a model-
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Fig. 2. Screenshots of the generic editor of AP1, showing the tree view (left) and
the graph view (right).

based fashion. This repository supports additional functionality such as event
notification and management, and the generic editor provides a means for dis-
tributed synchronous collaborative work using multiple views. Figure 2 shows
two screenshots of the generic editor. On the left side, a tree view is shown,
which represents instances and roles as tree nodes. On the right side, a graph
view is shown, which represents the same data as the tree view. Using the
generic editor, users can edit data collaboratively, using different views. When-
ever a data element is changed in one of the views, corresponding changes oc-
cur in all the other views. The generic editor supports the invocation of typed
operations on the data.

Integrating the Genoupe concepts into the AP1 system is not difficult. In fact,
it simplifies the implementation of Genoupe due to AP1’s structured reposi-
tory and its notion of operations. The implementation of Genoupe as a textual
stand-alone precompiler and its integration into the AP1 system are illustrated
in Fig. 3. In this figure, data artifacts are represented as document shapes,
with a folded bottom right corner, and processing components as boxes.

In the precompiler implementation, the initial artifact is textual Genoupe
source code, as described in the previous sections. Before processing the gen-
erator code, the source code has to be scanned by a lexer and parsed into a
Genoupe abstract syntax tree (AST). This is a routine compiler construction
task [1], but there are pitfalls such as potential syntactical ambiguities that
have to be handled. The grammars of modern languages such as C# can be
quite voluminous. Consequently, the construction of a good lexer and parser
can consume a significant amount of time. The actual generation work is done
by the AST transformation component. This is essentially a tree parser which
takes the Genoupe AST as input, eliminates the Genoupe-specific tree nodes,
and adds appropriate C# tree nodes to the AST instead. It is the heart of
Genoupe, and specified on the relatively high level of typed, abstract syntax.
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Fig. 3. Implementation of Genoupe as a textual stand-alone tool (left) and integra-
tion with the AP1 system (right).

Consequently, the transformation steps can be formulated quite concisely. Fi-
nally, the C# AST has to be serialized by another tree parser, i.e. printed
back to a textual C# source code representation.

The integration of Genoupe into the AP1 system, as shown on the right side
of Fig. 3, eliminates the need for a Genoupe lexer and parser. As a platform
for model-based software development it is designed to deal with structured
data, such as ASTs, directly. The structure of a Genoupe AST can be refor-
mulated directly as a PD model, which can be managed in the repository.
Programming with Genoupe is done in a structured way, by editing instances
of that PD model, with tools such as the generic editor. This has advantages:
model-based editing is more robust than working with a textual represen-
tation because many invalid modifications can be ruled out on the level of
the user interface [15]. Furthermore, model-based editing benefits from typed
operations, such as typed copy&paste or search and replace.

Generation is implemented with an operation that performs the transforma-
tion between the Genoupe source code model and a C# source code model.
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This operation is essentially the same as the transformation component of the
stand-alone tool, with the difference that it is based on a PD model representa-
tion of the involved data. Just like Genoupe source code, C# source code can
be specified as data of an appropriate PD model. Another operation, which is
essentially the C# AST printer of the stand-alone tool, can be used to trans-
form the C# model data into a string containing corresponding textual C#
source code. As a result, C# code can also be managed using the repository,
developed with the help of structured tools such as the generic editor, and
exported for usage with textual tools such as compilers.

6 Language Independent Lessons Learned: Generators and Reflec-
tion

The motivation for the research presented here is not only to provide a work-
able powerful generation mechanism for the concrete language at hand, here
C#. We indeed use our generation mechanism to elucidate the interrelation
of two concepts, code generators on the one hand and reflection on the other
hand. The deeper conclusions of the research presented here are language inde-
pendent and the implementation presented here is a mature proof of concept
for these language-independent features.

Reflection is a language feature that allows a program to inspect code (intro-
spection), and in the most elaborate case to create new code (intercession).
From its definition it is obvious that reflection is relevant to the concept of
generators, especially for generators that are parametrized with code, i.e. typi-
cally take code and produce new code. On the other hand, although reflection
is a fascinating concept, in our view one of the important lessons that the
programming language community has learnt since the heydays of language
innovations is that we cannot simply use novelty as an argument for a new lan-
guage feature. Therefore it is justified to ask: what is reflection really needed
for, what is the best practice in using it for such purposes, and how can we
convince ourselves that the usage in these scenarios is safe and leads to un-
derstandable code? Reflection, more than perhaps many other technologies,
should immediately raise the spectre of obfuscation in the shape of meta-
confusion. Therefore this argument is very important. Naturally, the answers
to such questions cannot always be apodictic, but it is important to share
arguments within the community. This research, as much as it is a novel take
on generators, is also an attempt to characterize good practices for reflection.
In a way, for us this research is a basis for exploring the following hypothesis:
reflection should be used as a static mechanism for the generation of new code.
The usage of reflection that we will present here will indeed be, on the one
hand, very powerful in that it allows more than is easily doable with reflection
in many languages. On the other hand, the usage will be very controlled in
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that reflection only happens at a certain point in time, namely at generation
time of code.

Often reflection is primarily understood as the capability of reflection at run-
time. In the Genoupe framework, however, we consider reflection only at de-
velopment time at first. We use the term development time as a generalization
for compile time, to emphasize that the general concept behind Genoupe does
not rely on the use of compiler languages. As an aside: one of the achievements
of the increased interest in good software engineering practices is a consen-
sus that good testing is indispensable. Hence, a discrete point in time, the
shipment time after the test phase, has been established, independent from
the question of whether the language is a compiler or interpreter language.
As a consequence, there is a clearly defined development time, being the time
before shipment.

In a language, runtime reflection can be offered to varying degrees. The classic
concept of code generators is interesting for the concept of reflection because
of the following fact: the possibility of generators shows that for all open lan-
guages, complete development-time static reflection is possible, through the
notion of the parse-tree. This is a language-independent concept. The term
“open language” implies a subtle but unfortunately not completely theoretical
restriction: if the language is vendor-specific and can only be edited with pro-
prietary tools in practice, the above fact, that development-time reflection is
universally possible, is limited in its applicability. Examples of such languages
can be found in the area of desktop databases or other office applications as
well as in some modeling tool suites that do not follow open standards. This
is typically the case if artifacts of the language are not fully specified, or the
specification is not strictly implemented. This problem became quite relevant
with the proliferation of graphical tools. With the new trend to open XML
standards it might again be alleviated to some extent.

If we consider runtime reflection in a given language that has its own standard
reflection API, then it might well be that both kinds of reflection, introspection
as well as intercession, apply to only some of the code elements of a language.
In Java, for instance, the introspection through the java.lang.reflect pack-
age is limited roughly to the interface concepts in the language (which is more
than just the interface keyword – in fact, classes provide interfaces as well).
Our language extension serves the purpose of exploring a new programming
paradigm that uses reflection, but limits intercession to template-based gen-
eration. For introspection, interface introspection is sufficient for most of our
considerations.

A further thought that is important to us is that both of the following are
possible: development-time execution of generators as well as runtime execu-
tion of generators. The latter can be used to shed light on runtime reflection.
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Runtime reflection is chiefly necessary if a system supports hot deployment,
that is code is loaded at runtime that was not known and not available for
static analysis at development time (or at least at startup time). Another
term often used is mobile code. In fact both terms are equivalent from the
viewpoint taken here, but we prefer the term “hot deployment” because it
emphasizes the risks involved in loading code at runtime. We want to call the
hosting program the container. We consider each act of hot deployment as
an atomic act, and consider this a third type of time: hot-deployment time.
Batch development tools are amenable to automatization and can be used at
hot-deployment time. In UNIX, for instance, a make file could be executed at
hot-deployment time.

Hot deployment is actually always runtime intercession, even if it may look
different on a technology level, as in the case of the Java class loader. Con-
versely, we want to view runtime intercession always as hot-deployment. Since
runtime execution of generators is possible, and we deem generators a con-
ceptually preferable form of intercession, it suggests itself that we should cap-
ture applications of runtime reflection as invocations of runtime generators,
and that these invocations happen at hot-deployment time. In these cases,
the same intercession could have taken place at development time if the hot-
deployed code had been available. First, this idea offers the possibility of using
our Genoupe generator type system at hot-deployment time, which is why we
deem this chain of thought important. Secondly, this idea sheds light on the
question of why runtime intercession should be useful at all, apart from per-
haps performance arguments, and why a paradigm based on the eval-function
is not sufficient. In fact this shows a further application of generator type
safety: in our approach, containers that use hot deployment can be checked at
compile time, since this is the generator definition time for the hot-deployment
capabilities of the containers. The discussion of different types of time is rem-
iniscent of multi-level specialization [21]. However, our focus here is rather on
limiting the number of different points in time reflection can occur, instead of
providing an arbitrary number of them.

7 Related Work

Genoupe is an extension of genericity or parametric polymorphism found, for
example, in ADA or Java [5,6]. With parametric polymorphism it is possible
to program components that are uniformly reusable for many types. However,
these generic type parameterization mechanisms are at the same time type
abstraction mechanisms: the construction of the type cannot be exploited in
the parameterized software component – at most it can be exploited up to
a bound, known as bounded parametric polymorphism. Therefore it is useful
for container libraries, e.g. C++ Standard Template Libraries, but it is not as
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powerful as Genoupe.

The original C++ template mechanism does not allow for the enforcement of
properties for actual type parameters such as, for example, those supported by
the notion of bounded parametric polymorphism [8,42]. Ad-hoc solutions for
providing some level of concept checking for C++ templates, like specialized
macros [44] and static interfaces [33], have been generalized by the introspec-
tion library approach in [51]. This approach targets user-customized checks
for both compile-time adaptation and diagnostics.

The new C++ templates standard allows in principle Turing-complete meta-
programming with static and dynamic reflection in C++ [2], sufficient, e.g.
for an interface generator for a relational database [3]. It is still less powerful
than Genoupe; for example, it cannot generate function names dependent on
a parameter. It does not support any static notion of generator type safety;
type-checks are done with the ordinary C++ type system. Furthermore, a
template metaprogram may not terminate. The Turing-completeness makes
it impossible to analyze the generating templates exhaustively. The distinc-
tion between compile-time reflection and run-time reflection has been made
in linguistic reflection [47].

Aspect oriented programming aims at handling crosscutting concerns in pro-
grams. AspectJ [28] is a Java extension for aspect oriented programming,
which offers two approaches: dynamic and static crosscutting. Crosscutting
does not help us with type-dependent generative problems, e.g. the imple-
mentation of a transparent data-access layer. Static crosscutting allows us to
extend the signature of classes and interfaces, but not in an adaptive manner:
we can add a new method to a class from within an aspect – so-called member
introduction – but the method still has to be specified literally and cannot
be made dependent on some parameter. The generative approach to aspect-
oriented programming in [46] characterizes certain uniform patterns that arise
in using the aspect oriented style of inverting functional decomposition as
amenable to being handled by the incremental computation approach. Based
on this insight the approach establishes a behavioral semantics for generative
aspect-oriented features that are oriented towards finite differencing [41].

The concept of runtime reflection dates back to Lisp [45] and has been the
subject of major interest in the functional programming community. The
combination of parametric polymorphism with reflective features in Generic
Haskell [23,22] benefits from the theoretically well-understood type-system
of the host language. In the context of the object-oriented functional pro-
gramming language CLOS [29,19], a mature metaobject protocol has been
elaborated. In [50] CLOS is used to prove the value of metaprogramming
by embedding representations of common object-oriented design patterns [20]
into programs.
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Multistage programming [48,49,7] is an approach that focuses on runtime
program generation and execution. It is one approach in the general field
of metaprogramming [43]. It is a programming extension that allows the ex-
plicit timing of the execution of expressions. The programmer is supported by
constructs for partial evaluation and program specialization, whereas several
properties of runtime generation can already be ensured statically. Multistage
programming is thus a realization of non-transparent partial evaluation. An
implementation of the multistage programming approach is provided on top
of the object-based functional programming language O’Caml [31]. The lan-
guage Metaphor [35] results from extending the subset of an object-oriented
language like C# or Java by the multistage constructs of the functional pro-
gramming language MetaML [48,49], i.e. a construct for building represen-
tations of expressions, a construct for splicing code and a construct for run-
ning staged evaluated code. With its multi-staged language design Metaphor
achieves type-safe generation of code that makes use of the reflection system of
the base language. Multistage programming is primarily targeted at a different
concern than Genoupe, namely optimization of program execution. There is
a limited overlap with Genoupe, in that Genoupe allows some partial evalua-
tion as well. One of the main motivations of Genoupe is however the support
of generators that simplify the development of consistent libaries through its
direct downstream compatibility.

Jasper [36,37] is a reflective syntax processor for Java. It provides mechanisms
for static reflection. It does not follow the template approach; instead it allows
for metaprogramming through the extension/modification of the syntax pro-
cessor itself [12] – an architecture that is known as open compiler. It supports
universal metaprogramming and as such is more powerful, but less understood.

Some approaches use model checking in order to determine whether program
code is well-typed. SafeGen [24] uses a restricted language based on predicate
logic in order to generate program code, and checks safety assumptions such
as uniqueness of identifiers using a standard model-checking tool. The funda-
mental idea of Genoupe to apply reflection at compile time has been taken
up in the community. CTR [17] proposes a different solution for addressing
well-formedness aspects through effectively imposing more restrictions on pa-
rameters. CJ [26] focuses on code generation that is dependent on a condition.
MorphJ [25] uses control structures in the generator code similar to Genoupe,
but for the selection of subsets of collections, MorphJ uses a pattern match-
ing approach, while Genoupe also allows the use of expressions. Cayenne [4]
is a functional language that supports the concept of term-dependent types.
This makes it possible to describe types with Turing-complete, parametrized
terms, with parameter values that may change during runtime and are stati-
cally unknown. Cayenne’s type system tries to determine whether the terms
that describe types will always result in types that are valid for the given
program. A drawback of model checking approaches is that they usually deal
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with problems that are generally undecidable, such as equivalence of program
terms. This means that the type checker potentially never terminates. Even if
it does, the complexity of model-checking is generally exponential, which rules
out efficient use with very large programs.

There are other approaches for model-based generation of source code and
other artifacts. For example, Extensible Stylesheet Language Transformations
(XSLT) [27] makes it possible to define a translation from an XML source
schema to a target XML schema, or a different textual document type. XSLT
can perform context-free pattern matching, similar to tree parsers or template
processors, as well as more complex transformations; it is Turing-complete.
Query/View/Transformation [39] makes it possible to define transformations
between XML Metadata Interchange (XMI) [40] documents, which are com-
monly used to encode UML model data. Similar to XSLT, QVT specifies pat-
tern matching mechanisms as well as a Turing-complete imperative language.
It is possible to use XSLT or QVT in order to generate source code, but they
do not provide any support for generator type safety. Both specifications are
large and complex, so it would not be easy to formulate appropriate type rules
for them. Furthermore, their Turing-completeness would render type checking
undecidable, unless sensible restrictions are applied.

8 Conclusion

We have presented a concept for generative programming that integrates re-
flection by means of a metalanguage into a template mechanism reminiscent of
genericity. Genoupe is our implementation of this concept for the host language
C#. It can be used to solve some common problems of generative program-
ming and offers advantages compared to other languages with respect to the
degree of integration of the runtime and the metalanguage and safety:

• Genoupe places the concept of generators into the language instead of re-
lying on an external tool driven approach, thus minimizing the interface to
the user and avoiding potential errors.

• It fosters a restricted and safe use of both generation and reflection, by
limiting reflection to compile-time reflection, and limiting generation to
generator-level code blocks that are integrated with the code structure of
the host language.

• It integrates well with an object-oriented host language and can be seen as a
generalization of genericity. It uses similar syntax for runtime and generator
code, which makes it easier to use and understand.

• A wide range of common applications of generative programming can be
addressed.

• Genoupe provides a much stronger motivation for parameterized types than

60



parametric polymorphism. Parametric polymorphism can often be replaced
by type inference. Genoupe-style parameterized types can change the type
signature depending on the parameters, and can provide direct downstream
compatibility. This is useful, for example, for the generation of APIs.

• Genoupe offers a particular high degree of static safety for reflection by
means of a type system that is able to detect generator type errors.

The Genoupe type system supports a particularly unrestricted generator lan-
guage: arbitrary C# methods can be used in a generator. To ensure generator
type safety, Genoupe uses a memoization approach, making sure that struc-
turally equivalent generator expressions yield the same value. Furthermore,
Genoupe uses id schemes to cope with clashes of generated identifiers. The
type system introduces new kinds of elements into the environment to de-
scribe important properties of generator variables and generated definitions.
By accessing generated types with generator expressions, the type system is
able to check whether a generated type is accessed correctly.

Using reflection in generators introduces an interesting shift from generators
based on classic compiler-compiler techniques. The latter often use a formal-
language approach in every generator to parse generator input. In contrast,
by using reflection metaobjects can directly be used as generator parameters.
Hence using reflection represents a shift from a language-based approach to a
model-based approach to generative programming.
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