
Automated Reverse Engineering of Hard-Coded GUI Layouts

Christof Lutteroth

Department of Computer Science
The University of Auckland

38 Princes Street, Auckland 1020, New Zealand
Email: lutteroth@cs.auckland.ac.nz

Abstract

Most GUIs are specified in the form of source code,
which hard-codes information relating to the layout
of graphical controls. This representation is very low-
level, and makes GUIs hard to maintain. We sug-
gest a reverse engineering approach that is able to
recover a higher-level layout representation of a hard-
coded GUI using the Auckland Layout Model, which
is based on the mathematical notion of linear pro-
gramming. This approach allows developers to use
existing code and existing tools, as well as specifica-
tions on a higher level of abstraction. We show how
existing hard-coded GUIs can be extended to support
dynamic layout adjustment with very little effort, and
how GUIs can be beautified automatically during re-
verse engineering.

Keywords: GUI layout, linear constraints, reverse en-
gineering, beautification

1 Introduction

Most modern applications have graphical user in-
terfaces (GUIs). It is an accepted fact that good
GUIs are easier to use for casual users than textual
command-line interfaces. However, development of
GUIs can be much more difficult. First of all, a pro-
grammer has to choose a GUI toolkit, i.e. a library
that implements the graphical controls of a GUI.
Then, the programmer needs to access that toolkit
using a supported programming language. The choice
of a toolkit is influenced by many factors such as the
operating system the application should run on, the
graphical desktop environment that should be used,
the preferred programming language, the popularity
of and support for that toolkit, its cost, maintain-
ability, flexibility and ease of use. As a result, there
are many different GUI toolkits, accounted for by the
different combinations of the aforementioned factors.

Unfortunately, all these GUI toolkits have just as
many differences as they have commonalities, and
the differences are usually much subtler than the
commonalities. Such differences include differences
in the visual appearance of controls, differences in
their behavior, and most of all, differences related to
GUI layout. Modern GUI toolkits define components
that support the arrangement of controls in a GUI,
which are known as layout managers or layout en-
gines. There is no accepted standard for layout man-
agers, and the mechanisms and interfaces of different

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the 9th Australasian User Interface Confer-
ence (AUIC2008), Wollongong, NSW, Australia, January 2008.
Conferences in Research and Practice in Information Technol-
ogy, Vol. 76. B. Plimmer, G. Weber, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

layout managers usually differ significantly enough to
confuse and hamper developers.

In (Lutteroth & Weber 2006) we have introduced
a layout model that employs ordinal and linear con-
straints in order to specify a GUI layout. It has been
developed further since to use the mathematical opti-
mization technique of linear programming, and is now
called the Auckland Layout Model (ALM). With lin-
ear programming as a formal basis, ALM allows GUI
designers to specify GUIs in an exact, formal manner
close to well-known mathematical concepts, so that
specifications are also meaningful outside the context
of a particular layout manager.

Novel techniques such as ALM are interesting from
an academic perspective, and would be useful from a
practical perspective. But as a matter of fact, most
developers do not use them. The majority of GUIs
is hard-coded, i.e. defined on a very low level of ab-
straction through source code, and not specified us-
ing constraints or other abstract formalisms. Com-
mon development environments such as Visual Studio
and Eclipse have visual GUI design tools, which allow
developers to specify GUIs in a WYSIWIG fashion.
The output of such tools is in most cases source code,
mostly with no or very poor support for dynamic GUI
layout, i.e. support for adjusting a GUI to a chang-
ing environment such as a new window size or screen
resolution.

The reverse engineering approach presented in
this paper was developed with the intention to al-
low developers to enjoy the benefits of an expressive,
constraint-based layout model such as ALM, without
having to change the way they usually create their
GUIs. That is, developers can use design tools that
generate hard-coded GUIs, and still use ALM with
only minimal modifications. The reverse engineer-
ing approach makes it possible to efficiently recover
a higher-level specification from a hard-coded GUI,
and immediately use that specification for dynamic
layout.

Section 2 describes the widely-used approach of
hard-coding GUIs with a static layout, and points
out its shortcomings. Section 3 outlines the main
features of the ALM. Section 4 describes the reverse
engineering algorithm that recovers an ALM specifi-
cation from a hard-coded GUI, gives an example, and
discusses some of its advantages. Section 5 describes
how the reverse engineering algorithm can support
beautification of GUIs. Section 6 discusses related
work, and Sect. 7 concludes the paper.

2 Hard-Coded GUIs

Hard-coded GUIs are specified in the form of source
code. The code creates controls, sets properties of
each control such as location, size and visual appear-
ance, and sets up the containment hierarchy. Devel-
opers either write the code by themselves, or more



commonly, use GUI design tools. Such tools usually
offer a graphical WYSIWIG interface with direct ma-
nipulation (Hutchins et al. 1985), which makes the
specification of GUIs much more intuitive. However,
their output consists usually of generated source code,
so it is on the same low level as hand-coded GUIs.

Figure 1 shows the GUI designer of the MS Visual
Studio IDE, which is a typical example of GUI design
tools. The panel in the middle contains a represen-
tation of the GUI that is edited. It shows the GUI
just as it will look during runtime, with the difference
that GUI controls can be selected, moved and resized
by clicking and dragging them. In the left panel, a
list of all available control types is shown, and drag-
ging a control type entry into the GUI results in the
creation of a new control. The right panel shows the
properties of the control that is currently selected in
the GUI, and allows developers to type in property
values. While the GUI is modified, the IDE auto-
matically generates corresponding source code. For
example, the C# code that is generated for the but-
ton control currently selected in Fig. 1 includes the
following lines, which set the control’s position, size
and text label:

1 this.button2.Location =
2 new System.Drawing.Point(13, 52);
3 this.button2.Size =
4 new System.Drawing.Size(82, 36);
5 this.button2.Text = "button2";

This snippet of code expresses one of the biggest
drawbacks of common hard-coded GUIs: the lack
of dynamic layout. Positions and sizes of controls
are hard-coded into the application, using pixels as a
unit. However, the environments that most applica-
tions will be executed in during their life cycle differ:
an application may be executed on an old PC with
medium-resolution graphics, on a high-end worksta-
tion with a huge screen, or on a PDA with an ex-
tremely small display. Furthermore, the environment
of a running application may change: users may want
to change the amount of screen real-estate that is al-
located to a GUI by changing the size of its window.
Changes affecting the GUI may also happen within
an application: for example, the content shown in a
control may change so that its size needs to be ad-
justed. Such adjustments do usually not happen in
a hard-coded GUI, or have to be implemented manu-
ally, which is cumbersome. Some GUI design tools
allow a limited degree of automatic adjustment to
window resizing, but support for this is rather crude
and often requires additional work.

Most GUI design tools provide some support for
round-trip engineering, which means that the source
code of the application can be changed while using
the GUI design tool. This is usually realized with
protected regions: the parts that are generated by
the tool have to be shunned when editing the source
code. Manual changes made in a protected region
may interfere with the tool and either render the tool
dysfunctional or get overwritten by the tool. As a re-
sult, it is not easy to mix generated and hand-written
GUI code. For example, when using an algorithm to
create and set up a GUI, it is effectively not possible
anymore to use a GUI design tool.

In general, on the level as shown in the source
code snippet, GUI specifications are hard to main-
tain. The level of abstraction is low since the overall
structure of the GUI is not specified explicitly, but
emerges implicitly as the result of the static positions
and sizes of the individual controls. Small changes
in the GUI usually make many other changes neces-
sary: for example, after changing the size of button2
in Fig. 1, we would most likely have to change the po-
sitions and sizes of all the other controls in order to

make the GUI look right. Other disadvantages of the
representation of GUIs as source code are discussed
in (Draheim et al. 2006).

3 The Auckland Layout Model (ALM)

The idea of the ALM is to provide abstractions for
common GUI concepts to make the specification of
adaptable GUIs easier. Instead of just capturing a
single static configuration of controls, as is frequently
done in hard-coded GUIs, the invariants of a GUI are
specified. Using the apparatus of linear programming,
those invariants can be used as constraints in an opti-
mization process that results in the calculation of an
adapted layout whenever circumstances change. The
underlying mathematical notions make ALM specifi-
cations exact and give them meaning outside of the
context of a particular GUI toolkit.

ALM is not the first approach to employ linear
programming for GUI layout, and many studies have
shown that linear programming is a viable and suit-
able option for this domain, e.g. (Marriott & Chok
2002, Badros et al. 2001, Borning et al. 1997, Hosobe
2000, Bill et al. 1992). It has been shown that linear
programming is expressive enough to model the con-
straints that are required for GUIs, and that is fast
enough to be used for near real-time rendering. It has
even been applied to more complex layout problems
such as graph and tree layout.

The problem with bare linear programming is the
low level of abstraction of specifications, which makes
is very cumbersome and error-prone to specify com-
plex GUIs. Most of the aforementioned earlier ap-
proaches have dealt with GUI layout from a very
formal, research-oriented perspective, often with a
focus on the performance and capabilities of con-
straint solving, therefore bare linear programming
was enough. ALM is different because its main focus
is the usability from the perspective of the developer.
In order to improve usability, ALM offers different
layers of abstraction on top of bare linear program-
ming that make it possible to specify the invariants of
typical GUIs more conveniently. In the following, two
of the main features of ALM are described: tabstops,
areas and linear constraints.

3.1 Tabstops

The basic abstraction used in ALM is a tabstop. A
tabstop represents a position in the coordinate sys-
tem of a GUI. An x-tabstop represents a position on
the x-axis and a y-tabstop a position on the y-axis.
All positions and sizes in a layout are defined symbol-
ically using tabstops as variables, and actual values
are assigned to the tabstops during the layout process.
In other words, the tabstops form a grid in which all
the controls of a GUI are aligned.

3.2 Areas

The controls in a GUI are organized in rectangular
areas, therefore ALM provides an abstraction that
allows developers to specify such areas conveniently.
An area a has the following form:

a =def (x1, y1, x2, y2, content, sizemin, sizepref , sizemax)

x1, y1, x2, y2 are tabstops that delimit the area on its
four sides. content holds the control that is shown in
the area. sizemin, sizepref , sizemax are the minimum
size, preferred size and maximum size of the area.

Specifying a set of areas A implicitly defines a par-
tial order on all x-tabstops and a partial order on



Figure 1: Editing GUIs in Visual Studio.

all y-tabstops. The partial orders can be further ex-
tended with additional ordinal constraints. This in-
formation is used to define the overall tabular struc-
ture of a GUI. In (Lutteroth & Weber 2006) it was
shown that partial orders have advantages over total
orders, which are used by most approaches for tabu-
lar layout. Partial orders avoid over-specification and
leave more flexibility to the layout manager, enabling
layouts that adapt better to content size.

The different size parameters allow developers to
describe the invariants governing the dynamic resiz-
ing behavior of an area. sizemin and sizemax define
the range of possible sizes; sizepref specifies a size
that is regarded as optimal with regard to the con-
trol’s content and function. The layout manager tries
to respect an area’s preferred size as much as possi-
ble, using the weighted cost minimization approach
of linear programming in order to balance conflicting
constraints. A constraint such as an area’s preferred
size can be given priority over others by adjusting ad-
ditional cost parameters. All size-related parameters
are optional.

3.3 Linear Constraints

A layout with x-tabstops x0, . . . , xm, m ∈ N, and y-
tabstops y0, . . . , yn, n ∈ N can define a set C of linear
constraints with:

C ⊆ { a0x0 + . . . + amxm + b0y0 + . . . + bnyn ⊙ c

| a0, . . . , am, b0, . . . , bn, c ∈ R

∧ ⊙ ∈ {≤, =,≥}}

It is possible to use different units for different con-
straints, e.g. hardware-dependent units such as pixels
or absolute units such as cm. During the layout pro-
cess, all values are transparently converted to pixels,
using the properties of the active display. In the fol-
lowing we will examine different types of linear con-
straints, and describe how these can be useful for GUI
layout. We will only consider equalities, but the con-
cepts can be transferred to inequalities quite easily.

Absolute constraints can be used to place tabstops
at particular positions, or set the distance between
tabstops to a fixed value. For example, if we want to
set x-tabstop x3 at position 50, we would use a con-
straint x3 = 50. In order to set the width between

two tabstops x1 and x2 to 100, we would use a con-
straint x2 − x1 = 100. Such constraints are an easy
way to specify the properties of a GUI that do not
change dynamically. However, absolute constraints
should be used with care because they may lead to
over-constrained specifications that do not have a fea-
sible solution.

Relative constraints describe the position of tab-
stops, distances or proportion relative to others. This
is useful in order to adapt the layout to changing cir-
cumstances, such as GUI display size or resolution
changes. For example, one might want to position an
x-tabstop x2 exactly between two other x-tabstops x1

and x3. Let us assume that x1 ≤ x3, then the con-
straint can be expressed as follows:

x2 − x1 = x3 − x2 ⇔ −x1 + 2x2 − x3 = 0.

Similarly, we can center an area that is delimited by
x-tabstops x2 and x3, x2 ≤ x3, horizontally between
two other x-tabstops x1 and x4, x1 ≤ x4:

x2 − x1 = x4 − x3 ⇔ −x1 + x2 + x3 − x4 = 0.

We only need to make sure that the area we want to
center does not exceed the boundaries of x1 and x4

by specifying that x1 ≤ x2 or x3 ≤ x4. If we want the
width between x-tabstops x1 and x2 to be twice as
much as the the width between x3 and x4, we would
use the following constraint:

x2 − x1 = 2(x4 − x3)⇔ −x1 + x2 + 2x3 − 2x4 = 0.

Since a constraint can contain x-tabstops as well as y-
tabstops, it is also possible to specify the aspect ratio
of an area. For example, we could specify an aspect
ratio of 16:9 for an area (x1, y1, x2, y2, moviepanel)
containing a control for displaying a video:

x2 − x1

y2 − y1

=
16

9
⇔ −x1 + x2 +

16

9
y1 −

16

9
y2 = 0.

When working with many hard constraints, i.e.
constraints that have to be satisfied, it is easily possi-
ble to end up with a specification that contains con-
flicting constraints and is thus infeasible. Soft con-
straints make it possible to specify constraints that
may not be satisfied fully if circumstances do not per-
mit so. They are a common technique to deal with



over-constrained specifications (Meseguer et al. 2003,
Hosobe & Matsuoka 2003), and have been used for
GUI layout before (Badros et al. 2001). ALM allows
developers to specify soft constraints with cost pa-
rameters that determine how easily a soft constraint
gives way to other soft constraints. This can be used
in order to define constraint hierarchies, i.e. soft con-
straints that are ranked according to their impor-
tance.

4 Reverse Engineering ALM Specifications

Algorithm 1 describes how a static, hard-coded GUI
can be reverse engineered to an ALM layout specifi-
cation. Function RecoverLayout is invoked after the
GUI has been set up in an application and gets the
parent control of the GUI as an argument. Its output
is a layout specification (A, C) consisting of a set of
areas A containing the child controls of parent and
a set C of linear constraints. Since the the GUI is
analyzed after it has been set up by the application,
the approach will work even if a complex algorithm
has been used to set it up. All it needs to do is read
the actual positions and sizes of the controls in the
GUI.

Line 2 creates a new, empty layout specification.
In lines 2 and 4 two important data structures are
initialized, which are used to map positions in the
GUI to tabstops in the layout specification. xtabs is
a function that maps x coordinates to x-tabstops. Ini-
tially, it contains two elements that map the leftmost
x-position to an x-tabstop xleft, and the rightmost
x-position to an x-tabstop xright. Analogously, func-
tion ytabs maps y coordinates onto y-tabstops. Both
functions can be implemented efficiently using search
trees.

The for-loop starting at line 5 loops through all
the controls in the GUI. For each control c, a new
area anew that contains c is created and added to the
layout specification. The following conditionals are
used to find suitable tabstops for each of the sides of
anew. In line 8 we test if the leftmost x-coordinate
c.left of c is contained in the domain of xtabs, i.e.
if this coordinate can be mapped to an existing x-
tabstop. If this is the case, that x-tabstop is used
to specify the left boundary of anew. If no suitable
existing x-tabstop is found, a new x-tabstop xnew is
created and used to specify the left boundary of anew.
Function xtabs is extended so that c.left maps to
xnew . We proceed analogously to find tabstops for
the three remaining sides of anew.

Lines 32-37 indicate how heuristics can be used to
choose size parameters for anew. In this illustration
we use only a very simple heuristic: if the informa-
tion content of control c is static, i.e. if it does not
change, we assume that the developer already hard-
coded a suitable size and keep the size constant by set-
ting anew.sizemin = anew.sizemax = c.size. Whether
the content of a control is static depends on its type:
as a well-established convention, types such as but-
tons and labels are used to represent unchanging in-
formation to the user, whereas controls such as text
boxes and list boxes often have a variable information
content. For controls with potentially variable infor-
mation content, we simply set anew’s preferred size.
More on this in Sect. 4.3.

In lines 38 and 39 predicates are set on the tab-
stops that are used to specify anew’s right and bot-
tom bound: anew .right.leftlink expresses that an
order is imposed between anew.right and another
x-tabstop to the left of it. The order is imposed
by area anew, which implicitly contributes an ordi-
nal constraint anew.left ≤ anew.right. Analogously,
anew.bottom.toplink expresses that an order is im-

Algorithm 1 Reverse Engineering of a GUI.

1: function RecoverLayout(Control parent)
2: (A, C): Layout = (∅, ∅)
3: xtabs: (Z→ XTabs)

= {0 7→ xleft, (parent.width− 1) 7→ xright}
4: ytabs: (Z→ Y Tabs)

= {0 7→ ytop, (parent.height− 1) 7→ ybottom}
5: for all c: Control ∈ parent.children do
6: A← A ∪ {anew}
7: anew.content← c
8: if c.left ∈ dom(xtabs) then
9: anew.left← xtabs(c.left)

10: else
11: anew.left← xnew

12: xtabs← xtabs ∪ {c.left 7→ xnew}
13: end if
14: if c.right ∈ dom(xtabs) then
15: anew.right← xtabs(c.right)
16: else
17: anew.right← x′

new
18: xtabs← xtabs ∪ {c.right 7→ x′

new}
19: end if
20: if c.top ∈ dom(ytabs) then
21: anew.top← ytabs(c.top)
22: else
23: anew.top← ynew

24: ytabs← ytabs ∪ {c.top 7→ ynew}
25: end if
26: if c.bottom ∈ dom(ytabs) then
27: anew.bottom← ytabs(c.bottom)
28: else
29: anew.bottom← y′

new
30: ytabs← ytabs ∪ {c.bottom 7→ y′

new}
31: end if

32: if c.type ∈ {Button, Label, . . .} then
33: anew.sizemin ← c.size
34: anew.sizemax ← c.size
35: else
36: anew.sizepref ← c.size
37: end if

38: anew.right.leftlink← true
39: anew.bottom.toplink← true
40: end for

41: for all (xposi, xi): Z×XTab
∈ sort(xtabs− {0 7→ xleft}) do

42: if ¬xi.leftlink then
43: C ← C∪{xi−xi−1 = xposi−xposi−1}
44: end if
45: end for
46: for all (yposi, yi): Z×YTab

∈ sort(ytabs− {0 7→ ytop}) do
47: if ¬yi.toplink then
48: C ← C ∪{yi−yi−1 = yposi−yposi−1}
49: end if
50: end for
51: return (A, C)
52: end function



posed between anew.bottom and another y-tabstop
above of it. Both predicates are used in the last
part of the algorithm, which inserts constraints for
the margins between the controls.

After the first loop, in lines 41-45, we iterate
through all the elements of function xtabs, exclud-
ing the element for the leftmost x-tab. The elements
are iterated through in ascending numerical order of
x-coordinates. If xtabs was implemented as a search
tree, then the elements are already represented in the
right order so that no additional effort is necessary.
For each element (xposi, xi), we test if the tabstop xi

has been connected to a previous tabstop by a con-
straint, which is expressed by xi.leftlink. If this is
the case, it means that xi serves as the right boundary
of an area in A. If it is not the case, it means that to
the left of xi there is a margin separating areas, and
we add a constraint to C that makes this margin part
of the specification. The constraint sets the distance
between xi and its predecessor to the distance as it is
set in the hard-coded GUI. In lines 46-50, we proceed
analogously for the elements in ytabs.

The algorithm is very fast in practice and can be
invoked whenever GUI has been changed by the ap-
plication. This makes it possible to reverse engineer
a new layout specification if, for example, the appli-
cation has added new controls to the GUI or changed
existing ones. As we will see in the following sec-
tion, after reverse engineering the ALM layout man-
ager enables the GUI to adapt its layout dynamically
to changes such as a different window size.

4.1 Example

In this section we want to demonstrate how easy this
reverse engineering technique makes it to use ALM
with an existing hard-coded layout. Let us consider
the example GUI in Fig. 1. In order to use ALM,
only a few lines of source code have to be added to
the definition of the parent control of the GUI. In
our example, the parent control is defined by a class
Form1, which represents the application window:

1 public partial class Form1 : Form
2 {
3 ALM.ALMEngine le =
4 new ALM.ALMEngine();
5
6 public override
7 LayoutEngine LayoutEngine
8 {
9 get { return le; }

10 }
11
12 public Form1()
13 {
14 InitializeComponent();
15 }
16 }

Lines 3-10 were added to the existing code. No
existing line had to be modified. Lines 3 and 4 add a
member variable le to the class that contains an ALM
layout manager object. Lines 6-10 overwrite the get-
ter function for property LayoutEngine, which con-
tains the layout manager used for a control. Instead
of returning the default layout engine that does not
perform any layout at all, the ALM layout manager
object is returned.

Whenever layout parameters such as window size
change, the layout manager is invoked and can adapt
the GUI. Figure 2 illustrates how the GUI is adapted
for different window sizes. As specified in Algorithm
1, the controls with constant visual information con-
tent, i.e. the two buttons, keep their initial dimen-

sions. The controls with inherently variable informa-
tion content, i.e. the text box and the list box, adjust
their sizes to the available space. When shown ini-
tially, the layout of the GUI looks exactly as that of
the hard-coded GUI.

4.2 Elimination of Redundancy

The recovered ALM specification is more abstract
than the hard-coded specification not only because
of the differences in representation or the information
that is gained through the use of heuristics. In ad-
dition, the reverse engineering process eliminates re-
dundancy in the layout specification: instead of spec-
ifying all locations and sizes of controls separately,
information about their alignment is recovered and
expressed in a non-redundant form:

• If several controls share a boundary, instead of
repeating the numerical coordinate in every con-
trol, it is expressed once as a tabstop and all cor-
responding areas are just referring to that tab-
stop.

• If several controls are separated on one side from
other controls by the same margin, instead of
expressing that margin as a difference in the po-
sition of every control, it is represented once as
a linear constraint that specifies a distance be-
tween two tabstops.

The higher level of abstraction has clear benefits.
The amount of data is reduced in favor of a repre-
sentation that captures the relations present in the
layout. This makes layout specifications much easier
to read and understand. Furthermore, if information
that is shared by several entities is specified once at
a single place, it is much easier to maintain. For ex-
ample, global margins can be changed by modifying
small number of linear constraints instead of a large
number of control positions.

4.3 Heuristics for Resizing Behavior

In Algorithm 1 we have used a simple heuristic for
choosing appropriate size parameters for areas. If a
control type is used to represent a static information
content, then the size of a respective control is kept
static as well. For example, buttons contain usually
only a simple textual label or sometimes an image.
Neither the label nor an image change during run-
time because this would confuse users: the relation
between the label or image, the location and the func-
tion of a button is kept unchanged to help users invoke
program functions more easily. The size of a button
also depends on usability considerations such as Fitts’
law (MacKenzie 1992), which predicts that the speed
a control can be accessed with increases with its size.
This means that controls cannot be arbitrarily small,
and that more important controls are usually assigned
a larger size. However, from a certain size onwards
a control is conveniently accessible, and enlarging it
may not be very useful anymore. The heuristics of
keeping the size of static controls constant makes the
reasonable assumption that an adequate size was as-
signed to each static control in the hard-coded GUI.
It is not possible to validate this assumption auto-
matically because of the semantic nature of factors
such as importance of a control, but usually this un-
necessary. As we will see later on, it is still possible
to change ALM’s parameters manually for a reverse
engineered layout. Other types of controls that can
be considered static are groups of check boxes, radio
buttons, drop-down boxes and passive controls such
as images or textual labels.



Figure 2: Resizing a GUI after reverse engineering.

Examples for control types with varying informa-
tion content are list boxes, text boxes, drawing panels
– all controls that an application or a user can poten-
tially add new data to. In order to accommodate for
this variation of size, and to use additional free space
for user input, which has to be considered as valu-
able, the size of such controls is held flexible. The
layout manager adjusts those components taking into
account their preferred size. Some GUI toolkits pro-
vide functions that calculate a preferred size based on
the content of a control. If such functionality is avail-
able, it can be used to set the sizepref parameter of
an area. If such information is not given by a toolkit,
we can implement such functions by ourselves. Algo-
rithm 1 uses a very simple approach that sets sizepref

to the size hard-coded into the GUI. If the hard-coded
GUI chooses the size of a control appropriately, which
is a reasonable assumption, then the value of sizepref

will be suitable as well.
Simplistic heuristics such as the ones used in Al-

gorithm 1 are good for illustration purposes, but need
to be refined. For example, if the list box in the
bottom-left corner of our example was replaced by
a static control, say a button, then the height of the
GUI would remain constant as the height of all the
buttons and their vertical margins. In order to pre-
vent such a situation, soft constraints have to be used.
The basic idea is that hardly any hard constraints are
used at all, but instead the invariants of areas and
margins are expressed with soft constraints that can
be violated with differing degrees of ease.

As mentioned in Sect. 3.3, soft constraints have
cost parameters that determine how easily they can
be violated. A good heuristics for resizing behav-
ior has to choose such cost parameters for all size
constraints. A simple choice for cost parameters are
penalty coefficients that determine how strongly a
violation adds to the value of the linear program-
ming objective function. It is possible to set differ-
ent penalty coefficients for positive and negative con-
straint violation, as described in (Badros et al. 2001).
Penalty coefficients make heuristics possible that set
how easily an area or a margin can be expanded, and
how easily it can be compressed. Important controls
can be made hard to compress, but easy to expand.
Unimportant controls and margins can be made to
give way very easily. Constraints that set a healthy
minimum or maximum size for an area can be config-
ured so that they are only violated in extraordinary
circumstances.

In order to choose adequate heuristics, user in-
terface models such as (Parush et al. 1998) can be
applied. This makes it possible to determine cer-
tain layout parameters automatically on the basis of
model predictions. Good models are ones that were
validated empirically, i.e. it was tested whether the
model is able to make good predictions with a certain
confidence. Some models such as the metric for lay-
out appropriateness presented in (Sears 1993) require

additional information about the tasks that are sup-
ported by a user interface. Such information could be
provided manually, or could be reverse engineered as
well to a certain degree.

4.4 Refinement of Recovered Layouts

ALM specifications can be further refined, i.e. ex-
tended and/or changed after reverse engineering.
This can either happen by refining a recovered ALM
specification offline and using it to define the layout of
a GUI statically, or by refining the recovered layout
of a GUI dynamically. In the case of static refine-
ment, developers would reverse engineer a specifica-
tion, edit it possibly with tool support, and then use
it as explicit input for a layout manager. In the case
of dynamic refinement, reverse engineering of a hard-
coded GUI and refinement would both take place dur-
ing runtime. Static refinement is more thorough and
a more structured approach when dealing with large
refinements, whereas dynamic refinement can be more
time efficient for smaller changes. In the following, we
want to briefly consider dynamic refinement, which is
more challenging.

In order to make dynamic refinement possible, the
ALM specification recovered from a hard-coded GUI
is accessible in a structured manner during runtime.
Not only can it be introspected, but also changed and
extended. For example, the following changes to the
constructor of Form1 modifies the recovered layout so
that the margin between the two buttons is omitted:

1 public Form1()
2 {
3 InitializeComponent();
4 le.RecoverLayout(this);
5 ALM.LayoutSpec l = le.LayoutSpec;
6 l.AreaOf(button1).Bottom
7 = l.AreaOf(button2).Top;
8 }

Line 4 explicitly invokes the reverse engineering pro-
cess, so that the recovered ALM specification can be
accessed in line 5. Line 6 and 7 use a method AreaOf
to get the areas corresponding to particular controls
in the GUI, and access their tabstops accordingly.

5 Beautification

It is possible to extend the reverse engineering algo-
rithm so that the recovered layout is beautified ac-
cording to some criteria. In the following several ex-
tensions for beautification are discussed.

5.1 Fuzzy Alignment

When designing a GUI with a WYSIWIG tool, it
is very common that controls are only imperfectly
aligned to each other due to imprecisions of human



psychomotility. A control might just be misplaced by
a single pixel, and the deviation might only be visible
under closer observation. Small misplacements can
easily be corrected by modifying Algorithm 1 slightly.
Only the conditions of the if-statements in lines 8-31
have to be changed: instead of testing if an exact co-
ordinate is already mapped to a tabstop, we test if
the coordinate is close to a coordinate that is already
mapped. In line 8, for example, we would test if

xpos− ǫ ≤ c.left ≤ xpos+ ǫ with xpos ∈ dom(xtabs).

That is, we allow for a degree of fuzziness ǫ that de-
termines how far a control can be misplaced and still
be aligned to the closest mapped coordinate. This
can be done very efficiently if we implemented, as
suggested, the function xtabs and ytabs with search
trees. One can determine which coordinate in the
tree comes closest to a given search key by descending
from the root to the level of the leaves and comparing
adjacent leaf nodes. A similar approach can be taken
to align controls to a given artificial grid.

5.2 Standardized Margins

Similarly to the alignment of controls, standardized
sizes of margins are considered as aesthetically pleas-
ing. For example, if the left margin between the bor-
der of a window and its controls has a different size
than the right margin, the GUI would have an un-
balanced look. Similar effects are caused by differing
margins between controls.

Algorithm 1 can be adjusted to automatically set
the widths and heights of margins to standard values.
Margins are added to a specification in lines 43 and
48 in the form of absolute linear constraints. In the
original version, the distance between the tabstops
delimiting the margin is set to the distance in the
hard-coded GUI. This can be easily replaced by a
standard value dmargin so that the constraint in line
43, for example, would simply look like this:

xi − xi−1 = dmargin

Furthermore, we can differentiate the margins be-
tween the window boundaries and controls from the
margins between controls. For example, a GUI de-
signer might want to eliminate all margins between
window boundaries and controls to save valuable
screen space. This can be achieved by treating the
first and the last elements of the lists that are used in
the loops in lines 41 and 46 different from the other
elements.

5.3 Standardized Sizes

A GUI designer might want to give similar controls
the same size. Same heights within a row of controls
and same widths within a column of controls is al-
ready enforced through alignment, but a GUI may
look more appealing if, for example, the controls in
the same column have also the same heights. This
can be achieved by modifying lines 32-37 so that the
size properties of areas with similar controls are set
accordingly. The set A of all recovered area specifi-
cations can be accessed to find an area that matches
the area anew currently being processed, and use its
size parameters for anew. Similarity of areas can be
determined, for example, by looking at the type of the
contained control, its content and proximity. When
dealing with a large number of controls, the matching
of areas can be sped up by using appropriate index
data structures such as search trees.

5.4 Inference of Linear Constraints

Frequently, GUIs contain rows or columns of similar
controls. If this is the case, it may be appropriate to
define relative linear constraints so that the heights
or widths of the matching rows or columns are kept in
a certain proportion to each other. For example, two
adjacent columns of similar controls may look nicer
if the proportion of their widths stays the same, no
matter how their window is resized. Columns and
rows with similar controls can be found by keeping
appropriate data structures that provide efficient as-
sociative access to characteristics such as control type
and size for each consistent row and column. For two
similar columns delimited by x1, x2 and x3, x4, for
example, we can insert a constraint

x2 − x1 = c(x4 − x3)

with c being the proportion of their preferred widths.

5.5 Adjustment of Units

GUIs can be rendered consistently on different screen
resolutions if their sizes are specified in real-world
physical units such as cm. However, hard-coded GUIs
usually use pixels as unit, which means that GUIs ap-
pear smaller on screens with higher resolution. The
configuration of area sizes in lines 32-37 of Algorithm
1 can be extended to convert the hard-coded pixel
sizes into physical units, by using an appropriate scal-
ing. The right scaling can be found by comparing the
size of the text in the hard-coded GUI with the pre-
ferred text size, which is a common user-defined pa-
rameter of modern graphical desktop environments
and a good indicator for the visual psychomotor ac-
curacy of the user. Like this, the preferred sizes of
controls in a GUI can be chosen so that the user can
interact with them conveniently. The layout manager
may still have to violate such preferred values in case
of screen space scarcity, but it will try to balance all
requirements adequately through cost minimization.

6 Related Work

Merlo et al. (1995) discuss a reverse engineering tech-
nique for user interfaces that employs a AUIDL,
which is a user interface description language. With
AUIDL, it is possible to describe structural and be-
havioral aspects of GUIs. Presentational characteris-
tics can be specified with containment and importa-
tion, i.e. by giving a containment hierarchy of GUI
controls and by allowing controls to import property
values from other controls. Importation can be used
to specify alignment of controls to common positions
or same-size constraints, but is by far not as pow-
erful as linear constraints. Reverse engineering is
performed from a very specific and limited kind of
character-based user interfaces. The focus is mostly
on the behavioral aspects of the user interface.

Other approaches for reverse engineering of
character-based user interfaces such as (Stroulia et al.
2003) recover user interface layout by analyzing pro-
jection profiles. Occurrences of certain characters are
counted for each line and each column in order to
find boundaries between the elements in the user in-
terface, and thus infer alignment properties. While
such techniques are effective for character-based user
interfaces, they cannot be used for GUIs.

Vaquista (Vanderdonckt et al. 2001) is a reverse
engineering approach for web pages with the goal to
generate equivalent GUIs for other platforms. It uses
the containment hierarchy as the main specification
for layout, e.g. a table layout can be analyzed recur-
sively to produce a hierarchy of rows or columns with



other controls in them. The layout of HTML forms is
captured using simple layout relations such as align-
ment, justification and distribution. This approach is
limited to web pages, and its focus is on reverse engi-
neering of a user interface as a means of interaction,
in contrast to exact user interface layout.

USIXML (Limbourg et al. 2004) is a user inter-
face description language that can be used to specify
user interfaces on different levels of abstraction. For
concrete user interfaces, it supports layout specifica-
tion with a containment hierarchy and an alignment
relation. ReversiXML (Bouillon et al. 2005) is a lan-
guage for the description of user interface reverse en-
gineering rules that generate an USIXML specifica-
tion. It can be used to match patterns in specifica-
tion languages such as HTML, e.g. to recover layout
attributes and set according attributes on USIXML
interaction objects. However, it does not operate on
a level that enables inference of geometric relations
with metric information.

Tools for user interface design by demonstra-
tion (Myers 1988) recover a GUI specification from
example data given by the user. Their main idea is
that of programming-by-example: users can design a
GUI by drawing a prototypical screenshot, which is
automatically or semi-automatically generalized and
transformed into a real GUI. Most tools use rules in
order to choose and configure controls appropriately,
and perform some beautification tasks such as infer-
ence of alignment constraints. Some tools only offer
more abstract drawing operations such as predefined
shapes and focus more on the behavioral aspects of
GUIs, e.g. (Myers et al. 1993). Other tools focus on
the recognition of controls and allow users to interact
more directly. For example, JavaSketchIt (Caetano
et al. 2002) is capable of sketch-based user interface
recognition, using visual grammars. In contrast to
the approach presented here, such tools do not sup-
port reverse engineering of hard-coded GUIs but start
on a lower level of abstraction, usually that of geo-
metric shapes. Their layout models are less expres-
sive than ALM, and can sometimes only handle static
layout. It would be interesting to combine ALM with
approaches for user interface design by demonstra-
tion.

Algorithms such as Turbo Recognition (Tokuyasu
& Chou 2001) use statistical analysis to recover rect-
angular layout specifications from raw images. The
main challenge of such algorithms is the recognition
of horizontal and vertical borders of homogeneous ar-
eas blurred by noise. Consequently, they operate on
a much lower level than the approach presented here.
However, once rectangular areas are recognized, mod-
els such as ALM can be used for layout representa-
tion. That is, the approaches for further abstraction
and beautification presented in this paper can be ap-
plied to get a higher benefit from the data recovered
by low-level recognition.

7 Conclusion

Our work leads us to the conclusion that reverse en-
gineering of hard-coded GUIs into higher-level spec-
ifications is desirable, and that it can be performed
successfully using the Auckland Layout Model. The
presented algorithm can be used to achieve the fol-
lowing goals:

• Fast, dynamic recovery of an ALM specification
for adding resizing capabilities to hard-coded
GUIs with very little effort.

• Elimination of redundant specifications for the
improved maintenance of GUIs.

• Static and dynamic refinement of GUI specifica-
tions.

• Beautification of GUIs for improving aesthetics
and usability.

The reverse engineering algorithm makes it possible
to use existing tools for GUI development while using
specifications that are situated on a higher level of
abstraction. In the future, we want to develop tool
support specifically for ALM. This would allow devel-
opers to create GUIs using ALM’s linear constraints
and higher-level constructs directly, while enjoying
the benefits of a visual design environment.

References

Badros, G. J., Borning, A. & Stuckey, P. J. (2001),
‘The cassowary linear arithmetic constraint solving
algorithm’, ACM Trans. Comput.-Hum. Interact.
8(4), 267–306.

Bill, T., Lundell, B., McDonald, J. & Sannella, M.
(1992), Bricklayer: window layout using linear pro-
gramming, Technical report, University of Wash-
ington.

Borning, A., Marriott, K., Stuckey, P. & Xiao, Y.
(1997), Solving linear arithmetic constraints for
user interface applications, in ‘UIST ’97: Proceed-
ings of the 10th Annual ACM Symposium on User
Interface Software and Technology’, ACM Press,
pp. 87–96.

Bouillon, L., Limbourg, Q., Vanderdonckt, J. &
Michotte, B. (2005), Reverse engineering of web
pages based on derivations and transformations,
in ‘LA-WEB ’05: Proceedings of the Third Latin
American Web Congress’, IEEE Computer Society,
Washington, DC, USA, p. 3.

Caetano, A., Goulart, N., Fonseca, M. & Jorge, J.
(2002), Javasketchit: Issues in sketching the look of
user interfaces, in ‘Proceedings of the AAAI Spring
Symposium on Sketch Understanding’, pp. 9–14.

Draheim, D., Lutteroth, C. & Weber, G. (2006),
Graphical user interfaces as documents, in ‘Pro-
ceedings of CHINZ 2006 – 7th International Con-
ference of the ACM’s Special Interest Group on
Computer-Human Interaction’, ACM Press.

Hosobe, H. (2000), A scalable linear constraint solver
for user interface construction, in ‘CP 2000: Pro-
ceedings of the 6th International Conference on
Principles and Practice of Constraint Program-
ming’, Springer, pp. 218–232.

Hosobe, H. & Matsuoka, S. (2003), ‘A Foundation of
Solution Methods for Constraint Hierarchies’, Con-
straints 8(1), 41–59.

Hutchins, E., Hollan, J. & Norman, D. (1985), ‘Direct
Manipulation Interfaces’, Human-Computer Inter-
action 1(4), 311–338.

Limbourg, Q., Vanderdonckt, J., Michotte, B.,
Bouillon, L., Florins, M. & Trevisan, D. (2004),
USIXML: A User Interface Description Language
for Context-Sensitive User Interfaces, in ‘AVI’04:
Proceedings of the ACM Workshop on Developing
User Interfaces with XML’, ACM Press, pp. 55–62.

Lutteroth, C. & Weber, G. (2006), User interface lay-
out with ordinal and linear constraints, in ‘AUIC
’06: Proceedings of the 7th Australasian User In-
terface Conference’, Australian Computer Society,
Darlinghurst, Australia, Australia, pp. 53–60.



MacKenzie, I. (1992), ‘Fitts’ law as a research and de-
sign tool in human-computer interaction’, Human-
Computer Interaction 7(1), 91–139.

Marriott, K. & Chok, S. S. (2002), ‘Qoca: A con-
straint solving toolkit for interactive graphical ap-
plications’, Constraints 7(3-4), 229–254.

Merlo, E., Gagne, P., Girard, J., Kontogiannis, K.,
Hendren, L., Panangaden, P. & De Mori, R. (1995),
‘Reengineering user interfaces’, Software, IEEE
12(1), 64–73.

Meseguer, P., Bouhmala, N., Bouzoubaa, T., Irgens,
M. & Sánchez, M. (2003), ‘Current Approaches for
Solving Over-Constrained Problems’, Constraints
8(1), 9–39.

Myers, B. (1988), Creating user interfaces by demon-
stration, Academic Press Professional.

Myers, B. A., McDaniel, R. G. & Kosbie, D. S.
(1993), Marquise: creating complete user interfaces
by demonstration, in ‘CHI ’93: Proceedings of the
INTERACT ’93 and CHI ’93 conference on Hu-
man factors in computing systems’, ACM Press,
pp. 293–300.

Parush, A., Nadir, R. & Shtub, A. (1998), ‘Evaluating
the layout of graphical user interface screens: Val-
idation of a numerical computerized model’, Inter-
national Journal of Human-Computer Interaction
10(4), 343–360.

Sears, A. (1993), ‘Layout appropriateness: a metric
for evaluating user interface widget layout’, IEEE
Transactions on Software Engineering 19(7), 707–
719.

Stroulia, E., El-Ramly, M., Iglinski, P. & Sorenson, P.
(2003), ‘User Interface Reverse Engineering in Sup-
port of Interface Migration to the Web’, Automated
Software Engineering 10(3), 271–301.

Tokuyasu, T. & Chou, P. (2001), Turbo recognition: a
statistical approach to layout analysis, in ‘Proceed-
ings of the SPIE Conference on Document Recog-
nition and Retrieval’, International Society for Op-
tical Engineering.

Vanderdonckt, J., Bouillon, L. & Souchon, N. (2001),
Flexible reverse engineering of web pages with
vaquista, in ‘WCRE ’01: Proceedings of the
Eighth Working Conference on Reverse Engineer-
ing (WCRE’01)’, IEEE Computer Society, Wash-
ington, DC, USA, p. 241.


