
Multi-Platform Document-Oriented GUIs

James Kim, Christof Lutteroth

Department of Computer Science
The University of Auckland

38 Princes Street, Auckland 1020, New Zealand
Email: jkim202@aucklanduni.ac.nz, lutteroth@cs.auckland.ac.nz

Abstract

In recent years, increasing complexity of graphical
user interfaces (GUIs) of applications has led to prob-
lems in GUI management, since there is no single lay-
out to fulfill every user’s needs. GUI editors have
been developed to enhance end-user options but they
commonly fail to preserve personalized GUIs. This
paper presents an extension to the GUI editor built
into the Auckland Layout Model (ALM) that can per-
manently store user-defined GUI layouts and repro-
duce them on different platforms. A novel technique
called the document-oriented approach has been ex-
ploited to empower end-user customization, which al-
lows GUI layouts to be dynamically edited, saved us-
ing a standardized XML-based GUI description lan-
guage, and loaded in a platform-independent manner.

Keywords: GUI customization, platform-independent
GUIs, ALM

1 Introduction

At present, most computer applications provide a
graphical user interface (GUI), which consists of wid-
gets (or controls), e.g. buttons and text areas. Many
applications typically organize controls in the GUI
using a layout manager. Layout managers primar-
ily enable GUIs to adapt to changing environments,
for example, automatically adjusting sizes of controls
on resizing the application window. A GUI layout
can significantly influence usability of an application.
However, current layout managers do not solve the
problem of increasing GUI complexity. Recent ap-
plications overload the user interface with too many
controls disregarding suitability for users, which often
complicates the process of achieving a simple task, es-
pecially for novice users. It is evident that there can
be no single GUI layout that fulfills every user’s re-
quirements. The easiest solution for this is to allow
end-users to edit GUIs, so that GUIs can be adapted
to individual needs. In fact, many applications offer
end-user customizability such as resizing side panels
and hiding certain items on toolbars. However, this
is somewhat limited. Moreover, personalized GUIs
are usually not preserved. While the layout is main-
tained between sessions in some applications, layout
customization falls apart in a multi-user environment.

This paper presents an extension to the GUI editor
built into the Auckland Layout Model (ALM). ALM

Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the Tenth Australasian User Interface Con-
ference (AUIC2009), Wellington, New Zealand. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 93. Paul Calder, Gerald Weber, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

(Lutteroth et al. 2008) is a platform-independent
constraint-based layout specification framework. A
novel technique called the document-oriented ap-
proach (Draheim et al. 2006) has been exploited to
empower dynamic end-user customization of GUI lay-
outs. In particular, the editor has been developed
to enable GUI layouts to be customized at run-time,
stored permanently in document form, and loaded on
multiple platforms. Since the editor is embedded in
the ALM layout manager, it is readily accessible in
any application using such a layout manager.

The paper is organized as follows. Section 2 exam-
ines related work. Section 3 introduces the basic con-
cepts of the ALM layout manager. Section 4 presents
the key editing features of the editor. Section 5 ex-
plains the utilization of the document-oriented ap-
proach. Section 6 explains support for multiple plat-
forms. Section 7 discusses some of the challenges en-
countered when implementing the document-oriented
approach for different platforms. Section 8 presents
evaluation results. Section 9 discusses current limita-
tions and future work.

2 Related Work

Contributions of this project relate to two main areas:
end-user customization of GUIs and GUI description
languages. In this section, some of the related work
in each of these areas will be highlighted.

A lot of work has already been carried out in the
area of end-user GUI customization. The Self-4.0
user interface (Smith et al. 1995) presents a flexi-
ble method for editing GUI layouts. It primarily
aims to remove the distinction between a running ap-
plication and an application being edited, which is
commonly known as a WYSIWYG (What-You-See-
Is-What-You-Get) editor. Self allows users to create
or remove controls in a dynamic environment. More-
over, it provides scripting support, which allows users
to specify functions for controls.

A user interface management system, EUPHORIA
(McCartney et al. 1995), handles end-user construc-
tion of GUIs without any need for programming. It
supports run-time construction, allowing GUIs to be
created and modified interactively. EUPHORIA uses
a graph-based constraint algorithm to solve a set of
relationships between GUI components.

Similarly, Haystack (Karger & Quan 2004) allows
personalization of user interfaces at run-time. Based
on the model-view-controller architecture, the GUI
layout and various operations can be created and ma-
nipulated flexibly. Moreover, it possesses limited ca-
pability to learn about user preferences and behavior.

ALM provides similar benefits by providing a
WYSIWYG GUI editor, which can be promptly ac-
cessed in every application at run-time. Current GUI
editors commonly fail to provide support for pre-
serving personalized GUIs. On the contrary, ALM



Figure 1: A GUI using the ALM layout manager.

uniquely provides saving and loading features.
XML-based GUI description languages are becom-

ing more widespread for document representation of
GUIs. UIML (User Interface Markup Language)
(Abrams et al. 1999) primarily eliminates differences
of interfaces in Internet appliances such as desk-
tops, cell phones, and PDAs. Also, UIML eliminates
the need for hand-coding user interfaces for different
types of appliances by offering an abstract declara-
tive language, while preserving the expressiveness of
GUI toolkits such as Java AWT or Swing. UsiXML
(USer Interface eXtensible Markup Language) (Lim-
bourg et al. 2004) employs multiple abstraction levels.
User interfaces can be specified at one or more levels
of abstractions, and mappings between the different
levels can be maintained.

XUL (XML User Interface Language) (Cheng
1999) is developed for the Mozilla Firefox web
browser. It aims to integrate powerful GUIs into the
web browser. Similarly, XAML (Extensible Applica-
tion Markup Language) is developed for the Microsoft
Windows platform (Draheim et al. 2006). However,
both XUL and XAML are fixed to specific GUI frame-
works. In contrast, ALM’s GUI description language
makes no assumption about the GUI toolkit by mak-
ing a clean separation between the layout and the
content.

3 The Auckland Layout Manager

ALM is a novel technique for specifying 2D layouts
in a GUI. A layout specification is formed using a
set of constraints based on linear algebra. An op-
timal layout is calculated using linear programming
(Dantzig 1963). Linear programming is a rather com-
plex concept, therefore the ALM layout manager pro-
vides higher order abstractions for easier specification
of layouts. On top of the formally well-defined linear
programming, higher order abstractions include soft
constraints, areas, and rows and columns.

Figure 1 shows a GUI created using the ALM lay-
out manager. Controls in the GUI are organized using
rectangular areas, which are bound by virtual grid
lines called tabstops, or tabs for short. Specifically,
an area is enclosed inside a pair of vertical tabs called
x-tabs and a pair of horizontal tabs called y-tabs. X-
tabs and y-tabs hold x-coordinates and y-coordinates,
respectively, within the GUI coordinate system.

Coordinates of tabs, and hence the positions and
sizes of areas, are mainly determined by linear con-
straints. There are two types of constraints: absolute
constraints and relative constraints. Absolute con-
straints are used to place tabs at fixed positions or to

Figure 2: The GUI in editing mode.

set the width or the height between tabs to a particu-
lar value. Therefore, these tabs are not affected when
resizing the GUI window. By contrast, relative con-
straints are used to place tabs at positions relative to
other tabs. In this case, coordinates of tabs are con-
stantly adjusted as the GUI window is resized in order
to continue adhering to the constraints. In addition,
soft constraints can be specified, which are basically
flexible constraints that can be violated by setting
positive and negative deviations from the exact solu-
tion. Soft constraints primarily solve the problem of
over-constrained specifications, hence a feasible lay-
out can always be provided.

The dimensions of areas depend on constraints and
additional area parameters, including preferred size,
minimum size and maximum size. Each area may
contain a control. By default, a control fills the en-
tire area. However, a control can be freely placed
within its area as desired. Some of the parameters for
the area content, i.e. the control, include left margin,
top margin, right margin, bottom margin, horizontal
alignment, and vertical alignment. In Figure 1, the
control richTextBox1’s left, top, right, and bottom
margins are set to 10. Also, the horizontal alignment
of label1, label2, and label3 have been set to left, cen-
ter, and right, respectively.

Abstractions for rows and columns simplify re-
ordering and elision. As illustrated in Figure 1, a row
is represented by a pair of y-tabs. Likewise, a column
is represented by a pair of x-tabs. By employing the
table metaphor, rows and columns can be utilized to
define, resize, and rearrange areas easily without a di-
rect reference to tabs. Note that ALM can not only
be applied to GUIs but also to other types of user in-
terfaces such as those found in submit-response style
systems (Draheim & Weber 2004).

4 End-User Customization

The layout specification of a GUI is initially speci-
fied in the source code of an application. ALM pro-
vides a WYSIWYG GUI editor (Lutteroth & Weber
2008), which enables end-user customization of the
layout specification. Specifically, end-users are pre-
sented with a functionality that allows them to ma-
nipulate GUI layouts directly in a dynamic environ-
ment, i.e. at application run-time. Moreover, the ed-
itor is immediately available on request in every ap-
plication using ALM, since it is incorporated in the
ALM layout manager. This is also advantageous for
application developers because it eliminates the need
to implement such a customization feature explicitly.

A GUI is started in the operational mode, i.e. the
mode in which it can be used normally. Anytime dur-
ing run-time, it can be switched to the editing mode



Figure 3: The properties window.

where it can be customized. Internally, this switch is
performed by calling a method Edit. How the transi-
tion between operational mode and editing mode can
be performed by the end-user is entirely up to the ap-
plication developer. Typically, the developer defines a
shortcut key. Figure 2 shows a GUI in editing mode.
Changes in visual appearance from operational mode
to editing mode are minor, and consist mostly of the
addition of colored rectangles, which are markers for
editing operations. It is important that controls in
editing mode are no longer functional, while their vi-
sual appearances are maintained. This is achieved by
converting controls into bitmap images during mode
transition. The WYSIWYG-style of the GUI editor
makes the end-user customization operations more in-
tuitive.

During editing, a properties window is shown that
makes the properties of editable GUI elements read-
ily accessible. The properties window itself has been
built using the ALM layout manager for coherence.
The ability to use the ALM layout manager within
itself illustrates the emphasis on reuse in ALM’s ar-
chitecture. The properties window displays specifica-
tion details of the GUI layout depending on the active
editing mode. There are editing modes for modifying
areas, constraints, rows, and columns. However, this
paper will only cover the area editing mode. Fig-
ure 3 shows the properties window in the area edit-
ing mode, which displays useful information about
the selected area. Both windows in the editor are
always synchronized. Editing the GUI directly up-
dates the properties window. Similarly, when new
values are entered into the drop-down lists and text
fields in the properties window, changes are immedi-
ately reflected on the GUI window. The GUI returns
to operational mode simply by closing the properties
window. Therefore, switching between editing mode
and operational mode is very simple. In the follow-
ing, the most essential features of the editor in area
editing mode will be illustrated.

Currently, the editor allows areas to be customized
in various ways. Firstly, editing operations on the
GUI window will be introduced. In editing mode, a
red rectangle border around an area indicates the se-
lected area, i.e. button1 in Figure 2. One of the most
frequently used operations is swapping positions of
two areas. For example, in an image editing applica-
tion, one may want to position the most used controls
closer to the editing region. Figure 4 demonstrates
the swapping operation, which is simply performed
using the drag-and-drop action. In the first phase,
button1 is selected with a mouse and dragged above
textBox2. Notice that the target area is highlighted

Figure 4: An area being dragged (top) and the GUI
after swapping areas (bottom).

with a green rectangle border, i.e. textBox2. Also,
the cross mouse cursor is another indication that an
area is currently being dragged. When the mouse
button is released, positions of the areas involved are
swapped. Drag-and-drop is a commonly used action
in computer applications, and therefore an intuitive
procedure.

Another common editing operation is resizing an
area. In the same image editing application exam-
ple, the user might want to expand the size of the
editing region for processing a large image. Figure
5 illustrates the resizing operation. Firstly, when a
border of an area, i.e. button1, is clicked, all avail-
able tabs become visible in blue. Note that the area
does not need to be selected first. The border of areas
can be recognized by the mouse cursor, which trans-
forms into an appropriate bi-directional arrow when
it approaches an area boundary. Again, use of the
drag-and-drop action is promoted. When the mouse
cursor approaches a tab while being dragged, it snaps
to the tab, providing a preview of the new area using
a green rectangle. Note that its original size is still
displayed in red. Finally, releasing the mouse button
completes the resizing operation. If the mouse but-
ton is released without a new tab, i.e. without a green
rectangle, then the operation is simply canceled and
the GUI remains unchanged.

Furthermore, an application may contain controls
that are never used by a certain user. In that case,
unused controls can be removed from the GUI. Fig-
ure 6 shows the removal operation. Initially, a pop-up
menu is opened by clicking the right mouse button on
an area that contains the control to be removed. Sub-
sequently, the control in the selected area, i.e. rich-
TextBox1, is removed by selecting the menu item “Re-
move Area Content”. However, instead of deleting
the removed control completely, the control is stored
in the ALM layout manager and can be reused later
if required. For instance, the removed control can be
used to fill an empty area or to replace a control in an-
other area. This is done by selecting the target area
and choosing the control in the Content drop-down



Figure 5: Border of an area selected (top), border of
the area being dragged (middle) and the GUI after
resizing the area (bottom).

list, as seen in Figure 3.
As mentioned earlier, details of the selected area

are displayed in the properties window. In addition
to the operations supported in the GUI window, fur-
ther editing operations can be performed using the
properties window. Two of these operations are illus-
trated in Figure 7. Firstly, the horizontal alignment
of the selected area, i.e. listView1, is changed from
FILL to CENTER. Similarly, the top margin of the
same area is set to 100. Notice that the control in-
side the area is affected by such operations, not the
area itself. These operations are intended to arrange
controls within the area without affecting the rest of
the GUI layout.

Figure 8 shows the resulting GUI in operational
mode after a series of editing operations. During the
transition from editing mode to operational mode,
controls retrieve their normal functionality.

5 The Document-Oriented Approach

On top of support for end-user customization, the
main focus of this project was to improve the ed-
itor by exploiting the document-oriented approach.
Document-orientation solves the problem of current
GUI editors failing to preserve customized GUIs. In
Figure 9, features of the editor after utilizing the

Figure 6: Right-click menu (top) and the GUI after
removing the content in the selected area (bottom).

document-oriented approach have been illustrated.
Firstly, by utilizing the document metaphor, GUIs
can essentially be edited, saved permanently and
loaded just like a document in any word processor.
Moreover, the same tool is used for editing and dis-
playing the GUI as illustrated earlier, i.e. a WYSI-
WYG GUI editor.

As well as possessing the fundamental properties of
documents, document-oriented GUIs are represented
as documents. Basically, specifications of the GUI
layout are stored in a document format. Such a
format should contain enough information to allow
the GUI to be constructed from standalone docu-
ments. ALM uses XML ALM dOcument Notation
(XALMON) (Lutteroth & Weber 2008), which is a
standardized XML-based GUI description language.
While the editor offers end-user customization at run-
time, static customization is provided by XALMON
specifications, which can easily be edited using any
text editor. Below is a part of an example XALMON
specification, created by saving a GUI using the edi-
tor.

1 <almlayout>
2 <area>
3 <name> button1 </name>
4 <left> Var1 </left>
5 <top> Var2 </top>
6 <right> Var5 </right>
7 <bottom> Var8 </bottom>
8 </area>
9 <area>

10 <name> button2 </name>
11 <left> Var5 </left>
12 <top> Var2 </top>
13 <right> Var6 </right>
14 <bottom> Var8 </bottom>
15 <topmargin> 10 </topmargin>
16 <bottommargin> 10 </bottommargin>
17 <halignment> center </halignment>
18 </area>
19 <constraint>
20 <leftside>



Figure 7: Horizontal alignment of the selected area
being changed (top), the GUI after setting the hori-
zontal alignment (middle) and the GUI after setting
the top margin (bottom).

21 <summand>
22 <coeff> 2 <coeff>
23 <var> Var1 </var>
24 </summand>
25 <summand>
26 <coeff> -1 <coeff>
27 <var> Var5 </var>
28 </summand>
29 </leftside>
30 <op> EQ </op>
31 <rightside> 0 </rightside>
32 </constraint>
33 </almlayout>

The almlayout tag encloses the whole layout spec-
ification, including areas and constraints. It also
stores rows and columns, if such abstractions have
been used. As a standard, each area tag, e.g. lines
2-8, consists of a symbolic name for the control, and
the left, top, right and bottom tabs the area is bound
to. Lines 15-17 show optional parameters such as
margins and alignments. Lines 19-32 implies a linear
constraint 2V ar1− V ar5 = 0.

XALMON essentially separates the layout and the
content. Basically, contents are controls, which are
defined in the application code. A clean separation is
achieved by referring to controls only by their sym-
bolic names, e.g. button1, which is accessible at ap-

Figure 8: The customized GUI in operational mode.

Figure 9: The editor utilizing the document-oriented
approach.

plication run-time. That is, the differences between
controls of various GUI toolkits, e.g. .NET Forms,
Java Swing, and the Haiku Interface Kit, are ignored
completely. Thus, platform independence is fully sup-
ported.

XALMON only holds enough information neces-
sary to reconstruct the GUI layout. That is, when a
layout is saved, no redundant information is stored.
As a rule, XALMON does not save parameters with
default values. For example, area alignments and
margins will not be saved if they have not been mod-
ified from their default values, which are FILL and
0, respectively. Also, ALM-generated constructs are
not stored in XALMON. For instance, when a user
creates an area, some linear constraints are implic-
itly generated by the ALM layout manager because
higher order constructs use constructs in the lower
levels. Duplicates produce needlessly lengthy doc-
uments and it may also cause conflicts, destroying
the GUI layout altogether. Therefore, only the user-
defined constructs are stored.

On loading a layout from the editor, the exist-
ing layout specifications are initially removed from
the ALM layout manager. Then, the GUI is recon-
structed entirely using the XALMON specification.
The reconstruction process is performed in the order
they appear in the XALMON document. That is, in
the above example, areas are added to the new lay-
out first, and then the constraint is added. During
this procedure, tabs are added on demand, i.e. if they
do not exist in the specification already. Section 7.2
explains the loading process in more detail.

6 Multi-Platform Support

In the context of computing, a platform refers to a
level of abstraction for a runtime environment such
as an operating system or a virtual machine. ALM
is supported on multiple platforms. At the moment,
it is available on the Windows and the Haiku (Haiku
Inc. 2008) operating systems, where it is written in
C# and C++, respectively. There is also a Java
version, which in principle should run on all Java-
supported platforms. Also, due to ALM’s stable yet



simple architecture, ALM can potentially be ported
to any other platforms, if necessary. Initially, the edi-
tor was only available for the Windows version, hence
one component of the project involved porting the ed-
itor from C# to C++ and Java.

Porting is the process of translating software from
one programming language and/or platform to an-
other. The amount of time required to port a piece
of software depends on many factors. Obviously, the
most influential factor is the quantity of code, fol-
lowed by knowledge and experience of the person do-
ing the porting work. It is essential to understand
the differences, both superficial and conceptual, be-
tween programming languages. Superficial differences
mainly include syntactical differences, naming con-
ventions, and coding conventions. These distinctions
are usually adapted relatively quickly. At the concep-
tual level, differences include the framework architec-
ture, data structures, and memory management. In
contrast to superficial differences, conceptual differ-
ences make porting non-trivial, since much effort and
time is required to understand the underlying con-
cepts. It often requires a great amount of research,
reading, and seeking for solutions. If the differences
between the source and the target programming lan-
guage are fairly small, e.g. C# and Java, it is possible
to just copy, paste and modify large portions of code,
thus saving a considerable amount of time.

A majority of software utilizes external libraries
for code reuse, which is a recommended practice.
However, it is very important to consider compati-
bility issues when multiple programming languages
are involved. Using different libraries for each pro-
gramming language will not only complicate porting,
but it will also inevitably cause maintenance difficul-
ties. Therefore, it is worthwhile to invest a reasonable
amount of time looking for a library that is suitable
for all languages, if possible. Platform-independent
libraries commonly provide wrappers for target plat-
forms. For example, ALM utilizes an open source li-
brary for solving linear programming problems, which
can be used from all of the programming languages
involved, i.e. C#, C++, and Java.

The impact that an integrated development envi-
ronment (IDE) has on porting cannot be ignored ei-
ther. Depending on the IDE, helpful features may be
provided, which will reduce effort and time required
to port a piece of code. For example, Eclipse for Java
has a powerful auto-completion function and a dy-
namic error checker. In particular, the amount of
code that needs to be manually typed and the time
spent to debug are directed affected by the IDE.

Moreover, modularity of software can largely con-
tribute in reducing the amount of time required to
understand the code, if done correctly. ALM allows
layouts to be specified in a modular fashion by pro-
viding various abstractions. In addition, abstractions
are organized in separate classes. Well broken down
software is easy to manage, that is, easy to modify
and maintain consistently on multiple platforms.

7 Challenges

Our work was done in two main phases. The first
phase involved porting the C# editor to Haiku and
Java. The second phase involved integrating the
document-oriented approach, specifically implement-
ing save and load functions for the editor. In the
following, major challenges encountered during these
stages will be discussed, which can be regarded as a
guideline for future development.

7.1 Porting to Haiku

Anyone porting software to an unfamiliar platform
will certainly encounter various problems throughout,
and overcoming these challenges will be a learning
experience. This section will outline the key con-
ceptual differences between the Windows (C#) and
the Haiku (C++) implementation, which caused dif-
ficulties while porting the editor. Specifically, the
Haiku version required extensive use of the Haiku
API, which includes data structures, file system ac-
cess functions, and a GUI toolkit, among other things.

Firstly, memory leaks in low level programming
languages like C++ are one of the most frequent prob-
lems. Memory leaks are caused by applications hold-
ing unused memory, diminish system performance,
and in the worst case may cause the application or
the system to stop running. Memory usage has to be
explicitly managed in C++, unlike C# where unused
memory is automatically freed through garbage col-
lection. Memory has to be allocated before it can be
used, and it has to be explicitly deallocated in order
to free the memory that is no longer needed. How-
ever, if the memory is freed too early, this may lead to
memory access violations. Hence, it is important to
correctly determine when exactly a chunk of memory
is not needed anymore.

Events, e.g. mouse clicks or keyboard presses, are
handled quite differently between programming lan-
guages. For example, events in C# are managed by
using a delegate, a type that references a method,
to assign a callback method. In contrast, events are
handled through message passing in Haiku. For in-
stance, when a mouse button is pressed, a message
is passed to a system-wide application server. Infor-
mation about the event, such as mouse button and
mouse location, can be obtained from the application
server to implement handlers for specific event mes-
sages.

Another major difference is converting controls,
e.g. buttons, into pictures. In C#, it is relatively
straightforward, since a method for direct conversion
from a control to a bitmap is already provided. It
can be used promptly without knowing any of its in-
ternals. However, drawing bitmaps using the Haiku
API is not as simple. Bitmaps of controls need to
be drawn using double buffering, which in the con-
text of computer graphics refers to a technique used
to remove artifacts such as flickering. Basically, when
a bitmap is drawn, the drawing process is hidden by
using a separate buffer. Then, the bitmap is added
to the GUI window after it has been fully drawn.

7.2 Loading Layout Specifications

Saving specifications of a GUI layout is relatively
straightforward. Relevant data from the specification
are collected recursively and written to an empty doc-
ument by following a specific format, i.e. XALMON.
On the contrary, loading a layout is a challenging task,
which requires reading data from an XML-based doc-
ument, also known as XML parsing, and reconstruct-
ing the layout specification. Main difficulties related
to loading a GUI layout are outlined as follows.

Firstly, the lack of a universal XML parser led to
different libraries being used for each version of ALM.
Initially, there were some concerns as to whether it
would be maintainable for future updates. However,
once an XML parser is programmed in each version, it
is unlikely to be modified unless major changes occur
in ALM’s underlying architecture or in XALMON.
Moreover, the structure of each parser will remain
unchanged, since changes will only need to be made
in the common handlers, e.g. code for adding areas.



The process of reconstructing a GUI using data
obtained from an XML-based document is quite com-
plex. As mentioned earlier, the existing layout specifi-
cation is initially removed from the ALM layout man-
ager. The removal process is a recursive one where
abstractions are deleted in the order from highest to
lowest, since higher level constructs utilize constructs
in the lower levels. That is, rows and columns are
deleted first followed by the deletion of areas, con-
straints, and tabs, respectively. Subsequently, new
abstractions are added to the specification in the or-
der they appear, dynamically as the document is be-
ing parsed. For an abstraction to be added, a set
of certain arguments is required. For example, the
method for adding an area must have a set of bound-
ing tabs as arguments. Its parameters such as the
content name, tabs, alignments, and margins are first
saved in temporary data structures. Only after its end
tag, i.e. </area>, the area is added to the specifica-
tion followed by setting additional parameters. Also,
it is important that all abstractions share a common
hash table to temporarily store tabs to avoid adding
redundant tabs to the specification. A key-value pair
in the hash table holds the name of a tab, e.g. Var5,
and the actual object. When any tab-related tag is
parsed, e.g. var, left, top, right, or bottom, the name
of the tab is checked against keys in the hash table.
If there is a match, the corresponding value is used.
Otherwise, the tab is added to the specification and
the hash table. The hash table is created at the start
of XML parsing and lives until the new layout speci-
fication is completely produced.

8 Evaluation

The editor was improved to empower end-user cus-
tomization of GUI layouts by providing saving and
loading features. However, we need evidence that
such functions truly add value. Thus, it was advis-
able to assess the usefulness of the editor by conduct-
ing an empirical evaluation. Through the evaluation,
both the usability and functional aspects of the editor
were measured. In the following, the method of the
evaluation will be explained, and then the results will
be discussed.

8.1 Method

A total of 10 participants were chosen randomly from
the computing labs at the University of Auckland.
8 of those participants were studying Software Engi-
neering, and 2 participants had no programming ex-
perience. The background information and the pur-
pose of the editor were explained clearly to the par-
ticipants. Then, participants were asked to conduct a
set of tasks with the editor. The tasks differed slightly
among participants. An example set of tasks is as fol-
lows:

1. Check controls are working

2. Switch to editing mode

3. Swap button1 with textbox1

4. Resize textbox2

5. Center align textbox2

6. Change bottom margin of button2 to 10

7. Save layout

8. Load default layout (default.xml)

9. Load saved layout (your name.xml)

Figure 10: A graph of 10 participants’ opinions about
the editor.

10. Switch to operational mode

After carrying out these operations, participants
were given an opportunity to explore the saved doc-
ument, i.e. the XALMON specification. Then, they
were asked to complete a questionnaire using the Lik-
ert scale, i.e. using the options strongly agree, agree,
neutral, disagree, and strongly disagree for each item.
The questions on the questionnaire are shown below.

1. Using the edit methods, i.e. using mouse and key-
board, was intuitive

2. The properties window provided useful informa-
tion

3. The GUI window and the properties window
were synchronized correctly

4. The layout was loaded as expected, i.e. the layout
before saving equals the layout after loading

5. The GUI was rendered smoothly throughout
edit, save, and load

6. Overall, the editor was easy to use

7. Overall, the editor was enjoyable to use

8. Overall, the editor is a good idea

At the end of the questionnaire, participants were
asked to provide additional feedback about the edi-
tor.

8.2 Results

In general, the editor scored well. Figure 10 shows
participants’ opinions about the editor. Results in-
dicate no disagreements in all questions, which may
have been caused by acquiescence bias where partic-
ipants have the tendency to agree with all questions.
Nevertheless, the evaluation provided useful feedback
about the editor to date.

In particular, functional features of the editor have
been extremely satisfactory. That is, 70% of the
participants strongly agreed that the saved layout
was loaded correctly. Also, 60% of the participants
strongly agreed that the GUI rendered smoothly
throughout the editing, saving and loading process,
and that information on the properties window syn-
chronized with the GUI window.



Although there were slight differences in tasks car-
ried out by each participant, all participants per-
formed at least one swapping operation. It was ob-
served that 8 participants performed the swap opera-
tion through the normal drag-and-drop action on the
GUI window, which they thought was quite intuitive.
However, one participant used the properties window
to swap the controls, which involved many subtasks.
Another participant started navigating through the
properties window and later realized the quicker ap-
proach.

Most participants were able to quickly adapt to the
GUI window, but many had difficulties with config-
uring properties of an area such as setting alignments
and margins. While all participants agreed that the
properties window provided useful information, many
have complained that it was rather difficult to under-
stand. In particular, it was mentioned that abbrevi-
ated labels such as H/V Alignment were confusing,
and names of tabs such as Var5 were not meaningful.
Similar comments were made about the XALMON
specification.

Overall, a majority agreed that the editor was easy
to use (30% strongly agreed, 70% agreed) and enjoy-
able to use (30% strongly agreed, 60% agreed). Also,
the use of editing methods was found to be intuitive.
However, a number of participants made a mistake
during the editing process and had difficulties recov-
ering from it. They pointed out that undo and redo
functions would be beneficial. Otherwise, all partici-
pants liked the idea of the editor overall.

9 Future Work

Currently, the editor has some known limitations.
Firstly, it would be advisable to provide undo and
redo functions, which will enable recovery from mis-
takes, and therefore increase flexibility of end-user
customization. It is also essential to provide full sup-
port for constraints, rows, and columns in the editor.

At the moment, only part of the full document-
oriented approach has been applied to the editor. It
still lacks some features of document orientation, in-
cluding a decomposition mechanism and a content de-
scription language (Lutteroth & Weber 2008). For
example, the editor could further extend its scope by
allowing addition of new controls through the GUI
window, rather than having to define all controls in
the source code of an application. In order to provide
such a function, it is extremely important to consider
cross-platform and access control issues.

The editor currently lacks a document selection
algorithm. Since the save and load facility makes it
usable in a multi-user environment, it would be help-
ful to produce an algorithm that automatically de-
termines when to load the default layout and when
to load a user-specific layout. For increased usability,
it is also important to provide a more user-friendly
properties window, perhaps through the use of more
meaningful identifiers for abstractions and labels, and
the use of tooltips.

10 Conclusions

The ALM editor enables dynamic end-user cus-
tomization of GUI layouts in an application-
independent and platform-independent manner. It
is built into the ALM layout manager, and is thus
automatically available for all applications that de-
fine their layout using ALM. ALM and the editor
are available for Windows (C#), the Haiku platform
(C++) and all Java-supported platforms. The ALM
editor implements the document-oriented approach to
give end-users more control over the GUI. It allows

personalized GUI layouts to be saved and loaded sim-
ilar to documents, a novel feature that can solve the
problem of increasing GUI complexity. Some limita-
tions were identified, but the approach was evidenced
to be valid.

References

Abrams, M., Phanouriou, C., Batongbacal, A.,
Williams, S. & Shuster, J. (1999), ‘UIML: An
appliance-independent XML user interface lan-
guage’, Computer Networks 31(11), 1695–1708.

Cheng, T. (1999), XUL – creating localizable XML
GUIs, in ‘Proceeding of the 15th International Uni-
code Conference’.

Dantzig, G. B. (1963), Linear Programming and Ex-
tensions, Princeton University Press, Princeton,
NJ.

Draheim, D., Lutteroth, C. & Weber, G. (2006),
Graphical user interfaces as documents, in ‘Pro-
ceedings of CHINZ 2006 – 7th International Con-
ference of the ACM’s Special Interest Group on
Computer-Human Interaction’, ACM Press.

Draheim, D. & Weber, G. (2004), Form-Oriented
Analysis - A New Methodology to Model Form-
Based Applications, Springer.

Haiku Inc. (2008), ‘The Haiku Operating System’.
http://www.haiku-os.org/.

Karger, D. R. & Quan, D. (2004), Prerequisites
for a personalizable user interface, in ‘Proceed-
ings of Intelligent User Interface 2004 Workshop on
Behavior-based User Interface Customization’.

Limbourg, Q., Vanderdonckt, J., Michotte, B.,
Bouillon, L., Florins, M. & Trevisan, D. (2004),
USIXML: A User Interface Description Language
for Context-Sensitive User Interfaces, in ‘AVI’04:
Proceedings of the ACM Workshop on Developing
User Interfaces with XML’, ACM Press, pp. 55–62.

Lutteroth, C., Strandh, R. & Weber, G. (2008), ‘Do-
main specific high-level constraints for user inter-
face layout’, Constraints 13(3).

Lutteroth, C. & Weber, G. (2008), End-user GUI
customization, in ‘Proceedings of CHINZ 2008 -
9th International Conference of the ACM’s Special
Interest Group on Computer-Human Interaction’,
ACM Press.

McCartney, T., Goldman, K. & Saff, D. (1995), ‘EU-
PHORIA: End-user construction of direct manipu-
lation user interfaces for distributed applications’,
Software - Concepts and Tools 16(4), 147–159.

Smith, R., Maloney, J. & Ungar, D. (1995), ‘The
Self-4.0 user interface: manifesting a system-wide
vision of concreteness, uniformity, and flexibility’,
OOPSLA ’95: Proceedings of the 10th Annual Con-
ference on Object-Oriented Programming Systems,
Languages, and Applications pp. 47–60.


