
A Source Code Independent Reverse Engineering Tool for Dynamic Web Sites

Dirk Draheim, Christof Lutteroth
Institute of Computer Science

Freie Universität Berlin
Takustr.9, 14195 Berlin, Germany

draheim@acm.org lutterot@inf.fu-berlin.de

Gerald Weber
Department of Computer Science

The University of Auckland
38 Princes Street, Auckland 1020, New Zealand

g.weber@cs.auckland.ac.nz

Abstract

This paper describes a tool for black box reverse engi-
neering of web applications that reconstructs analysis mod-
els based on the concepts of form-oriented analysis. Recov-
ering such models is motivated by requirements engineer-
ing and load testing. In particular, the paper addresses the
problem of screen classification and discusses its concep-
tual underpinnings.

1. Introduction

This paper describes source code independent reverse
engineering of dynamic web sites. The tool Revangie re-
covers models of dynamic web interfaces without looking
at the source code. This is in contrast to other tools that per-
form white box reverse engineering on dynamic web sites
[4, 1, 10]. Revangie can operate in three different modes: the
crawl-mode, which works automatically, the snoop-mode,
which is user-driven, and the guide-mode, which works
semi-automatically, combining the advantages of the other
two modes. We describe how these modes work, what prob-
lems come up when performing black box reverse engineer-
ing of web applications, and what solutions we found. We
introduce a statistical test for determining if a classification
leads to significant differences in the transition probability
distributions of pages or other random variables of interest
and describe how this test can be exploited for screen clus-
tering.

Recovering models independent of source code can be
advantageous because of the many platforms, architectures,
and languages for the implementation of dynamic web sites.
Source code dependent reverse engineering is usually re-
stricted to a certain language, platform etc. – Revangie is
independent of all those. The source code independent ap-
proach is a straightforward one because it is much easier to
analyze HTML code than the generating code. It is an essen-
tial claim that the analysis of the generated HTML is suffi-

cient to recover sophisticated models. It is not only easier to
analyze HTML code than the generating code but also more
convenient, because HTML code can be explored through
the single point of access of an HTTP port. In contrast, the
generating code can have a complex deployment structure.
In the case that the source code is inaccessible analysis must
be source code independent anyway, as it is the case in typ-
ical product benchmarking efforts.

The motivation for Revangie can be explained best by
describing its role in the Angie tool suite, see Fig. 1. Re-
vangie is used to recover form-oriented models from a dy-
namic web site. The textual description of this model in
the language Angie [8] can be subsequently used for for-
ward engineering of click dummies, i.e., executable proto-
types, as they are conveniently used for requirements en-
gineering, or customizable systems, which can help in mi-
grating to model-driven architecture. In addition to this, Re-
vangie can collect data about user behavior that can be used
for load testing. It is further work to provide a load test tool
that simulates real users on the basis of an annotated ver-
sion of the Angie language.

In Sect. 2, we provide a brief overview of form-oriented
analysis. In Sect. 3, we describe the different modes of op-
eration of Revangie. Section 4 explores the screen classifi-
cation problem. The paper finishes with a discussion of re-
lated work, further directions and a conclusion in Sects. 5,6
and 7.

2. Using the Form-Oriented User Interface
Model

In order to perform coherent analysis we need a model
that describes the user interface of web applications ade-
quately. The form-oriented user interface model [7, 5] uses
typed, bipartite state machines, in which one set of states de-
notes client pages and the other set server actions that gen-
erate the pages. These graphs contain all the information of
page diagrams, but in addition to this, they model the rela-
tionship between server-side actions and pages. It is obvi-

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

Web Application

Angie

Revangie

Model Recovery

Angil

Load Test Tool

Angie

Generator

Click-Dummy

Annotated Angie

Figure 1. The Angie language related tool
suite.

ous which form or link on a page uses which server action
and which server action generates which page. Note that
the pages in the model do not represent individual pages as
seen by the user but classes of pages, of which many in-
stances may be generated by different server actions. We
call the possible instances of a page screens.

An important property of the model is its type system:
actions as well as pages have a signature which specifies
a type for the data accepted by an action and a type for
the data displayed on the screens of a page. However, usu-
ally we cannot know the exact signatures of pages and ac-
tions when performing black box reverse engineering. The
structure of screens can only give us some hints about their
page’s signature; forms contain information like parameter
label names, default values and field types, which can be
useful for inferring types.

For the textual representation of such models form-
oriented analysis proposes the language Angie [8]. Small
models can be visualized conveniently in so called form-
charts, in which pages are represented as bubbles and
actions as rectangles.

The web application depicted in the formchart in Fig. 2
starts at client page ”login” which is supposed to contain
a form for submitting a user name and password to server
action ”checkpw”. If the submitted login information is in-
valid, the user is shown another instance of the ”login” page,
otherwise the user is forwarded to page ”home”. Here, op-
tions ”buyCars” and ”buyBikes” can be chosen, and the re-
spective pages subsume all the possible screens showing
lists of cars and bikes, respectively. According to the form-
chart, both pages use the same action ”buy” to process sub-
mitted data. This points out that the same CGI program is

checkpw

login

home
buyBikes

cars

bikes

buyCars

buy

Figure 2. formchart example.

used, probably with the same set of parameters, so that the
buying of a car is distinguished from the buying of a bike
merely by actual parameters, like an article number.

In the context of reverse engineering we have to iden-
tify the pages and actions of a system. All we know is that
each screen is instance of a page and that each form and
link refers to an action. It is not always possible to say,
which screen is instance of which page. The difference be-
tween pages may be a purely semantic one like in our exam-
ple, where the pages ”cars” and ”bikes” show lists that may
be structurally identical. In order to distinguish pages pre-
cisely we would have to look into the CGI programs that
generate them as, for example, it is done by the tool JSpick
[4]. The identification of actions can also be hard, but with
the information we get from forms it is usually much eas-
ier. To put the whole matter in a nutshell, a main problem of
client-side reverse engineering without the source code of
CGI programs is the classification of forms and links into
actions and the classification of screens into pages, the lat-
ter of which will be discussed in Sect. 4.

3. The Reverse Engineering Process

Revangie can work in different modes: the crawl mode,
which works on the client side, and the snoop mode, which
works at any point in the communication line between client
and server. When Revangie is started, it must be told which
mode it should use.

3.1. The Crawl Mode

The crawl mode works like an automated web browser:
It uses an HTTP client to request pages, submit values and
analyze the trace of submitted values and visited pages.
It starts at a specified URL, retrieves the corresponding
HTML screen and scans it for links, forms and some other
tags. As mentioned in Sect. 2, links and forms are grouped
to actions. As we will discuss further in Sect. 4, screens, in
turn, must be classified as being instances of pages. In this
way we can obtain information about which pages and ac-
tions are in the model, which action can be invoked from
which page, and which page is generated by which actions.

3.1.1. Problems of Fully Automatic System Exploration
It would be naive to think that the analysis model of every

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

non-trivial web application could be reconstructed automat-
ically. The problematic point is that the data submitted on
a page usually has to suffice certain constraints and there-
fore cannot be generated generically. Sometimes this data
depends on the context or its history, e.g., email addresses,
credit card numbers or passwords. But still, there are web
applications for which the crawl mode, which generates in-
put data randomly, can yield satisfactory results. Think, for
example, of a search engine. It is conceivable that the range
of web applications feasible for the crawler can be widened
by the use of simple heuristics which, for example, exploit
the fact that certain field labels, e.g., ”surname” or ”email”,
correspond to well-known data types. Note that we must not
generate data for the hidden parameters of forms and links;
we have to use the values provided by the web application
in order to guarantee consistent operation.

We cannot simply use a breadth-first or depth-first search
of the bipartite graph that we are constructing because most
of the more sophisticated web applications keep track of
sessions, i.e., the history of action invocations triggered by
a single user. The permitted protocol of a session is given
by the sequence of screens as provided by the web server,
and any deviation from it might cause an error. Most peo-
ple have experienced that using the back and reload buttons
of a browser in a form-oriented system can cause errors due
to the expiry of a page.

An important question for the crawl mode is how the
choice for the next action in the automated browser is made.
Of course, we want to make the choice that is most likely
to help us in the analysis, i.e., that leads us to the discov-
ery of a maximum of new pages and actions. But we cannot
predict which choice this will be, so we have to use heuris-
tics like a usage counter for each form and link. The ”least
used” heuristic says that an action with a minimum usage
counter is a good choice.

3.1.2. The Crawling Algorithm Putting it all together,
this yields Algorithm 1 as the operational semantics of the
crawl mode. Procedure crawlAll simulates many single-
user sessions successively by invoking procedure crawl on
page entry as long as a significant extension of the recon-
structed model takes place. entry is an artificial page which
contains forms for all the actions that may serve as entry
points into the web application. Although page entry does
not appear in the actual web application, it is represented
internally like any other page, only that it is marked in the
model.

In order to stop exploration when no new parts of the web
application are discovered any more, we calculate the value
α as a ratio of the number of iterations done in crawlAll to
the number of actions found in model, the global variable
containing the reconstructed model. This gives us the aver-
age number of actions discovered in a single simulated ses-
sion; and once α drops below a threshold Θ, we assume that

the application has been explored sufficiently. We use the
number of actions and not the number of actions and pages
because the number of pages usually varies much more de-
pending on how we classify screens. It is usually harder to
find an appropriate classification for screens than it is for
forms; even the simple grouping of forms by their CGI pro-
gram URI works well in many cases. The number of actions
in a web application is usually proportional to the num-
ber of conceptual pages and seems a satisfactory measure
for how much the application has been explored. The num-
ber of pages can be too volatile depending on the notion of
screen classification as it becomes apparent, for example,
in a search engine: the search action may lead to innumer-
able screens that may be hard to classify.

Algorithm 1 Crawl Mode
1: procedure CRAWLALL

2: while α ≥ Θ do
3: crawl(entry)
4: end while
5: end procedure

6: procedure CRAWL(Page p)
7: while |p.forms| > 0 ∧ α ≥ Θ do
8: Set A ← {classify(f) | f ∈ p.forms ∧

feasible(f)}
9: for all Action a ∈ A do

10: model ← model ∪ {(p, a)}
11: end for
12: if A = ∅ then
13: break
14: end if
15: a ∈ A with a.usages = min

a′∈A
a′.usages

16: a.usages← a.usages+1
17: Set data ← ∅
18: for all Field f ∈ a.lastform.fields do
19: value ←generateValue(f)
20: data ← data ∪ {(f .label, value)}
21: end for
22: s ←invoke(a, data)
23: p′ ←classify(s)
24: model ← model ∪ {(a, p′)}
25: p ← p′

26: end while
27: end procedure

Procedure crawl simulates a single session which runs
into a terminal set of states, i.e., a set of pages and actions
that cannot be left. The existence of terminal sets of states
in a web application is the reason that simulation of a sin-
gle session is insufficient; a single session can only explore
one terminal set. We try to cover all the terminal sets by sim-
ulating multiple sessions.

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

In the main loop of procedure crawl we iterate over page-
action-page transitions, starting on the page p given as argu-
ment. In the condition of the while-loop in line 7 we check
if the page offers any possibility of interaction at all; if not,
crawl terminates. An HTML link can be regarded as a spe-
cial case of an HTML form, i.e., one that does not have vis-
ible fields. Therefore, the class that represents a link is in-
ternally a subclass of class Form, and if p contains no forms
it does not contain links either. The other while-condition,
α ≥ Θ, is similar to the one in procedure crawlAll and
will be discussed later on. In line 8 we construct a set A
which contains actions for all the forms on screen s that
are feasible, i.e., that do not lead us out of the application
onto other web sites. Actions for non-feasible forms could
also be added to the model if desired. The following loop
adds a page-action transition from p to each action in A to
the reconstructed model. The model is accessible through
he global variable model and represents the transitions be-
tween actions and pages by a set of tuples.

Set A contains all actions that can be considered for in-
vocation at this point. If A is empty, no action can be in-
voked and we terminate the session by leaving the loop in
line 13. Otherwise, we choose an action a of A which has a
minimal usage counter in line 15, thereby trying to max-
imize the likelihood of efficient exploration. After incre-
menting the usage-counter of the chosen action a, we gen-
erate a label-value pair for each field f of the last form clas-
sified to a in lines 17-21. Then, we can submit this data, re-
ceive a new screen s, and classify s into a page p ′, which
can be an existing page or a new one. We add the recon-
structed action-page transition (a, p′) to model and prepare
the next iteration that uses p′ as starting point.

The second condition of the while-loop in line 7, α ≥ Θ,
is there to ensure that crawl terminates when the terminal
set of states it operates in seems to be sufficiently explored.
Similar to procedure crawlAll, α is the ratio of the num-
ber of new actions found in a session to the number of itera-
tions done in that session. If many iterations are preformed
without the discovery of an appropriate number of new ac-
tions, crawl terminates.

3.1.3. The Quality of Crawling The quality of the con-
structed model depends heavily on the functions generate-
Value and classify. It depends on generateValue how effec-
tively user input is simulated and therefore how well the
actual set of pages and actions in the web application is
covered. An action that requires data of a special form that
generateValue cannot offer will probably generate an error
page all the time and never reveal its real functionality. clas-
sify determines if the granularity of the reconstructed model
during exploration is adequate. The classification of forms,
in particular, also influences the efficacy of the crawling
process because it affects the heuristic for the selection of
the next action to use: A classification that is too fine leads

to a redundancy of actions; many usage counters will be
zero for a long time, so the least-used heuristic does not
help much. A classification that is too coarse does not dif-
ferentiate the functions of the system properly and leads to
few actions whose usage counters will rise very fast. In ex-
treme cases the least-used heuristic is not much better than
random choice.

Classification of pages is not only, like depicted in the
pseudo code, possible online, i.e., during the process of ex-
ploration. We can also perform a new classification offline,
that is in a separate stage after the process of exploration.
Therefore, we record the exploration history so that a classi-
fication algorithm can operate on the whole data a-posteriori
and consequently use a wider range of analysis techniques.

3.2. The Snoop Mode

The snoop mode collects data of actual sessions of a web
application in order to analyze it and reconstruct a model af-
terwards. It can either monitor the HTML communication
of one or more users by taking the role of a proxy server, or
monitor the communication of all users by taking the role
of a facade to the web server. In the first case the user has
to configure his web browser accordingly, and in the latter
case the web server has to be reconfigured.

This mode allows us to collect realistic session data of
one or more users. In the case of many users it can be
utilized to determine certain user model parameters statis-
tically. An analysis model with this additional data, like
distributions for the turnaround time, navigation probabil-
ities or sample input, is ideally fit for performing fully-
automated realistic tests, especially load testing. Of course,
the snoop mode should be used with discretion so that
other’s privacy is respected.

3.3. The Guide Mode

The guide mode tries to combine the advantages of crawl
and single-user snoop mode: automation and the possibil-
ity to enter form data manually. The algorithm is like in the
crawl mode, but at certain points the user is asked to choose
the form to use next and enter appropriate values. The tool
can ask for user input at every step or only at steps that are
hard to handle automatically, like forms with input fields.

Besides for the selection of a form and the generation
of input data, user input can also be useful for screen clas-
sification. If classification seems ambiguous according to
some measure, the user can select to which page a screen
should be added. If automatic classification produced un-
satisfactory results, screens can be reclassified by the user.
The same applies to forms and actions.

The guide mode uses an ordinary web browser for inter-
action and offers additional controls for computer aided re-

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

a b

c

a b

c

a b

c

a b

c

a b

c

Figure 3. Cpo of equivalence relations.

verse engineering. The tool acts as a proxy for the web
browser and displays session histories, usage counters,
screen and form classifications and a formchart of the cur-
rent model. It also suggests automatically generated data
for input fields, thus making reverse engineering more con-
venient.

4. The Screen Classification Problem

We need to classify each received screen to a page in or-
der to build our model properly. As depicted in Sect. 2, a
page is characterized by the signatures of its targets, i.e.,
the actions that can be invoked on it by the user, and the sig-
nature of the data presented on its screens. Screens usually
contain many hints about how these signatures look like,
and there is a wide variety of possibilities for screen classifi-
cation. If, for example, a target’s URL has the suffix .html
and no parameters, it is reasonable to assume that it leads to
a static page of which all screens are equal by string equal-
ity. On the other hand, if a target action has parameters, it
is likely to generate screens with varying content that re-
quire more sophisticated techniques to classify.

4.1. The Lattice of Classifications

Let us first look at the formal basis of classification. For-
mally, a classification is an equivalence relation, i.e., a re-
flexive, transitive and symmetric binary relation which par-
titions a set into disjoint subsets called equivalence classes.
We denote the set of all equivalence relations over a given
set S by EQS .

We call a classification resp. equivalence relation
A∈EQS a refinement of equivalence relation B∈EQS ,
denoted by A�B, iff

∀x, y ∈ S : x ∼A y ⇒ x ∼B y

The above definition of refinement is natural because a re-
fining classification is conservative with respect to the re-

fined classification, i.e., a refinement only further subdi-
vides the classes of a given classification. This is also neatly
expressed by the fact that the defined refinement is equal to
the subset relationship between equivalence relations, i.e.,
the following holds

A�B iff A ⊆ B

For example, given a set of screens S ={a, b, c}, the Hasse
diagram in Fig. 3 visualizes the partial order (EQS ,�) of
equivalence relations over S.

Similarly we can define true refinement �, coarsening
�, and true coarsening� by:

A�B iff A ⊂ B,

A�B iff A ⊇ B,

A�B iff A ⊃ B.

We now define conjunction ∧ and disjunction ∨ of clas-
sifications. A classification identifies elements of the set for
which it is defined. Informally, a conjunction A ∧ B iden-
tifies those elements that are identified by both A and B,
whereas a disjunction A ∨ B identifies those elements that
can be identified by means of A or B. Conjunction is de-
fined by set intersection on equivalence relations; however,
disjunction cannot be defined analogously just by set union,
but must be defined as transitive closure of set union.

A∧B =def A ∩ B

A∨B =def transitive-closure(A ∪ B)

The partial order EQS together with conjunction and dis-
junction, i.e., (EQS ,∧,∨), form a complete lattice.

A notion of classification assigns to each set a classifica-
tion of this set, i.e., an equivalence relation on this set. Typ-
ically, only sets that adhere to certain criteria are consid-
ered – we can formalize this by considering subsets S of a
given base set B only. The given context criteria can be ex-
ploited to argue about the refinement relation between no-
tions of classifications defined below. All this means, that a
notion of classification is a dependent product with respect
to a family of sets and equivalence relations over these sets.

C = (CS :EQS)S⊆B

We now define refinement, disjunction and conjunction for
notions of classification:

(CS)S⊆B �(DS)S⊆B iff ∀S⊆B.CS �DS ,

(CS)S⊆B∧ (DS)S⊆B =def (CS∧DS)S⊆B ,

(CS)S⊆B∨ (DS)S⊆B =def (CS∨DS)S⊆B .

Also the set NoCB of notions of classification with respect
to a base set B together with disjunction and conjunction,
i.e., (NoCB,∧,∨), form a complete lattice.

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

smallcoarse-grainedgeneral

coarseningrefinement

largefine-grainedspecific

model size
model

granularity

classification

characteristics

smallcoarse-grainedgeneral

coarseningrefinement

largefine-grainedspecific

model size
model

granularity

classification

characteristics

Figure 4. Terminology for classification.

We now define the concept SNoCB of standard notions
of classification with respect to base set B. Informally, a
standard notion of classification is conservative with respect
to set operations on the underlying set of the equivalence re-
lations.

C ∈ SNoCB

iff
∀S, T ⊆B.∀x, y∈S∩T.x∼CS y ⇔ x∼CT y

For standard notions of classification, refinement can be de-
fined more directly as the refinement on the base set classi-
fication because the following holds:

∀S⊆B.CS �DS ⇔ CB �DB.

In the sequel we use the terms notion of classification
and classification synonymously. The terminology for clas-
sification used in our paper is defined in Fig. 4. It shows the
effect of refinement and coarsening on classification char-
acteristics, model granularity, and model size.

4.2. Possible Screen Classifications

Now, let us consider different notions of screen classifi-
cation:

Trivial identity is the coarsest possible equivalence rela-
tion. All screens are equivalent. It is practically unim-
portant but forms the top (�) element of our lattice.

Screen identity is the finest possible equivalence relation
for screen classification and consequently forms the
bottom (⊥) element. Each screen that is received by
a web client gets its own page, even when two screens
have the same HTML code.

Textual identity groups screens with the same HTML
code into the same page.

Source identity groups screens into the same page that
were generated by the same action.

screen id ⊥

textual id

patterns idsource id title idtargets id

targets id
∧

title id

targets id
∨

title id

trivial id T

Figure 5. Lattice of notions of screen classifi-
cation.

Targets identity groups screens with identical targets sig-
nature, i.e., the same set of signatures of the server
actions targeted by a screen. Targets identity can be
coarsened to form targets identity by excluding the
signatures of links from the targets signature, or or-
thogonally, coarsened to internal targets identity by
excluding forms and links that target external actions,
like links to other web sites.

Title identity groups screens with identical HTML titles.

Pattern identity groups screens that match a user-defined
pattern. This may be a textual pattern, a purely syntac-
tical pattern or a mixture of both; regular or, at most,
context-free patterns are usually sufficient.

Similarity or dissimilarity of screens according to some
textual or structural distance metric can be used to
cluster them into pages (e.g., [17]). A similarity mea-
sure suitable for clustering can also be created by com-
bination of multiple similarity indicators, like any of
the discussed ones, which can be combined, for exam-
ple, by a weighted sum.

The relationship between the different notions of classi-
fications is illustrated in Fig. 5. Note that Fig. 5 is not a com-
plete visualization of the lattice of notions of screen classi-
fication because only exemplary disjunctions resp. conjunc-
tions are included.

By combining and configuring classification techniques
appropriately, it is possible to reconstruct an expressive
model with adequate page granularity. For a maximum of
flexibility, Revangie offers a system of configurable plug-
ins for screen classification, with a generic default plug-in.
Note that it depends on the intended usage of a model which
model granularity is adequate, i.e., a given model granu-

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

ACME events

ACME bargains

ACME Specials
1

ACME Specials
2

home

ACME Welcome
3

ACME Welcome
4

view products

Hardware
5

Drugs
6

Food
7

title: 1-2 3-4 5 6 7 8

source: 1 2 3-4 5-6-7 8

targets: 1-2 3-4 5-6 7-8

source or title: 1-2 3-4 5-6-7 8

targets or title: 1-2 3-4 5-6 7-8

source or targets: 1-2 3-4 5-6-7-8

source and title: 1 2 3-4 5 6 7 8

targets and title: 1-2 3-4 5 6 7 8

source and targets:1 2 3-4 5-6 7 8

non-food food

Goodies
8

view goodies

Figure 6. Example conjoined and disjoined
classifications.

larity must be judged with respect to an external criterion.
For example, targets identity can be considered to fit best in
load testing scenarios, whereas textual identity is the clas-
sification of choice for static HTML pages. Targets iden-
tity is an important basic classification because it yields the
smallest possible form-oriented analysis models without en-
abling conditions for targets, i.e., it yields a model where all
the screens of a page offer the same server actions for inter-
action. We discuss this topic further in Sect. 4.6.

Our classification apparatus is especially expressive be-
cause of the notions of conjunction and disjunction. Po-
tential candidates for conjunction are, for example, targets
identity and title, or targets identity and pattern identity.
Please consider the classifications resulting from conjunc-
tion and disjunction in the ACME webshop example of
Fig. 6. Note, that the figure shows a modified formchart
diagram where single, completely unclassified screens are
drawn instead of client pages. Therefore, dashed lines are
used instead of solid ones for the bubbles. The example,
with its many different classifications, aims to clarify that
there is no single notion of correct model granularity. All
the classifications correctly group screens 3 and 4, but not
all separate 1 and 2 although they are semantically differ-
ent. All the screens 5 to 8 display different kinds of prod-
ucts, so it would be thinkable to separate them, like title
identity does. It might also be more appropriate to classify
them according to their targets identity, so that only food
and non-food products are distinguished.

4.3. Classification and Clustering

Every classification can be reformulated as a clustering
according to some metric δ, with δ being a binary function
on screens that evaluates to a positive real number called
distance. For purely logic predicates like the identity of tar-
gets or titles corresponding metrics would produce a dis-

tance of zero iff the predicate is true and some other fixed
value if not. If the metric has a range that encompasses more
than two distance values, as it is the case for dissimilarity
measures, i.e., if the answer of δ whether two screens be-
long to the same page is fuzzy, we need to use a cluster-
ing method. Such a method partitions a set of objects – in
our case, the screens – into clusters which correspond to the
equivalence classes of an equivalence relation – the pages,
in our case. A large variety of such methods exists; see, for
example, [12].

Most clustering methods allow us to choose the num-
ber of clusters, which means in our case, the granularity of
the model. This allows us also to let the user set a preferred
model size and calculate a model that fits that size best. But
there are also useful heuristics for determining an optimal
model size: it is reasonable to assume that the fan-out of
an action has a small maximum, i.e., that an action gener-
ates only a few conceptually different pages, e.g., a page
that displays and requests some information and a page that
shows some error message if the action’s input was invalid.
If the fan-out of an action exceeds the maximum, we can as-
sume that the clustering of its generated screens is too fine
and coarsen the clustering, e.g., by merging clusters. If we
assume that there is some typical fan-out value for an ac-
tion, e.g., that it generates either a proper result or an error,
we can also steer the clustering in a way that this value is ap-
proximated best. In the same way we can also assume that a
page has a limited fan-in, i.e., a limit on the actions that gen-
erate it. Remember that a link is represented by an action,
not a page, so that if a link is on many screens of a web ap-
plication, the corresponding action has a high fan-in, but not
the page. That two different actions generate the same con-
ceptual page is rare but occurs; so a maximum on the fan-in
of a page can be used to steer the clustering, too.

4.4. Statistical Testing of Refinements

We introduce statistical methods in order to refine an
equivalence relation on screens. After running Revangie in
the snoop mode, we have a set S of screens. Furthermore,
we may find a certain criterion suitable for distinguishing
conceptually different pages. A good criterion is, for exam-
ple, the target usage frequency distribution of a page, i.e.,
the number of screens for each target in which the respec-
tive target was invoked by a user. It is a natural assump-
tion that pages with different usage patterns are conceptu-
ally different, and therefore, we look for classifications that
partition S into pages with different usage patterns well.

We might want to know, for example, if classification by
screen titles helps to distinguish pages that are used differ-
ently. In terms of statistics, every screen has random vari-
ables target and title, with target being the action that
was invoked from that screen. In order to determine if title

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

helps us to distinguish between different usages, we test if
target depends on title. If so, we refine our classification
by intersecting with title identity. A standard method used
for testing dependency of random variables is Pearson’s chi-
square [13].

4.5. Clustering with Significant Refinements

We introduce a clustering method that uses Pearson’s
chi-square test as described in Sect. 4.4. Algorithm 2 works
the following way: procedure cluster gets as input a clas-
sification, i.e., an equivalence relation, on the set S of all
screens. It iterates over different other equivalence relations
B on S, like target identity or title identity, and conjoins the
current classification A with B using operator ∧∗.

Algorithm 2 Statistical clustering of screens.
1: procedure CLUSTER(EQS A)
2: for all B ∈ {targets id, title id, ...} do
3: A ← A ∧∗ B
4: end for
5: end procedure

6: function ∧∗(EQS A, EQS B)
7: Set P ← ∅
8: for all Q ∈ S/A do
9: Set R ← Q/B

10: while ∃r1, r2 ∈ R.r1 �= r2 ∧ ¬χ2(r1, r2)∗ do
11: R ← (R − {r1, r2}) ∪ {r1 ∪ r2}
12: end while
13: P ← P ∪ R
14: end for
15: return A′ with S/A′ = P
16: end function

The conjunction∧∗ does not work like ordinary conjunc-
tion as defined in Sect. 4. Before splitting up a page cluster
in A, it tests if the split leads to conceptually different sub-
clusters. That is, it may preserve certain parts of A that the
ordinary conjunction would take away:

A ⊇ (A ∧∗ B) ⊇ (A ∧ B).

Let us consider now how ∧∗ works. In the following we
will use the terms equivalence class and cluster synony-
mously. In line 7 we initialize set P , which will eventu-
ally contain all the clusters of A∧∗ B. In line 8 we split the
set of all screens S up into clusters S/A by applying equiv-
alence relation A and iterate over these clusters. Each of
the clusters, in turn, is split up by equivalence relation B
in line 9, and the resulting subclusters are stored in set R.
In lines 10 to 12 we examine the clusters in R and merge
those that do not differ significantly. Two distinct clusters
r1 and r2 are merged if the random variable ”cluster of the

screen” with possible values {r1, r2} depends on a random
variable that can be reasonably assumed to distinguish con-
ceptually different screens, like usage (see Sect. 4.4), for all
screens in r1 ∪ r2. If the χ2-test does not signify depen-
dence, ¬χ2(r1, r2)∗, we merge the two clusters of R. If no
two clusters which fulfill the condition and could thus be
merged are found in R, the while-loop terminates. After-
wards, the remaining clusters are added to set P .

If equivalence relation B proves useless for distinguish-
ing conceptually different screens, all clusters in R are re-
united and A is not refined. In that case, the clusters in P –
which are those of A ∧∗ B – will be the same as those cre-
ated by A, so S/A = P . In line 15 we return the desired
equivalence relation A′, which is defined by the set of clus-
ters in P , i.e., by S/A′ = P .

4.6. Examples for Refinement and Coarsening

We identify two main motivations for reverse engineer-
ing a web application with Revangie: the creation of a
model of the application itself for the purpose of product
benchmarking [21] or re-engineering and the creation of a
model of its users for the purpose of testing the applica-
tion, esp. load testing. In the following we will, for each of
the motivations, look at cases where refinement or coarsen-
ing of the model is desirable.

4.6.1. Reconstruction of an Application Model For the
reconstruction of an application model there is not a sin-
gle recipe for screen classification. Generally, classification
by targets identity is a good starting point but usually either
too fine or too coarse. Consider, for example, the dynamic
pages of a content-managed information system like the
portal of an online newspaper. The start page of the newspa-
per may contain summaries of the latest articles with links
to them, and although many different screens are instances
of this conceptual page, they may differ heavily in the links
and therefore in their targets signature. In this case, a good
choice for coarsening the classification might be form tar-
gets identity. On the other hand, there may be conceptually
different pages with the same targets signature, e.g., a page
in a web shop to view articles and a conceptually differ-
ent one, although the same in targets identity, to view spe-
cial offers. In such cases, it can be useful to conjoin another
classification like, for example, title identity. For some sys-
tems it may be useful to readjust the classification for cer-
tain pages a-posteriori.

4.6.2. Reconstruction of a User Model Reconstruction
of a user model requires that a sufficient amount of session
data has been collected in the snoop mode. The first natu-
ral classification is that by targets identity because, in a user
model, we want to distinguish pages by the way they are
used. Furthermore, we can use the clustering technique de-

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

scribed in 4.5 with target choice or user response time as
second random variable in order to determine a clustering
that distinguishes screens with different user behavior well.
Consequently, if screens are equivalent with respect to user
behavior, they can be grouped in a common page, but clas-
sifications that group screens with different user behavior
have to be refined.

5. Related Work

There are a couple of elaborated approaches [15, 11, 10,
9, 14, 1] that analyze source code to recover [3] a design or
analysis model of the considered system. The motivation for
these systems may range from pure system navigation vi-
sualization over maintainability support to the recovery of
high-level architectural descriptions. Consider the tool pre-
sented in [11, 10, 9] as a representative example for this
technology class. The tool analyses source code and pages
of a web application and generates an architecture diagram
that visualizes the interactions between static pages, active
ASP or JSP pages and other software components by ar-
rows. A similar support is offered by the tool WARE (Web
Application Reverse Engineering) [14] for ASP and PHP
based systems. Thereby, flat information about actual form
parameters is recovered by this tool, too. A technique for
recovering navigational structure and a conceptual model
from a web application without tool support is described
in [1].

VAQUISTA [20, 19] offers support for the static analy-
sis of HTML pages. However, its goal is not to reverse en-
gineer a whole web site but to reverse engineer the user in-
terface from individual HTML pages in order to make them
accessible from other contexts, i.e., device independency is
targeted. An example for a tool that can track the change
history of a web site is given in [2].

A tool for source-code independent analysis of web ap-
plications is ReWeb [16, 18]. An early version of ReWeb
was able to recover a navigational model of a completely
static web site. However, already in this early contribution
the possibility to recover models for dynamic web pages
solely by analyzing the generated HTML code has been en-
visioned. In [18] there is an outline of the new ReWeb fea-
tures for the analysis of dynamic web sites. ReWeb is dif-
ferent from Revangie with respect to motivation, input sim-
ulation, server action classification, and notions of screen
classifications. The motivation for the dynamic features of
ReWeb is regression testing in web site evolution scenarios.
ReWeb works similar to our crawl mode, but input values
must be given before it is started. This means that an initial
knowledge of the system is required already before ReWeb
can be fully utilized. However, the choice of values can be
challenging because inappropriate values can lead to par-
tial models or duplicate pages in the model. ReWeb draws a

distinction between implicit and explicit state models. The
explicit state model regards each invocation of a CGI pro-
gram with new values as a new server action. The Revangie
state model is rather an implicit state model in the sense of
ReWeb. The explicit type model has a couple of flaws: in-
teraction state cannot necessarily be distinguished through
hidden parameters because recovered hidden parameter val-
ues may loose their validity over time. When ReWeb is used
on a web application, hidden parameters that are generated
by the system are not propagated properly but overwritten
by the ones in the explicit model, which may cause dy-
namic errors. The distinction of actions according to hidden
parameters will lead to bloated models if hidden parame-
ters are used for session management. ReWeb offers three
notions of classification for grouping screens: textual iden-
tity, syntactical identity, and identity with respect to simi-
larity metrics. Syntactical identity groups screens that have
identical abstract syntax trees, i.e., that are equal up to tex-
tual content of tags. However, we feel syntactical identity is
not the appropriate generalization of textual identity: con-
sider the insertion of a new row into a table, which causes
the resulting screens to be different with respect to syntac-
tical identity, although they might very well be instances of
the same conceptual page. In this important example, syn-
tactical identity is no improvement on textual identity. How-
ever, the example can be dealt with very elegantly by means
of syntactical pattern identity.

6. Further Directions

Once an adequate model for a web site is reconstructed,
it may be desirable to extract certain features in order to
make it clearer or facilitate subsequent redesign. Like many
other software systems, also web sites usually contain as-
pects, i.e., parts that cross-cut the general structure. A com-
mon example for aspects in web applications are menus,
which are important for the navigation on a web site, and
it is possible to extract such features from the recovered
model automatically. For example, forms and links that oc-
cur on several pages can be extracted and modeled sep-
arately with so called state sets, thereby making changes
much easier and allowing users to view parts of the sys-
tem independently of the whole without disturbing its gen-
eral structure. For an account on how this can be done using
form-oriented analysis see [6].

Furthermore, we are about to implement Angil – a tool
that uses the models created by Revangie in order to per-
form realistic load testing of web applications. The models
used by Angil are annotated by additional data about typ-
ical user behavior, like transition probabilities and user re-
sponse times. This data can be collected by Revangie in the
snoop mode.

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

7. Conclusion

The tool Revangie builds a form-oriented analysis model
solely from the usage of a web application. The recov-
ered models can be, for example, exploited for the pur-
pose of requirements engineering and load test develop-
ment. Revangie can explore a given web application fully
automatically or can passively record its usages. The col-
lected data, i.e., data about screens, server-side programs,
and system responsiveness, are analyzed in order to build
a user interface model. The paper presented several ade-
quate screen classifications, which are utilized to recon-
struct significant models. Revangie is built on solid theoret-
ical grounds and offers robust solutions to common prob-
lems. An implementation of the Revangie tool and a real-
world example for its usage can be found on the project
website at www.revangie.formcharts.org.

References

[1] G. Antoniol, G. Canfora, G. Casazza, and A. D. Lucia. Web
site reengineering using RMM. In International Workshop
on Web Site Evolution, pages 9–16, March 2000.

[2] D. Budgen and S. Burgees. A Simple Tool for Temporal In-
dexing of Hypertext Documents. Computer, 31:52–53, De-
cember 1998.

[3] E. J. Chikofsky and J. H. Cross. Reverse Engineering and
Design Recovery: A Taxonomy. IEEE Software, pages 13–
17, January 1990.

[4] D. Draheim, E. Fehr, and G. Weber. JSPick - A Server Pages
Design Recovery. In 7th European Conference on Software
Maintenance and Reengineering, LNCS. IEEE Press, March
2003.

[5] D. Draheim and G. Weber. Modeling Submit/Response Style
Systems with Form Charts and Dialogue Constraints. In
Workshop on Human Computer Interface for Semantic Web
and Web Applications, LNCS 2889. Springer, 2003.

[6] D. Draheim and G. Weber. Storyboarding Form-Based In-
terfaces. In INTERACT 2003 - Ninth IFIP TC13 Inter-
national Conference on Human-Computer Interaction. IOS
Press, 2003.

[7] D. Draheim and G. Weber. Form-Oriented Analysis - A New
Methodology to Model Form-Based Applications. Springer,
September 2004.

[8] D. Draheim and G. Weber. Specification and Generation
of Model 2 Web Interfaces. In APCHI 2004 - 6th Asia-
Pacific Conference on Computer-Human Interaction, LNCS.
Springer, June 2004.

[9] A. E. Hassan and R. C. Holt. Towards a Better Understand-
ing of Web Applications. In WSE 2001: International Work-
shop on Web Site Evolution, November 2001.

[10] A. E. Hassan and R. C. Holt. Architecture Recovery of Web
Applications. In ICSE 2002: International Conference on
Software Engineering, May 2002.

[11] A. E. Hassan and R. C. Holt. A Visual Architectural Ap-
proach to Maintaining Web Applications. Annals of Soft-
ware Engineering, 16, 2003.

[12] K. Jajuga, A. Sokoowski, and H. H. Bock. Classification,
Clustering and Data Analysis. Springer, August 2002.

[13] E. L. Lehmann. Testing Statistical Hypotheses. Springer,
March 1997. 2nd Reprint edition.

[14] G. Lucca, A. R. Fasolino, F. Pace, P. Tramontana, and
U. de Carlini. WARE: A Tool for the Reverse Engineering
of Web Applications. In Sixth European Conference on Soft-
ware Maintenance and Reengineering. IEEE, 2002.

[15] S. Mancoridis, T. S. Souder, Y.-F. Chen, E. R. Gansner, and
J. L. Korn. REportal: A Web-based Portal Site for Reverse
Engineering. In 8th Working Conference on Reverse Engi-
neering, pages 221–230. IEEE Press, November 2001.

[16] F. Ricca and P. Tonella. Analysis and Testing of Web Appli-
cations. In ICSE’2001 - International Conference on Soft-
ware Engineering, pages 25–34. IEEE Press, May 2001.

[17] F. Ricca and P. Tonella. Using Clustering to Support the Mi-
gration from Static to Dynamic Web Pages. In 11th Inter-
national Workshop on Program Comprehension, pages 207–
216, May 2003.

[18] P. Tonella and F. Ricca. Statistical Testing of Web Appli-
cations. Software Maintenance and Evolution, 16(1-2):103–
127, April 2004.

[19] J. Vanderdonckt and L. Bouillon. Retargeting of Web Pages
to Other Computing Platforms with VAQUISTA. In 9th
Working Conference on Reverse Engineering, pages 339–
338. IEEE Press, November 2002.

[20] J. Vanderdonckt, L. Bouillon, and N. Souchon. Flexible Re-
verse Engineering of Web Pages with VAQUISTA. In 8th
Working Conference on Reverse Engineering, pages 241–
248. IEEE Press, November 2001.

[21] G. H. Watson. Strategic benchmarking - How to rate your
company’s performance against the world’s best. John Wi-
ley, 1993.

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

