
Robust Content Creation with
Form-Oriented User Interfaces

Dirk Draheim
Institute of Computer Science

Freie Universität Berlin
Takustr. 9

14195 Berlin, Germany

draheim@acm.org

Christof Lutteroth
Department of Computer

Science
The University of Auckland

38 Princes Street
Auckland 1020, New Zealand

{lutteroth,g.weber}@cs.auckland.ac.nz

Gerald Weber
Department of Computer

Science
The University of Auckland

38 Princes Street
Auckland 1020, New Zealand

ABSTRACT
In this paper we describe how content can be created in a
way that ensures its integrity at all times, and how the user
interface for such a content editing program can be modeled
using the methodology of form-oriented analysis. The paper
discusses aspects concerning the data that is being created,
as well as aspects of the content editor itself. We show that
technological features like typing, opaque identities and user
transactions can facilitate the process of content creation as
experienced by the user significantly, and that these features
can be effectively incorporated when using the form-oriented
analysis model.

Categories and Subject Descriptors
H.4 [Information Interfaces and Presentation]: User
Interfaces—Theory and methods

Keywords
form-oriented user interfaces, robustness, content creation,
configuration

1. INTRODUCTION
For many people computers are tools that, ideally, help its

users to express and manage the products of their creativity.
Their significance is not their functionality in itself, but the
way it can be utilized by the user who wants to take advan-
tage of the manifold possibilities of digital content. As more
and more computer systems find their place in our everyday
life until people can hardly avoid them any more, it becomes
especially important to make their benefits easily accessible
and shield the end user [13] from the shortcomings of com-
puter technology. What we need are user interfaces, which
deliver functionality in a way suitable to the user, in con-
trast to system interfaces, which deliver functionality in a
way suitable to the system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHINZ ’05 July 6-8, 2005 Auckland, NZ
Copyright 2005 ACM 1-59593-036-1/04/10 ...$5.00.

One of those shortcomings is that in many systems, it is
easily possible for the user to bring the system into a cor-
rupted state. When the data a program operates on can
be corrupted easily, the user frequently finds himself or her-
self at a dead end. In those cases the programs themselves
are usually not capable of providing the user sufficient help,
and even though most of those problems can eventually be
overcome quite easily, it is very common that they take up
quite a lot of valuable time. Of course, we could expect the
user to learn how a program should be used, but the fact
is that most people are not power users but casual users,
who use most programs rather occasionally. Spending time
on learning how to use a program is an investment that not
everyone is willing to make, and not every program is worth
the time.

This paper considers systems for the creation of digital
content, how to model them and how to give them a prop-
erty which we call robustness. Our approach is to design
systems in a way that guarantees a form of data consistency
at any time. Rather than dealing with error detection and
error handling, these systems focus on error avoidance. The
ability of a system to avoid any interaction that might cause
inconsistency is what makes the system be robust.

In order to be able to make meaningful statements about
usability of content creation systems, we are in need of a the-
ory of such systems, and fortunately we already have such a
theory at hand: the form-oriented analysis methodology [5].
While it is not limited to the specification of content cre-
ation systems, one of the contributions of this paper is to
show why it suits this purpose very well and how it can
be applied to the modeling of content editing systems with
various forms of interaction.

We will frequently refer to the creation of web content in
order to exemplify different points discussed in this paper.
Web content is by its very nature active content in contrast
to mere text documents. Many users use the computer to a
large extend for browsing, and consequently web pages are
the human computer interface they use most. However, web
technology has not succeeded enabling end users to develop
these interfaces for themselves.

2. THE FORM-ORIENTED USER INTER-
FACE MODEL

Form-oriented analysis [5] is a methodology for specify-
ing submit/response-style information systems. This means

Full
Table
View

Single
Record
View

Confirm
Deletion

Show
Record

Modify
Record

Prepare
Deletion

Insert
Record

Delete
Record

Change
View

Figure 1: Formchart model for simple data editor.

that you can specify systems in which information is re-
ceived and displayed to a user, in which the user can submit
information to the system and thereby get a response that
is made visible and opens up new ways of interaction. The
form-oriented model can be used for many different appli-
cation types, like web applications[4, 8], but it is important
to observe that this model can be of particular value in the
specification of content editing systems.

A basic notion in this model is the concept of actions and
pages. Pages are parts of the system that report information
and offer possibilities of interaction to the user. We call these
possibilities of interaction forms since they usually allow the
user to provide more bits of information, the parameters.
Once the user submits the information entered into a form,
this information is sent to another part of the system which
is an action. An action processes the information in some
way and might also access different kinds of data stored in
the system, and eventually sends a result back to a page.

This alternating structure of pages and actions can be for-
mally described as a bipartite typed state machine, and a
simple way of visualizing it is a formchart. Figure 1 shows
a simple formchart that describes a simple editor for struc-
tured data. The bubbles represent pages that display infor-
mation to the user, while the boxes represent actions that
can be invoked from pages. In this figure the captions de-
scribe the content that is displayed or the functionality that
was activated, respectively. The transitions between pages
and actions describe the possibilities of user interaction.

3. CONTENT MODELING
As we will see, the way content is modeled can have an

immediate impact on the way a user interface can provide
access to it. A suitable content model does not only make
it easier to implement a good user interface, but can be of
significant help to the user when interacting with an appli-
cation.

We will also discuss a suitable implementation strategy
for our content model. For this purpose we will use the rela-
tional data model [1]. This data model was invented in the
70’s and is the one most frequently used in industrial envi-
ronments. It provides the basis for most database systems,
and there is a standardized and well-established language for
defining and manipulating data on such systems, SQL [10].

Using this industry standard for data management is not
just a matter of implementation, but it also solves a prob-
lem which can be of direct concern to the end user: data

ownership. Of course, usually the user has the legal rights
on his or her own creations, but that does not change the
fact that many commercial programs for content creation
hinder the end user to use the data the way he or she likes
to. Commercial programs usually store data in their own
proprietary data format, which can make it difficult to use
that data in other programs. In the extreme case we are
bound to a single program and, consequently, to a single
user interface. In contrast to that, the way data is stored in
a relational database is always transparent to the user, and
the user will never be bound to a single interface for working
with his or her content.

The next three Sects. 3.1, 3.2 and 3.3 discuss aspects of
content modeling that can directly provide added value to
a user interface. It makes clear that the way we handle
content as end user can directly benefit from the way we
think about content when modeling its structure.

3.1 Typing
Data types play a significant role in many application do-

mains and have to be represented in the user interface: dates
and currencies are classical examples, email addresses are a
further example. The use of types is the essential technique
to impose structure on content. We divide the universe of
possible values into subsets, which may be disjoint or not,
depending on the kind of type system we use, and each of
these subsets is called a type. A value that is part of such a
subset is said to be an instance of the corresponding type.

With the relational data model we are able to give every
bit of data in our system an explicit type, which means that
the type of data will be immediately evident in our system.
A type is not only used to express structural properties of
its instances, e.g., the fact that they are numbers. At least
as important as the structural properties are the semantic
properties of data that can be expressed by giving them
types. A number, for example, can be defined to express
a postal code, the size of a salary or the size of a person’s
shoes.

SQL offers us a number of atomic types, i.e., types that
cannot be divided any further, like types for representing
numbers and strings. It also offers a way for creating com-
posite types, so called relations, that are made up of basic
ones. Each atomic part of a relation is called an attribute,
and each attribute has a label that identifies it uniquely
within the relation it is defined in.

The properties of content that we make explicit by distin-
guishing types are not just important for the internal logic
of our system. In the area of end user development the sup-
port for typing gets a different motivation. The types are
not mere helpers for the learned software engineer, and the
reporting of type errors is not the right presentation of type
concepts any more: in end user development the system it-
self must manage typing issues once the user has declared
his/her typing preferences. The purpose of typing here is
therefore to free the user from the possible mistakes that
are understood as typing errors. As a consequence, the user
interface does not offer the wrongly typed choices in the first
place. The type system is therefore facilitating development
of content that is type-sound.

Let us consider user interface development with screen
diagrams – a user interface diagram type which is, in con-
trast to formcharts, not backed by a typed data model. Fig-
ure 2 shows a screen diagram for a simple book inventory

Books

Add

Add Book
Title
Publisher
Published
Price

Perelandra

Hitchhiker’s Guide
Lord of the Rings
Perelandra

Add

Perelandra

View

Scribner
June

10

Book Details
Title: Perelandra
Author: C.S. Lewis
Written: 1943
ISBN: 0684823829

Back

1996
$

Figure 2: Screen diagram of simple book inventory.

management application. Screen diagrams are probably the
most frequently used user interface diagram type because
they correspond directly to what the user will see on the
screen, which makes them very intuitive. Arrows starting
at control widgets and leading to other screens indicate how
the user interface changes when certain interactions are per-
formed. However, as Fig. 2 demonstrates, the lack of a data
model makes user interface development with screen dia-
grams prone to type errors: it can easily happen that rep-
resentations of the same content on different screens do not
match properly, e.g., items might be missing or the format
or level of detail of certain parts of the content might be dif-
ferent. With a typed data model the content is well-defined,
and such mistakes can be effectively avoided.

To illustrate the relationship between the type system and
the user interface, let us consider the page ”Single Record
View” of the user interface model in Fig. 1 with the assump-
tion that the system we are modeling is an address manage-
ment program. In the real system the page will probably
look similar to that in Fig. 3. On the left side of this figure
we see a visualization of the type that represents an address
book entry; on the right side we see the user interface for
editing data of that type. It is plausible that each editable
field in the GUI corresponds to an attribute in the data
type, and furthermore, in a good user interface the type of
the attribute influences the way in which the user can inter-
act with the different GUI components of the page (about
this kind of interaction within a page see also Sect. 4.1).
In our example, the user should probably be able to en-
ter arbitrary strings into the editable fields for name and
address; the fields for postal code and date of birth, how-
ever, should only allow the user to enter a number and a
valid date smaller than the current date, respectively. This
context sensitive restriction of user input is an important
principle for the creation of robust user interfaces, i.e., user
interfaces that do only permit interaction that leads to a
feasible system state.

The HTML/HTTP-based world wide web has from its
first days a strong tradition of ASCII-based development.
Many authors still use simply an ASCII editor to create
their HTML pages. This approach is ambivalent - it has
its clear limits, it nevertheless works as well. If we look at
today’s wiki systems [2], editing web pages is only one click
away from reading them, as we can see, for example, in the
example web page in Fig. 4. It becomes clear that editing

Person
string name
string address
integer postcode
date birthdate

Figure 3: Record type and ”Single Record View”
user interface.

Figure 4: Article view of the Wikipedia.

the web page is part of the same user interface as reading
it, therefore web development can be seen as a task that is
also intended for the end user. Nevertheless, in the case of
wikis the paradigm is a dualistic, not a unified one: the user
interface of the editor is visually altogether different from
that of the viewer, as we can see when comparing Fig. 4
with the corresponding Fig. 5.

The problem with text based editing views of web pages
or web applications is that they create an inherent point
of instability. The user can break the system by entering
incorrect input into the edit panel. This can be overcome
by systems that use an edit pane that is similar to the con-
tent view [7]. By using form-oriented techniques one can
deliver a robust interface for application development that
overcomes this problem. We are proposing an interface tech-
nology that guarantees that user input keeps the system in
a working state. The approach will depart from the text
based editing metaphor, which is essentially untyped, and
proceed to a typed editing approach that is - as a further
advantage - much more consistent with the look and feel of
the web and creates much more similarity between editing
mode and viewing mode. It also fits to the usage of many
wiki systems [6].

Note that the approach here is altogether different from
the RDF approach [11] and the semantic web. The semantic
web lives on a different layer. It is an implementation level
concept, while our focus of interest is in the user experience.
Secondly, the semantic web works on an ontological level.
Our approach is more neutral with respect to the contents
presented. It is just a framework allowing the user to express
content.

3.2 Opaque Identities

Figure 5: Article editor of the Wikipedia.

Opaque identities are the technical term for a an interface
concept that can be realized in quite a number of ways.
Opaque identities refer to the way how we identify, or name,
things. If we want to name things, be it people, data fields
or articles, the best strategy depends on way a name will be
used. If, for example, we use the name in a discussion, or
in a plain text, we necessarily have to have a plain name.
But if we want, for example, to drag an article from one
form of a user interface to another, we are not interested in
a plain representation. We are rather interested in a unique
identity, not prone to synonyms. Furthermore, we want it
to be free of spelling problems and to have type consistency,
so that an article can only be used as it should be.

The overall solution to this is the opaque identity. In-
stead of cutting and pasting, say, an article ID from one
user interface from to another, we offer an abstract repre-
sentation. In the most general form, this is a small icon that
can be cut from, pasted and dragged into the input field of
a form where it fits, similar to the user interface depicted
in Fig. 7. But beside this very iconic representation, the
concept of opaque identities refers to a very effective user
interface solution that lets the user reference objects with-
out manipulating their names or IDs directly.

Figure 6 shows an example where a user interface handles
email addresses, which could be represented with opaque
identities, in a user unfriendly way: in the edit window the
two recipient email addresses are accessible in a table-like
widget, however, it is not possible to mark and copy multiple
cells of this table or all of it. The second window views
the same email after it has been created, possibly on the
sender or the receiver side, and this time the emails of the
recipients are represented as running text. But again, it
is not possible to mark and copy multiple email addresses
here. The user interface uses different widgets to handle
email addresses, and by their looks these widgets seem to
offer certain standard functionality which they actually do
not. The concept of opaque identities, in contrast, strives to
unify the way such content is represented and handled.

Relational database systems support the concept of opaque
identities by offering the mechanism of primary keys. Pri-
mary keys are values in data entries that identify each entry
uniquely. Furthermore, a relational database system takes

Figure 6: Edit window and view window of of the
Mozilla Thunderbird email client showing the same
email.

Report X

Field 1

Field 2

Field 3

Form Y

Field 1

Field 2

Field 3

Figure 7: Handling opaque identities.

care that there can never be two data entries in a relation
with the same primary key. This makes a relational data-
base particularly useful for the implementation of robust
systems.

3.3 Referential Integrity
In most systems we have different kinds of data that are

related to each other. In our address book example, we
might, for example, not just keep track of the people in
our address book, but also of the companies they might be
affiliated with. Consequently, we would not only have to
store entries for people and companies, but also information
about which person belongs to which company. Once we
have such kind of referential information, there are a number
of things that can go wrong.

A person can, of course, only be affiliated with a company
that exists in our database. So when setting a persons affil-
iation, the user should only be allowed to choose from the
ones for which data entries are available. It is also conve-
nient when the user can immediately create a new company
entry when he needs it, at the place of the user interface
where the affiliation of a person is set. Another important
question is what happens when a company entry is deleted,
although it is referred to by person entries. Whatever strat-
egy is chosen to deal with that case, it is crucial that after
the deletion there are no remains left in the data that might
raise the impression that the entry still exists. There must
not be references that refer to no valid data at all and this
has to be reflected in the user interface. The property of
data that every reference refers to a valid data entry is called
referential integrity.

One distinctive robustness issue with HTML concerning
referential integrity is the avoidance of broken hyperlinks.
Not only text based editing of HTML is prone to broken
links; the absence of a high level infrastructure for links
makes this a persistent problem. On the other hand, broken
hyperlinks are still a relatively easy to fix class of errors.
The frequency of updates that could create broken links can
be considered low, and at any time the link is broken, it can
be fixed by looking up the correct place. There exist alter-
natives to HTML that solve the problem of broken links [3,
12]. If we want to move on from a simple hypertext to a web
application, robustness becomes a much more complicated
issue. Looking at today’s implementation technologies, like
PHP, web applications have by no means simple semantics.
The task of developing robust web applications is much more

complicated that developing correctly linked websites.
Fortunately today’s relational databases are able to ensure

referential integrity automatically. It is simply not possible
to refer to a non-existent data entry, and if a referenced entry
is deleted, the database system takes a predefined action. A
user interface that bases on such a database system is robust
to referential violation.

4. TWO-STAGE INTERACTION
In form-oriented systems we distinguish between two kinds

of user interaction. On the one hand, a page usually offers
the user ways of interaction that alter or extend the content
seen on the respective page, like editable fields to enter data
and other kinds of GUI controls, which we subsume under
the term fine-grained interaction. On the other hand, most
pages also offer ways of submitting information in forms to
the system which cause not necessarily the page content but
the overall system state to change and possibly lead to other
pages. For this we use the term coarse-grained interaction.
Usually the end user will first interact with a page on the
fine-grained level, providing input to and changing the con-
tent of a form, before submitting the data in a form and
inducing a data change on the coarse-grained level. There-
fore the overall notion is also called two-stage interaction.

In the following two Sects. 4.1 and 4.2 we will discuss
fine-grained and coarse-grained interaction in more detail.
We will illustrate how they can be modeled using the form-
oriented paradigm and how their technological implementa-
tion relates to an added value for the user interface. In the
case of coarse-grained interaction, this will lead us to a new
notion, that of user transactions.

4.1 Modeling Fine-grained Interaction
The defining characteristic of fine-grained interaction is

that the changes it causes to the system are only ephemeral.
The persistent state of the system remains unchanged. Fine-
grained interaction is used mainly for the following:

• Input or modification of form data
This might be a textual modification of some sort of
editable input field, like the ones we saw in Fig. 3. But
it might as well be a modification of some other nature,
like a change of a graphical object on the page.

• Changes of data view
These do not change the data itself, but rather the way
it is perceived by the end user. Typical examples for
this are elision in tree-view-like widgets and sorting of
table views, but it might as well be something like a
shift from visual to auditive page representation.

• Ephemeral side-effects
These are effects that neither change the representa-
tion of the page, nor persistent system state. Common
examples of that category are a feature to copy data to
a clipboard, or one to toggle between different modes
of operation of an input device, like the overwrite and
insert mode of the keyboard.

When entering or modifying form data on a page, the data
in the form might temporarily become inconsistent. This is
usually the case when the information in the form is still
incomplete or currently being modified. Consider, for ex-
ample, the editable field for the postal code in Fig. 3. It

would be possible and a good idea to make sure that only
numbers are entered into the field during input and that
the input does not exceed a certain length, but we would
probably not want to set a lower bound for the length while
input is in process. For a new address book entry the field
would be initially empty, and naturally the length of the
data would grow gradually. While the data in a form is in-
consistent for one reason or another, it must not be possible
to submit it to the system. Therefore, the ”Save” button
in our example could not be activated until the data in the
form is complete and all right. The transient inconsistency
of the data during fine-grained interaction does not compro-
mise the integrity of the system because the general system
state does not change until a coarse-grained submission of
consistent data is done.

A question that arises is how fine grained interaction can
be modeled with the form-oriented user interface model.
The answer is simply that there is only one general way
of modeling, which is the one described in Sect. 2 and illus-
trated in Fig. 1. Form-oriented models are flexible enough,
though, to accommodate for both the needs of coarse-grained
and fine-grained interaction.

What we have learned is that data can be submitted on a
page, which means that it is sent to an action, which in turn
sends back data for a new page. In the case of fine-grained
interaction, the submitted data needs not be consistent be-
cause it is not integrated into the general persistent data
model. This makes it possible to model input or modifica-
tion of form data as submit/response cycle.

Furthermore, a submission may send data that is not per-
ceptibly represented on the page. This data is usually either
a superset or subset of the data displayed on the page, or
additional information, e.g., about how the page is rendered
to the output devices, e.g., the screen. In order to model
changes of the data view, the page is given additional ren-
dering information about the way the data should be repre-
sented, and possibly it is given more information than will
actually be perceptible on the page. For instance, a table
view might only display a subset of the columns in a table,
depending on which ones it is configured to show, and a tree
view will display only the root nodes of subtrees that have
been collapsed by elision. Once the rendering parameters
are changed, the data is sent to an action, where it is possi-
bly transformed, e.g., sorted in a different way, and rendered
on a page again, probably the same one it was rendered on
before. Also in the case of ephemeral side-effects, additional
hidden data is used to keep track of the ephemeral changes.
This hidden data might, for example, be the content of a
clipboard.

In order to illustrate the use of the form-oriented model
for fine-grained interaction, let us consider how this kind
of interaction could be modeled for a considerably complex
user interface. Figure 8 shows the start page of an integrated
development environment (IDE), a program for the creation
of software. It contains mainly a menu bar and a tool bar
at the top, a tab control with different tabs on the left, and
a panel with a list of existent development projects on the
right. On the currently open tab there is a tree view, which
shows the local computer’s file system hierarchy, above a
table view, which lists the files in one of the file system’s
folders. Such a user interface could be modeled in arbitrary
detail, but the overall structure of the model would look like
Fig. 9. The different actions change the data sent back to the

Figure 8: Start page of the SharpDevelop IDE.

Start
Page

Pull Down
Menu

Change
Tab

(Un-)
Collapse
Subtree

Change
Table

Sorting

Change
Selection

Figure 9: Fine-grained interaction formchart model.

page in a way that a pull-down menu is shown, a different
tab is opened, a subtree is collapsed or unrolled, a different
file selected, or the table sorting changed, respectively.

Many possibilities of fine-grained interaction are usually
accessible on multiple pages of the system. In the case of the
IDE, we have, for example, another page for editing source
code that, like the start page, offers the possibilities to pull
down a menu and choose between tabs. In many systems
parts of the user interface are available at many different
places and therefore crosscut the system’s overall structure.
Attaching the corresponding actions to every single page
would not only mess up our model but fall short of the fact
that these parts are always the same, which would compro-
mise maintainability. Therefore, form-oriented analysis of-
fers a model entity called a state set that allows the modeler
to attach a model parts to a whole set of pages. Figure 10
shows how to model the common parts of the fine-grained
interaction on the start and edit page.

Another question is how to separate the model for fine-
grained interaction from the rest of the model, so that we are
not unnecessarily confronted with too much details all the
time. This problem can conveniently be solved by decompo-
sition of form-oriented models. With this method different
parts of the user interface can be modeled separately, with
some parts possibly appearing in multiple submodels, and

Start Page,
Edit Page

Pull Down
Menu

Change
Tab

Figure 10: Modeling crosscutting concerns of the UI
with state sets.

the different submodels can be arbitrarily merged.

4.2 Coarse-grained Interaction with
User Transactions

The characteristic property of coarse-grained interaction
is that it can cause the persistent data of the system to
change. When dividing interaction into the fine-grained
and coarse-grained categories, one of the deciding factors
is whether the respective action should cause an ephemeral
or a persistent change. In most cases of interaction, like the
ones depicted in Fig. 1, the decision is a natural one.

Every action that relies on more than trivial user input
and naturally involves a change in the data should be mod-
eled as coarse-grained interaction because, as we will discuss
now, this does not only prevent data loss but also offers
other added value. When fine-grained interaction is inter-
rupted by some system malfunction, e.g., a loss of power, all
ephemeral data will be lost. However, it will be possible to
restore the persistent state of the system, so that the overall
loss is insignificant.

For coarse-grained interaction we use another mechanism
to make our system fail-operational, i.e., capable of recover-
ing and functioning after a failure. We give it the name user
transactions. Every operation that is performed on the per-
sistent data within a single submit/response-cycle is atomic.
Naturally, in the implementation this will correspond to the
concept of a database transaction, which means that the op-
erations are guaranteed to adhere to the ACID principle [9].
Among other things, what will happen is that either all op-
erations are successfully completed, or none, so that the per-
sistent data will never be left in a half-unfinished corrupted
state. When coarse-grained interaction is interrupted, the
data of the form that triggered the corresponding action will
be lost, the integrity of the persistent data, however, will be
unaffected. All of today’s relational database systems come
with a built-in capability for transaction processing, so that
this feature can be used with no additional effort.

Another very desirable feature that can be implemented
with transactions at some additional cost is version control.
A common feature in modern content creation programs is
an undo/redo function, which allows the end user to revoke
actions that have been performed before. However, this fea-
ture is usually just implemented as ephemeral side-effect,
and during a system malfunction this information is lost.
Version control makes the history of coarse-grained changes
in the system persistent, thereby allowing to search for and
reuse any old version of the content that is edited. It also
enables the user to manage different versions and keep track
of content evolution, which is an absolute necessity in larger
projects.

Relational database systems are usually not only capable
of transactions, but also capable of concurrency control. In
distributed systems this is necessary to avoid interference
of different transactions that are executed concurrently, at
which the transactions can be sent to the database from any
place that is connected to the network. This means that if
we model coarse-grained interaction using the paradigm of
user transactions, our system will automatically be able to
handle multiple remote users at the same time. At no addi-
tional cost we get a distributed multi-user interface system.

5. CONFIGURATION VS.
CONSTRUCTION

When talking about the process of content creation, we
distinguish two different views of what is actually done. Tra-
ditionally the process of content creation starts out with
nothing or a small amount of data. This data is increasingly
extended over time, but there may also be phases in which
the amount of data decreases. However, the content may
also, deliberately or accidentally, be perturbed, rendered in-
valid or become altogether corrupted during creation. For
example, parts of data may be fitted together in a way that
does not make up a complete model yet. We call such con-
tent and the way it is created a construction.

Using our terminology, constructions are not based on a
robust user interface model. The fact that a state of in-
consistency can be reached is opposed to our notion of ro-
bustness. Therefore we propose a different view on content
creation, configuration. In the paradigm of configuration,
every feasible content is a point in a multidimensional, pos-
sibly infinitely dimensional, space – the configuration space.
Each dimension of that space is a possibly infinite seman-
tic domain, containing values and a special value represent-
ing an undefined state. In the process of creation, we start
out with the point that is undefined in all dimensions, and
transform that point into another point that contains either
more or the same amount of information as the point before.
The only exception to this is when the end user deliberately
deletes parts of the content, but even then, if we assumed
that a deletion would create a new version of the content
and that all prior versions are part of the configuration, the
aforementioned property would still hold. Each single point,
as well as the process itself, is called configuration. The se-
quence of points that the system passes through during con-
figuration is called configuration history and can formally be
understood as a chain in a complete partial order, starting
at the bottom element. The fact that all points in the con-
figuration space represent consistent content, together with
the fact that we can never leave this space, makes sure that
a user interface based on that paradigm must be inherently
a robust one.

6. CONCLUSION
In this paper we introduced different ways and methods

to make user interfaces of content creation systems more
robust. We discussed issues of data modeling that are of
immediate significance to the user interface, how the form-
oriented methodology can be applied, and how it can be
used to model fine-grained and coarse-grained interaction.
Eventually, we proposed a new paradigm for the creation of
content – configuration – that can serve as a formal basis
for the creation of robust user interface models.

7. REFERENCES
[1] E. F. Codd. A Relational Model of Data for Large

Shared Data Banks. Communications of the ACM,
13(6):377–387, 1970.

[2] W. Cunningham and B. Leuf. The Wiki Way:
Collaboration and Sharing on the Internet.
Addison-Wesley, 2001.

[3] W. Dalitz and G. Heyer. HyperWave : The New
Generation Internet Information System. Morgan
Kaufmann, 1997.

[4] D. Draheim and G. Weber. Modeling
Submit/Response Style Systems with Form Charts
and Dialogue Constraints. In Workshop on Human
Computer Interface for Semantic Web and Web
Applications (HCI-SWWA), LNCS 2889, pages
267–278. Springer, 2003.

[5] D. Draheim and G. Weber. Form-Oriented Analysis -
A New Methodology to Model Form-Based
Applications. Springer, October 2004.

[6] D. Draheim and G. Weber. A Qualitative Analysis of
Emerging Collaborative Web Structures. Technical
Report UoA-SE-2005-5, Software Engineering
Programme, The University of Auckland, 2005.

[7] D. Draheim and G. Weber. End-User Development of
Web Applications. Technical Report UoA-SE-2005-4,
Software Engineering Programme, The University of
Auckland, 2005.

[8] D. Draheim and G. Weber. Modelling Form-Based
Interfaces with Bipartite State Machines. volume 17,
pages 207–228. Elsevier, 2005.

[9] International Organization for Standardization.
10026-1:1992. Information technology – Open Systems
Interconnection – Distributed Transaction Processing,
1992.

[10] International Organization for Standardization.
International Standard 1975:1999. Information
Technology – Database Language SQL, 1999.

[11] O. Lassila and R. R. Swick. Resource Description
Framework (RDF) – Model and Syntax Specification.
World Wide Web Consortium, 1999.

[12] H. Maurer. Hypermedia Systems and Applications:
World Wide Web and Beyond. Springer, 1997.

[13] A. Sutcliffe and N. Mehandjiev. End-User
Development. Communications of the ACM,
47(9):31–32, 2004.

