
A Message Exchange Architecture
for Modern E-Commerce

Barry Dowdeswell1 and Christof Lutteroth2

1 AARN Innovation Limited,
P.O.Box 82-171, Highland Park, Auckland, New Zealand

barry@aarn.biz
2 Department of Computer Science, The University of Auckland,

38 Princes Street, Auckland 1020, New Zealand
lutteroth@cs.auckland.ac.nz

Abstract. This paper describes the EDIS business messaging architec-
ture, which is a modern, lightweight system that is used in numerous
companies. It explains the requirements for such a system, the problem-
atic issues that have to be dealt with, and also some aspects of the wider
context of e-commerce. Furthermore, it compares the presented archi-
tecture to similar systems like, for example, MS BizTalk and discusses
related research on enterprise architecture.

1 Introduction

In the business world, computers have been used since the 50’s and have become
an important tool for modern business. All the large enterprises rely heavily on
systems for enterprise resource planning (ERP) which integrate and automate
many of their administrative tasks. In the 90’s the focus of enterprise computing
shifted to the Internet, and the idea to use the net in order to make business
with customers (B2C) ended in heavy losses for many investors and companies. In
the last years another aspect has come to general attention: computer-supported
business between businesses (B2B). Again, the Internet is supposed to bring rev-
olutionary changes to the enterprise world, and this alleged revolution is heralded
by a plethora of new standards trying make their way into the enterprise.

When looking at these things from a scientific perspective, it is extremely im-
portant to distinguish between fact and hype, between what technologies are and
what people want them to be. For all what it seems, computer supported B2B
is an old concept that dates back to the 80’s. At that time, the main standards
defining the format of business messages were that of electronic data interchange
(EDI) [8], and the infrastructure on which these messages were transported were
value-added networks (VANs). Although it may seem, with the emergence of
XML-based data formats and the web services technology [15], that EDI is out-
dated, one has to acknowledge that the overwhelming majority of B2B traffic
is still done using the old standards. These technologies worked successfully for
twenty years now, while most new standards have still to prove themselves. And

D. Draheim and G. Weber (Eds.): TEAA 2005, LNCS 3888, pp. 56–70, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Message Exchange Architecture for Modern E-Commerce 57

no matter how mature new standards will turn out to be, the old standards will
continue to be used for quite some years to come.

The system described in this paper is one for business message exchange.
It was developed from the mid-nineties onward to be an easily deployable B2B
solution that can be adjusted to the changing needs of a company. Its creators
have been in the e-commerce business since it began in the 80’s, and as a conse-
quence the system supports old standards for message transport and encoding
as well as new ones and can interface to different ERP systems. It is extensible
and designed with the possibility of future change in mind.

2 Requirements for Modern B2B

Before we discuss the architecture of the EDIS B2B system, we would like to
point out the requirements that a modern B2B system has to satisfy. These
requirements have changed, since the new wave of B2B standards brings up new
maturity and compatibility issues. Standards for electronic B2B have become
a strategic factor, which means that decisions about it have to be considered
carefully.

First of all, it is not always possible for a company to choose their B2B
standard themselves. Many companies depend on trade relationships with bigger
business partners, and if such a business partner decides to change its e-commerce
system, might very well expect its smaller partners to adjust to it. This makes
flexibility of a system a basic requirement, especially in today’s world where
many changes are just about to occur. As we can see, for example, in [14], the
strategies with which companies adopt new B2B technologies can differ signifi-
cantly. The evolving nature of electronic B2B and the steady change that takes
place has been subject to many studies, e.g., the one described in [9]. It is im-
portant to note that we usually need not just a single standard for B2B message
exchange: there exist, for example, different standards for message encoding and
message transport, respectively, and those standards can be combined in many
different ways. To sum up, a flexible B2B system has to support different stan-
dards for different tasks, and it should be possible to combine them in different
ways.

Another aspect of flexibility concerns the workflow that a B2B system sup-
ports. This workflow, which might, for example, define what happens when a
system error occurs, may also be subject to steady change. Therefore, it must
not only be possible to configure the technological behaviour of the system,
but it must also be possible to change the way the system reacts to different
circumstances that may occur.

Different companies often have different ERP systems. Some companies even
have their own particular one. Whatever the ERP system is that a company
uses, a good message exchange system has to be able to interface to any of
them. Since the interface to the ERP system can be a very proprietary one,
it may be necessary to create a customized adapter component. A good B2B
system will support a developer in this task.

58 B. Dowdeswell and C. Lutteroth

In contrast to B2C, B2B is usually not dealing with huge loads of transac-
tions. Consequently, performance is not as important as in B2C. Whereas in B2C
we usually do not expect a single business transactions to have a particularly
high value, but rather expect many transactions with relatively small value, the
value of a B2B transaction can be extremely high. A flawed B2B transaction can
cause immense costs. Therefore we have to make sure that erroneous messages
are singled out, either automatically or manually. In order to perform such error
checking, the system needs to have some knowledge about the business logic;
and since business logic varies from company to company, it must be possible
to configure it as easily as possible. For correct business messages manual trans-
lation does not make sense: it is a tiring task and that makes it particularly
error prone. However, if an erroneous message is detected, human intervention
is an absolute necessity. For resolving errors, human intelligence is irreplaceable,
and trying to resolve errors automatically would be too high a risk. Neverthe-
less, a good B2B system should support the workflow of error handling done by
humans.

A B2B system has to offer high reliability. If messages get lost or corrupted,
this can have disastrous consequences for the supply chain of a business. Thus,
such a system has to rely on mature technology, like, for example, a good data-
base management system. Only if a persistent log is kept, the system can be
brought back into a consistent state after failure. Since such a system naturally
involves many business partners, errors might not necessarily occur just in the
local system, but in any system involved. A B2B system has to work correctly
even if other’s systems fail, and must also handle and resolve errors created by
others. It has to be fail operational, i.e., remain in an operational state even
when an error occurs. Whatever happens, the system has to log every major
system event, like incoming and outgoing messages, message translation and
possible failures. Only like this a system can, for example, detect when duplicate
messages are received and prevent duplicate processing. A very important issue
related to reliability is availability. While it may be tolerable in B2C when a
service is temporarily unavailable, this is totally unacceptable for a business. In
B2C this may cost a couple of small successful trades, but in B2B this can be
existential.

Last but not least, a B2B system has to guarantee security. This has dif-
ferent aspects: first of all, mechanisms like digital certificates and signatures
have to make sure that all the sender of each message is authentified. Once
authentification is done, we can use it in order to prevent unauthorized mes-
sages from being processed, i.e., ensure access control. Usually we also do not
want others to get to know the content of the business messages, so we have to
apply encryption to make them unreadable to others. Finally, a business part-
ner might want a unforgeable receipt for the reception and/or processing of a
message, which establishes a property called non-repudiation, i.e., the business
partner at the other end cannot repudiate the reception and/or processing of the
message.

A Message Exchange Architecture for Modern E-Commerce 59

3 The EDIS Architecture

Figure 1 shows an overview of the system’s architecture. As we can see, the
system consists of different modules, some of which form groups that take care of
a particular aspect of the system’s functionality. On the left side of the figure we
have different modules for handling the transport of in- and outgoing message
with different protocols. On the right of the figure we have different modules
for the translation of messages, which handle the data flow between message
queue and ERP system. The message queue is the central data structure of the
messaging system, with the transport protocol modules storing and retrieving
messages from it.

Many of the system’s modules are written in an interpreted scripting language
which is largely equivalent to MS Visual Basic. Some of the transport protocol
modules and all of the translation modules are implemented as scripts. This has
the advantage that these modules are very easy to program, to deploy and to
debug. The scripting language offers a high level of abstraction through a com-
prehensive framework of library functions. It eliminates the need for compilation
to a low-level representation, which makes it platform independent. Scripts are
controlled by the interpreter and sufficiently isolated from the rest of the system;
this makes it possible to ensure safety of execution and control a script’s capa-
bilities, i.e., the functions of the system it is allowed to use, making execution
also secure. The clean abstract interface of the interpreter and its inherent ca-
pacity to control the execution flow of a script make debugging easier. Although
interpretation is naturally slower than the execution of compiled code this is, as
we have discussed in Sect. 2, not a problematic issue.

Its scripting capabilities make the system highly customisable, since scripts
allow the developer to freely develop translation and communications functions

Fig. 1. Overview of the EDIS system

60 B. Dowdeswell and C. Lutteroth

specific to their needs. Note, however, that this flexibility does not infringe the
system’s integrity: the system has a mature, “closed” core and library that en-
sures the scripts operate in an consistent and safe environment. While end-users
who are developers have full access to the script source, they cannot modify the
core modules such as, e.g., the scheduler, the AS2 protocol implementation or
the EDIFACT library parsing routines.

All scripts are, directly or indirectly, activated by the scheduler of the system.
This module allows it to start scripts at regular time intervals. The analyser
module collects elementary data about a message and then delegates the its
processing to an appropriate translation script. In the following sections we will
describe all of these parts in detail.

3.1 The Message Queue

The message queue is the central data structure in the system. Whatever mes-
sage passes through the system will be archived in the message queue. It is
implemented on a relational database, which controls the access to it by all the
other system parts and makes sure that the data remains in a consistent state.
Since the message queue is such an important part of the system, we want to
cover it in more detail and explain how its relational schema looks like.

Before a message is sent it is usually put into an electronic envelope. Such
envelopes can hold multiple messages that are sent to a business partner in a
single delivery. The message queue keeps track of envelopes as well as of newly
created messages that are not enveloped yet. For each envelope the system has
to keep track of the different messages embedded in it. This is achieved with two
tables, Queue and QueueXref, which are illustrated at the top of Fig. 2. Table
Queue contains all the envelopes and unenveloped messages currently stored in
the system, together with fields that explicitly describe some of their fundamen-
tal properties. Table QueueXref keeps track of and contains information about
the messages that are stored in the envelopes of table Queue.

Let us first consider the records of table Queue: field MsgData holds the raw
data of an individual message or an envelope as it was received or created in a
BLOB. Field EDI ref is a running integer number and the primary key of the
table. Fields SenderID, PartnerID and ServideID are foreign keys to the tables
Partners and Services. If the record contains a message and not an envelope,
SenderID identifies the message’s sender, otherwise it is left blank. PartnerID
identifies the business partner an individual message or envelope is addressed
to. ServiceID references the remote service a message or envelope should be sent
to; more information about how to transfer data to a particular remote service
can be found in table Services. Field DocuType identifies the message format of
a message or envelope, e.g., EDIFACT or ANSI X.12. Naturally, all messages in
an envelope share the same format. DocuDir contains the direction of envelopes,
i.e., if it is inbound and has been received or outbound and will be or has been
sent. Field DocuStatus indicates if an entry needs processing or has already been
processed, and if the processing resulted in any error.

A Message Exchange Architecture for Modern E-Commerce 61

Fig. 2. General structure of the EDIS data model

Table QueueXref contains data about all messages that are stored in one
of Queue’s envelopes. It also contains field EDI ref, which refers to an en-
velope in Queue, and a field MsgNbr, which is the running number of the
respective message within that envelope. Together, EDI ref and MsgNbr form
the primary key of the table. MsgRef contains a message reference number
that is used to uniquely identify messages of a particular business partner,
which is important for detecting duplicates. It helps to make message recep-
tion idempotent, i.e., makes sure that messages which are received twice are
only processed once. MsgStdsName and MsgVer contain information about the
standard and the version of the standard the message adheres to. PartnerID is
a foreign key to table Partners and identifies the message’s creator. Since each
message in QueueXref is embedded in the BLOB field MsgData of an entry of
Queue, we also keep track of the starting position BytePosn of each message
within the BLOB. Field MsgStatus indicates whether this message has not been
or has already been decoded, and if any errors occurred during the decoding
process.

62 B. Dowdeswell and C. Lutteroth

3.2 The Scheduler

Many of the scripts of the system are executed in regular time intervals. The
part of the system that manages such time events is the scheduler. The scheduler
organizes time events in so-called process lines that are specified in the following
manner: it is possible to set the days of the week on which an event should occur,
the time of day the event should first be sent, the time of day the event can be
sent at last, and the frequency in which the event should be rescheduled after
having been sent. These parameters allow it to specify the time pattern in which
e-commerce usually takes place. All data about scheduling and current events is
available in the system’s relational database and can be read by other programs,
e.g., for monitoring purposes.

3.3 Transport Protocol Modules

Transport protocol modules are part of the system that take care of a specific
type of message transportation. As we have mentioned earlier there are differ-
ent standards and non-standards for the different functions of a B2B message
exchange system, and a good system has to be able to support all of them if
required. An important business partner might just adopt a new standard, and
the system has to adjust to this. This is why the transport subsystem of EDIS
has a modular structure that decouples message transportation from other parts.

A module can support sending of messages, reception, or both. It is activated
by a system event, which is usually either a timer signal or the arrival of a mes-
sage. The sending of messages is always triggered by a timer signal, whereas the
reception can be either triggered by a timer signal or message arrival. Modules
that are triggered by timer signals are usually implemented as scripts, which are
interpreted by the B2B system. Modules that react directly to message arrivals
are usually implemented as server extensions to, for example, the MS Internet
Information Server (IIS). This diversity is necessary in order to deal with the
different ways a message can be sent and received, of which we will describe a few.

One way to transport messages is to simply use the email infrastructure.
Email communication can be secured, for example, by combining it with trans-
port layer security (TLS), and authentification can be established by using digital
signing as described in the S/MIME standard. The transport protocol module
is triggered by a timer signal in regular intervals, and each time the module is
started, it connects to the respective mail server, retrieves the new messages, re-
moves the mail specific data from them and stores them into the message queue.
The messages are marked as unprocessed inbound messages. Besides for retriev-
ing messages form a mail server, the module also checks the message queue for
outbound messages that are to be sent to business partners that use email as
transport protocol. Once these messages have been delivered to the respective
mail server, they are marked as sent. One of the advantages of this architecture is
that existing email infrastructure can be used. Rather than having to implement
its own mail server, the system can interface to existing ones and thereby make
the actual message transport independent of other tasks particular to B2B.

A Message Exchange Architecture for Modern E-Commerce 63

A transport module similar to the one that uses email transfers the messages
to and from a business partner’s file system using the file transfer protocol (FTP).
This protocol can be secured, for example, by tunnelling it over the secure shell
protocol. The module is executed in regular time intervals, looks for new files
on a business partner’s file system and for new messages in the message queue,
performs the appropriate file transfer operations and updates the message queue.
Although FTP is a standardized protocol, the exact transport process via FTP
usually varies between business partners: business partners have their own rules
for the file names and file locations particular message types have to be stored
to. Consequently, such kind of modules have to be adjustable. This is achieved
through the relatively high abstraction level of the scripting language in which
these modules are written. Again, the system profits from the fact that it can
use any FTP server for message transport.

The module for handling inbound AS2 communication [3] is an example for
a module that is executed on arrival of a message. AS2, short for application
statement 2, is a business message transport standard proposed by the IETF.
It encapsulates message data in a MIME or S/MIME envelope and sends it via
HTTP. This is why the AS2 reception module is implemented as a MS IIS HTTP
handler. Whenever an AS2 message arrives, the handler is called and stores the
received data into the message queue. Since the message queue is implemented
on a transactional database management system, it does not matter how many
such handlers are working concurrently. The database management system takes
care of all the concurrency issues.

Modules handling outbound communication can access the system’s rela-
tional database in order to get the parameters that are need to send a message.
Table Services, which is illustrated in the top left corner of the data model in
Fig. 2, contains an entry for each remote service a message can be send to. Field
ServiceID is the table’s primary key and is used to associate the service with any
message in table Queue that should be send to it. ServiceDesc describes each of
the available services. Field AccessMethod and other fields, which we will not
mention further, provide the necessary technical details for sending messages to
the respective service provider.

3.4 Message Analysis

In regular time intervals the analysis module is run. It searches the message queue
for incoming envelopes that have not been processed yet. The analysis module
parses each message in such an envelope and determines what format the messages
are stored in and if the messages are well-formed. If a message is well-formed, some
of its basic properties are extracted, like its sender, its receiver, the message type,
e.g, if it is an invoice or purchase order, and its unique reference number. These
data are used in order to create a record in table QueueXref that describes the
respective message of the envelope. In order to decode a message and take appro-
priate action, we have to make use of the data about our business partners and the
messages they send that is stored in the system’s data base. The tables involved
here are illustrated in the bottom part of Fig. 2.

64 B. Dowdeswell and C. Lutteroth

Once a message has been analysed we need to start a script that handles
its further processing. Each kind of message is handled by a particular script,
which, in the case of incoming messages, either decodes the message or redirects
it. Decoding scripts and redirection scripts are described in Sects. 3.5 and 3.8,
respectively. For each message kind there is a record in table UserMsgDefn, which
contains a reference to the script that should be used. In field TranslationType
this record contains the type of the script, e.g., encoding or decoding, and in
fields MsgStdsRef and MsgVer the type of the processed message is described.

For choosing the right script for an incoming message, we use its type and
its sender, both of which have been extracted already. Table Partners contains
an entry for each business partner messages are sent to or received from. Each
business partner supports a well-defined set of message kinds that they can send
or receive. The data model allows us to map a type and a sender, which has an
entry in partners, unambiguously to a script. One way to define this mapping
is to modify table PartnerMessages, which can arbitrarily associate entries in
table Partners with entries in table UserMsgDefn. Field PartnerID is a foreign
key to table partners; field UserMsgName is a foreign key to table UserMsgDefn.
The fields PartnerID and MsgLineNbr form the primary key of the table, with
MsgLineNbr being a running number for all the kinds of messages a respective
business partner supports.

It would be possible to link all business partners with the message kinds
they support using table PartnerMessages. However, usually there are groups
of business partners which communicate amongst themselves using a common
standard and therefore use the same set of message kinds. In order to simplify
the relation between partners and message kinds and make them easier to main-
tain, the data model supports this concept of groups of business partners by
providing tables PartnerGroups and PartnerGroupMsgs. Field PartnerGroupID
of table Partners is a foreign key to table PartnerGroups, which contains a de-
scription of every group of business partners. It allows to associate a business
partner with a group and join groups with entries in table PartnerGroupMsgs.
Table PartnerGroupMsgs follows the same pattern as table PartnerMessages,
only that UserMsgDefn records are associated with records in PartnerGroups.
The advantage of business partner groups is that changes to the message kinds
of a group affects all group members, thus preserving compatibility of their
communication.

3.5 Decoding Scripts

As we have described in Sect. 3.4, decoding scripts are chosen and executed by
the analyser when inbound messages are processed. A decoding script parses a
message, extracts all important information and stores this information into the
database of an ERP system. In order to perform the translation of messages
into ERP records, decoding scripts have to be aware of the message’s syntax
and semantics as well as the structure of the ERP system’s data base. Hence,
writing such scripts is not a trivial task, and correctness of such scripts is very
important.

A Message Exchange Architecture for Modern E-Commerce 65

A scipt’s capabilities, i.e., the operations it is allowed to perform, should
be minimal. This way we can avoid many errors and detect some unwanted
behaviour. One way to realize this is to configure the interpreter accordingly: it
can control the access of the script to other modules while it is running. Another
way to restrict access and thereby increase safety is to use the access control
mechanism of the ERP system’s database: a script should only have write access
to those tables that it really needs to modify.

Last but not least, it is very important to handle errors in scripts appropri-
ately. If an error occurs, the error has to be logged and possible modifications
that have already been made by the scripts have to be undone. A script has to
be atomic, i.e., either complete successfully or have no effect at all except on
the system’s logs. The general structure imposed on the scripts satisfies all these
requirements. If a script produces a significant amount of errors, something in
the system is most probably wrong. It may be that the script is erroneous, but it
may also be that a business partner changed their messages without the system
being adjusted to the change. Whatever the reason, such a script will be singled
out and put into quarantine, and the errors are automatically reported to the
person responsible for the respective kind of message.

3.6 Search Scripts

Search scripts are run by the scheduler in regular time intervals. They search
parts of an ERP system’s database that contain information which has to be
sent to other business partners, like, for example, invoices or purchase orders.
For that they run a database query and keep the query results in an ephemeral
todo-list, which contains some basic information about every ERP record that is
to be sent. When the todo-list is complete, the search script uses the data in the
todo-list, like intended message recipient and message type, in order to select a
script that can encode the the data into a message. This is analogous to the task
of the analyser of selecting a decoding script, which was described in Sect. 3.4,
and makes use of the same database tables. Encoding scripts are described in
Sect. 3.7. A search script finishes when all todo-list entries have been processed
by appropriate encoding scripts.

3.7 Encoding Scripts

An encoding script is activated when a search script finds new data in an ERP
database that needs to be sent out of the system. The encoding script is given the
location of the ERP data it has to encode, extracts the required information from
the ERP database and assembles a new message that is written into the queue.
As soon as an appropriate transport protocol module is run by the scheduler,
the newly created messages are sent.

In order to keep track of the ERP records which have already been encoded
and avoid multiple encoding of the same record, encoding scripts use additional
database tables. These tables can either be part of the messaging system’s or
the ERP system’s database. The advantage of keeping them in the messaging
system is that ERP and messaging system are decoupled more and the risk of

66 B. Dowdeswell and C. Lutteroth

interference between the systems is reduced. The advantage of keeping them in
the ERP database is that the search query of a search script, which must only
return unsent records, can be executed more efficiently.

Encoding scripts are subject to the same safety requirements as decoding
scripts, which were described in Sect. 3.5. The capabilities such a script has
have to be adjusted carefully, e.g., the script should only be able to access those
parts of the ERP system that are needed. Like decoding scripts, encoding scripts
have to behave atomic and must handle and report errors carefully.

3.8 Redirection Scripts

Like decoding scripts, redirection scripts are started by the analyser after a new
inbound message has been analysed. However, instead of decoding the message
and storing it into an ERP system, the message is decoded and afterwards en-
coded as a new outbound message. The encoding creates a new entry in the
message queue that will be found and sent by one of the transport protocol
modules. This makes it possible for the system to act as a hub in a network of
business partners. It can mediate and translate the message exchange between
business partners who use different messaging standards, thus allowing them to
communicate without changing their system.

3.9 Maintenance Scripts

Another category of scripts is that of maintenance scripts. These scripts are usu-
ally called by the scheduler in regular time intervals and automatically perform
maintenance tasks which are important for the system. A maintenance script
might, for example, backup and archive all system data or produce a report on
the system’s recent activity.

4 Tool Support

Because the creation of translation scripts like encoding and decoding scripts is a
skilled task that consumes considerable time when done manually, the messaging
system contains an integrated development environment (IDE), EDIS map, that
can reduce the development time of such scripts drastically. By automating large
parts of the actual decoding and encoding of messages, EDIS map avoids many
potential programming errors and makes the development of translation scripts
easier and safer. The IDE supports old messaging standards like EDIFACT and
ANSI X.12 as well as newer XML-based message standards.

EDIS map facilitates the creation of translation scripts in several ways. It
offers a set of templates for standard translation tasks that can be easily modified
and adapted according to the business rules of a particular business partner. New
message translation scripts can be created by importing sample messages or
message schemas. The IDE makes meta information of several target database
systems like, for example, MS SQL Server and Borland Interbase, accessible,
so that scripts can easier be programmed to use these database systems. The

A Message Exchange Architecture for Modern E-Commerce 67

tool integrates documentation of messages and can export documentation about
message mappings in human readable form. Furthermore, it can automatically
generate documentation suitable for regression testing of scripts.

Rather than dealing with a single monolithic script that does all the work in-
volved in processing a message, we associate code snippets to message segments
that merely process the data in the respective message segment. Individual seg-
ments of a message can be examined, specified and documented. This approach
results in a natural decomposition of the translation process.

EDIS map also contains the usual features of advanced IDEs. It supports au-
tomatic formatting and syntax highlighting of code and message data, a context-
sensitive help and automatic code completion. Syntax checking is performed and
syntax errors are reported immediately; also runtime and compile-time errors are
reported within the IDE. The integrated debugger allows to trace the execution
of scripts in single steps.

5 Related Work

There exist theoretical models for the description of messaging systems, which
can be applied to the B2B context. One such model is described in [4]. It is
possible to describe messaging as done by the EDIS system with the data type
interchange models delineated in this work. In the terminology of [5], EDIS
provides the technological means for data exchange in interorganizational rela-
tionships between business partners. It is mainly used for relationships governed
by a market, although it is also possible to use it for relationships governed by
a hierarchy or a hybrid of both. EDIS is not limited to dyadic or “hub and
spoke” type relationships, but can be applied to organization networks as well.
It provides all the functions of a B2B engine as described in [1] as well as some
additional B2B integration functions, like integration of ERP systems.

There are various B2B systems on the market that offer capabilities similar
to those of EDIS. One of them is MS BizTalk [11]. BizTalk offers B2B functional-
ity similar to EDIS, although it intends to perform not only B2B messaging but
also enterprise application integration (EAI) and, most of all, business process
management (BPM). It has been described, for example, how BizTalk can be
used in order to manage B2b contracts electronically [7]. Whereas EDIS focusses
on enabling business partners to communicate, BizTalk also tries to define and
execute high-level programs, so-called “orchestrations”, which are supposed to
express business processes. These programs can be edited in a visual form and
are equivalent in expressiveness to the programming language BPEL [12], which
claims to achieve a higher level of abstraction that is closer to real business
processes by focusing on “programming in the large”. Regarding the original
intention of business process modelling as described, e.g., in [13], it is, however,
arguable whether orchestrations can really reach to that level, or if they rather
just describe the business logic. Such an approach is not inherently more appro-
priate than the scripting approach chosen in EDIS. The overall architecture of
BizTalk is similar to EDIS: the system contains modules for handling different

68 B. Dowdeswell and C. Lutteroth

transport protocols, which are called “adapters”, and messages are stored in
a central relational database, which is called “message box”. A central compo-
nent, the “orchestration engine”, executes and feeds messages into orchestrations
according to the message’s properties and perform further processing.

A main difference of BizTalk to EDIS is that all messages in the message box
are stored in some format based on XML. This can be explained by the point of
view that XML inherently provides added value for B2B, as it is also expressed
in different academic publications, e.g., [6] and [16], and by Microsoft’s current
technological strategy. Consequently, incoming and outgoing messages need to
be translated to and from XML in so-called “pipelines”. For different message
formats we need different sets of receiving and sending pipelines. While the us-
age of XML as a common intermediate format helps to standardise and reduce
modules preforming translation tasks and makes it possible to handle message
content in a common way, it also introduces the need to translate between dif-
ferent XML formats since XML is not a well-defined message format in itself.
Therefore, Biztalk comes with a CASE tool called BizTalk Mapper for creating
XSL transformations [18] between different XML schemas. This is slightly sim-
ilar to EDIS map, but in contrast to BizTalk Mapper, EDIS map supports the
translation between essentially different data formats, not just between different
flavours of XML, which is a more difficult task.

Another important difference to EDIS is that BizTalk has a very large foot-
print and depends on various other Microsoft products. Integration with other
products may on the one hand provide the user with more functionality and may
enrich the way a user can interact with a system, but on the other hand, depen-
dencies between products force customers to spend money on all the required
products and binds them to the respective company.

BizTalk, like many other products, make a big point of claiming that they
deliver service oriented architecture (SOA) [10]. In general, SOA describes a soft-
ware architecture for enterprise systems in which components are distributed in
a network and can use each other by utilizing a common remote function invo-
cation mechanism. Each component, which is also called a “service”, performs
a well-defined business task and can be implemented with arbitrary technology
as long as it provides the same network interface as the others. When most
companies speak about SOA, they refer to the very particular remoting tech-
nology of web services, the heart of which is the simple object access protocol
(SOAP) [17]. In the context of B2B, web services are just one possible way of
many for business partners to communicate; consequently, web services is just
one of the transport protocols a B2B system like BizTalk or EDIS can provide in
order to fit into a SOA. The software architecture of the BizTalk or EDIS systems
themselves is usually not SOA, but rather a structured, component-oriented and
non-distributed one. In the case of EDIS, the system consists of modules that
mostly interoperate asynchronously using the message queue, which is accessed
by SQL. Other commercial systems which follow the trend of SOA and have B2B
capabilities similar to EDIS are, for example, IBM WebSphere MQ and Cordys.

A Message Exchange Architecture for Modern E-Commerce 69

There are many studies describing the complexity of the implementation of
B2B systems in various companies; see for example [2]. Taking into account
past experiences with B2B, it is questionable whether a new B2B software can
really revolutionize the way electronic business is done. One should mark that
that the ways of electronic business are usually subject to evolutionary – not
revolutionary – change.

6 Conclusion

We described the EDIS B2B messaging system, its overall architecture and the
design of its important components like, for example, the scheduler, the message
analyser and the message queue. We also described EDIS map, which is a CASE
tool for creating translation scripts for EDIS. Besides pointing out the general
requirements of a B2B system, we also compared EDIS to other popular systems
with B2B messaging capabilities. While many other products claim to have a
significant impact on a business by offering business process engines and pro-
moting service oriented architecture, EDIS is not intended to promote or change
any architectural principles. It rather makes a point of not being prescriptive
and enable different companies to communicate without interfering with their
business processes.

References

1. Christoph Bussler. The role of B2B engines in B2B integration architectures.
SIGMOD Rec., 31(1):67–72, 2002.

2. Caroline Chan and Paula M.C. Swatman. Management and business issues for
B2B eCommerce implementation. In Proceedings of the 35th Annual Hawaii In-
ternational Conference on System Sciences. IEEE Press, January 2002.

3. D. Moberg and R. Drummond. RFC4130: MIME-Based Secure Peer-to-Peer Busi-
ness Data Interchange Using HTTP, Applicability Statement 2 (AS2). RFC, July
2005.

4. Dirk Draheim and Gerald Weber. Form-Oriented Analysis - A New Methodology
to Model Form-Based Applications. Springer, October 2004.

5. Wafa Elgarah, Natalia Falaleeva, Carol C. Saunders, Virginia Ilie, J. T. Shim, and
James. F. Courtney. Data exchange in interorganizational relationships: review
through multiple conceptual lenses. SIGMIS Database, 36(1):8–29, 2005.

6. Wilhelm Hasselbring and Hans Weigand. Languages for Electronic Business Com-
munication: State of the Art. Industrial Management & Data Systems, 101(5):
217–226, 2001.

7. Charles Herring and Zoran Milosevic. Implementing B2B Contracts Using BizTalk.
In Proceedings of the 34th Annual Hawaii International Conference on System
Sciences. IEEE Press, January 2001.

8. Paul Kimberley. Electronic Data Interchange. McGraw Hill, 1991.
9. Chang E. Koh and Kyungdoo Nam. Business use of the Internet: A longitudinal

study from a value chain perspective. Industrial Management & Data Systems,
105(1):82–95, January 2005.

10. Mircosoft Inc. BizTalk Server 2004 Architecture. Whitepaper, December 2003.

70 B. Dowdeswell and C. Lutteroth

11. Mircosoft Inc. Understanding BizTalk Server 2004. Technical Article, February
2004.

12. Organization for the Advancement of Structured Information Standards. Web
Services Business Process Execution Language Version 2.0. Working Draft, May
2005.

13. August-Wilhelm Scheer. Aris: Business Process Modeling. Springer, 2000.
14. Arie Segev, Jaana Porra, and Malu Roldan. Internet-based EDI strategy. Decision

Support Systems, 21(3):157–170, 1997.
15. Aaron E Walsh. UDDI, SOAP, and WSDL: The Web Services Specification Ref-

erence Book. Pearson Education, April 2002.
16. Tim Weitzel, Peter Buxmann, and Falk von Westarp. A Communication Archi-

tecture for the Digital Economy - 21st Century EDI. In Proceedings of the 33th
Annual Hawaii International Conference on System Sciences. IEEE Press, January
2000.

17. World Wide Web Consortium. SOAP Version 1.2. Recommendation, June 2003.
18. World Wide Web Consortium. XSL Transformations (XSLT) Version 2.0. Working

Draft, April 2005.

	Introduction
	Requirements for Modern B2B
	The EDIS Architecture
	The Message Queue
	The Scheduler
	Transport Protocol Modules
	Message Analysis
	Decoding Scripts
	Search Scripts
	Encoding Scripts
	Redirection Scripts
	Maintenance Scripts

	Tool Support
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

