Chapter 1

Introduction

Figure 1.1: Right-handed y-up coordinate system and the associated unit basis vectors.
Chapter 2

Curvature and Differential Geometry

Figure 2.1: (a) Closed, simple, smooth curve. (b) Not closed. (c) Not simple. (d) Not smooth.

Figure 2.2: Curvature at the point \(p_0 \) is defined in the limit \(p \to p_0 \).

Figure 2.3: Curvature is not defined at the join point of two half circles.
Figure 2.4: A parameterization for an arc constructed from two half circles.

Figure 2.5: Closed simple curves and associated interior regions.

Figure 2.6: A planar ε-neighborhood (open disk).

Figure 2.7: (a) Negative curvature. (b) Positive curvature.

Figure 2.8: (a) Closed, simple, smooth surface. (b) Not simple. (c) Not smooth.
Figure 2.9: Parameterization curves and tangent lines on the left, the tangent plane on the right.

Figure 2.10: Surface patch with a portion of its associated interior region.

Figure 2.11: Surface patch cross-sections with \(\varepsilon \)-neighborhood, tangent plane, and the exterior pointing normal.

Figure 2.12: Cutting planes: (a) aligned with a surface tangent line, (b) aligned with the surface normal, (c) the unique plane aligned with both a surface tangent line and the surface normal.
2. Curvature and Differential Geometry

Figure 2.13: Cutting plane intersections: (a) single curve, (b) two curves, (c) self-intersecting curve, (d) concentric curves.

Figure 2.14: eh-plot space for similarity curvature.
Figure 2.15: Mean (top) and Gaussian (bottom) curvature for a parameterized sphere of radius 2.
Figure 2.16: Mean (top) and Gaussian (bottom) curvature for a parameterized cylinder of radius 1 and height 2.
Figure 2.17: Mean (top) and Gaussian (bottom) curvature for a (truncated) parameterized cone having base radius $1/2$ and height 1.
Figure 2.18: Mean (top) and Gaussian (bottom) curvature for a parameterized torus.
Figure 2.19: Mean (top) and Gaussian (bottom) curvature for a parameterized ellipsoid.

Figure 2.20: EH-plot space color assignment for the ellipsoid example.
2. Curvature and Differential Geometry

Figure 2.21: Similarity curvature for a parameterized ellipsoid scaled at 1x (top) and 100x (bottom).

Figure 2.22: Similarity curvature for a parameterized ellipsoid with two equal axes.
Chapter 3

Digital Surface Curvature

Figure 3.1: (a) Sphere surface. (b) Voxel digitization. (c) Point cloud digitization. (d) Triangle mesh digitization.

Figure 3.2: Triangle fan surface patch: (a) plan view, (b) cross-section with face normals.
3. Digital Surface Curvature

Figure 3.3: The interior angles of an arbitrary triangle.

Figure 3.4: An arbitrary polygon: (a) interior angles, (b) triangulated.

Figure 3.5: The central angles of an arbitrary triangle umbrella.

Figure 3.6: Edge smoothed with a cylinder segment.
Figure 3.7: Three surface points: (a) surface cross-section, (b) surface digitization.

Figure 3.8: A regular acquisition pattern that results in hexagonal adjacency.

Figure 3.9: Estimator point selection for: (a) two cut, (b) three-cut.
Figure 3.10: Surface cutting planes: (a) aligned with surface normal, (b) misaligned by angle θ.
Chapter 4

Similarity Curvature Experiments

Figure 4.1: Scan grid.

Figure 4.2: Sphere e/h-histograms for reference, 10x scale, 10x resolution.
Figure 4.3: Cylinder eh-histograms for reference, 10x scale, 10x resolution.

Figure 4.4: Ellipsoid eh-histograms for reference, 10x scale, 10x resolution.
Figure 4.5: Torus eh-histograms for reference, 10x scale, 10x resolution.

Figure 4.6: Shading coded eh-axis.

Figure 4.7: Shading coded similarity curvature reference images: sphere, cylinder, ellipsoid, torus.
Figure 4.8: Torus cross section and shading coded similarity curvature image.
Figure 4.9: Color shaded test scene images illustrating (a) depth, (b) curvature, (c) extracted spherical patches.
Chapter 5

Curvature Maps for Surface Analysis

Figure 5.1: The large statue scanner acquiring data.

Figure 5.2: A photograph of David’s face.
Figure 5.3: A reference rendering.

Figure 5.4: The scanner’s imaging volume.
Figure 5.5: Two different 3D views of extracted surface points which intersect four (invisible) cutting planes.

Figure 5.6: The hexagonal adjacency pattern.

Figure 5.7: A squashed dot mapping.
Figure 5.8: Orthogonal cut points.

Figure 5.9: Planar line curvature estimation.
Figure 5.10: Points from scans 13 and 14, rendered with lighting.
Figure 5.11: Depth maps of scans 13 and 14.
Figure 5.12: Curvature maps of scans 13 and 14.
Chapter 6

2.5D Filtering of Noisy Data

Figure 6.1: Mappings of (a) orthogonal, or (b) hexagonal grids into an orthogonal grid.

Figure 6.2: Cross section of a surface fold.

Figure 6.3: Adjacency point neighborhood rings.
Figure 6.4: A photograph of Michelangelo’s David.

Figure 6.5: The curl: rendered mesh.
Figure 6.6: Cross-section of curl scan points.

Figure 6.7: Curvature map: before filtering.
Figure 6.8: Curvature map: 2D filtering.

Figure 6.9: Curvature map: 2.5D filtering.
Figure 6.10: Extracted A-B cut pixels: 2D filter and 2.5D filter.

Figure 6.11: Pixel values along the A-B cut.
Figure 6.12: David’s face: 2D (left) and 2.5D (right) filtering.
Chapter 7

Surface Registration Markers

Figure 7.1: Mappings of (a) orthogonal, or (b) hexagonal grids into an orthogonal grid.

Figure 7.2: Reverse mappings of (a) orthogonal, or (b) squashed hexagonal grids into the original grid.

Figure 7.3: Window subsets for the definition of a histogram template (here: indicated positions go to four histograms) for a spherical surface pit.
7. Surface Registration Markers

Figure 7.4: Scanning grid.

Figure 7.5: The indentation model.

Figure 7.6: Curvature estimation: no noise, nf:16, nf:8, nf:4, nf:2, nf:1.

Figure 7.7: Filtered and segmented: no noise, nf:16, nf:8, nf:4, nf:2, nf:1.
Figure 7.8: Feature identification results: synthetic data and six noise levels.

Figure 7.9: Top left corner of the scanning sequence.

Figure 7.10: The hexagonal grid of a scan.
7. Surface Registration Markers

Figure 7.11: 6-adjacency and orthogonal cut points.

Figure 7.12: Noisy mean curvature map and its histogram.

Figure 7.13: Gaussian filtered curvature map and its histogram.
Figure 7.14: Multi-level segmented curvature map and its histogram.

Figure 7.15: Every-other-row pixel subset for feature searching (shown as white).
7. Surface Registration Markers

Figure 7.16: Marker results.
Chapter 8

Projecting Surface Curvature

Figure 8.1: Michelangelo’s David: triangle mesh (flat).
Figure 8.2: Michelangelo’s David: triangle mesh (smooth).

Figure 8.3: Michelangelo’s David: with a strip of projected curvature.
Figure 8.4: Raw data consists of 3D scan points.

Figure 8.5: Closer edge-on viewing of a slice through the data reveals noise.
Figure 8.6: Shading encoded noisy curvature map.

Figure 8.7: After applying 2D image filtering and segmentation.
Figure 8.8: Results back into vertex colors in the 3D domain.

Figure 8.9: The standard lighting model, two overlapping scans.
Figure 8.10: The new lighting model, seamless scan strip overlap.

Figure 8.11: A patch of projected curvature on the front of David’s left knee.
Figure 8.12: Projected curvature detail on the back of David’s left knee.
Figure 8.13: A complete curvature map and a perspective correct final projection map.
Chapter 9

Identifying and Visualizing Surface Detail
Figure 9.1: Extracts from the curvature map image library.
Figure 9.2: Michelangelo’s David curvature maps: chisel marks, graffiti initials, thin fracture lines.

Figure 9.3: Michelangelo’s David with feature locations: chisel marks, graffiti initials, thin fracture lines.

Figure 9.4: Michelangelo’s David with projected texture close-up: chisel marks, graffiti initials, thin fracture lines.
Figure 9.5: A typical three-toothed chisel used for carving stone.

Figure 9.6: K-Scan screen shots: points gray-scale shaded indicating curvature, and an added measurement reference plane.

Figure 9.7: K-Scan screen shots: points gray-scale shaded indicating distance, shown with and without the reference plane.
Figure 9.8: Chisel marks: the gray-scale shaded (2D) depth map.
Figure 9.9: Chisel marks: extracted depth map subset.

Figure 9.10: Plot.
Appendix A

The Digital Michelangelo Project

Figure A.1: Digitizing Michelangelo’s David.
Figure A.2: Michelangelo’s David: orthogonal projection onto the xy-plane.
Figure A.3: Michelangelo’s David: orthogonal projection onto the zy-plane.
Figure A.4: Michelangelo’s David: orthogonal projection onto the zx-plane.
Figure A.5: Michelangelo’s David: rendered from the simplified model.