

Multiple textual and graphical
views for

Interactive Software
Development Environments

John Collis Grundy

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science

 University of Auckland June 1993

jgru001
Text Box
(c) John Grundy 1993. This version converted from Mac files so apologies for some messy diagrams!

Abstract Page i

Abstract

Diagram construction can be used to visually analyse and design a complex software
system using natural, graphical representations describing high-level structure and
semantics. Textual programming can specify detailed documentation and functionality
not well expressed at a visual level. Integrating multiple textual and graphical views of
software development allows programmers to utilise both representations as appropriate.
Consistency management between these views must be automatically maintained by the
development environment.

MViews, a model for such software development environments, has been developed.
MViews supports integrated textual and graphical views of software development with
consistency management. MViews provides flexible program and view representation
using a novel object dependency graph approach. Multiple views of a program may
contain common information and are stored as graphs with textual or graphical
renderings and editing. Change propagation between program components and views is
supported using a novel update record mechanism. Different editing tools are integrated
as views of a common program repository and new program representations and editors
can be integrated without affecting existing views.

A specification language for program and view state and manipulation semantics, and a
visual specification language for view appearance and editing semantics, have been
developed. An object-oriented architecture based on MViews abstractions allows
environment specifications to be translated into a design for implementing environments.
Environment designs are implemented by specialising a framework of object-oriented
language classes based on the MViews architecture. A new language is described which
provides object-oriented extensions to Prolog. An integrated software development
environment for this language is discussed and the specification, design and
implementation of this environment using MViews are described. MViews has also been
reused to produce a graphical entity-relationship/textual relational database schema
modeller, a dialogue painter with a graphical editing view and textual constraints view,
and various program visualisation systems.

Acknowledgments Page iii

Acknowledgments

My supervisor John Hosking has been a tremendous guiding influence during the research
for and writing of this thesis. He has helped pick my spirits up when down, encouraged
me when things have gone well and kept a sometimes way-ward spirit on the right path
too many times to mention. I have greatly valued his friendship, constructive criticism and
excellent supervision during the course of this work. I also look forward to continuing
professional and personal relationships for many years to come. Thanks for everything,
John.

I would also like to thank various colleagues for their helpful comments about my
research. Particular thanks go to Robert Amor, Stephen Fenwick, Rick Mugridge and John
Hamer from the University of Auckland and James Noble from Victoria University of
Wellington.

The staff and students of the Department of Computer Science at Auckland University
have made my time as a post-graduate student both enjoyable and personally and
professionally enriching.

I would like to thank my friends and family for all their support over the years. I
particularly would like to thank my parents, Irene and Ray, for giving me so much love
and support all my life and for the educational opportunities they never had. Thanks also
go to my parents-in-law, Jannie and Mike Visser, my sisters and brother Heather, Jenny
and Mike, and my sister-in-law Alice, for all their love and support.

The financial assistance of the Vice-Chancellors’ Committee, IBM New Zealand Ltd, and
the William Georgetti Scholarship Committee are gratefully acknowledged. I would also
like to thank Professor Bob Doran for helping to ensure my financial well-being with work
for the Department of Computer Science over the past three years.

The biggest thank you goes to my wife, Judy, for the incredible amount of love, caring,
kindness and assistance she has given me. I can not begin to express the love and
appreciation I have for her for being so supportive during what has been some very good
and some quite trying times. I would also like to thank my daughter, Stephanie, for
blessing Judy and I with such a precious gift as herself. This thesis is for you, Judy and
Stephanie. Thank you so very much.

Acknowledgments Page 4

To Judy and Stephanie:

 your love and support have made this work possible.

Contents Page v

Contents
Multiple textual and graphical views for 1

Interactive Software Development Environments 1

Abstract i

Acknowledgments iii

Contents v

Chapter 1 17

Introduction 17
1.1. Rationale for Research ..17

1.1.1. Textual vs. Graphical Program Construction and Representation 17
1.1.2. Integrated Textual and Graphical Programming18
1.1.3. Integrated Software Development..19

1.2. Goals of Research...19
1.3. Contributions of Research ..20
1.4. Thesis Organisation...21

Chapter 2 25

Related Research 25
2.1. Textual Programming ...26

2.1.1. Unix-style Environments..26
2.1.2. Purpose-built, Tightly Integrated Environments27
2.1.3. Tightly Integrated, Extensible Environments27
2.1.4. Generated Environments ...28
2.1.5. Text-based Software Development Environments...........................29

2.2. Graphical Programming and Visualisation ...30
2.2.1. CASE Tools...30
2.2.2. Visual Programming...31
2.2.3. Program Visualisation ..33

2.3. Integrated Software Development Environments ..34
2.4. General Requirements...36

Chapter 3 39

Object-oriented Programming in Prolog with Snart 39
3.1. Object-oriented Programming...39

Contents Page vi

3.2. Rationale for Snart .. 40
3.3. A Snart Example: A Drawing Program ... 41

3.3.1. Snart Classes and Methods ... 42
3.3.2. Snart Objects.. 44

3.4. Classification in Snart ... 45
3.5. Object Tracing and Persistency... 46

3.5.1. Object Tracing ... 47
3.5.2. Object Persistency... 47
3.5.3. Implementation... 48

3.6. Software Development in Snart .. 49
3.7. Other Object-Oriented Prologs ... 50
3.8. Future Research... 51
3.9. Summary .. 52

Chapter 4 55

The Snart Programming Environment 55
4.1. Rationale for Snart Programming Environment .. 55
4.2. Analysis and Design of a Snart Program... 57

4.2.1. Requirements for the Drawing Program... 57
4.2.2. Creating a New Program... 57
4.2.3. Analysis.. 58
4.2.4. Design... 61

4.3. Implementing a Snart Program... 62
4.4. Debugging a Snart Program.. 64
4.5. Modifying a Snart Program... 64

4.5.1. Graphical Updates... 65
4.5.2. Textual Updates .. 66
4.5.3. Update Histories .. 67
4.5.4. Integrated Software Development .. 68

4.6. Browsing a Snart Program... 69
4.7. Managing a Snart Program’s Complexity ... 71

4.7.1. Programmer-defined View and Icon Composition 71
4.7.2. Code Text Forms... 72
4.7.3. Inheritance ... 73

4.8. Saving and Reloading a Snart Program... 73
4.9. Discussion and Possible Extensions to SPE... 74

4.9.1. Adequacy of Program Representation .. 74
4.9.2. Program Viewing and Construction Facilities 75
4.9.3. Large-scale Program Development.. 76
4.9.4. Programming Other Languages with SPE.. 77

Contents Page vii

4.10. Summary ...77

Chapter 5 81

Modelling and Specifying Environments with MViews 81
5.1. Rationale For MViews...82

5.1.1. Program Representation...82
5.1.2. Multiple Textual and Graphical Views ..82
5.1.3. Program and View Modification ..82
5.1.4. Automatic, Efficient Consistency Management................................83
5.1.5. Recording Previous Changes...83
5.1.6. Undo and redo of User Manipulations ..83
5.1.7. Program and View Persistency and Multi-user Access...................84
5.1.8. Tool Integration and Extensibility ..84

5.2. Related Research..84
5.2.1. Smalltalk Model-View-Controller...84
5.2.2. Interviews and Unidraw ..85
5.2.3. PECAN, GARDEN and FIELD..85
5.2.4. Grammar-based Environment Generators ..86
5.2.5. Dannenburg’s ItemList Structure..87
5.2.6. Wilk’s Object Dependency Graphs...87
5.2.7. Summary ..88

5.3. An Overview of MViews..89
5.3.1. Program Graphs ..89
5.3.2. Views and View Components ...91
5.3.3. Operations and Update Records...94
5.3.4. Program Editing using Views as Tools ..97
5.3.5. Program Persistency ...98
5.3.6. Summary ..99

5.4. MViews Specification Language ...99
5.4.1. Rationale for MVSL and MVisual ...99
5.4.2. Overview of IspelM ..101
5.4.3. Basic Abstractions of MViews ...104
5.4.4. Defining Component Kinds with MVSL ...105
5.4.5. Subset Views and Components...108
5.4.6. Operations ..110
5.4.7. Update Operations ..115

5.5. A Formal Specification of MVSL ...118
5.5.1. Operational Semantics..118
5.5.2. Concrete vs. Abstract Syntax ...118
5.5.3. Declaration Types..120

Contents Page viii

5.5.4. Building a Type Map for MVSL Program Declarations.................. 121
5.5.5. State... 123
5.5.6. Commands, Operations and Update Operations 125
5.5.7. Program Meaning... 132
5.5.8. MVSL Programs.. 133

5.6. Specification of Visual Appearance and Semantics ... 135
5.6.1. Rationale for MVisual .. 135
5.6.2. MVisual Fundamentals.. 135
5.6.3. Icons and Glue... 136
5.6.4. Views .. 139
5.6.5. Dialogues ... 141

5.7. Discussion and Future Research... 143
5.7.1. Requirements Satisfaction ... 143
5.7.2. MVSL.. 147
5.7.3. Operational Specification of MVSL.. 148
5.7.4. MVisual .. 149

5.8. Summary .. 150

Chapter 6 153

An Object-Oriented Architecture for MViews 153
6.1. An Object-Oriented Architecture for MViews.. 153
6.2. Overview of the MViews Architecture.. 155

6.2.1. Components as Classes.. 155
6.2.2. Base Components ... 157
6.2.3. Subset and Display Views and Components.................................... 158
6.2.4. Subset/base Relationships .. 158
6.2.5. Additional Abstract Classes.. 159
6.2.6. User Interface and Persistency.. 160
6.2.7. Summary.. 160

6.3. Components... 160
6.3.1. Component State... 161
6.3.2. Update Records... 162
6.3.3. Persistency ... 162

6.4. Base Program Components ... 163
6.4.1. View Components .. 163
6.4.2. Base Components ... 163
6.4.3. Viewable Base Components.. 164
6.4.4. Textual Base Components ... 164

6.5. Subset and Display Components.. 166
6.5.1. Subset Components.. 166

Contents Page ix

6.5.2. Display Components ..167
6.5.3. Textual Display Components ..168
6.5.4. Graphical Display Components ..170
6.5.5. Icons...171
6.5.6. Glue ...171

6.6. Relationships ..171
6.6.1. Relationships..171
6.6.2. One-to-one..172
6.6.3. One-to-many ..172
6.6.4. Many-to-many ...172
6.6.5. Subset/Base Relationships...173

6.7. Views ...175
6.7.1. Views...175
6.7.2. Base Views..176
6.7.3. Subset Views ..176
6.7.4. Display Views ..177
6.7.5. Textual Display Views..177
6.7.6. Graphical Display Views..178
6.7.7. View Composition and Layout ...178
6.7.8. Application Framework ...179

6.8. Operations and Update Records ...179
6.8.1. Operations and Update Operations..179
6.8.2. Update Record Generation and Storage ..180
6.8.3. Composite Update Records ...181
6.8.4. Update Record Propagation ..182
6.8.5. Constraints, Semantic Attribute Recalculation and Lazy Updates184

6.9. Discussion and Future Research ...185
6.9.1. Components ...185
6.9.2. Base Components ..185
6.9.3. Subset and Display Components ..186
6.9.4. Views...186
6.9.5. Relationships..187
6.9.6. Operations and Update Records...187

6.10. Summary ...187

Chapter 7 191

An Object-Oriented Implementation of MViews 191
7.1. A Snart Framework ...191
7.2. MViews Framework Complexity ..193
7.3. Components ...194

Contents Page x

7.3.1. Component State... 194
7.3.2. Update Records... 194

7.4. Base Program Components ... 197
7.4.1. View and Base Components ... 197
7.4.2. Viewable Base Components.. 198
7.4.3. Textual Base Components ... 198

7.5. Subset and Display Components.. 198
7.5.1. Subset Components.. 199
7.5.2. Display Components.. 199
7.5.3. Graphical Display Components ... 200
7.5.4. Textual Display Components ... 200

7.6. Views... 201
7.6.1. Base View... 202
7.6.2. Subset Views.. 202
7.6.3. Display Views ... 203
7.6.4. Textual Display Views ... 203
7.6.5. Graphical Display Views... 205

7.7. Relationships.. 205
7.7.1. Relationship Classes... 205
7.7.2. Subset/base relationships ... 206

7.8. Operations and Updates .. 207
7.8.1. Update Record Generation and Storage.. 207
7.8.2. Update Record Propagation.. 207
7.8.3. Constraints and Semantic Calculation via Operations 208
7.8.4. Lazy Application of Update Records... 208

7.9. User Interaction ... 208
7.10. Persistent Program Storage .. 209

7.10.1. Term Data Files ... 209
7.10.2. Component Persistency Methods... 210
7.10.3. Snart Object Persistency... 211

7.11. Discussion and Future Research ... 211
7.11.1. Component Class Implementation .. 211
7.11.2. Operations and Update Records .. 212
7.11.3. User Interaction... 212
7.11.4. Persistent Program Storage ... 214
7.11.5. Implementation Language .. 215

7.12. Summary... 216

Chapter 8 219

Architecture and Implementation of IspelM and SPE 219

Contents Page xi

8.1. IspelM Architecture...219
8.1.1. Overview of the IspelM Architecture...220
8.1.2. Base Clusters ..221
8.1.3. Base Classes..221
8.1.4. Class Components...223
8.1.5. Programs...226
8.1.6. Subset and Display Views and Components226
8.1.7. Subset/base relationships ..228

8.2. IspelM Implementation ..229
8.2.1. Snart Implementation of IspelM ...230
8.2.2. Base Classes..230
8.2.3. Class Components...233
8.2.4. Programs...233
8.2.5. Subset and Display Views and Components234
8.2.6. Subset/base relationships ..236
8.2.7. Update Records ...237
8.2.8. User Interaction ...239
8.2.9. Program Persistency and Execution...240

8.3. The Snart Programming Environment ...240
8.3.1. Parsing and Unparsing of Snart Programs..241
8.3.2. Validation, Compilation and Saving of Snart Programs241
8.3.3. Running and Debugging Snart Programs ...242

8.4. Discussion and Future Research ...243
8.4.1. IspelM Model ...243
8.4.2. IspelM Implementation ..244
8.4.3. The Snart Programming Environment...246

8.5. Summary...246

Chapter 9 249

Further Applications of MViews 249
9.1. Entity-Relationship Modelling ..250

9.1.1. Entity-Relationship and Relational Database Modelling250
9.1.2. MViewsER..250
9.1.3. Specification ...252
9.1.4. Design ...253
9.1.5. Implementation ...254

9.2. Dialogue Painting ..255
9.2.1. User Interface Specification ...255
9.2.2. MViewsDP..256
9.2.3. Specification ...257

Contents Page xii

9.2.4. Design... 259
9.2.5. Implementation... 259

9.3. Program Visualisation.. 261
9.3.1. Tally Graph of Method Calls .. 262
9.3.2. Sorting Algorithm Animation... 263
9.3.3. Visual Debugging ... 264

9.4. Other Applications of MViews ... 266
9.4.1. Facets and Object Persistency for ICAtect .. 266
9.4.2. Support for More OOA/OOD Notations.. 267
9.4.3. Dataflow Analysis Diagrams and Method Implementations 269
9.4.4. Tool-based Abstraction.. 272

9.5. Discussion and Future Research... 273
9.5.1. MViewsER ... 273
9.5.2. MViewsDP... 274
9.5.3. Program Visualisation.. 275
9.5.4. MViews .. 276

9.6. Summary .. 278

Chapter 10 281

Conclusions and Future Research 281
10.1. Research Contributions and Conclusions .. 281

10.1.1. Program and View Representation in MViews.............................. 281
10.1.2. Update Records for Change Propagation 282
10.1.3. View Editing and Tool Interfacing... 283
10.1.4. MVSL and MVisual .. 284
10.1.5. MViews Architecture and Framework.. 285
10.1.6. SPE and IspelM ... 286
10.1.7. Reuse of MViews .. 286
10.1.8. Snart.. 287

10.2. Future Research ... 287
10.2.1. Abstract, Flexible Component Persistency 288
10.2.2. Tool Integration Issues... 289
10.2.3. Version Control and Configuration Management Tools 290
10.2.4. Multi-user, Distributed Software Development 291
10.2.5. Lazy Update Processing and Attribute Recalculation 292
10.2.6. Partial Generation from Abstract Specification.............................. 294
10.2.7. IspelM and SPE Enhancements .. 294
10.2.8. Imperative Classification and Framework Specialisation 295

10.3. Summary... 296

Contents Page xiii

Glossary 298

Appendix A 305

LPA MacProlog Facilities 305
A.1...LPA
Graphics...305
A.2...LPA
Menus and Dialogs ..306
A.3...LPA
File and Resource Management ...308

Appendix B 309

The Snart Language 309
B.1. Syntax ..309

B.1.1. Class Definitions ...309
B.1.2. Method Predicates ..310
B.1.3. Prolog Predicates ..311

B.2. Objects ...311
B.3. Environment...313

B.3.1. Search Menu ..313
B.3.2. Eval Menu ..315
B.3.3. Defining and Compiling Classes and Method Predicates315
B.3.4. Debugging Snart Programs ...316
B.3.5. Saving Snart Programs...316

B.4. Compiler ...316
B.4.1. Class and Method Predicate Storage ...317
B.4.2. The Compilation Process ...318
B.4.3. Compiled Class Format..319

B.5. Run-time System..320
B.5.1. Object Creation, Attributes and Destruction320
B.5.2. Method Calls..321
B.5.3. Other Object Predicates and Methods ...321
B.5.4. Object Spying...322
B.5.5. Object Persistency ...323

B.6. Performance..323
B.6.1. Speed...323
B.6.2. Memory Requirements ..325
B.6.3. Programming in Snart vs. conventional LPA Prolog325

B.7. Comparison to Other Object-Oriented Prologs...326
B.8. Quintus Snart ...327

Contents Page xiv

B.8.1. Compiler .. 327
B.8.2. Run-time System .. 327
B.8.3. Environment ... 328

B.9. Future Extensions.. 328
B.9.1. Explicit Redefinition and Information Hiding................................. 328
B.9.2. Data-driven Support .. 328
B.9.3. Optimisations for Performance Enhancement................................. 329
B.9.4. Typed Variables.. 330
B.9.5. Lazy, Functional Feature Evaluation... 330

Appendix C 333

A Gofer Implementation of MVSL 333

Appendix D 353

An MVSL Specification of IspelM 353

Appendix E 369

An MVisual Specification for IspelM 369
E.1. IspelM Component Appearance... 369
E.2. IspelM Component Interaction and Updates ... 370
E.3. MViews and IspelM Dialogs ... 374

Appendix F 379

A BNF Grammar for MVSL 379

References
 ccclxxxiii

Contents Page 15

Chapter 1 Related Research Page 17

Chapter 1

Introduction

This chapter discusses the main rationale for this research, the integration of textual and
graphical views of software development. It also discusses the requirements of integrated
software development environments (ISDEs) and the importance of a common set
building blocks for these systems. The major goals of this research are outlined and
include production of a reusable model for ISDEs, development of an ISDE for an object-
oriented language by reusing this model, and reuse of the model for other systems to
demonstrate its flexibility. The major research contributions of this thesis are summarised
to illustrate how these goals have been fulfilled.

1.1. Rationale for Research

Programming environments (PEs) assist programmers to implement and debug programs
by providing tools which make the task of program construction easier (Dart et al 87).
Software development environments (SDEs) subsume programming environments and
provide tools for various software management tasks such as analysis, design,
implementation, debugging, maintenance and version control (Dart et al 87, Meyers 91).
Software development environments can use graphical program representations for
analysis, design, visual programming, static and dynamic program visualisation and
debugging, documentation, and maintenance. Textual program representations can be
used for program implementation and documentation. An ISDE must provide automatic
consistency management between different program representations that share
information. It should also allow new or existing tools to be integrated into the
environment (Meyers 91).

1.1.1. Textual vs. Graphical Program Construction and Representation

This thesis was primarily motivated by a desire to integrate multiple textual and graphical
views of programs. Graphical views of program structure and semantics are used by
many analysis and design methodologies (Fichman and Kemerer 92, Henderson-Sellers
and Edwards 90, Shlaer and Mellor 88) and CASE tools provide editors for constructing
such diagrams (Coad and Yourdon 91, Wasserman and Pircher 87, StructSoft 92). These
views of program component relationships allow designers and programmers to reason

Chapter 1 Related Research Page 18

about large software systems at a high level of abstraction. Graphical program component
representations are also used to support program browsers (O’Brien et al 87, Fischer 87,
Symantec 90) and static and dynamic program visualisation and documentation (Myers
90, Kleyn and Gingrich 88, Wilson 90). Visual programming languages use diagrams to
specify the structure and execution semantics for programs (Myers 90, Ambler and
Burnett 89, Raeder 85).

In contrast, textual program representations are usually used to specify low-level detail
about program structure and semantics. Most traditional programming languages are
text-based and text is used to specify data structures and functionality. Text can be used to
specify some higher-level aspects, such as class contracts in Eiffel (Meyer 88 and 92). Text
is also used to document software systems, in terms of both programmer and end-user
documentation.

Some programmers find linear sequences of textual characters do not convey the high-
level structure of programs as well as equivalent graphical representations (Ambler and
Burnett 89). As high-level program component semantic relationships are almost always
graph-based, a graphical representation often expresses these relationships well (Reiss
90b, Myers 90). Conversely, some programmers find graphical program representations
have poor power of expression for some sequential control structures and expressions
(Myers 90, Reiss 90b, Vlissides 90). Thus an environment should ideally allow
programmers to choose the form of program representation and editing they find most
appropriate for a particular task.

1.1.2. Integrated Textual and Graphical Programming

As graphical and textual programming styles suit different programmers’ requirements
for program construction, a natural approach might be to support both representations
within a programming environment. A programming environment could have multiple
views of a program, some being graphical, diagrammatic representations and others being
textual representations. Programmers could then select the representation desired for
design and implementation tasks.

Many programming environments support multiple textual and/or graphical views of
parts of programs (Reiss 85, Reiss 87, Kaiser and Garlan 87, Backlund et al 90, Ratcliffe et
al 93). Systems providing integrated graphical and textual views, such as Dora (Ratcliffe et
al 92) and PECAN (Reiss 85), typically use structure-oriented editing of views. Program
components affected by editing operations propagate changes to all affected views to keep
all views consistent. Structure-oriented editing, however, tends to be a rather restrictive
approach to editing programs and is not very suitable for editing low-level expressions
and control-statements (Welsh et al 91), nor for graphical diagram construction (Arefi et al
90). Programmers generally find structure-oriented editing difficult and unnatural for

Chapter 1 Related Research Page 19

low-level detail and such editors, while well researched in recent years, have yet to gain a
wide-spread acceptance (Welsh et al 91, Whittle et al 92, Minör 90, Arefi et al 90).

1.1.3. Integrated Software Development

Software development environments use graphical and textual representations of
programs for more than just design and implementation. An integrated software
development environment supporting multiple textual and graphical views should be
able to reuse views for different tasks (such as class diagrams for object-oriented analysis
and design (Coad and Yourdon 91, Fichman and Kemerer 92) and class textual
descriptions for programming and documentation (Meyer 88)). New program
representations and their editing tools should be integrated (both data representation and
user interface) without affecting existing view and tool data storage and behaviour
(Meyers 91, Reiss 90a, Wang et al 92).

Different integrated software development environments support these common facilities.
This suggests a need for a reusable model for ISDEs. ISDE production is time-consuming
and difficult and, given their common facilities, a reusable model would be of great
benefit (Backlund et al 90, Meyers 91, Wang et al 92).

1.2. Goals of Research

The initial goal of this research was to produce an ISDE supporting integrated textual and
graphical views of a program with consistency management. This environment would be
unique, however, in that it would utilise free-edited textual views and interactively edited
graphical views of programs. These editing styles are the ones most often used by
programmers for each kind of representation. An object-oriented language would be the
target language for the environment as object-oriented language structure is very suitable
for visual programming and representation (Myers 90, Ratcliffe et al 92).

A second major goal was to develop a set of reusable building blocks to assist in the
construction of integrated software development environments. This model should
support flexible program representation (including support for representing graph-based,
visual languages) (Arefi et al 90, Backlund et al 90), should provide both language-specific
structure and semantics support (Reps and Teitelbaum 87), and support integrated,
multiple and textual views of software development (Meyers 91). The model should also
have abstract support for program data persistency (Minör 90, Wang et al 92) and tool
integration and extensibility (Meyers 91, Reiss 90a).

Using this model as a basis, ISDEs should be abstractly specified and an aim was to
produce a specification language suitable for this task. This language should be able to be
formally reasoned with to ensure an environment specification correctly uses the

Chapter 1 Related Research Page 20

abstractions defined by the model. To implement an environment, a formal specification
could be used to generate an implementation (Reps and Teitelbaum 87, Backlund et al 90,
Magnusson et al 90) or a reusable collection of classes or abstractions specialised or used
(Linton et al 88, Vlissides 90, Haarslev and Möller 90). To demonstrate the ISDE model
developed is realisable, a goal was to implement the representative ISDE described above
using one of these two approaches. To illustrate that this model is reusable for other
environments and applications, the final goal was to produce one or more other systems
by reusing the model and its implementation.

1.3. Contributions of Research

This thesis provides a range of contributions to the field of software development
environment research. These contributions include:

• MViews, a model for ISDEs, has been developed. MViews represents programs
and partial views of programs as graphs and program structure and semantics
are specified and represented in the same graph-based form. Views are
rendered and manipulated graphically or textually. Change propagation
between program and view components is supported by a novel update record
propagation mechanism. This propagates a record of the exact change to a
component to other components dependent on its state. Tools are interfaced to a
canonical representation of the program using views.

• Two specification languages for MViews-based environments allow such
environments to be defined in an abstract style. A textual specification language
defines the state of programs and views of a program. It also defines how
program components may be changed using a basic set of graph manipulation
operations and how components respond to changes to other components. A
visual specification language defines the appearance of program views, view
components and dialogues. Editing operations on these visual entities are
propagated to the program state defined by the textual specification language
and vice-versa. This defines the interaction between program state change, view
component appearance and view component editing.

• An object-oriented architecture is used to design an implementation for
MViews-based environments. Currently, environment implementers translate
environment specifications into this architecture by hand. A framework of
classes has been developed which implements this architecture. New
environments are implemented by specialising these framework classes based
on the environment’s object-oriented design.

• A simple language has been developed which provides object-oriented
extensions to Prolog. An ISDE for this language has been produced which
reuses MViews to support its multiple textual and graphical views. Graphical
class diagram views are used for analysis, design, browsing and static

Chapter 1 Related Research Page 21

visualisation of programs, while textual class code views are used for class
interface specification, method implementation and detailed documentation.
Class diagram construction supports visual structure programming while
textual views are free-edited and parsed to modify program detail. Full
consistency management between views is supported using MViews’ novel
update record and object dependency mechanisms.

• Other systems have been developed that reuse MViews. An entity-relationship
modeller provides graphical entity-relationship diagrams and textual relational
database schemas. These are kept consistent using MViews’ consistency model.
A dialogue painter provides a graphical dialogue painter with textual dialogue
constraints and semantics processing views. Changing one dialogue
representation propagates changes to other views allowing a dialogue’s
appearance to be specified graphically while constraints and default values are
specified using text. Program visualisation systems provide a visual debugger,
method call tally graph view, and sorting algorithm animation view.

1.4. Thesis Organisation

The following chapters are organised thus:
• Chapter 3 defines a simple language, Snart, an object-oriented extension to

Prolog. Snart provides an example language to construct an ISDE for and
provides a language to implement this environment. Object-oriented languages
are focused on in this research as they are particularly appropriate for graphical
representation (Wilson 90).

• Chapter 4 describes a programmer’s perspective of the Snart Programming
Environment (SPE). SPE is a representative ISDE for analysing, designing,
implementing and maintaining Snart software. SPE provides graphical,
interactively edited views for analysis, design, static program visualisation and
program browsing. Textual views are free-edited and parsed, and support
detailed software documentation and program implementation. Full
consistency management between different views is supported using a novel
update record mechanism. These update records also provide a change
documentation facility for program components. SPE is described to illustrate
the kinds of views and facilities useful for ISDEs. It is used in the following
chapters to illustrate the kind of environments this research aims to facilitate
modelling and construction of.

• Chapter 5 discusses some requirements for systems used to construct ISDEs and
defines the MViews model for ISDEs. MViews introduces a novel technique for
representing program structure and semantics and views of a program. A novel
update record mechanism for propagating and documenting change in an ISDE
is also introduced. MViews provides a model for specifying ISDEs and supports

Chapter 1 Related Research Page 22

graphical and textual views of information. Tools are interfaced to a common
program data repository and tools share a common set of user interface
abstractions. To specify environments that use the MViews model two
specification languages are developed. A textual language specifies
environment program and view state and the modification semantics of this
state. A visual language uses examples and simple visual “programming” to
specify editing tool appearance and functionality.

• Chapter 6 describes an object-oriented architecture for designing new
environments based on the model of Chapter 5. The developer of an
environment translates a formal specification for the environment into a design
which reuses this architecture. The architecture provides a class hierarchy with
classes providing abstractions based on the MViews model of environments.
This architecture allows an environment implementer to design a new
environment in a manner consistent with the MViews model.

• Chapter 7 provides a framework of Snart classes used to implement
environments modelled and designed using MViews and its architecture. To
implement an environment, Snart classes are defined which inherit much of
their data and behaviour from the Snart framework. This illustrates that new
environments based on the MViews model can be practically realised.

• Chapter 8 shows how SPE can be designed using the architecture of Chapter 6
and implemented using the framework of Chapter 7. SPE itself can be
generalised to IspelM, a generic ISDE for object-oriented languages. This
chapter demonstrates the advantage of a model, architecture and framework
which supply most of the data modelling and functionality for developing
ISDEs supporting multiple textual and graphical views of software
development.

• Chapter 9 illustrates that MViews can be used to develop a diverse range of
environments and systems. Some of the systems developed include an entity-
relationship diagrammer with textual relational database schema, a dialogue
painter with textual constraint specification, program visualisation views and
visual debugging views. These and other systems illustrate the flexibility of
MViews and the usefulness of its architecture and framework.

• Chapter 10 summarises the contributions of this research and draws conclusions
about the usefulness of MViews and its derivatives. Aspects of ISDEs which are
not well supported by MViews are identified and future research proposed to
satisfy these requirements.

Chapter 1 Related Research Page 23

Chapter 2 Related Research Page 25

Chapter 2

Related Research

This chapter reviews current research on programming environments (PEs) and
integrated software development environments (ISDEs). We begin by using Unix-style
textual programming environments as a base example of PEs. Such environments are
generally not well integrated, not very interactive, and generally text-based. Various
improvements to text-based environments have been made. These include systems which
generate integrated, interactive environments from formal grammars, support integration
and extension of text-based programming tools, and provide distributed, multi-user, text-
based software development environments.

Graphical (or “visual”) programming environments, CASE tools, and program
visualisation systems use graphical pictures, rather than textual character sequences, to
describe programs. CASE tools provide drawing-style editors for constructing diagrams
for analysis, design and documentation of software. Visual programming environments
use diagrams to specify the data and functionality of programs and these diagrams can be
executed to run a program. Program visualisation systems display program data and
functionality at different levels of abstraction. These include visual debugging systems,
static and dynamic program structure and functionality visualisation systems, and
algorithm animation systems.

Some recent efforts at producing ISDEs have attempted to combine textual and graphical
modes of software specification and programming. Another general trend for producing
ISDEs for large-scale software production has been to produce environments which
provide well-integrated tools (at both the data and user interface levels) with provision for
environment extensibility (changing tools or integrating new tools into the environment).
These are usually conflicting aims as good extensibility often makes good integration
difficult and vice-versa. Different researchers have tended to stress one goal over the
other, depending on their view of which is the most important. The final sections of this
chapter briefly outline several important requirements for ISDEs this thesis addresses. An
overview of the thesis structure is given to illustrate how these requirements are met.

Chapter 2 Related Research Page 26

2.1. Textual Programming

2.1.1. Unix-style Environments

Traditional programming environments are based on an edit-compile-run sequence of
program development (Dart et al 87). A good example is the traditional approach to C
programming using Unix systems. A command shell, such as the c-shell (csh) is provided
by the operating system (Unix) and various programming “tools” are directly invoked
using a command-line interpreter provided by the shell (Reiss 90a). A tool is typically
some environment function or program used to perform a specific programming or
software development task (Dart et al 87). Such tools might be a standard text editor (such
as vi or emacs) and a standard C compiler (such as cc). Programmers edit their programs,
compile their programs, then execute their programs (which are compiled to an executable
invoked from the command line). Additional programming tools, such as a version
control system (for example, RCS or SCCS), a help system (such as man), and a debugger
(such as dbx), can be supplied as executable programs or groups of executable programs.

The main problem with such environments is that they are poorly integrated at both the
data and user interface levels. All data is typically stored in Unix files and different tools
may have no access to data used by other tools. Tools may even duplicate data and store it
in different, incompatible formats. This can easily lead to incompatible program
representations and lack of data portability between tools. Even if graphical browsing
tools are supported, programming is almost exclusively text-based with little or no ability
to visualise complex program structures in diagrammatic forms.

Unix-style environments might be viewed as the most extensible kind of environment.
New tools can be added at will but tool integration may only be via the command line
interpreter (with possibly no, or very rudimentary, data transfer between tools). Even
when graphical user interfaces are supported by the operating system, these are usually
restricted to pull-down menus and windows which contain textual command shells and
editing windows. Some environments, such as Eiffel (Interactive 89), provide tools which
make use of graphical user interfaces to support program browsing. Generally these
simply provide a slightly higher-level access to the Unix command-line interpreter with
tools invoked with menu commands rather than command-line instructions.

Program development in such environments tends to be rather batch-style with a program
edited, compiled to detect syntax and semantic errors, and then debugged and re-edited.
There is generally no direct support for software analysis or design, and maintenance uses
the same text-based edit-compile-run cycle. Programs are usually re-executed after an edit
and thus testing can be very time-consuming. Environment tools are usually implemented
from scratch (using C or command-line scripts) and thus these environments require a
great effort to develop.

Chapter 2 Related Research Page 27

2.1.2. Purpose-built, Tightly Integrated Environments

An improvement over Unix-style environments are purpose-built, tightly-integrated
environments (Dart et al 87, Reiss 90a). These typically have the editor, compiler and run-
time system integrated with a graphical user interface and common data storage. A typical
example is THINK C on the Macintosh (Symantec 89). C programs are edited using one or
more Macintosh window-based text editors and then compiled using a menu option.
Programs are run in the same environment and a source-level debugger allows C code to
be viewed as program statements are debugged. Turn-around time between debugging,
compiling and editing tends to be much quicker as the “tools” are always in memory and
executing, and tools share a common user interface behaviour.

While nice to use, from a programmer’s point of view, these environments have major
disadvantages. The programming effort required to produce them is enormous (Reiss 90a,
Dart et al 87) and while they are highly integrated, they usually support very limited (or
no) extensibility. The “tools” comprising the environment are often only one tool (the
whole environment) which supports every programming task from editing to debugging.
Thus the program which implements the environment must be changed to support new or
different tool functions, often a very difficult thing to do. While the environment as a
whole has good user interface and data integration, other environments and tools can not
usually access this data directly, nor be invoked by or invoke the environment’s user
interface.

2.1.3. Tightly Integrated, Extensible Environments

Some languages, such as LISP, Smalltalk and Prolog, have language interpreters and
environments which include either a command-line interpreter for language constructs, or
are written in the target language itself. Some text editors support editor extensibility by
providing a language which can be used to extend the editor’s functionality (for example,
the Unix emacs editor which has a LISP interpreter). To extend the environment’s
functionality, a new “tool” can be implemented using the target programming language
and then invoked by the environment in the same manner as other programs. Graphical
user interfaces for these environments, such as those provided by LPA MacProlog (LPA
92), Smalltalk (Goldberg 84), and InterLISP (Kleyn and Gingrich 88), provide
programmers with the same high-level tool interfaces as purpose-built environments.

While these environments are extensible and integrated, they usually have the same
problem of data and user interface integration within the language interpreter itself. Thus
existing tools not implemented in the target language supported by the environment are
difficult to integrate (but still somewhat easier to integrate than with purpose-built
environments) (Reiss 90a). While environments like LPA MacProlog and Smalltalk
provide good programming facilities, such as cross-referencing information and multi-

Chapter 2 Related Research Page 28

window editing, they do not generally provide software development tools for analysis
and design. If such tools are supported, they are usually rather limited browsing tools or
very simple “template generators”. An example is the LPA MacProlog MacObject editor
which generates code for Prolog++, an object-oriented extension to LPA MacProlog. This
only supports simple object inheritance diagrams and its diagrams are not automatically
updated when the Prolog++ code it represents is changed.

2.1.4. Generated Environments

As the effort of producing a programming environment is a large task, many researchers
have attempted to provide declarative specification languages for languages and their
environments. These have usually been based on the abstract syntax of a language, as
opposed to traditional batch-style compilers, like the Unix C and THINK C compilers,
which use the concrete syntax of a language. Programs are typically “synthesised” using
language construct “templates” and “structure-oriented editing”. An early example is the
Cornell Program Synthesizer (CPS) (Reps and Teitelbaum 87). Program control statements
and data declarations are defined by successively expanding and filling in templates
based on an abstract syntax definition of Pascal. In addition, the static semantics for a
program under construction are checked by an incremental attribute grammar specified
around the abstract syntax (Reps and Teitelbaum 87). Expressions are free-edited and then
parsed rather than structure-edited.

An abstraction of the CPS is the Synthesizer Generator (Reps and Teitelbaum 84). This
allows environments to be generated from operator-phylum abstract syntax grammars
and attribute grammars based around these abstract syntax specifications. Editing is via
structure-editor template commands (for all parts of a program) which ensures a
syntactically incorrect program can not be derived. Mercury (Kaiser et al 87) uses the
Synthesizer Generator to provide distributed, multi-user programming environments that
support automatic propagation of module interface changes among several users. Neither
of these programming environment generators support any other software development
tasks than textual, structure-oriented editing with incremental static semantics checking.

These systems allow language structure and static semantics to be specified very
abstractly and in a declarative manner. New environments can be quickly defined and
generated based on a common set of user interface, data storage, and data recomputation
abstractions. Environments produced in this way are not very extensible, however, and
use a restrictive editing style.

The UQ2 editor (Welsh et al 91) attempts to overcome some of these problems by allowing
users to determine the kind of editing for a given program construct. New editors are
specified and generated from grammars but provide various extensions to support more
conventional free-editing styles as well as structure-oriented editing and incremental

Chapter 2 Related Research Page 29

parsing. These editors do not directly support integration with other tools but do support
flexible program documentation and textual browsing capabilities.

2.1.5. Text-based Software Development Environments

Some generated environment efforts provide support for tool integration and extensibility.
An early effort was the Gandalf project (Notkin 85). Gandalf supports structure-oriented
editing using the ALOE editor but also has tools for project management, version control,
and other software development activities. All these tools are text-based, however,
although derivatives of the Gandalf Project, such as the GNOME Project, use diagrams to
illustrate parts of software systems (Myers et al 88).

Centaur is a generic software development environment which generates environments
from formal specifications (Borras et al 88). Centaur uses textual editors based on abstract
syntax grammars and automatically translates these trees between persistent and in-core
forms as necessary. Centaur also has semantics and concrete syntax specification
languages and a graphical user interface for editing tools. Tools for project management
and documentation can be defined as well as program editors.

MELD (Kaiser and Garlan 87) is a declarative language for specifying tool interfaces
(“static” views), views of a program (“dynamic” views), structure-oriented text editors,
and static and dynamic language semantics. The main advantage of MELD is its
declarative specification (based on language abstract syntax and action equations (Kaiser
85)) from which tool data storage, tool interfaces, and tool editors are generated. Static tool
views automatically translate operations on one tool interface to equivalent operations on
other views of this tool interface. Dynamic views allow partial views of data to be
specified using a database-like query and these views are automatically updated as the
data they model changes. MELD does not provide any direct support for graphical
diagramming tools.

Mjølner/ORM environments (Magnusson et al 90) use interpreted abstract syntax
grammars to generate textual structure-oriented editors for programming languages.
Mjølner/ORM also provides an object-oriented attribute grammar language for specifying
static and dynamic language semantics in a very abstract form. Mjølner/ORM
environments provide improved editing facilities and representations over the Synthesizer
Generator (Minör 90, Whittle et al 92) but have no multiple-view or graphical view
support. Some graphical tools can be used, such as a pictorial representation of software
version control, but these are currently hand-coded and then interfaced to the
environment. Mjølner/ORM environments support tool extensibility via a “back-bone”
(Magnusson et al 90, Minör 90) which supports dynamic loading of tools and tool data,
data storage in abstract syntax forms using Unix files, and data integration of new tools
which use Simula objects.

Chapter 2 Related Research Page 30

2.2. Graphical Programming and Visualisation

2.2.1. CASE Tools

Most software analysis and design methodologies use diagrams to model the high-level
analysis and detailed design of software systems (Fichman and Kemerer 92). Such
methodologies include Yourdon Structured Analysis (Yourdon 89), Shlaer and Mellor
Object-Oriented Analysis (Shlaer and Mellor 88), Object-Oriented Structured Design
(Wasserman et al 90), and Entity-Relationship Modelling (Chen 76). Software developers
can use multiple diagrams to show different views of software at different levels of
abstraction. These diagrams generally illustrate the structural and semantic relationships
between different high-level aspects of a software system better than textual
representations.

CASE tools provide graphical editors supporting the construction of these analysis and
design diagrams (Chikofsky and Rubenstein 88). They usually provide consistency
management between different views to ensure a software developer has a consistent
view of the software system under construction. Software thru Pictures (Wasserman and
Pircher 87) provides various views which support dataflow analysis, structured analysis
and detailed object-oriented design. The OOATool (Coad and Yourdon 91) supports Coad
and Yourdon Object-Oriented Analysis. TurboCASE (StructSoft 92) supports entity-
relationship modelling, structured analysis and design methodologies, and object-oriented
analysis and design methodologies.

Most CASE tools do not support program implementation. A common approach to
assisting implementation is to generate program fragments from a design and allow
programmers to incorporate these into their own programs. A major drawback of this
approach is the problem of “CASE-gap”, where modifications to the design and/or
implementation become inconsistent with one another. Thus CASE tools alone do not
support evolutionary software development well, as the design, implementation and
maintenance aspects of software development are poorly integrated.

CASE tools are often incorporated into software development environments to provide
analysis and design capabilities (Reiss 90a and 90b). One problem is that their data storage
and user interfaces are difficult to integrate, especially when CASE tools are developed
separately from the environment into which they are integrated. A possible solution is to
use the FIELD selective broadcasting and user interface “wrapper” approach to tool
integration (Reiss 90a). As Reiss notes, however, complete data and user interface
integration is usually not possible because of the implicit assumptions CASE tools make
about these facilities (providing their own user interface and data storage which is often
incompatible with other tools).

Chapter 2 Related Research Page 31

2.2.2. Visual Programming

A different use of diagrams to analysis and design is for specifying the execution
semantics of a program. This has resulted in the development of “visual” programming
languages and environments. Programs are specified using one or more diagrammatic
views and these diagrams can be “run” to execute a program. A major advantage of such
systems is that they can provide a higher-level, more expressive representation of some
program aspects which abstracts away from traditional textual details, such as syntax and
linear textual specification (Myers 90, Raeder 85, Ambler and Burnett 89). Many visual
programming languages are not entirely pictorial, but use graphical boxes and lines with
textual annotations (such as box and line names) to differentiate between diagram
components.

PICT (Glinert and Tanimoto 85) uses flowcharts to specify program operations with
flowchart boxes containing coloured icons describing the operations they perform. Fabrik
(Ingalls et al 88) uses dataflow diagrams to specify user interface behaviour. Dataflow
boxes represent various user interface components (such as sliders, buttons and windows)
or computational operations (such as addition and sorting). Data “flows” from one box’s
pins to another’s and, as Fabrik programs are always executing, programmers can receive
immediate feedback about user interface appearance and behaviour. Prograph (Cox et al
89) also uses dataflow diagrams to specify programs and provides an object-oriented
structure where object methods are implemented as dataflow diagrams. An interface
builder allows programmers to specify user interface components diagrammatically and
specify user interface semantics using dataflow diagrams. These systems are implemented
without language or programming environment generators or abstractions and thus a
large programming effort is require to define them.

LOGGIE (Backlund et al 90) uses interpreted abstract syntax grammars with “garlands” to
provide support for generating graph-based programming languages. It provides attribute
grammars based on abstract syntax trees with garlands1 to provide static semantics
checking on directed graphs. Multiple views and graphical representations and editors are
supported, including abstract syntax grammar definition using graphical tree
representation.

1A garland is a non-hierarchical link between two abstract syntax tree nodes. This allows graph-based

language structures to be represented in conjunction with tree-based abstract syntax structures. The garland

approach is a compromise between purely tree-based, hierarchical abstract syntax structures and graph-

based program structures, as used by (Arefi et al 90), and is claimed to support more efficient attribute

grammar recalculation based on abstract syntax structure (Backlund et al 90).

Chapter 2 Related Research Page 32

Deterministic graph transformation systems (Arefi et al 90) use directed graphs to
represent programs (nodes are program elements while labelled edges relate program
elements). Programs are synthesised by successively applying graph transformations to a
program state. Alternative states for the program are defined with generic graph
representations and, as long as a graph transformation is deterministic, the original
program graph can be transformed from one form to another to visually construct a
program. No direct support for language semantics is currently modelled and no multiple
view support is provided. The editing mechanism for these program graphs is currently
structure-oriented, but allows programs to be altered through a series of non-syntactically
correct states alleviating some structure-oriented editor restrictions (Arefi et al 90).

GARDEN (Reiss 86 and 87) provides an environment for prototyping visual programming
languages and for conceptual programming with several different languages. All data is
represented by objects which provide a structural (syntactic) language representation
scheme. These objects also provide support for both static and dynamic language
semantics. Views are defined as dependencies between objects moderated by a third
object. GARDEN uses an object-oriented database for program storage and for uniform
tool data storage. The internal structure of objects can be edited using text as well as by
using graphical editors on multiple object representations. New environments are
implemented by reusing pre-defined GARDEN objects and tools. Reiss notes that
GARDEN is useful for visual language prototyping but integration with existing tools is
difficult (Reiss 86 and 90a).

Vampire (McIntyre and Glinert 92) is a set of tools for visually constructing iconic
programming environments. Vampire supports the construction of new visual
programming environments using a form of visual programming. This allows new visual
environments to be built much more easily than using a textual language with user
interface libraries or toolkits. There is currently no support in Vampire for building textual
view editors or multi-view editing environments with graphical/textual view consistency.

GraphLog (Consens and Mendelzon 92) provides a querying and graph visualisation
system built using a concept of Hygraphs. GraphLog supports querying and visualisation
of both database schemas and data instances using Hygraphs. Queries are visually
constructed and results automatically laid out according to the form of a graphical query.
Hy+, a successor to GraphLog, provides improved querying facilities and allows textual
retrieval and update via Hygraph queries (Consens and Mendelzon 93). This text can be
kept consistent with graph updates in a rudimentary way.

GLIDE (Kleyn and Browne 93) provides a grammar for specifying the structure and
semantics of graph-based visual languages. New environments for these languages are
generated from a grammar specification and the EDGE graph editor (Paulisch and Tichy
90) is used to implement these environments. GLIDE uses structure-oriented editing of

Chapter 2 Related Research Page 33

graphs but supports translation of a program graph from one syntactically correct state to
another via one or more non-syntactically correct states (similar to deterministic graph
transformation systems (Arefi et al 90)). GLIDE also supports dynamic semantics
specification, simple dynamic visualisation and multiple views of a program (which can’t
be directly edited).

Some programmers find using purely visual representations of a program unwieldy for
constructing and visualising some control statements and, in particular, expressions
(Ratcliffe et al 92, Myers 90, Vlissides 90). Some systems try to over-come these problems
with expression evaluators (where expressions are described using text). A further
problem is lack of formal definitions for visual language syntax (i.e. what a picture
actually means) (Golin and Reiss 90), which has made generation of visual language
environments difficult.

2.2.3. Program Visualisation

Program visualisation systems use graphical program representations to describe program
data and execution states in a high-level manner (Myers 90, Ambler and Burnett 89,
Brown 88). Such systems can be used to debug programs by showing low-level data and
execution states, describe how a software system works by showing relationships between
software components, and animate algorithms by showing changes to data and execution
flow. Static program visualisation describes the structure (and possibly control-flow) of a
program specification. Dynamic program visualisation describes the data and execution-
flow of a running program.

Many visual programming systems use the program construction diagrams to visualise a
program running. Examples include Fabrik and Prograph which allow programmers to
visualise executing dataflow programs in a similar form to their dataflow specifications.
Pins and boxes representing an executing program have data values associated with them
which programmers can view to determine if a program is executing correctly. This
provides a more powerful and easier to use debugging interface than conventional text-
based debuggers, such as the THINK C debugger (Symantec 89) and Unix dbx debugger
(even with a graphical user interface (Reiss 90b)). Programmers can “see” data move
between dataflow boxes and can move between and use debugging views more easily and
naturally than textual data and control-flow displays (Myers 90).

GraphTrace (Kleyn and Gingrich 88) records message dispatches for an object-oriented
language and uses these to produce an animation of the running program. This aids in the
understanding of the program’s structure and how the program works. (Haarslev and
Möller 90) describe a system for specifying program visualisations using a TEX-like
description language. CLOS programs can be visualised both statically and dynamically
using this language extension.

Chapter 2 Related Research Page 34

BALSA-II (Brown 88) can be used to animate low-level program control-flow and to
describe high-level algorithm animation. Programs are written in a language defined by
BALSA-II and a pre-defined set of program visualisation views are provided. The main
disadvantage of BALSA-II is that new animation views must be written using low-level C
code and toolkit routines. In addition, BALSA-II is unsuitable for animating programs not
written using its internal language.

TANGO (Stasko 89) provides similar animation capabilities to BALSA-II but allows
animations to be specified much more abstractly and for a wider range of programming
languages. Animation views can be specified using a textual specification language (which
generates the C code to perform the animation) or using diagrams which are then
translated into the textual specification language. Programs are annotated by adding
procedure calls to the TANGO animation system at appropriate places, or by using an
“annotating editor” supplied by the FIELD environment (Stasko 89, Reiss 90b).

Zeus (Brown 91) supports data and code visualisation by adding “event generators” to
procedure calls for Modula-2 programs. A pre-processor adds event generators to all
procedure calls and views are constructed which make use of these events. Zeus provides
facilities for quite sophisticated program visualisation and algorithm animation, including
the use of sound and colour. Zeus views are implemented in Modula-2 by reusing a set of
pre-defined procedure calls.

A general problem with most program visualisation systems is how to abstractly specify
the visualisation or animation required. For software development environments,
programmers typically require tools to help statically visualise complex software and to
assist in debugging complex software (Reiss 90b, Brooks 87). This does not usually require
complex animations, which are difficult to specify abstractly, as provided by systems such
as TANGO and BALSA-II. For most static program visualisation, an ability to construct
new diagrams, possibly from information already defined about a program, is a general
requirement (Reiss 90b, Kleyn and Gingrich 88). A level of dynamic visualisation suitable
for debugging programs and visualising data structures is usually sufficient for most
programming tasks (Haarslev and Möller 90).

2.3. Integrated Software Development Environments

As textual and graphical program representations are both useful, integrating the two may
be a good approach to integrating different phases of software development (Meyers 91,
Ratcliffe et al 92). This integration should solve the problem of inconsistent design and
implementation by providing consistency management between different views of
software development. Another advantage is that diagrams useful for one phase of
development can be used in another phase. For example, an analysis-level class hierarchy

Chapter 2 Related Research Page 35

is useful for browsing class interface implementations (Fischer 87) and design diagrams
are useful for accessing code modules (Wasserman and Pircher 87).

In addition, other environment tools could be usefully reused to avoid tool redundancy
(Meyers 91). For example, version control tools are useful for program code version and
configuration management, but may also be useful for design and analysis diagram
version control. A design may be evolutionary, particularly for object-oriented software
development (Henderson-Sellers and Edwards 90). During development and
maintenance, different aspects of large software systems may need to be re-analysed and
re-designed, requiring multiple versions of analysis, design and implementation views.

PECAN (Reiss 85) provides an integrated environment for Pascal programming using
multiple textual and graphical representations of a common program. PECAN provides a
program representation and semantics calculation model based on trees. Multiple
graphical and textual views are supported with graphical views using a structure-edited
approach while textual views use an incremental parsing algorithm. PECAN does not
support version control but does have a flexible undo/redo facility which includes macro-
operations. Kaiser observes that the PECAN model would be difficult for most people
other than its designers to reuse, due to its complexity (Kaiser 85).

FIELD environments (Reiss 90a and 90b) provide the appearance of an integrated
programming environment built on top of distinct Unix tools. Program representation is
usually as text files with each tool supporting its own semantics (with conventional
compilers and debuggers). Views are not directly supported but tool communication via
selective broadcasting (Reiss 90a) allows changes in one tool “view” (for example, an
editor) to be sent to another tool “view” (for example, the debugger or compiler). Free-
edited textual program views are supported (but these text views cannot contain over-
lapping information) while graphical representations are generated from cross-reference
information. Reiss notes that a lack of user-defined layout and view composition for these
graphical views is a problem (Reiss 90b). Version control is not currently supported
(although it is planned). Data storage is via Unix text files and a simple relational database
(for cross-reference information). Data integration is thus not directly supported but tools
can implement translators, driven by selective broadcasting, to allow data from one tool to
be used by another. A common user interface “look and feel” is supported by providing a
graphical user interface front-end for Unix tools.

Ispel (Grundy et al 91) provides a generic visual programming environment for object-
oriented languages. Ispel provides multiple diagrams supporting the construction of
inheritance and aggregation relationships between classes which are edited to specify an
object-oriented program. Textual views of a class can be generated from these diagrams
but can not be edited. Ispel is implemented without reusing abstractions for program
representation or view consistency.

Chapter 2 Related Research Page 36

Dora (Ratcliffe et al 92) environments support multiple textual and graphical views of
software development with all editing structure-oriented. Dora uses the Portable
Common Tool Environment (PCTE) (Wang et al 92) to store program data and uses PCTE
view schemas to provide selective tool interfaces to these programs. Dora tools are
specified using an Editor Description Language and are implemented using the Interviews
(Linton et al 88) user interface toolkit. Dora supports the construction of analysis and
design views, as well as implementation code views, but assumes these views are updated
by structure-oriented editing of base program data. It is not clear what the effect on an
abstract, design-level structure is when a corresponding code-level structure is updated.

The distributed object-oriented programming environment of (Nascimento and Dollimore
93) provides a distributed, multi-user programming environment for Smalltalk. Currently,
only existing Smalltalk tools are supported (mostly text-based) but multiple users can
work on the same program at one time. Programs are distributed with a shared program
store representing the definitive state of a program. Programmers can have a different
version of Smalltalk classes and versions can be merged by the “owner” of a class as
necessary. Tool data integration is via the distributed object space supported by a
distributed Smalltalk used to implement the environment.

2.4. General Requirements

From the example systems in the previous sections we can discern a general trend in the
development of ISDEs. These form the basis of a general set of requirements for ISDEs:

• Both textual and graphical representations of software are useful. Supporting
both representations provides software developers with a choice of
representation appropriate to a given development task. Editing style should be
flexible and appropriate to the kind of representation used.

• Multiple views of software development must be kept consistent to ensure
developers do not mis-understand the current state of a system and do not
make inconsistent modifications.

• Multiple tools are useful for software development and these tools need to be
integrated to provide a consistent user interface and share access to the same
data. An ISDE should be extensible in that new tools can be interfaced to the
environment (both data and user interface) in a consistent manner without
affecting the performance of existing tools.

• Development of ISDEs is a large programming effort and appropriate
abstractions for constructing such environments are very useful. A model for
ISDEs should include: flexible program structure and semantics representation;
support for definition of different views and view representations; view
consistency management; editor functionality and user interface specification;
and tool integration mechanisms. A common set of building-blocks should also

Chapter 2 Related Research Page 37

be provided, based on this ISDE model, so new environments and tools can be
constructed which reuse these environment abstractions.

In the following chapters, these requirements are met by a new model for ISDEs. Chapter
3 introduces Snart, a simple object-oriented language used as an example language to
produce an environment for. Chapter 4 describes an ISDE for Snart which fulfils the
requirements discussed above. Chapter 5 describes the MViews model for ISDEs and two
languages used to specify MViews-based environments. Chapter 6 provides an object-
oriented architecture for designing MViews-based ISDEs and Chapter 7 describes an
implementation of this architecture as a framework of Snart classes. Chapter 8
demonstrates how SPE, and a generalisation of SPE, can be designed and implemented
using the MViews architecture and Snart framework. Chapter 9 further demonstrates the
reusability of MViews by developing several other environments.

Chapter 2 Related Research Page 38

Chapter 3 Object-oriented Programming in Prolog with Snart Page 39

Chapter 3

Object-oriented Programming in Prolog
with Snart

In this chapter we discuss Snart, a set of object-oriented extensions to Prolog. Snart was
developed during this research to provide a simple, representative object-oriented
programming language for illustrating concepts and implementing the systems we have
designed. Snart provides the basic facilities found in many object-oriented languages,
together with dynamic classification, a facility previously only provided by Kea (Hamer
90, Hosking et al 90, Hamer et al 92).

The rationale for Snart and its facilities are discussed in the context of a simple program
implemented using the language. Software development in Snart is described, and the
language compared to other object-oriented Prologs. We briefly comment on the
language’s performance, classification in Snart and future extensions we envisage. A
detailed description of Snart, its environment, and its implementation is provided in
Appendix B.

3.1. Object-oriented Programming

We focus on object-oriented languages, their programming environments and software
engineering techniques and tools for these languages for three main reasons:

• As software applications get ever larger, better software engineering techniques
and methodologies must be employed to manage the growing complexity of
problems (Meyer 88, Henderson-Sellers and Edwards 90, Monarchi and Puhr
92). Object-oriented analysis, design and implementation can assist these
management tasks (Meyer 87, Meyer 88, Henderson-Sellers and Edwards 90),
and thus we expect such languages and techniques to gain a growing following.

• Programmers require tools that assist them with software construction by
allowing appropriate use of abstraction, selective views of software
development, and help manage change to complex software (Dart et al 87,
Henderson and Notkin 87). Recent developments and experience with Object-
Oriented Analysis (OOA) and Design (OOD), and complementary tools for
these methodologies, suggest object-oriented modelling techniques and

Chapter 3 Object-oriented Programming in Prolog with Snart Page 40

languages can help produce higher quality software than conventional
techniques (Fichman and Kemerer 92, Monarchi and Puhr 92).

• Object-oriented languages are, by their object-based focus, appropriate
candidates for both visual programming and program visualisation. They also
provide a natural method of describing and implementing the models
developed in this research.

The reader is assumed to have a good working knowledge of most object-oriented
concepts. These include object-oriented analysis and design (Coad and Yourdon 91,
Henderson-Sellers and Edwards 90), object-oriented languages (Meyer 88, Winblad et al
90, Stroustrup 86), some implementation issues with object-oriented languages and
systems (Goldberg and Robson 84), and an appreciation of the differences between
abstract data types (Meyer 88), meta-classes (Goldberg and Robson 84) and prototypes
(Lieberman 86, Ungar et al 92).

3.2. Rationale for Snart

The Snart language was developed to provide a simple object-oriented language for
different phases of our research. We required a programming language for implementing
the systems we developed that provided:

• The flexibility of Prolog for experimental rapid prototyping. Prolog was used to
good effect in the development of Ispel (Grundy et al 91) and we wished to
make further use of the language’s prototyping facilities. Features useful for
experimental programming include: modification of source code while retaining
run-time data; a high-level, declarative style that can be easily modified to
accommodate design changes; and a language structure that isn’t greatly
affected by design modification (for example, limited type checking).

• Object-oriented structuring for programs, as opposed to less flexible and
reusable conventional Prolog, C or Pascal program structure.

• Integration with existing programs and libraries, including parsing support,
graphical user interface construction support, and database support. Of
particular importance was good graphical user interface support, such as that
provided by the LPA MacProlog system (LPA 89).

• A language with sufficient run-time speed for interactive applications. Access to
the compiler and run-time system was required so we could modify and
experiment with the language, for example to add explicit classification and
run-time object method tracing.

• An integrated development environment including fast compilation, editing,
and browser and debugger support to facilitate fast, experimental
programming.

Chapter 3 Object-oriented Programming in Prolog with Snart Page 41

We also required a representative object-oriented language as an example language to
develop an environment for. This language should be based on common object-oriented
principles suitable for software engineering (classes and strong typing versus meta-classes
or prototypes), similar to popular languages such as C++ or Eiffel. This should allow us to
apply our environments, models and program design reasonably easily to another
language, without using less well-supported facilities such as meta-classes, classes-as-
objects and prototypes.

In addition to Snart, we needed a Prolog system as an implementation platform. We chose
LPA MacProlog due to its rapid prototyping facilities, including incremental compilation,
high-level access to the Macintosh graphics and a WIMPS environment that assists the
rapid development of experimental software. A major advantage of using Snart is access
to LPA Prolog’s high-level, declarative facilities for building graphical user interfaces.
LPA provides a declarative Graphics Description Language (GDL) for specifying a wide
range of graphical pictures (for example, boxes, lines, ovals, text, shading, and composite
objects). LPA also provides many predicates for manipulating these pictures and for
building graphic windows (editable windows containing pictures).

In addition to graphical picture manipulation, LPA provides high-level access to the
Macintosh windowing system and user interface facilities. Menus, dialogues and
windows are all specified in a declarative style with one Prolog predicate call often being
sufficient. Although LPA’s facilities are implemented in Prolog and don’t have an object-
oriented structure, Snart classes can be defined to interface to them and provide a user
interface framework similar to Interviews (Linton et al 88), the THINK Class Library
(Symantec 91), and GARNET (Myers 90). Appendix A gives a brief overview of the
facilities of LPA for building graphical user interfaces.

Extending the LPA language and environment to provide facilities for Snart programming
gave us a good development system for implementing the results of our research. It also
provided a motivation for replacing our simple Snart environment with a visual
programming environment supporting design, implementation and maintenance phases
of software development. This environment and its implementation could then be
compared to development without it.

3.3. A Snart Example: A Drawing Program

In this section we describe Snart by example by showing how Snart can be used to
implement a simple drawing program using the graphical facilities of LPA and the
Macintosh. Fig. 3.1. shows a screen dump from this program.

Chapter 3 Object-oriented Programming in Prolog with Snart Page 42

fig. 3.1. Screen dump from a simple drawing program implemented using Snart.

3.3.1. Snart Classes and Methods

The drawing program is composed of classes that implement a drawing window, buttons
that select a type of figure to be drawn and different figures that can be drawn in the
window. The figure and button classes form a hierarchy. Fig. 3.2. shows the Snart code
that implements the figure class of the drawing program.

% The figure class.
% All figures inherit from this class.
%
abstract_class(figure,
 parents([]),
 features([
 window:drawing_window,
 location:term,
 visible:boolean,
 frame:term,
 create,
 draw(deferred),
 hide,
 resize(deferred),
 delete,
 info,
 pt_in_figure
])).

% Creation method for a figure.
%
figure::create(Figure,Window,Loc) :-
 Figure@window:=Window,
 Figure@location:=Loc,
 Figure@visible:=false,
 Window@add_figure(Figure).

% Delete a figure
%
figure::delete(Figure) :-
 Figure@hide,
 Figure@window(Window),
 Window@remove_figure(Figure),
 Figure@dispose.

% Hide a figure.
%
figure::hide(Figure) :-
 Figure@window(Window),
 Window@del_pic(Figure),
 Fig@visible:=false.

% Information on this figure
%
figure::info(Figure) :-
 Figure@location(Location),
 writeseqnl([‘Location =‘,Location).

% See if given point is in this figure
%
figure::pt_in_figure(Figure,X,Y) :-
 Figure@visible(true),
 Figure@frame(Frame),
 pt_in_box((Y,X),Frame).

fig. 3.2. The figure class.

The abstract_class predicate defines a class called figure, with no parent classes it
inherits from; attributes window, location, visible, and frame; and methods create, draw,
hide, resize, delete, info, and pt_in_figure. Method definitions are of the form
ClassName::MethodName(ObjectID,Argument1,...,Argumentn):-Body, where ObjectID is

Chapter 3 Object-oriented Programming in Prolog with Snart Page 43

the object ID the method is invoked for (i.e. the object a “message” is sent to). The method
implementation is the same form as standard Prolog clause bodies.

Features of an object are referred to by ObjectID@FeatureName. Methods are invoked by
ObjectID@MethodName(Argument1,...,Argumentn). Attributes are assigned values by
ObjectID@FeatureName:=Value, and fetched by ObjectID@AttributeName(Value). Note the
method invocation and attribute fetch syntax are identical, as in Eiffel (and thus behave as
“feature calls”).

Methods with no implementation in figure are deferred for implementation by a sub-
class. These “features” can be implemented by either attributes or methods in subclasses.
The “types” associated with attributes in a class definition are not used for compile-time
or run-time type checking. These are used to default values for attributes and form a
valuable documentation aid. A visual programming environment can use such
declarations to build its own data structures from Snart code (see Chapter 4). Types can be
term, atom, integer, string, list, or boolean (i.e. standard Prolog types), or Snart class
names (thus a class can be an aggregate of other class types).

Fig. 3.3. shows the Snart code that implements the rectangle class of the drawing program.

% The rectangle figure class.
%
class(rectangle,
 parents([
 closed_figure(
 [rename(create,fig_create),
 rename(info,closed_info)])
]),
 features([
 height:integer,
 width:integer,
 create,
 draw,
 resize,
 area,
 perimeter,
 info
])).

% Create a rectangle figure
%
rectangle::create(Rect,Window,
 Location,Width,Height) :-
 Rect@width:=Width,
 Rect@height:=Height,
 Rect@fig_create(Window,Location).

% Information on this rectangle
%
rectangle::info(Rect) :-
 writenl(‘Information for rectangle:’),
 Rect@closed_info.

% Draw a rectangle figure
%
rectangle::draw(Rect) :-
 Rect@window(Window),
 Rect@location((X,Y)),
 Rect@width(Width),
 Rect@height(Height),
 Window@add_pic(Rect,
 box(Y,X,Height,Width)),
 Rect@visible:=true,
 Rect@frame:=box(Y,X,Height,Width).

% Area for a rectangle
%
rectangle::area(Rect,Area) :-
 Area is Rect@width * Rect@height.

% Perimeter for a rectangle
%
rectangle::perimeter(Rect,Perimeter) :-
 Perimeter is 2 *
 (Rect@width + Rect@height).

% Resize a rectangle
%
rectangle::resize(Rect,NX,NY) :-
 Rect@width:=NX,
 Rect@height:=NY,
 Rect@draw.

fig. 3.3. The rectangle class from the drawing program.

Concrete class rectangle has closed_figure as a parent, which in turn inherits from
figure. The create, info, draw, and resize methods have been overridden in rectangle,

Chapter 3 Object-oriented Programming in Prolog with Snart Page 44

and the attributes height and width added. The figure::create and closed_figure::info
methods are still available to rectangle via renaming as fig_create and closed_info
respectively. Snart provides multiple and repeated inheritance, so rectangle could also
inherit from another class four_sided_figure, that provides methods and attributes
specific to four-sided figures.

Note the interaction between Snart methods and standard Prolog code. rectangle::info
calls writenl (an LPA Prolog predicate), and the Prolog expression evaluator is can call
Rect@height and Rect@width to evaluate the area and perimeter of a rectangle. Predicates
can not call Snart methods directly, but invoke them via object feature calls, as in the later
example.

3.3.2. Snart Objects

Fig. 3.4. shows the drawing_window and rect_button classes from the drawing program.
When a user clicks the mouse inside the drawing window, and drags a marqui shape2, a
new figure is added. The current_button attribute of drawing_window determines the
button object to call to create this new figure. The rect_button::add_figure method adds
a new rectangle figure by calling Rect::create(rectangle,...). create is a
“distinguished” method3, which creates a new object of type given by the first argument,
in an analogous fashion to the Eiffel Create routine. To destroy an object, the
distinguished method ObjectID@dispose is called (see figure::delete in fig. 3.2.). Further
distinguished methods exist for various object manipulation tasks. Appendix A describes
these in detail.

2A marqui shape is an outline of some graphical figure which is interactively resized around a fixed point. A

typical example of marqui use is when selecting a group of icons in a window. Users typically drag a box-

shaped marqui around the icons they wish to select and these icons are the selected when the mouse button

is released. The drawing editor program uses box and oval marquis to allow users to interactively

determine the size of a new figure.

3A distinguished method is one supported by all classes of objects. For example, create, copy and dispose

are some of distinguished methods supported by Snart (see Appendix B for a full list of these distinguished

methods).

Chapter 3 Object-oriented Programming in Prolog with Snart Page 45

% The drawing_window class
%
class(drawing_window,
 parents([
 window([
 rename(clicked,window_clicked)])
]),
 features([
 buttons:list(drawing_button),
 current_button:drawing_button,
 figures:list(figure),
 clicked,
 shift_clicked,
 add_figure,
 remove_figure
])).

% Process click for drawing window
%
drawing_window::clicked(Window,X,Y) :-
 % see if button clicked
 Window@window_clicked(X,Y).
drawing_window::clicked(Window,X,Y) :-
 % draw a figure using a marqui
 mouse_down,
 Window@lpa_window(Name),
 Window@current_button(Button),
 Button@marqui_shape(Shape),
 marqui(Name,(Y,X),box(T,L,D,W),Shape),
 Button@add_figure(T,L,D,W).
drawing_window::clicked(Window,X,Y).
 % default - do nothing

% Process shift-click for drawing window
% (deletion of a figure)
%
drawing_window::shift_clicked(Win,X,Y) :-
 Win@figures(Figures),
 on(Figure,Figures),
 Figure@pt_in_figure(X,Y),
 Figure@delete.
drawing_window::shift_clicked(Win,X,Y).

% Add a figure to the figure list
% of this window.
%
drawing_window::add_figure(Win,Figure) :-
 Win@figures(Figures),
 Figure@info,
 Win@figures:=[Figure|Figures].
drawing_window::add_figure(Win,Figure) :-
 Figure@info,
 Win@figures:=[Figure].

% Remove a figure from the figure list
% of this window.
%
drawing_window::remove_figure(Win,Fig) :-
 Fig@info,
 Win@figures(Figures),
 remove(Fig,Figures,NewFigures),
 Win@figures:=NewFigures.

% The rect_button class
%
class(rect_button,
 parents([drawing_button]),
 features([
 marqui_shape,
 add_figure
])).

% Marqui shape for rectangle is "box":
%
rect_button::marqui_shape(Button,box).

% Add a rectangle figure to window.
%
rect_button::add_figure(Button,T,L,D,W) :-
 Button@window(Window),
 Rect@create(rectangle,Window,(L,T),W,D),
 Rect@draw.

fig. 3.4. The drawing_window and rect_button classes.

3.4. Classification in Snart

The Kea language developed at the University of Auckland (Hosking et al 90) supports a
novel, strongly-typed object classification facility (Hamer et al 92). Objects of a general
type can be created, and then specialised to sub-classes at run-time, as more information
about the object is obtained. Kea is a lazy, functional language, and this classification
process takes place lazily as required.

Snart provides a form of classification in an imperative language setting. Classes can have
one or more classifier attributes (for example, the shape attribute of figure in fig. 3.5),
whose types are a list of sub-types a class can be classified to. For example, the
classifiable_figure class in fig. 6 has one classifier shape which indicates
classifiable_figure can be dynamically specialised to rectangle, foval or fline.

To classify a classifiable_figure object at run-time:
ObjectID@classify(shape,rectangle)

Chapter 3 Object-oriented Programming in Prolog with Snart Page 46

will change the object’s class to be rectangle. A classification using classify is valid if:
• the classifier attribute exists
• the given class to classify to exists and is on the classifier’s class list
• the given class is a sub-class of the class of the object.

An object can be re-classified to another class (a member the classier attribute’s list) and
any attribute values incompatiable with its new class are removed.

% The figure class (with classifier)
%
class(classifiable_figure,
 parents([figure]),
 features([
 shape([rectangle,foval,fline]),
 draw,
 resize
])).

% Create a new abstract figure object
%
drawing_window::create_figure(Window,
 Location,Figure) :-
 Figure@create(classifiable_figure,
 Window,Location).
% Classify figure to a rectangle figure
%
drawing_window::figure_rectangle(Window,
 Figure,Width,Height) :-
 Figure@classify(shape,rectangle),
 Figure@width:=Width,
 Figure@height:=Height,
 Figure@draw.

% Classify figure to an oval figure
%
drawing_window::figure_oval(Window,Figure,
 Vertical,Horizontal) :-
 Figure@classify(shape,foval),

 Figure@v_radius:=Vertical,
 Figure@h_radius:=Horizontal,
 Figure@draw.

% Change oval figure to rectangle figure
% using classification
%
drawing_window::oval_to_rectangle(Window,
 Oval) :-
 Oval@v_radius(Height),
 Oval@h_radius(Width),
 Oval@classify(shape,rectangle),
 Oval@height:=Height,
 Oval@width:=Width,
 Oval@draw.

% Change rectangle figure to oval figure
% using classification
%
drawing_window::rectangle_to_oval(Window,
 Rect) :-
 Rect@height(Vertical),
 Rect@width(Horizontal),
 Rect@classify(shape,foval),
 Rect@v_radius:=Vertical,
 Rect@h_radius:=Horizontal,
 Rect@draw.

fig. 3.5. Using classification to specialise and re-classify figures.

A class may have multiple classifiers. An object may then be classified once using one
classifier and then again using another classifier. The affect of this is to produce an object
whose class is a “merging” of the two classes it has been classified to. For example, if
classifiable_figure had an additional classifier visibility :

[hidden,foreground,background], then an object of this class could be classified first to
rectangle and then to hidden.

Fig. 3.5. shows an example using classification. An abstract figure can be created and
initialised, and later specialised to a specific figure type. Figures created in this manner
can also be re-classified to other shapes. Note that no objects are created or destroyed,
hence all references to the classified objects remain unchanged.

3.5. Object Tracing and Persistency

In addition to classifiers, Snart provides two other object management facilities. Object
spying allows run-time Snart objects to be selectively "spied" to produce events equating

Chapter 3 Object-oriented Programming in Prolog with Snart Page 47

to object attribute updates and method entry/exit (which provides an object tracing
mechanism similar to those of (Noble and Groves 91) and (Brown 91)). Object persistency
allows objects to be made persistent in a global "object store", in a similar manner to the
persistent CLOS objects of (Attardi et al 89).

3.5.1. Object Tracing

A Snart object can be spied by specifying the features of the object's class that should
generate events or by simply generating events for all features of an object. For example,
to indicate an object RectID of class rectangle should produce spy events the following
predicate calls are used:

sn_trace_object(RectID)

 % to spy all figure class features for RectID

sn_trace_object(RectID,[draw,location,resize])

 % to spy draw and resize methods and location attribute

When an object has spied methods invoked or spied attributes changed, events are
generated by calling the user-defined predicates sn_entry, sn_exit and sn_set_value. For
example, if the RectID object has been spied as above, events of the form:

sn_entry(RectID,draw)

sn_exit(RectID,resize(20,30),true)

sn_set_value(RectID,location,(50,75))

might be generated when executing the drawing program. Defining appropriate handlers
for the event methods allows programmers to handle such object events and to take
appropriate action (for example, creating a list of calls to a method or animating a view of
the object's state).

This object spying mechanism is useful for keeping run-time objects consistent with views
of the object. Chapter 9 illustrates the use of this facility of Snart in a simple dynamic
program visualisation system.

3.5.2. Object Persistency

Snart objects can be made persistent by creating or opening an object store which records
the state of all persistent objects for a Snart program. A class inheriting from special
persistent class will have all of its instances made persistent using the currently open
object store. Reopening an object store extends Snart's object space to incorporate objects
within the store. For example, the following commands create, open and extend an object
store. Reopening the store allows access to the persistent objects it contains. In this
example a prectangle class is used, which is defined as
class(prectangle,parents([rectangle,persistent]),features([])) (i.e. a persistent
version of rectangle). Fig. 3.6. shows an example session from Snart using a persistent

Chapter 3 Object-oriented Programming in Prolog with Snart Page 48

rectangle class. The rectangle object is created then the object store closed. After reopening
the object store, the previously created rectangle still exists and can be queried.

?- sn_create_object_store(objects,'...path name...')
yes
?- sn_open_object_store(objects,'...path name...')
yes
?- Rect@create(prectangle,Window,(10,10),20,30)
Rect=1
yes
?- sn_close_object_store(objects)
yes
?- sn_open_object_store(objects,'...path name...')
yes
?- 1@info
Location: 10, 10
Perimeter: 60
Area: 200
yes

fig. 3.6. Persistent objects in Snart.

Only updated objects are rewritten to the store when it is closed and objects are not loaded
into memory until they are required. Persistent objects that have not been updated can be
automatically purged from memory if required. Currently Snart does not permit more
than one object store to be used at a time nor does it support merging of object stores.

3.5.3. Implementation

Both object spying and object persistency are implemented by “classifying” Snart objects
to new classes incorporating the spying or persistency maintenance required by the object.
Default meta-level methods, such as sn_set_value, sn_despatch_method, and
sn_alloc_id, are defined for all Snart classes. The behaviour of objects can be changed by
classifying objects to persistent and spy classes which over-ride these meta-level
methods. spy defines new attribute setting and method calling behaviour to generate
tracing events. persistent defines new object allocation, manipulation and destruction
methods to support persistent objects. Appendix B explains this meta-level use of object
classification mechanism in further detail.

Object spying is used for visualizing Snart programs in Chapter 9. Object persistency can
be used to make Snart programs persistent, as described in Chapters 7 and 9. Chapter 10
discusses an extended form of Snart persistent objects for abstract and natural persistency
mechanisms for programming environments.

Chapter 3 Object-oriented Programming in Prolog with Snart Page 49

3.6. Software Development in Snart

Snart offers several advantages over developing software using only conventional LPA
Prolog:

• Program structuring. Classes are used to structure a program in an object-
oriented manner. Conventional Prolog programs can be called from Snart or can
make use of Snart programs. This allows more high-level, abstract program
structuring techniques than those provided by LPA Prolog alone, with both the
data and functionality of programs encapsulated in classes.

• Uniform data storage. Data is stored as Snart objects rather than using assert and
retract or directly using LPA property management. This provides both object-
oriented access and modification of data and there is less impact on a program
when classes are modified than if asserted terms are modified. Compile-time
and run-time checking provide improved checks on the integretity of Snart data
as opposed to database or property data (though not as complete as for strongly
typed languages such as Kea or Eiffel).

• Stability under data restructuring. Snart objects can still be accessed after their
class definitions are modified, whereas Prolog database clauses are often
inconsistent after predicates using them are modified. Direct access to LPA
property management can cause difficulties when trying to change property or
object names or when deleting properties, both of which are handled
automatically by Snart. Due to this flexibility, Snart supports rapid prototyping
with a changing design better than raw LPA Prolog.

• Support for reuse and frameworks. Snart classes can be specialised and their
behaviour modified, including supporting multiple and repeated inheritance
with renaming of features. Generics and parameterised classes can be indirectly
supported as Snart has no concept of types associated with object referencing
variables. These facilities greatly extend the reusability of standard LPA Prolog
predicates.

• Hybrid language programming. Snart is similar to C++ in that it is a hybrid
language. Snart supports declarative logic programming inside an imperative
object-oriented programming structure.

In summary, Snart provides a good rapid prototyping language supporting both the
object-oriented and declarative programming paradigms. Chapter 7 discusses our
experience of implementing the major components of our research in Snart.

Chapter 3 Object-oriented Programming in Prolog with Snart Page 50

3.7. Other Object-Oriented Prologs

We briefly compare Snart to other object-oriented Prologs, including Protalk (Quintus
91b), Prolog++ (Pountain 90) and ObjVProlog (Malenfant et al 89). Snart was developed in
preference to using an existing object-oriented Prolog as:

• We required a simple language with representative facilities found in most
object-oriented languages. Many object-oriented Prologs tend to take an
approach that is somewhat incompatible with strongly-typed languages such as
Eiffel and C++.

• We have complete control over the syntax, semantics and implementation of
Snart. The language has already been used as part of a program visualisation
project (Fenwick and Hosking 93) which required the method despatcher to be
altered to generate events. We anticipated such modifications would be
required in our research and might be difficult to implement using existing
object-oriented Prologs.

• Snart has a very simple, clean syntax that integrates well with conventional
Prolog predicates in the LPA environment and a small compiler and run-time
system which are simple to understand and modify.

• Due to the similarities of Snart to C++ syntax and semantics, we hope to be able
to port Snart programs to C++ without substantial modification of their design
and structure. We also hope to apply the results of our research to class-based
languages such as C++. Most other object-oriented Prologs are founded on a
different conceptual view of classes and objects which is more difficult to
compare with languages of interest to us (e.g. Kea, Eiffel and C++).

Protalk, Prolog++ and ObjVProlog all treat classes as objects. Thus new classes are defined
by creating instances of a “class” object by calling a new_class method for class. Snart
treats classes as abstract data types like Eiffel and C++. Classes and methods are defined
and compiled with LPA Prolog code and class definitions are compiled in a separate
compilation phase. This results in easier definition and maintenance of classes with the
LPA Prolog environment than creating class objects as in Protalk and ObjVProlog.
Prolog++ classes are compiled to objects when LPA windows are compiled, as with Snart.
The Snart class definition and method syntax are somewhat clearer to read than those of
Protalk and ObjVProlog.

ObjVProlog provides meta-classes in a similar manner to CLOS (Attardi et al 89). Classes
and meta-classes (Goldberg and Robson 84) are both implemented as objects and can be
specialised to provide new object-based facilities that co-exist with existing ones. For
example, meta-classes can be defined which implement persistent objects (Attardi et al 89),
parallel objects and part-whole hierarchies (Malenfant et al 89). As Snart treats classes
differently from objects, we provide no meta-level support in Snart, and such facilities

Chapter 3 Object-oriented Programming in Prolog with Snart Page 51

must be implemented as standard classes and objects with extra features to perform these
types of specialised processing (which we do for the implementation of MViews as
described in Chapter 7).

Protalk, Prolog++ and ObjVProlog all treat attribute access and method calling as distinct
kinds of object manipulation. Snart treats them as “feature calls” and allows subclasses to
implement deferred features as attributes or methods. This model equates to the Eiffel
treatment of classes as implementations of abstract data types (Meyer 88) and is often
more flexible and natural than distinguishing between attributes and methods.

Prolog++ defines object (and class) data inside open_object and close_object predicates.
This means extra Prolog predicates not associated with the object (i.e. ones called by the
object’s methods but also callable from elsewhere) can only be defined outside the object
definition. As Prolog++ and Snart are hybrid languages which often make use of
conventional Prolog code, this restriction can be unwanted. Prolog++ allows such
auxiliary predicates to be made private, but this is not always what is intended or
required. Snart follows the C++ approach which allows mixing of object-oriented (Snart)
and conventional language (Prolog) predicates.

Prolog++ also provides daemon objects (for event and data-driven programming) and
information hiding which are currently not supported in Snart. Protalk is implemented in
Quintus Prolog and uses the Prolog database for object data storage. As Prolog++ and
Snart use LPA properties, they both run significantly faster than Protalk.

In summary, Snart provides similar object-oriented facilities to Protalk, Prolog++ and
ObjVProlog but takes a C++ approach to the treatment of classes and objects. The other
Prologs variously provide additional facilities including run-time creation of classes, data-
driven programming support using daemons and have compiler optimisations not yet
provided by Snart. Snart programs are compatible with a wide range of object-oriented
languages, however, including strongly-typed languages more suitable for software
engineering (Meyer 87). Thus we have chosen Snart as a representative object-oriented
language and a more appropriate language for implementation of our research than other
Prologs.

3.8. Future Research

Snart can be extended in many ways. The most useful include:
• Explicit redefinition and export of features, as used in Eiffel. This would inform

programmers of class definition errors not currently detected at compile-time
which can sometimes be quite difficult to determine at run-time.

Chapter 3 Object-oriented Programming in Prolog with Snart Page 52

• Information hiding including public, private and protected features as
supported by C++. Snart currently allows any feature to be accessed externally
to a class and any attribute to be changed externally.

• Support for data and event-driven programming by providing either daemon
support or Smalltalk-like Model-View relationships (Goldberg 84). When
implementing parts of our research these facilities had to be explicitly
represented and programmed. Chapters 7 discuss the advantages and
disadvantages of language support for multiple views on objects.

• Improved compile-time optimisations of Snart programs. This would include
direct predicate calling to renamed, inherited features and optimization of
method despatching.

• Adding “typed” Prolog variables that reference Snart objects. This would allow
a number of checks to be performed at compile-time and more compatibility
with C++ and Eiffel. It would also provide more flexibility as variables could be
typed (accessing Snart data or built-in Prolog data types), untyped and
accessing Snart objects (as now), or standard untyped Prolog variables.

• Lazy, functional evaluation for Snart features similar to that provided by Kea.
Snart would then integrate object-oriented, declarative logic and functional
programming.

• Further extensions to object persistency to provide multiple object stores,
programmer control of which object store to write information to, and improved
performance of persistent objects.

Appendix B discusses these extensions in further detail, including how they could be
implemented in Snart.

3.9. Summary

We have developed Snart, a set of object-oriented extensions to Prolog. Snart supports
multiple, repeated inheritance, arbitrary renaming and redefining of inherited features,
typed attributes and untyped method specifications, and integration with standard Prolog
predicates. Snart also provides an object classification facility similar to that of Kea, but
within an imperative language setting. A simple environment for Snart has been
implemented as an extension of the LPA MacProlog programming environment. A much
more sophisticated environment supporting multiple textual and graphical views of Snart
programs with consistency management has been developed and is described in Chapter
4.

Snart adds object-oriented structuring and data storage capabilities to LPA Prolog which
enhances the development of experimental software. Snart views classes as
implementations of abstract data types, in a similar manner to C++, Eiffel and Kea. Porting

Chapter 3 Object-oriented Programming in Prolog with Snart Page 53

Snart designs and programs to these languages, and using Snart as a representative of this
class of object-oriented programming language, becomes easier than with other object-
oriented Prologs that adopt a view of classes as objects.

Chapter 3 Object-oriented Programming in Prolog with Snart Page 54

Chapter 4 The Snart Programming Environment Page 55

Chapter 4

The Snart Programming Environment

This chapter presents one of the main products of our research, the Snart Programming
Environment (SPE). SPE provides an integrated software development environment for
Snart including multiple textual and graphical views of Snart programs with consistency
management. SPE is introduced here as it illustrates many of the facilities of software
development environments our research aims to support. SPE is also used in the following
chapters as an example environment for which different features need to be supported.

The original environment for Snart described in Chapter 3 and Appendix B is very
simplistic and this chapter introduces a much more sophisticated environment supporting
integrated design, implementation, debugging and maintenance of Snart programs. The
rationale behind the SPE is discussed and a user’s perspective of developing software in
SPE is given. This includes the design, implementation, testing and maintenance of
software and facilities for program browsing and managing complexity. We also briefly
discuss various extensions that could be made to SPE to further facilitate programming in
Snart and similar languages.

4.1. Rationale for Snart Programming Environment

The simplistic environment for Snart described in Chapter 3 provides only a rudimentary
extension of LPA MacProlog’s programming environment to support the development of
Snart programs. The only extra facilities include access to the Snart compiler, location of
Snart class definition and methods in program windows, the location and printing of
object and class data, and very simple object management and debugging facilities.

As our discussion of programming environments in Chapter 2 noted, many different
program construction and visualisation techniques are useful during software
development. Some techniques are also useful in other phases of software development.
For example, class diagrams are useful for analysis and design (Coad and Yourdon 91,
Henderson-Sellers and Edwards 90), during implementation as browsers and for static
program visualisation (Haarslev and Möller 90, Symantec 90), and during debugging for
object tracing (Kleyn and Gingrich 88, Myers 90).

Chapter 4 The Snart Programming Environment Page 56

An integrated environment providing a wide range of program design and construction
techniques for object oriented software would ideally provide various facilities as
described below:

• Object-oriented software design and implementation are often concurrent or
recursive activities (Henderson-Sellers and Edwards 90) with software
development being an evolutionary process (Coad and Yourdon 91, Ref).
Maintenance and/or enhancement of a software system also causes changes to
impact and flow through a system. Thus an integrated environment can
propagate changes more easily and automatically than a disjoint system
incorporating different, distinct tools (Reiss, 91).

• An essential requirement for environments supporting multiple phases is the
need to maintain consistency between the phases. Change to a design must be
reflected in its implementation and vice-versa. Most CASE tools generating code
or describing an analysis or design, for example Software thru Pictures
(Wasserman and Pircher 87), TurboCASE (StructSoft 92), and the OOATool
(Coad and Yourdon 91), get out-of-step under design or implementation
change. Programmers must manually ensure different aspects of the
development are updated and made consistent (or re-generated), a tedious,
error-prone and incomplete process. Automation of this process, or tools to help
with this automation, as in Ispel (Grundy et al 91), is much more desirable.

• As representation and interaction techniques are useful in more than one phase
of development, and at differing levels of abstraction, integrating the phases of
development in one environment allows the same or similar techniques and
tools to be reused on the same data. For example, a class diagrammer can be
used to design a class hierarchy, browse and access class definition code and
modify the class hierarchy when extending the design and implementations
(Grundy 91).

• Multiple views of information are useful, and to some degree necessary
(Monarchi and Puhr 92, Ratcliffe et al 92, Reiss 85, Wang et al 92), to provide
programmers with techniques for managing software complexity. Views
should:

 • be textual or graphical, as the textual programming paradigm is useful
for detail and graphical programming for a high-level overview of
programs

 • share information which is kept consistent automatically by the
environment

 • be at an appropriate level of detail or abstraction for their task
• have composition and layout programmer-determined

Chapter 4 The Snart Programming Environment Page 57

• Reuse of existing tools where possible and extensibility of the environment is
necessary (Reiss 90b). This includes the ability to add new tools and extend old
ones.

Ispel (Grundy et al 91) supports some of these concepts although it requires much more
versatile program representation and manipulation. We designed and implemented SPE
based on many of the concepts of our original Ispel environment to improve Snart
programming. In the following sections we describe software development in SPE and
illustrate use of the environment with examples designing and implementing the drawing
program introduced in Chapter 3.

4.2. Analysis and Design of a Snart Program

In this section we describe an analysis and design of the drawing program from Chapter 3.
We assume development from scratch of a drawing program-like software system and
illustrate its design.

4.2.1. Requirements for the Drawing Program

The drawing program from Chapter 3 provides a window with several buttons (see
Section 3.3.). Clicking on a button sets the current “drawing figure” which will be drawn
when a marqui is dragged in the window. Dragging a marqui results in the appropriate
figure being drawn and information about the figure being displayed (its location, height,
width and so on). Shift-clicking on a figure first displays information about the figure and
then deletes the figure. Rectangles, ovals and lines are the only three figures initially
provided, although extensibility should be aimed for.

4.2.2. Creating a New Program

The first step when using SPE is to create a new program. A programmer supplies the
program name, a cluster name and the name of the first class (clusters are used to group
related classes). Fig. 4.1. shows the root class view created by SPE when the program
drawing is created with root class window.

Chapter 4 The Snart Programming Environment Page 58

fig. 4.1. Initial root class view for the drawing program.

SPE class diagram views have a set of tools for manipulating the program associated with
their window. Menus control various other aspects of user interaction and are described
with associated tools in the following sections.

4.2.3. Analysis

The first step in the analysis of the drawing program is to determine the class hierarchies
needed. A special drawing_window class is derived from the window class, and the figure
and button hierarchies are defined. Figures can be specialised to open_figure and
closed_figure figures, and buttons to drawing_button, using generalisation relationships.
Generalisation relationships between classes specify that a class is generalised to one or
more other classes, and are typically used for object-oriented analysis. Views are
constructed for each hierarchy by selecting the create view tool () or menu item,
clicking on the class icon which will own the new view (be its focus), and giving the new
view a name. Classes and generalisation relationships are added to views using the class
tool () and generalisation tool () respectively.

Chapter 4 The Snart Programming Environment Page 59

fig. 4.2. Class hierarchy views for the drawing program.

Important aggregation and association relationships between classes are added using the
add client-supplier tool (). A dialogue is used to specify information about the
relationship including its name (if any), its arity and whether it is inherited from an
ancestor class. An aggregation relationship between two classes indicates that an instance
of one class is composed of instances of the other class (i.e. a part-of relationship). For
example, a drawing_window object may be composed of zero or more figure and button
objects. An association relationship between two classes indicates one class makes use of
the features of the other class in some way. For example, a figure class may be associated
with a drawing_window class, indicating the figure class uses the drawing_window class
interface4 in some manner. Aggregation and association relationships are typically used
for object-oriented analysis and are refined into client-supplier relationships (Henderson-
Sellers and Edwards 90). Classes can be selected and dragged using the selection tool ()
in a similar manner to figures in a drawing package.

Fig. 4.2. shows the three views containing each hierarchy. The bold arrowed lines
represent generalisation relationships while the thin arrowed lines represent aggregation
and association relationships between classes.

4A class interface is the set of attributes and methods defined by the class and inherited from a class’s

generalisations.

Chapter 4 The Snart Programming Environment Page 60

fig. 4.3. Various features of classes and relationships between classes.

The next step is to define any other major aggregation and association relationships
between classes and to define the main features of each class. Features5 are added to class
icons using the add feature name tool (). No distinction between methods and
attributes need be made during analysis. Fig. 4.3. shows the root class view after adding
aggregation relationships between the drawing_window, figure and button classes
(represented as thin arrowed lines). The dialogue shown is for entering information about
an aggregation relationship. Note the type is “design” level which means the relationship
is not directly related to any particular client-supplier implementation scheme. The other
views in Fig. 4.3. have been refined from their Fig. 4.2. equivalents to show the names of
important features which have been added to class icons. These features describe the
important attributes (data) and methods (behaviour) associated with each class.

At the analysis stage documentation about the purpose of classes and relationships can be
added using textual views. A textual view is defined using a menu item or the create view
tool. Documentation describing the class, its features and its relationships to other classes
can then be added. Documentation views can also be defined for individual features, as
shown in fig. 4.4.

5Using the Eiffel terminology for all attributes and methods of a class (Meyer 88).

Chapter 4 The Snart Programming Environment Page 61

Currently SPE only supports this object-relationship modelling for OOA. Other useful
techniques such as service charts and dataflow between objects (Fichman and Kemerer 92,
Monarchi and Puhr 92) are not yet supported. Chapters 8 and 9 discuss extending SPE to
support additional (and alternative) analysis and design diagrams.

fig. 4.4. Documentation for classes and features.

4.2.4. Design

After performing an analysis of the drawing program we can proceed to specify a design
for its implementation. Extra detail is added to the various associations between classes,
for example, the names to refer to them by and how they are to be implemented (as
attributes, local or argument references, or by a feature call).

Fig. 4.5. shows further enhancement of the drawing program by adding design-level
information to our analysis. Extra features and relationships between classes are
introduced to implement various tasks. For example, to draw a figure a picture
representing the figure’s shape is added to a window and to delete it this picture is
removed. The window classes must therefore support picture handling as an interface to
an LPA Prolog graphics window. Note that the analysis-level diagrams and
documentation can be retained or new views created by copying information and
extending it. The documentation added at the analysis phase can also be extended here to

Chapter 4 The Snart Programming Environment Page 62

describe more detailed program structure. The connection points of lines on icons can be
interactively modified to assist layout, as has been done in the “figure-drawing” view.

fig. 4.5. Extending the analysis of the drawing program to a program design.

4.3. Implementing a Snart Program

To implement the design in Snart the design diagrams can be extended to describe the
actual types of client-supplier connections between classes. For example, the figures
client-supplier relationship between the drawing_window and figure classes can be
implemented as an attribute (aggregate) figures of type list(figure). Other client-
supplier connections, for example the draw feature of figure calling add_pic feature of
add_pic are implemented as a method call of the form Window@add_pic(Picture).

Class definition textual views are added to describe the complete set of features (including
attribute types) and rename lists for each class. Textual views are created in a similar
manner to graphical views, but consist of one or more “text forms”6, rather than icons and
glue. Textual views are manipulated by typing text in a normal manner. They also have an

6A text form is some text describing one aspect of a program component. A class can have documentation

and code text forms, a method can have code and documentation forms, and an attribute only a

documentation form.

Chapter 4 The Snart Programming Environment Page 63

alternative, high-level structure-oriented style of editing using menus for manipulating
individual text forms. Methods are implemented in the same way as class definitions and
can either be added to the same textual view as a class definition or have their own view
(and window). Fig. 4.6. shows a class definition and methods implemented for the
drawing program.

fig. 4.6. Textual views implementing the drawing program from its design.

When a textual form is created, SPE generates a template from its design-level
information. For example, when the class definition for Snart is created, the features
add_figure, marqui_shape and window and parent class button are added to the class
definition.

SPE textual views are parsed on programmer request. Snart code is generated by calling
the existing Snart compiler with either a window or terms to compile. The Snart compiler
regenerates the compiled definition of a class and its look-up tables when necessary. Any
errors during parsing are reported using dialogues while compilation errors are reported
by associating error messages with a program component (see Section 4.5).

Chapter 4 The Snart Programming Environment Page 64

4.4. Debugging a Snart Program

Once implemented, the program can be executed. Fig. 4.7. shows the drawing program
running. The drawing program window is shown with some figures added via user
interaction. Two “intra-object” debugging views are shown which display the state of
drawing program objects. In addition, two program views show the drawing_window class
definition and the drawing program hierarchy.

fig. 4.7. The drawing program being debugged.

The SPE intra-object viewer shows all the attribute values associated with an object.
Clicking on references to lists or other objects opens further object viewer windows. Errors
in the drawing program can be fixed by modifying the program code in SPE. The LPA
MacProlog debugger can be used to trace execution within predicates and methods in the
normal way. Chapter 9 discusses some extensions to this simple debugging system for
displaying object references and control-flow graphically.

4.5. Modifying a Snart Program

Object-oriented software development tends to be an evolutionary process (Henderson-
Sellers and Edwards 1990; Coad and Yourdon 1991). Hence program design and
implementation may require change for a variety of reasons:

 • The requirements for the program change impacting analysis, design, and
implementation.

Chapter 4 The Snart Programming Environment Page 65

• A design may be incomplete and requires modification impacting on its
implementation.

• Errors are discovered on execution, correction of which may result in design
changes.

“Changes” may even be transient in that they inform programmers of tasks to perform or
errors requiring correction. Many CASE tools and programming environments provide
facilities for generating code based on a design (Coad and Yourdon 1991; Wasserman and
Pircher 1987) but few provide consistency management when code or design are changed.

4.5.1. Graphical Updates

For graphical views, updates from textual manipulation and parsing or other graphical
views are reflected by making the change directly to the icons in the view. If an aspect of a
program has been deleted (for example, a feature moved to a sub-class), any inconsistent
feature connection is drawn shaded or coloured to indicate the deletion.

Currently SPE only supports the propagation of updates on the same program component
between different views. SPE often stores analysis and design relationships as separate
components even if a design relationship is a more detailed representation of an analysis
relationship. This is due to less information being provided at the analysis phase so
relationships may not be uniquely identifiable. For example, Fig. 4.8. shows two views
from the drawing program, one for analysis and one for design. The aggregation
relationships in the analysis view are copied in the design view, but there is not always
sufficient information to determine which analysis relationships correspond to which
design ones.

Fig. 4.8. Analysis and design relationships.

An extension for providing analysis-to-design consistency (and vice-versa) where change
to a generalised relationship affects more detailed versions of the relationship is proposed
in Chapter 9. This supports the propagation of change between analysis and design
relationships. It also describes how design views can be copied from analysis views and
the two views kept consistent under change (i.e. the link between their relationships is
inferred from the copying process itself).

Chapter 4 The Snart Programming Environment Page 66

4.5.2. Textual Updates

In textual views, changes are not immediately made to the rendered view. Rather,
readable descriptions of any updates which have occured in other views are expanded
into the view. The user then has an opportunity to accept, provide an implementation for,
or reject each update. Both of the textual views in Fig. 4.9. include descriptions of updates
which have been applied to other views. These update descriptions are expanded into any
textual view, including documentation views.

Fig. 4.9. (a) Updates expanded in a textual view, (b) first update applied.

Chapter 4 The Snart Programming Environment Page 67

The first update description in the drawing_window view indicates that the gfigures
feature has had its name changed to figures in another view. A programmer can either:

• accept the change and have SPE modify the text appropriately (in this case,
modifying gfigures:list(figure) to figures:list(figure))

• implement the change manually or
• reject the change, causing the change to be undone throughout all views.

In some cases, such as the addition of a client-supplier relationship in a graphical view, it
is not possible to automatically infer the correct modification to a textual view and user
assistance is needed. For example, a client-supplier link added between drawing_window
and figure (indicating that the del_pic feature of the drawing_window is used by the hide
feature of figure). For this change automatic update of the textual view is not possible as
SPE cannot infer the appropriate modification to the hide method and the user must
implement the update.

Update descriptions may also be used to inform users of semantic or compilation errors
(syntax errors are flagged interactively) and to document changes. For the latter,
programmers can add arbitrary “user-defined” updates that describe various changes
performed or to perform on a program. A compilation error is shown in the
drawing_window Class Definition window in Fig. 4.9. and a user-defined update is shown
in the same window in Fig. 4.10.

4.5.3. Update Histories

All the updates made to a program component may be viewed via a menu option,
providing a persistent history of program modification. User-defined updates may also be
added to document change at a high level of abstraction. Programmers may add extra
textual documentation against individual updates to explain why the change was made
and possibly who made it and when. Fig. 4.10. shows an example of viewing the updates
for drawing_window and adding a user defined update for drawing_window. These updates
describe each change that has been applied to the drawing_window class and are numbered
in the sequence they were applied (updates 20, 21, and 22 in the list are visible in the
update history browser dialogue). Update number 27 is having extra information added to
more fully document the change in the update editor dialogue.

Chapter 4 The Snart Programming Environment Page 68

Fig. 4.10. The update history browser and update editor dialogues for drawing_window
updates.

4.5.4. Integrated Software Development

Modifications to a program can be made at any level (analysis, design or implementation)
and to any view. These modifications will be reflected in other views by direct update in
graphical views or display of update descriptions in textual views. This produces a very
integrated environment with little distinction being made between graphical or textual
program manipulation. In fact, little explicit distinction is made between the different
phases of software development, unlike other systems with different tools being
employed for different phases of development (Wasserman and Pircher 1987). For
example, if the drawing program requirements are extended so that wedge-shaped figures
and arbitrary polygon figures are supported, these changes are made incrementally at
each stage. Analysis views are extended to incorporate new figure and button classes, and
new features are added to classes. Design-level views are extended to support the
requirements of each new type of figure and implementation-level views are added or
modified to implement these changes.

SPE propagates and stores the update descriptions that are displayed in textual views and
the update history using update records. Update records, their generation, propagation and
unparsing are described in Chapter 5.

Chapter 4 The Snart Programming Environment Page 69

4.6. Browsing a Snart Program

SPE allows an arbitrary number of views to be created for any class or feature.
Programmers must be able to locate information easily and be able to gain a high-level
over-view of different program aspects.

Class icons in graphical views have “click-points” which allow programmers to double-
click on the icon in a certain place and have some pre-determined action carried out
(similar to Prograph’s dataflow entities (Cox et al 89)). Fig. 4.11. shows the different click-
points for a representative class icon.

Clicking on a class views point provides a list of views this class is a member of. Similarly, a
feature views point provides a list of views a feature occurs in. A view can be selected from
a views list dialogue and it will then become the new current view with its window
brought to the front.

Class text points select a default textual view a class occurs in to become the current view.
If the class does not yet have any text view, one will be created and will become both the
current view and the default text view for the class. The kind of text form added to the
view is determined by asking the programmer using a dialogue. Similarly, feature text
points select or create the default text view for a feature.

figure

window
draw
hide
pt_in_figure

{ }

Class views Class text

Feature textFeature views

Class features All class features

fig. 4.11. Click-points on a class icon to aid navigation.

Clicking on a class features point provides a list of all features defined for a class. Clicking
on an all class features point provides a list of all features for the class, including inherited
features. Any feature may be selected from these lists and its views or default text view
made the current view. Option-clicking on a class features or all class features point
provides a list of other class information including generalisation classes, specialisation
classes, client-supplier relationships and classifiers. Feature names can be shown in or
hidden from a class icon or a client-supplier relationship to model the feature expanded in
the view. Other class information can be expanded on programmer request and SPE

Chapter 4 The Snart Programming Environment Page 70

automatically adds a graphical connection and class icon to represent the relationship(s).
Fig. 4.12. shows the feature list and class information dialogues for SPE when browsing
the features of the figure class.

Fig. 4.12. The features selection and class information dialogues from SPE.

SPE provides menus for textual views that perform similar facilities to click points. Any
elements whose text is in the selection range for a textual view (text highlighted by
selecting with the mouse) can provide dialogues with feature lists or be manipulated like
graphical icons (be hidden or their base component removed, their updates displayed in a
dialogue, or their updates applied to the textual view).

SPE provides similar searching and find and replace facilities to LPA Prolog using the
LPA search menu. A general location dialogue can be used to locate the views or default
textual view for any class, feature or Prolog predicate. Fig. 4.13. shows an example using
the general location dialogue.

fig. 4.13. The general location dialogue from SPE.

Programmers can construct additional views for the sole purpose of program browsing. A
graphical view can be constructed based on the selected icons in an old view. Already
defined class information can be expanded into the view and used by programmers to

Chapter 4 The Snart Programming Environment Page 71

gain a different perspective on a program or just as a mechanism for accessing other
views. This provides a very flexible static program visualisation mechanism with view
composition and membership under the complete control of a programmer.

4.7. Managing a Snart Program’s Complexity

When class inheritance hierarchies, such as those used in the drawing program, are
constructed software becomes much more complex. Information that comprises the full
interface for a class can be stored in many ancestor classes. In addition, client-supplier
relationships between classes mean control flow travels through many different methods
associated with different classes. SPE provides various complexity management facilities
which allow programmers to define extra views to reduce the cognitive complexity of
programs. Complexity management is a similar yet distinct concept from program
browsing and can greatly affect the usefulness of any browsing strategies.

4.7.1. Programmer-defined View and Icon Composition

Programmers determine which features are represented in class icons. A view might
contain information focusing on one particular aspect of a class or show only those
features of a class relevant to other classes in the view. Fig. 4.14. illustrates a view from the
drawing program showing the relationships between the figure and drawing_window
classes. Only the relevant features of each class are shown.

Fig. 4.14. A view showing client-supplier relationships between figure and drawing_window.

Textual views can contain several text forms for different program components which is
useful for representing strongly related or inter-dependent program aspects together. For
example, the figure::hide, drawing_window::del_pic and
drawing_window::remove_figure methods are all related by client-supplier relationships.
All three methods can be represented in a single textual view and will thus always be
displayed together when the view is selected.

Chapter 4 The Snart Programming Environment Page 72

4.7.2. Code Text Forms

Class text forms can be either canonical, documentation or a “code view”. Canonical class
definitions show the features defined by a class and all generalisation information used by
the class (classes it inherits from and features it renames). Canonical forms are given to the
Snart compiler to regenerate a class’s dispatch tables and class information. Class
documentation describes any additional user-defined information about a class and there
may be more than one documentation form for a class (describing different, related
aspects of the class).

Code view text forms have a similar syntax to canonical class definitions but can represent
inherited features and a subset of a class’s features. For example, the three methods for
hiding figures could be displayed with two code view text forms of the drawing_window
and figure classes which only represent the relevant class features. Fig. 4.15. shows the
contents of a textual view containing these five text forms. Note that updates on one text
form for a class will be propagated to views containing any other text form.

A class or feature can have several documentation text forms which can be shown
together or in any combination with code forms. SPE doesn’t directly support a notion of
responsibilities for classes or feature membership of responsibilities (Wirfs-Brock and
Wilkerson 89). We can model such a system, however, by using code views of classes with
only features belonging to one or more responsibilities being shown.

/*updates_start(16).
updates_end. */

% Hide a figure by removing its
representation
% in an LPA window.
%
figure::hide(Fig) :-
 Fig@window(Window),
 Window@del_pic(Fig),
 Fig@visible:=false.

/*updates_start(81).
updates_end. */

% Delete a picture from this window
%
window::del_pic(Window,Name) :-
 Window@lpa_window(LPA),
 Window@make_name(Name,PictureName),
 del_pic(LPA,PictureName).

/*updates_start(102).
updates_end. */

% Remove a figure from the figure list of
this window.
%
drawing_window::remove_figure(Window,
 Figure) :-
 Figure@info,
 Window@figures(Figures),
 remove(Figure,Figures,NewFigures),
 Window@figures:=NewFigures.

/*updates_start(10).
updates_end. */

class(drawing_window,
 parents([

window([rename(clicked,window_clicked)])
]),
 features([
 remove_figure,
 inherited del_pic
])).

/*updates_start(308).
updates_end. */

abstract_class(figure,
 parents([]),
 features([
 delete(method),
 hide(method),
 window:drawing_window
])).

Chapter 4 The Snart Programming Environment Page 73

Fig. 4.15. Contents of a textual view showing the complete figure hiding process.

4.7.3. Inheritance

Classes inherit much of their information from their ancestors. Allowing provision for
inherited features and relationships in a view enhances the descriptive power of SPE’s
class views. SPE allows programmers to expand inherited relationships or designate
relationships as “inherited”. SPE can also check for changes to inherited relationships and
class icon feature names and thus update them after change or inform programmers of
inconsistencies.

SPE’s browsing capabilities and complexity management mutually complement each
other. Feature dialogues allow both class-owned and inherited features to be expanded in
a view. A class or feature can be located by browsing and then added to another textual or
graphical view. Reducing the number of features and class relationships in a view makes
browsing and understanding of program sub-components much easier than if complete
class details are always provided.

4.8. Saving and Reloading a Snart Program

Snart programs are saved and loaded as projects which contain all information about a
program. Snart incrementally saves projects so only updated information is re-written to
project files. Views and class data are incrementally loaded when required. Only a subset
of a program’s entire set of views and class data is held in memory at one time. Upon re-
opening a project all views visible when the project was saved are reloaded and
redisplayed, and the class, feature and predicate sets for a program rebuilt. Any further
views are reloaded from the project file when a programmer selects them for display.
Class data is loaded when accessed (when the class is displayed in a view or used in a
selection dialogue).

If a reloaded view contains information that is out-of-date (i.e. the program has been
changed while the view was not in memory to be updated) SPE indicates inconsistent
information to the programmer. Textual views have updates expanded, and any textual
forms in the view no longer consistent with the program data (for example, a method that
has been deleted, renamed or moved to a sub-class) are rendered as “unmapped”. For
graphical view components with out-of-date information, the icon is rendered in a
different colour, for example as “needs updating” (green) or “unmapped” (red).
Programmers can then decide on the appropriate action to take to make the view
consistent with the new program state: change graphical or textual component data, apply
updates, or delete the view component.

Chapter 4 The Snart Programming Environment Page 74

4.9. Discussion and Possible Extensions to SPE

In this section we evaluate SPE and determine possible future extensions to the
environment. Chapters 5, 7 and 8 discuss how some of these enhancements could be
modelled and implemented.

4.9.1. Adequacy of Program Representation

The current representative power of SPE is good for describing the state of classes and
their inter-relationships with other classes. SPE supports analysis, design and
implementation-level descriptions with successive refinement of detail. Multiple views
allow class diagrams to contain only information a programmer deems relevant for a
particular focus. Documentation and code views provide a flexible mechanism for
allowing users to add detail about different aspects of a program.

SPE does not provide any specific diagrams for modelling class behaviour (at the analysis
or design levels). Client-supplier relationships can be used to model feature calls between
classes but these can not be as specific as Service Charts (Coad and Yourdon 91) or Action-
dataflow diagrams (Fichman and Kemerer 92). Some form of object lifecycle diagram
and/or dataflow diagram for modelling the detailed interactions between objects would
be very useful for analysis and design refinement. Chapters 7 and 9 propose examples of
such diagrams for SPE.

Abstract class relationships such as aggregation and association (Henderson-Sellers and
Edwards 90, Coad and Yourdon 91) are currently modelled as “abstract client-supplier”
relationships which is not always the most convenient or descriptive approach. Dialogues
should support more context-dependent interaction including referring to client-supplier
relationships as “aggregation and association” for analysis (Henderson-Sellers and
Edwards 90), and showing either high-level feature information or feature detail
depending on whether a view is “design-level” or “code-level”. Class contract views that
support Eiffel-like pre- and post-conditions and invariants (Meyer 92) and additional
documentation would provide a more abstract and expressive specification than selective
views of class code with documentation.

SPE does not currently support any notion of responsibilities (Wirfs-Brock and Wilkerson
89). These would be useful for grouping related features so they can be viewed as a group
with the same responsibility in both graphical and textual views. Filtering mechanisms are
not currently provided for features with programmers determining which features are
shown in a class icon, class definition views and feature selection dialogues. Using filters
in conjunction with responsibilities would allow SPE to support a notion of partial views
of a class for certain responsibilities (for example, the hiding of figures example from
Section 4.7).

Chapter 4 The Snart Programming Environment Page 75

It would be useful if programmers could mark features as “over-rideable”, “must over-
ride”, “must not over-ride” and so on under inheritance. This would allow SPE to check
whether features have been correctly re-used in sub-classes and would also allow SPE to
generate more complete templates and views for classes (possibly including the argument
names and types for over-ridden methods). Documentation of views and program
elements for reuse extends this concept of SPE-supported reusability even further.

4.9.2. Program Viewing and Construction Facilities

SPE provides basic class diagram construction facilities with some flexibility provided via
programmer-defined view composition and layout (programmers determine which
classes and features are shown and their positions). Class relationship connections
(generalisations, client-suppliers and so on) can be attached to different parts of a class to
allow different diagram layouts and multiple connections to and from one class icon.

Programmers are not given much control over icon shape and composition, menu options,
tools, preferences and other SPE facilities. Interaction via menus and dialogues is fixed
with no ability to define macro editing operations or define commonly used default values
for dialogues. Allowing more flexible diagram composition, as in TurboCASE (StructSoft
92), would give programmers a more comprehensive diagramming capability. Icon and
connector shapes, sizes and layout are currently determined by SPE. Programmers should
be able to move individual icon components to suit their requirements and be able to
“bend” lines at appropriate points to aid diagram layout and readability.

SPE does not support automatic layout of diagram components except when expanding
relationships and classes from a class icon. Lines can only be direct connections without
multi-point lines. Features are shown as a group with no ability to move them, connect
lines directly to them to represent feature-to-feature connections (as supported by some
CASE tools, such as TurboCASE (StructSoft 92)), or show arguments for method calls.
Resizing of icons to reflect importance or to change a view layout is not provided.
Modification of program data is mostly by dialogues when it would sometimes be useful
to allow direct manipulation of icons or icon components (for example, renaming a feature
connection by editing its name rather than via a dialogue). A possible inter-feature
relationship view is shown in fig. 4.16.

Chapter 4 The Snart Programming Environment Page 76

figure
draw

hide
pt_in_figure

drawing_window
add_pic
del_pic
clicked

(X,Y)
Boolean

Figure:figure

fig. 4.16. A possible form for SPE inter-feature relationship views.

The text editor provided by SPE is a standard Macintosh text editor with various menus
provided to manipulate textual forms and move to other views. While this provides a
well-integrated editing environment, many improvements could be made to enhance
productivity. Better separation of textual forms, updates in pop-up menus, hidden textual
form boundaries, structure-oriented editing of class features, and hyper-text macro
commands would all be useful. This would require an editor with the structure-
oriented/free-edit capabilities of UQ2 (Welsh et al 91), annotation capabilities similar to
FIELD (Reiss, 90b), and user-defined unparsing as supported by MELD (Garlan 86) and
Mjølner (Minör 91). Allowing textual and graphical representations to be integrated
within one window, similar to Dora (Ratcliffe et al 92), may also be useful.

Debugging is integrated with conventional Prolog debugging by using the LPA debugger
and an object browser provided by SPE. The object browser provides much improved
access to Snart objects than the original Snart environment’s object printer. Higher-level
debugging facilities would be useful, however, including a graphical representation of
object references (possibly a subset of an object’s references) similar to class diagram
views and Cerno’s inter-object views (Fenwick 93).

4.9.3. Large-scale Program Development

Update descriptions provide a good way of maintaining consistency between graphical
and textual views, automatically documenting program changes, reporting compile-time
and semantic errors, and allowing users to add their own updates or browse the “update
history” of part of a program. Change propagation between design and implementation is
supported but not between design and analysis. Updates could provide a mechanism for
propagating changes to sub-classes and associated classes when a class is modified. A

Chapter 4 The Snart Programming Environment Page 77

browsing system for updates is provided but this could be extended to allow “classes with
errors” and “classes with unseen updates” to be located and modified (i.e. a grass-catcher
similar to that provided by the Trellis/Owl environment (O’Brien et al 87)).

SPE does not currently support version control (multiple forms of a program to exist),
shared libraries (a program made up of one or more shared components), or multi-user
development (one program being constructed by more than one user on several machines,
with concurrent access and updates to a program, similar to (Nascimento and Dollimore,
93)). Extending the environment to allow multiple access (possibly con-current) to a
program would allow much larger systems to be implemented as a group effort. See
Chapter 10 for further discussion on extending SPE for multi-user software development.

4.9.4. Programming Other Languages with SPE

The facilities provided by SPE are quite general and applicable to a wide range of object-
oriented languages. Generalising the environment and supporting other languages such as
Kea, Eiffel and C++ in a similar manner to Snart would provide development
environments of similar capability to SPE. Adding typed variables to Snart (as discussed
in Section 3.8) would allow both compile-time checking of errors in SPE and detection of
concrete client-supplier relationships. These could be used to generate call graphs or
provide checking for abstract relationships defined in SPE itself. Using any strongly-typed
object-oriented language (such as Eiffel) would also allow compile-time generation of such
information.

4.10. Summary

The simple programming environment for Snart under LPA MacProlog provides only
basic support for object-oriented programming. No analysis or design tools are provided
or interfaced to and there is no support for automating program documentation and
version control. The LPA debugger is used to examine executing predicates with very
simple facilities to print run-time object data.

SPE provides a sophisticated development environment for Snart. SPE supports analysis,
design, implementation and maintenance of Snart programs in one environment. Unlike
most CASE tools, changes at one level are propagated to other levels and graphical and
textual representations kept consistent. Snart programs can be run and debugged in the
same environment and extra views created for browsing and complexity management. A
novel form of human-readable update descriptions are used for view consistency,
documentation of change, and semantic and compile-time error reporting. SPE can be
improved in various ways but provides the basis for a complete, integrated development
environment for Snart.

Chapter 4 The Snart Programming Environment Page 78

The basic features of SPE can be factored out into two distinct systems. The concepts of
multiple view support with consistency management are reusable for other programming
environments. Chapter 5 presents a model for describing such environments and two
languages for specifying such systems: one for describing the state of a program and how
it can be manipulated, the other for describing user interactions for viewing and changing
a program. Chapter 6 describes an object-oriented architecture for such environments
based on the model of Chapter 5 and Chapter 7 presents an object-oriented
implementation based on this architecture. Chapter 8 shows how SPE can be generalised
into a generic programming environment for object-oriented languages. It also discusses
how this generic environment can be modelled and implemented using the architecture
and implementation framework from Chapters 6 and 7 respectively.

Chapter 4 The Snart Programming Environment Page 79

Chapter 5 Modelling and Specifying Environments with MViews Page 81

Chapter 5

Modelling and Specifying Environments
with MViews

As discussed in Chapter 2, the multiple view aspects of software development
environments, such as SPE, are common to many different environments. It would greatly
simplify the construction of such environments if a common set of building blocks was
available. This should support multiple textual and graphical views, automatic view
consistency management, a flexible program representation, and provide support for user
interface construction and program and view persistency.

MViews abstracts out the common features of environments that support multiple textual
and graphical views of information. Programs are represented as object dependency
graphs, subsets of these graphs are constructed to form multiple views of a program,
views can contain many instances of different program elements, and views can be
rendered and manipulated in either a graphical or textual form. The rationale for MViews
is discussed together with the deficiencies with current approaches to providing
environment construction facilities. A model for MViews-based environments is presented
and a declarative specification language developed. This language captures the
fundamental concepts of the environment and provides a mechanism for abstractly
specifying program and view state and the semantics of manipulating this state. An
operational semantics specification of this language is presented to show that the language
is well-defined in terms of the MViews model. A complementary visual specification
language is introduced for defining the appearance and interaction with MViews
environments using a graphical style. This visual specification provides the input and
output mechanism for the state description.

Chapter 6 further develops the MViews model by providing an object-oriented
architecture for constructing such environments based on the model and specification
languages. Classes from this architecture are specialised to define environment-specific
program and view representations. Chapter 7 describes an object-oriented implementation
of MViews as a framework of Snart classes based on the architecture of Chapter 6. Chapter
8 illustrates the use of this architecture and framework by describing an architecture and
implementation for SPE.

Chapter 5 Modelling and Specifying Environments with MViews Page 82

5.1. Rationale For MViews

Section 4.1 discussed some desired features of software development environments. These
include integrated analysis, design and implementation of software (including using the
same representations during different phases of software development); graphical and
textual views of programs; multiple views of software including consistency management
and recording of change; and tool integration with a common user interface and data
management strategy. A model for such environments should thus provide several key
aspects which are discussed below.

5.1.1. Program Representation

Program structure needs to be represented in a manner which is both flexible (so many
different application structures can be represented) and close to the application’s needs
(i.e. a “natural” representation for the application domain) (Meyers 91, Arefi et al 90). It
should also be generalised sufficiently so reuse of the model is possible but does not
involve great effort (i.e. be a sufficiently abstract modelling of program structures) (Minör
90, Backlund et al 90). A language representation scheme also requires a mechanism for
describing language-specific semantics and this scheme should be complementary to the
program structure representation (possibly using structural modifications to drive
semantic checking) (Reps and Teitelbaum 87, Backlund et al 90, Minör 90).

5.1.2. Multiple Textual and Graphical Views

Environments like SPE and Dora require both graphical and textual representations of
parts of a program (Grundy and Hosking 93, Ratcliffe et al 92). Thus views should support
a model of a subset of the total program state and also provide either a textual or graphical
rendering of this “partial program”. The structure of views should be similar or the same
as the structure of base program data. This allows view data to be manipulated in a
similar manner to the base program it mirrors and consistent manipulation strategies to be
employed throughout the environment (Vlissides 90). There should, however, be some
scope for structuring views differently for efficiency or because a different structure is a
more appropriate model for the view (Dannenburg 91).

5.1.3. Program and View Modification

Program structures must be modified to construct or change program fragments.
Similarly, modification of a view is equivalent to a programmer changing the part of a
program displayed in the view (Meyers 91, Vlissides 90). View editing operations should
thus be translated into appropriate program modifications. Using the operation model for
a base program for changing a view’s state (as opposed to its rendering) may be
appropriate to help facilitate this translation process.

Chapter 5 Modelling and Specifying Environments with MViews Page 83

Programmers generally find free-editing text and interactively editing graphics is a more
natural and desired approach to programming than comparable structure-editing
approaches (Welsh et al 91, Arefi et al 90, Minör 90, Whittle et al 92). Environments should
thus support editing mechanisms that match those desired by programmers and which
enhance their productivity, rather than using particular editing mechanisms because they
are the easiest to support with environment generators. An editor which provides free-
editing and incremental parsing for syntax and semantics checking, and can support
structure-editing in a consistent manner for high-level programming, may be the best
solution (Welsh et al 92).

5.1.4. Automatic, Efficient Consistency Management

When a program component is updated all affected views should also be updated to
reflect the change (Meyers 91, Reiss 85). The change should also cause any language-
specific semantics to be rechecked to ensure programmers are informed of errors (Reps
and Teitelbaum 87, Minör 90). This change propagation process should be both efficient
and as automatic as possible so programmers need not be concerned with inter-
component dependencies (Reiss 86). Lazy application of updates may be appropriate for
view updates when the view is hidden or not in the front editing window (Dannenburg
91, Wilk 91). Attribute recalculation for semantic checking (Reps and Teitelbaum 87),
where affected values need not be recalculated until they are required (Hudson 90).
Incremental view updating, where only the updated aspects of views are re-rendered
rather than the whole view for efficiency, should be directly supported (Vlissides 90,
Dannenburg 91). It would be useful to incrementally update a view given changes to its
base rather than have to compute the changes (Dannenburg 91, Wilk 91). Views should
also be visually updated to indicate that a change has occured in the program state that
may not necessarily be possible for the environment to automatically translate into
appropriate view modifications. For example, SPE does this when propagating a client-
supplier addition or deletion to a textual class code view.

5.1.5. Recording Previous Changes

The modification history of a program component can be useful to inform programmers of
what changes were made to the component, when they were made (relative to other
changes), and possibly who made the change and why. Providing on-line access to this
change history would allow it to be used as a documentation aid.

5.1.6. Undo and redo of User Manipulations

Editors on views should support some form of undo/redo facility to allow programmers
to reverse editing operations that may have had the wrong or unintended effect (Reiss 85,
Vlissides 90, Dannenburg 91). This undo/redo mechanism should be abstract enough so

Chapter 5 Modelling and Specifying Environments with MViews Page 84

programmers do not need to be concerned with implementing such a facility directly and
be efficient enough so the mechanism does not impose unacceptable storage or
performance demands on the environment (Dannenburg 91).

5.1.7. Program and View Persistency and Multi-user Access

Programs and their views need to be stored between invocations of an environment. The
environment may also need to support multi-user access to a program (possibly with
distributed copies of the program and multiple versions) (Meyers 91). Ideally, program
persistency should be efficient in both time and space, require little or no application-
specific programming to support, and be flexible enough for the different requirements of
different environments.

5.1.8. Tool Integration and Extensibility

Environments are typically made up of several tools used for different purposes, for
example editing, compiling, debugging and version control. Environment integration
should be at both the user interface level (providing a consistent user interface across all
tools) and the tool data level (providing uniform data storage or translation mechanisms)
(Meyers 91, Wang et al 92, Reiss 90a). An environment should also be extensible, allowing
new tools to be developed or existing tools from other systems to be integrated in a
consistent manner (Meyers 91, Reiss 90a, Wasserman and Pircher 87).

5.2. Related Research

This section discusses related research on viewing mechanisms for programming
environments and related applications. It illustrates that most existing systems, while
supporting some of the requirements of Section 5.1., do not provide enough support for all
of these requirements.

5.2.1. Smalltalk Model-View-Controller

The Smalltalk Model-View-Controller (MVC) model (Goldberg and Robson 84) provides a
general mechanism for representing base programs (a model) as Smalltalk objects but with
no specific support for programming language structure or semantics representation.
Views of model objects can be defined which are objects linked to the model objects they
view. Models are updated by object manipulation while changes to views are translated
into model changes by window-based editors (controllers).

Views are notified of changes to their model objects by a simple “update yourself”
mechanism. View objects are sent an Update message which indicates their model has
changed in some way and they must reconcile their state to that of their model’s. As
explicit model changes are not sent to view objects, it is often difficult (or impossible) to

Chapter 5 Modelling and Specifying Environments with MViews Page 85

determine the exact model change that occurred. Hence a view may be required to do
more work that strictly necessary to reconcile its state to its model’s state (Wilk 91,
Dannenburg 91). For example, if a model (base) component has an item added to a list
attribute, affected views may not be able to determine this exact change and hence may
need to totally redisplay themselves. MVC does not provide any specific mechanisms for
incremental view updating, lazy updating, visually indicating model changes that can’t be
explicitly applied to a view, change history recording, undoing or redoing view edits, or
program persistency.

5.2.2. Interviews and Unidraw

Interviews (Linton et al 89) provides a framework for constructing graphical user
interfaces. Unidraw (Vlissides 90) provides a framework for constructing domain-specific
graphical editors. The Unidraw model assumes “programs” are hierarchically structured
graphical objects with attributes. Changes to attributes can be propagated using a
dataflow mechanism where changes to state variables are sent to dependent variables. A
subject-view metaphor (similar to MVC) is used to support multiple views of a base data
structure and subjects and views use a common structure and command scheme. Unidraw
assumes a graphical representation and editing mechanism for views with no direct
support for textual representations. Data is modified using commands (editing operations)
and view updates are translated into program updates using an editor (similar to an MVC
controller) and editor tools.

The view updating scheme is similar to MVC with a Notify/Update model, but Unidraw
supplies a “damage” algorithm which automatically reconciles a view’s state to its
subject’s. The disadvantage with this approach is that Unidraw assumes views have
exactly the same structure as their subject (though this can apparently be changed via sub-
classing (Vlissides 90)). View to base updates are handled in an application-specific
fashion by the view’s editing tools and manipulators.

Commands provide an undo/redo facility for editing operations but no change recording
mechanism is supported (though it may be possible to build one by recording command
objects). A simple database-like component persistency model is supported which allows
subject and view structures to be written to and reloaded from persistent storage in an
application-specific manner. There is no support for integrating existing tools except for a
simple data export facility (typically to a textual form, for example Postscript).

5.2.3. PECAN, GARDEN and FIELD

PECAN (Reiss 85) provides an integrated environment for Pascal programming using
multiple textual and graphical representations of a common program. PECAN provides a
program representation and semantics calculation model based on trees. Multiple

Chapter 5 Modelling and Specifying Environments with MViews Page 86

graphical and textual views are supported but graphical views use a structure-edited
approach while textual views use an incremental parsing algorithm with limited editing
flexibility. View updates are via a MVC-like model and views provide translation
mechanisms to map editing changes to base program changes. PECAN does not support
update recording or version control but does have a flexible undo/redo facility which
includes macro-operations. Programs are stored in files and there is apparently no support
for incremental program persistency. Kaiser notes that the PECAN model would be
difficult for most people to reuse due to its complexity (Kaiser 85).

GARDEN (Reiss 86 and 87) provides an environment for prototyping visual programming
languages and for conceptual programming with several different languages. All data is
represented by objects which provide a structural (syntactic) language representation
scheme and also provide support for both static and dynamic language semantics. Views
are defined as dependencies between objects moderated by a third object. View updates
are translated to and from base program updates using this dependency model with
changes being indicated in a MVC-like manner (i.e. an “update yourself” message is sent
to the moderator of the dependency which then propagates the change). GARDEN uses an
object-oriented database for program storage and to implement an undo/redo scheme
(using transactions). While this is very general, Reiss notes it can have performance
problems and difficulties in providing for environment evolution and existing tool
integration (Reiss 86, Reiss 90b)

FIELD environments (Reiss 90a and 90b) provide the appearance of an integrated
programming environment built on top of distinct Unix tools. Program representation is
usually as text files with each tool supporting its own semantics (currently with a
conventional compiler and debugger). Views are not directly supported but tool
communication via selective broadcasting (Reiss 90a) allows changes in one tool “view”
(for example, an editor) to be sent to another tool “view” (for example, the debugger).
Free-edited textual program views are supported (but these text views cannot contain
over-lapping information) while graphical representations are generated from cross-
reference information. Reiss notes that a lack of user-defined layout and view composition
for these graphical views is a problem (Reiss 90b). Version control is not currently
supported and undo/redo is left to appropriate tools to support. Persistency is via Unix
text files and a simple relational database (for cross-reference information). New and
existing tool integration (and hence environment extensibility) is supported by providing
a user interface (constructed from standard building-blocks) and selective broadcast
entries for these tools.

5.2.4. Grammar-based Environment Generators

Chapter 2 briefly discussed several grammar-based programming environment generators
including The Synthesizer Generator (Reps and Teitelbaum 87), Mjølner/ORM (Minör 90),

Chapter 5 Modelling and Specifying Environments with MViews Page 87

LOGGIE (Backlund et al 90), Dora (Ratcliffe et al 92), and MELD (Kaiser and Garlan 88).
Most generated environments provide very abstract structure and semantics specifications
(Whittle et al 92). However, most environments generated by these tools use a style of
editing not yet well accepted by programmers (Minör 90, Welsh et al 91). Attribute
grammars do not always provide an efficient means of recomputing semantic values as
values must usually be recomputed entirely no matter what the change in values they use
(Wilk 91). In addition, they suffer from not being fully-fledged programming languages
and thus can lack power of expression for various tasks (Kaiser 85). As such systems are
based on specific models for environments, modelling different interaction mechanisms or
structures using these tools is not usually possible. Multiple textual and graphical support
in such environments is often rudimentary or not directly provided, as are undo/redo,
flexible program persistency and program change documentation. Tool integration
mechanisms are provided by Dora (via a PCTE database repository (Wang et al 92)),
MELD (static tool views (Garlan 86)) and Mjølner (using a backbone structure based on
Unix files (Minör 90)). These use view-based and file system integration, however, which
usually makes new tool integration and extisting tool extensibility difficult (Meyers 91).

5.2.5. Dannenburg’s ItemList Structure

Dannenburg’s ItemList structure (Dannenburg 91) represents data as a list of Items
which have multiple, tagged values to support versioning. This representation scheme is
cumbersome for representing programs (the only data structure directly supportable is the
list) and provides no language semantics support. The ItemList supports multiple views
which are themselves ItemLists and are updated by indicating which Items have been
changed at the base level. A flexible undo/redo facility, incremental view updates, and
automated base-to-view and view-to-base update propagation is supported. While the
ItemList records old updates, these are stored against each Item value with no
application-level access and hence couldn’t be used to document changes to a program
component. The ItemList does not directly provide a persistency model or support for
describing updates that can’t be directly applied to an ItemList view.

5.2.6. Wilk’s Object Dependency Graphs

(Wilk 91) describes an object dependency graph (ODG) representation which stores data
as objects with a dependency relationship network over the objects. ODG provides no
language semantics scheme and no direct support for multiple views, though both could
be modelled using object dependency. Updates to an object are propagated using change
reports which describe the exact change that has occurred to an object and its dependency
relationships (including changes to the objects’ components via part-of relationships).
Dependent objects can make exact changes to their state based on the change reports of
objects their state depends on. Lazy consistency management is supported and transient
update propagation also provided. This system does not provide undo/redo of changes

Chapter 5 Modelling and Specifying Environments with MViews Page 88

nor does it provide a program persistency mechanism. While change reports can be used
to achieve consistency they can not be stored long-term to document program component
changes.

5.2.7. Summary

Table 5.1. summarises the facilities provided by different multiple view and programming
environment construction systems discussed previously. It also illustrates how the
MViews model for programming environments described in Section 5.3. satisfies these
requirements.

 MVC Unidraw GARDE

N
FIELD LOGGI

E
Mjølner Dora ItemList ODG MViews

Program/Data
Representation

objects objects objects text
(files)

abstract
syntax
trees with
garlands

abstract
syntax
trees

objects ItemLists objects
with object
depend-
encies

object
depend-
ency
graphs

Mutliple Views model-
view

subject-
view

object
dependency

partially
via
selective
broad-
casting

model-
view

not
supported

subject-
view

Item
dependency

not
directly
supported

object
depend-
ency
graphs

Program and View
Modifications

appl-
specific

graphics
interactive
tools

text free-
edited,
graphics
structure-
edited

text free-
edited

graphics
structure-
edited

text
structure-
edited

text and
graphics
structure-
edited

appl.-
specific

appl.-
specific

text free-
edited,
graphics
interactive
tools

Consistency
management

Update
message
sent to
views

Update
message
sent to
views

via object
dependency

selective
broad-
casting
between
tools

Update
messages,
attribute
grammar

attribute
grammar

Update
message
sent to
views

Items
marked as
Updated

change
reports

update
records

Incremental View
Updates

no damage
algorithm

not directly no no no damage
algorithm

Item
versions

no update
records

Change Recording no no no version
control

no version
control

no no no update
records

Undo/Redo controller-
specific

command
objects

database
transactions

editor-
specific

editor-
specific

editor-
specific

editor-
specific

Item
versions

no update
records

Persistency appl.-
specific

catalogue
(as text
files)

database text files appl.-
specific

backbone
(as text
files)

PCTE
database

appl.-
specific

appl.-
specific

appl.-
specific

Tool Integration
and Extensibility

no no no selective
broad-
casting

no backbone PCTE
database

no no views and
update
records

table 5.1. Multiple view support of different frameworks, programming environment
generators, and software development environments.

From this table some important features required for the MViews model can be identified.
These include:

• Program structure and semantic representations which have a comparable
generality and abstractness to those of LOGGIE and Mjølner abstract syntax
tree-based environments while retaining the flexibility of GARDEN and
Unidraw objects.

• Multiple view representations that use the same structural (and possibly
semantic) representation as programs, as supported by Unidraw and the
ItemList.

• Program and view editing mechanisms appropriate to the kind of view
rendering being used, as supported by FIELD and GARDEN.

Chapter 5 Modelling and Specifying Environments with MViews Page 89

• Consistency management for program and view updates supporting efficient
semantic attribute recalculation, program-to-view and view-to-program update
propagation, and incremental view updating, as supported by the ItemList and
ODG.

• Change recording against program and view components to support
documentation of program changes.

• A generic, extensible undo/redo mechanism, as supported by PECAN,
Unidraw and the ItemList.

• A program and view persistency mechanism with a level of abstraction
comparable to GARDEN and Mjølner environments.

• Tool integration and extensibility mechanisms comparable to that of FIELD
environments.

5.3. An Overview of MViews

We have developed MViews to satisfy most of the requirements of environments
discussed in Section 5.1. In the development of MViews we have aimed for a
homogeneous solution to providing these environment facilities which allows different
requirements to be satisfied in a consistent, reusable manner based on a uniform
conceptual model of programming environments.

5.3.1. Program Graphs

Any program can be represented as a directed graph (Arefi et al 90). An incomplete
program can be represented as a collection of disjoint directed graphs or a directed graph
with “unexpanded nodes” (Arefi et al 90), similar to alternate choice or compound
abstract syntax grammar nodes (Minör 91, Reps and Teitelbaum 87). MViews represents
programs as a collection of (possibly disjoint) directed graphs, called program graphs.
Program components are represented as elements (graph nodes) and are connected by
relationships (labelled graph edges). Fig. 5.1. shows an example of an MViews program
graph for part of the drawing program from Chapter 4.

Chapter 5 Modelling and Specifying Environments with MViews Page 90

class
"drawing_window"

class
"figure"

feature
"figures"

class
"window"

generalises-to
"rename (...)"

class
"open_figure"

class
"closed_figure"

class
"fline"

class
"foval"

class
"rectangle"

type-of
"list"

generalises-to

classifies-to
"shape"

all_feature
"figures"

"list(figure)"

feature-ofall_features

fig. 5.1. Part of the program graph for the drawing program.

Each element and relationship represents a specific kind of program component and can
have attributes (name/value pairs) associated with it (illustrated as unnamed, quoted text
in fig. 5.1.). Some relationships are simple in that they just link related elements while
others contain information about the relationship (for example, renamed features for
generalisations and classifier name for classifications).

A program graph is a dependency graph. When a component is modified (added, updated
or deleted) other related components (connected to the modified component via
relationships) are notified of the exact change to the updated component. These may in
turn be modified, depending on the language structure and semantics for the program
under construction.

Components, attributes and relationships can be used to represent static language
semantic values, in addition to structural, syntactic values. For example, the interface for a
class (i.e. all its feature names and their types) might be represented by a group of
all_feature elements, as shown in Fig. 5.1. When a feature of the class is updated, or
features are added and deleted, the class will be notified of this change. The class can then
respond to this feature change by updating the all_features semantic information
appropriately (by recomputing it entirely or performing an incremental update).
Language-specific semantic constraints can be achieved in a similar fashion by responding
to update notification. For example, features of a class must have unique names and when
a feature is renamed, the feature’s class will be notified of this change. The class will
respond to this feature change notification by checking that the new feature name is
indeed unique (if not, the feature rename can be reversed and an error flagged).

As program structures are typically made up of nodes and labelled edges (Arefi et al 90)
representing programs via graphs is very general. It is appropriate for most of the

Chapter 5 Modelling and Specifying Environments with MViews Page 91

program structures an environment should model including graph-based visual
languages (Backlund et al 90). The advantages over plain abstract syntax structures is
support for the modelling of graph-based languages and flexibility of construction
(program graph components may be built up independently and then combined via
appropriate relationships).

5.3.2. Views and View Components

All program graphs in MViews are grouped by views. MViews defines three types of view:
• the base view is a canonical representation of a complete program. There is one

base view per program and all information about a program’s structure and
semantics held by an environment is stored as program graphs in this base
view.

• subset views represent subsets of a base view and may overlap so the same
information can be accessed and manipulated via different subset views. Users
determine the composition of a subset view (i.e. the base components it views)
and add, modify or remove subset components interactively. Examples of
systems incorporating a similar notion to subset views include:

• Ispel (Grundy et al 91), where multiple views describe overlapping
subsets of a base view of an object-oriented program.

• The dynamic and static views of MELD (Kaiser and Garlan 87) which
partition programs into respectively overlapping and non-overlapping
subsets.

• Database views which filter out unwanted information. Database views
are usually non-updateable, limiting the consistency management
problems (although see (Horowitz and Teitelbaum 86, Langerak 90)).

• display views describe how some part of the program is to be rendered on the
screen and interacted with. The same program fragment can be rendered in a
variety of notations, textual and graphical, using different display views. Many
visual programming systems utilise some form of multiple display views,
including PICT (Glinert and Tanimoto 85), PECAN (Reiss 85), GARDEN (Reiss
87), and Ispel (Grundy et al 91). Users interact with display views to modify
either graphical figures and connectors or textual characters which are
translated into subset and base view modifications.

MViews programs (base views) are a collection of program graphs. Subset views of a base
view may be constructed which are also program graphs. Subset view graphs represent
sub-graphs of the base view graphs and a subset view may contain one or more disjoint
graphs. A subset of the components and relationships in the base graph is represented in
the subset view (i.e. base view elements and relationships have corresponding subset view

Chapter 5 Modelling and Specifying Environments with MViews Page 92

elements and relationships). The subset view’s components (subset components) are
subsets of the base view’s components (base components) they represent7.

Subset components are usually connected to base components via relationships. As a
subset view is defined as being a partial view of the base view information, modifying a
subset component is defined by MViews to be the same as modifying the base component
it is linked to. Similarly, modifying a base component means all the subset components
linked to this base component are modified in the same way8. For example, if a subset
class is renamed, the base class the subset class is linked to is renamed. This results in all
subset classes of the base class being renamed.

Relationships between base components and subset components (called subset/base
relationships) allow changes to be propagated bi-directionally between a base component
and its subset components. To maintain view consistency when it is updated a subset
component translates updates on itself into appropriate updates on its base component.
Similarly, when a base component is updated its subset components are notified of this
change. These subset components interpret the change and modify their own state to be
consistent with that of their base component.

Subset components need not always be connected (mapped) to a base component. This
allows partial, but controlled, inconsistency at the view level. It also provides a
mechanism for retaining subset view components when their base has been deleted so
programmers can determine the change to make to a view (remap the subset component
to another base component, delete the subset component and possibly related
components, or otherwise change the composition of the subset view). View-specific
information such as font details can also be represented in this way as unmapped subset
components. Subset components typically model one base component although they may

7i.e. a subset view component may define a subset of its base view component attributes and relationships.

8This base->subset and subset->base translation may not always occur, as subset components can hold

subset view-specific information that is not described in the shared base view. For example, if a subset

component holds font information, changing this would not affect the subset’s base component. Similarly,

changing base component information that the subset component does not view (i.e. that the subset

component is not interested in) will not require any modification to the subset component. For example, if a

feature’s type is changed but a subset component of the feature does not use this type value, the subset

component need not be updated.

Chapter 5 Modelling and Specifying Environments with MViews Page 93

be mapped to more than one base component9. Base components typically have more than
one subset component in one or more subset views.

Each subset view is rendered (displayed) either graphically or textually using an
appropriate display view. A display view component (display component) renders a
subset component in a textual or graphical form. Display components are re-rendered
when their subset component changes and updates on a display component are translated
into subset component updates by editing operations or dialogues.

Fig. 5.2. shows some typical base, subset and display view components and their
relationships for an SPE-like environment.

Base View Subset Views Display Views

class

class

class
icon

class
icon

class
icon

feature

feature

gen

c/s

gen

class type

...

...

...

class
text

method
text

subset/base
focus

display

fig. 5.2. Typical program and view storage in MViews.

In this example, the base view is composed of classes and their relationships. Two subset
views are provided which represent sub-graphs of the base program graph. These subset
views are displayed, one graphically, as class icons and generalisation and client-supplier
glue, and one textually, as class and method text. Each subset component is linked to its

9This allows composite components to be represented in subset views. For example a “feature icon” for SPE

might have a class and feature name and be mapped to the base class and base feature at the same time (so it

can respond to changes in both base components).

Chapter 5 Modelling and Specifying Environments with MViews Page 94

corresponding base component via a subset/base relationship and each display to its
subset. Base components can have more than one subset component but display
components render only one subset component (though a subset component may
represent more than one base component). Subset views conceptually focus on one base
component and are thus “owned” by this base component. The owning base component
for a subset view is designated the focus of the subset view.

Object dependency graphs are also used to represent subset views. This allows the same
kinds of structures and the same kinds of manipulations to be performed on subset views
as those used for base program data. It also allows the relationship between a base
component and its subset(s) to be expressed in terms of a dependency relationship. An
advantage of this is that changes to a base component can be sent to its subset components
and changes to a subset component can be sent to its base components in the same manner
(avoiding a deficiency of the MVC and Unidraw models).

5.3.3. Operations and Update Records

Graph operations are employed to modify program graphs. The semantics of these
operations could be described as the editing semantics of the programming environment,
i.e. the effect on the program state of applying an operation. Components can be added
and deleted, attributes fetched and updated, relationships established and dissolved, and
views created with display components added to or removed from them. Textual views
can be typed and parsed to cause base changes while graphical figures can be dragged,
edited interactively, selected and deselected, and so on.

Chapter 5 Modelling and Specifying Environments with MViews Page 95

Base View Subset Views

class

class

class
icon

class
icon

class
icon

feature

c/s

gen

class

...

...

...

class
text

method
text

gen

feature

type

add_element
delete_component
update_attribute
get_attribute

establish
disolve

get_attribute
update_attribute
add_view_comp
remove_view_comp

edit
drag
select
draw
undraw

type
parse

display
hide

create_view

Display Views

fig. 5.3. Some typical operations affecting MViews program graphs and their views.

Sections 4.5. and 5.1. discussed the need to manage program changes in environments.
MViews supports change recording and propagation using update records generated by
applying graph operations. A component records each change made to itself by an
operation as an update record, which is, conceptually, a sequence of values of the form:

<Component,UpdateKind,Value1,...,Valuen>

where:
• Component is the updated component
• UpdateKind describes the kind of update that has been carried out
• Value1,...,Valuen are additional UpdateKind-specific values describing the

exact change that took place

Fig. 5.3. shows some of the updates that can be applied to components of an MViews
system. Base and subset component operations generate update records, and Table 5.2.
describes the fundamental program graph operations, the update records these operations
generate and what the operation/update record means.

Operation Update Record Description

Chapter 5 Modelling and Specifying Environments with MViews Page 96

update_attribute(Comp,Attribute,
 New)

update_attribute(Comp,Attribute,
 Old,New)

Update attribute Attribute of component
Comp and set its value to New (Old = old
attribute value)

add_element(Kind,NewEl) add_element(NewEl) Add a new element of type Kind
establish(Kind,Parent,Child,NewR
el)

establish(Kind,Parent,Child) Establish a relationship of type Kind
between components Parent and Child

dissolve(Kind,Parent,Child) dissolve(Kind,Parent,Child) Dissolve the relationship of type Kind
between components Parent and Child

delete_component(Comp) delete_component(Comp) Delete component Comp
create_view(Kind,NewView) create_view(NewView) Create a new subset view
add_view_comp(View,Comp) add_view_comp(View,Comp) Add a component Comp to a view View
remove_view_comp(View,Comp) remove_view_comp(View,Comp) Remove a component Comp from a view

View
record_update(Comp,UpdateRecor
d)

UpdateRecord Record an update record UpdateRecord
against a component Comp (i.e. propagate
UpdateRecord to Comp’s dependents)

store_update(Comp,UpdateRecord
)

 Store update record UpdateRecord against
component Comp (doesn’t generate any
update record)

Table 5.2. A summary of the fundamental MViews operations and update records.

To document the changes it has undergone, a component may store update records
against itself using a list attribute. Update records may be stored in an application-specific
form for environment designer’s convenience. For example, a base class in SPE may store
the changes it has undergone since being created to document its modification history. An
update record of the form update_attribute(Feature, feature_name, OldName,

NewName) might be stored as rename_feature(OldName, NewName) against the base class.

Every component has zero or more related components that may be affected by a change
to itself (called dependent components). For example, an SPE class may be dependent on its
generalisation class (which it inherits features from) and the features it defines (as these
determine if the class as a whole has been modified). In addition, a base component’s
dependents include its subset components and a subset component’s dependents includes
its base component(s). Components send any update records generated by updates to
themselves to these dependent components.

Dependents interpret updates and modify themselves (if necessary), possibly generating
further update records. Updates can be directly applied to display components to reflect
changes to their base component. Alternately, update records may be expanded into a
human readable form and rendered with a display component (for example, unparsing
update records and displaying them with textual view components in SPE). The second
approach is useful for subset views where it may not be possible to directly apply the
update to the view’s components (for example, after the addition or deletion of a client-
supplier relationship in SPE). Update records may also be stored for use when undoing or
redoing a change. To cause an undo of the last editing operation the update records
associated with the operation (i.e. all the updates generated by it) can be sent back to the
components that created the updates for reversal. Similarly, a reversed operation can be
redone by sending the updates to their creators for reapplying.

Chapter 5 Modelling and Specifying Environments with MViews Page 97

MViews uses update records to record (document) program changes, propagate change to
dependent components via relationships, maintain textual and graphical view consistency
to the base, and define an undo/redo facility. They could also support data-driven and
lazy semantics calculation (in a similar manner to that of (Wilk 91)) by transitive
dependencies (one component dependent on another by way of a third component) and
by temporarily storing updates until required for lazy application.

Update records provide several advantages over Notify/Update and state transition
propagation. As an update record documents the exact change a component has
undergone dependents of the component can update themselves in a very incremental
manner. For example, a display component can determine the exact change to one of its
base’s attributes or a change in a related display component. This can be used to
implement efficient incremental update and redrawing of the display from the base. For
example, if a feature name is removed from a base attribute list a subset component
viewing this base component’s list does not need to reconcile its state to the base
component completely, like Unidraw, and does not need to completely redisplay or
update itself, which may be required with an MVC model. This mechanism can also
provide constraints or incremental updates between related subset components. For
example, if an icon is dragged its sub-icons can move their position or reconfigure
themselves based on the change to their parent without the whole structure needing to be
redisplayed, such as may be required with other approaches (Wilk 91). Update records
can also be stored against components to document component change and provide lazy
recalculation of attribute values.

Base and subset component updates can be propagated to each other using this
mechanism without the need for intervention from a controller/editor component. This
allows a more modular approach to the propagation of updates. Subset components are
modified in the same way as base components and detect these updates (by being
dependent on themselves) and propagate them to their base. As MViews uses
relationships to determine dependency, update records do not need to store additions and
deletions of dependents like Wilk’s change reports (as these are recorded by establish
and dissolve relationship operations as update records). Unlike Dannenburg’s ItemList
structure, MViews can represent a much richer set of structures using elements and
relationships and as updates are recorded sequentially, redundant copies of Item
(attribute) values are not stored, resulting in a simpler undo/redo mechanism.

5.3.4. Program Editing using Views as Tools

Software development environments provide tools to modify programs and to perform
other management tasks (Meyers 91, Reiss 90b). MViews environments use tools
associated with a display view to modify subset graphs (and thus, indirectly, base
program graphs). Base information can also be accessed or modified directly by sending

Chapter 5 Modelling and Specifying Environments with MViews Page 98

operations to the base view or its components. For example, a subset component can
access base component information not contained in its subset view or base component
operations it doesn’t supply.

Graphical view editors are structure-oriented, providing tools for manipulating specific
aspects of a program, and utilise a direct manipulation interface to modify renderings of
subset components (graphical display component structures). These modifications are
translated into subset component operations by the editing tools supplied by MViews or
by graphical display components in an application-specific manner. Subset components
then update base components by interpreting these updates on themselves and applying
operations to their base components.

Textual editors consist of an editor, an unparser and a parser. Unparsers convert a shared
program representation into a textual form and parsers convert an edited piece of code
into changes to this program representation. Parsers generate a parse tree which is then
given to each subset component in the view. A textual subset component compares its
parse tree to the base program state and required changes to the base are computed and
applied to reflect changes made to the textual view. Individual text elements can also be
structure-edited using menu commands. Text and graphic editors can be tailor-made for
an application or specialised from generic MViews tools.

Users interact with MViews systems either via textual and graphical display views or by
using menus and dialogues. Dialogues can access subset and base information and update
this information directly.

Tool extensibility and integration can be supported by MViews environments using
display views and dialogues (which give a consistent user interface) and subset views
(which can provide a tool-specific interface to a cannonical program structure stored in the
base view). Subset views can provide a data mapping facility for exporting and importing
external tool data using parsing and unparsing in a similar manner to textual display
views and the tool mapping facilities of ICAtect (Amor et al 91). Display views and
dialogues can be used to provide tool user interface integration in a similar manner to
FIELD (Reiss 90b). Update records could also be used for tool communication as they
equate to the events used in selective broadcasting (Reiss 90a).

5.3.5. Program Persistency

MViews components can be saved and reloaded from persistent storage by converting
attribute and relationship values into a persistent form and vice-versa. This process is
usually application-specific with MViews providing save and load operations that write
and read persistent data respectively. Components need only be saved if they have been
updated since their previous reloading and could be incrementally reloaded when

Chapter 5 Modelling and Specifying Environments with MViews Page 99

required (i.e. when accessed their persistent form found and converted into component
form, then added back into the program graph).

5.3.6. Summary

MViews models programs as program graphs and groups these base program graphs
using a base view. Subset views of a base view are also modelled as program graphs with
each subset view component being a partial view of one or more base components.
Program graphs are object dependency graphs with changes to a component being
propagated to dependent components in the graph. This mechanism provides a uniform
model for base/subset view modelling, propagating updates between components and
base/subset components, and allows documentation and undo/redo facilities to be
provided by storing generated updates. Display views and dialogues provide an
interaction mechanism for users which allow subset view components to be rendered and
updated (which in turn may update the base view). Textual view components are
rendered as text and are parsed to produce base updates. Graphical views are composed
of figures which are interactively edited with tools and dialogues.

5.4. MViews Specification Language

In this section a simple language is developed called MViews Specification Language
(MVSL). This language captures the important abstractions proposed for the MViews
model in Section 5.3. It also provides a preliminary analysis tool and documentation tool
for describing the important aspects of MViews-based programming environments. MVSL
is illustrated with examples from IspelM, a generalisation of SPE for constructing and
visualising object-oriented programs using multiple textual and graphical views.

5.4.1. Rationale for MVSL and MVisual

Our initial work with Ispel (Grundy et al 91) indicated a need for two distinct specification
techniques for programming environments that support multiple views: a description of
the state of a program and the editing semantics for this program state; and a description
of a user’s perception of the environment in terms of interactions with views of the
program (Grundy 91). These two specifications can then be used together to perform an
analysis for new environments, document existing environments, and be used when
extending environments (to ensure extensions are both consistent and well-defined).
MVSL attempts to provide an abstract specification language to address the first issue
based on the MViews model of environments.

MVSL

Given the model for MViews in Section 5.3. we require a specification language for
describing such environments. Component kinds can be classified to a basic set of

Chapter 5 Modelling and Specifying Environments with MViews Page 100

component types (base views, base elements and relationships, and subset views,
elements and relationships). Component attributes and relationships between components
need to be referred to by name and given types. A predefined set of operations on
program graphs may need to be augmented by sequences of operations for different
applications. Components must respond to update records generated by other
components they are dependent on by executing operations to change their state in
response to these update records.

Initially we attempted to define MViews using an Object-Z (Duke et al 91) specification.
MViews environments were specified by specialising a set of Object-Z classes and
providing additional application-specific class attributes and operations. This approach,
however, was based on the abstractions of an object-oriented architecture for MViews
introduced in Chapter 6. The resulting specification still seemed too detailed for abstractly
defining the basic state and semantics for an MViews environment. In particular,
relationships and response to updates, two fundamental aspects of MViews, were much
more obscured than in MVSL definitions. An Object-Z specification would, however, be
suitable for formally specifying the object-oriented architecture of Chapter 6. In contrast,
MVSL was developed to provide a specification based directly on the abstractions
described in Section 5.3.

MVisual

In addition to specifying the state and modification semantics of this state with MVSL we
require a mechanism for specifying the visual appearance and editing semantics of an
environment. Display views and dialogues are used to interact with MViews
environments and MVisual is used to specify the appearance and semantics of these visual
entities. MVisual graphically illustrates the appearance of display views, display view
components and dialogues using example-based programming and a form of visual
programming. These techniques specify the effect of interactive manipulations on user
interface entities and the changes these entities undergo in response to updates from
MVSL subset views and components or other MVisual entities.

Update records generated by MVSL are assumed to be sent to MVisual which defines
responses to susbet component changes graphically. Update records generated by
MVisual are assumed to be sent to MVSL and are translated into update records sent to
MVSL components. Thus update records are used to propagate changes between MVisual
and MVSL as well as between MVSL components and MVisual components. MVisual is
described in Section 5.6.

Chapter 5 Modelling and Specifying Environments with MViews Page 101

Formal Specification of MVSL

To show that the basic concepts of MViews are well-defined, an operational semantics
specification of MVSL is given in Section 5.5. This uses a state based on the basic
abstractions of MViews and specifies the effect on this state of applying the basic
operations defined by MVSL. Application-specific operations and component responses to
update records are composed of these basic operations and are hence well-defined in
terms of their effect on the MViews program state. Communication with MVisual is
assumed to be in a functional manner using streams of update records representing inputs
(from MVisual) and outputs (from MVSL).

Implementing MViews Environments

Neither MVSL or MVisual specifications are sufficient for generating environments. Both
languages lack sufficient power of expression for detailed descriptions of environments.
MVSL does not provide sufficient programming language constructs and modularization
for full environment specification and interfacing to existing tools. MVisual does not
specify every special case response to user interaction and provides no detail about
synchronising its interaction with MVSL. Both languages provide abstract specification
techniques which can be used to analyse an environment in terms of the MViews model
and document MViews environments. Chapter 6 proposes an object-oriented architecture
for MViews environments which allows new environments to be constructed by
specialising classes based on the fundamental abstractions of MViews. Chapter 7 uses this
architecture as the basis for an implementation of MViews in Snart.

5.4.2. Overview of IspelM

IspelM defines an environment for constructing object-oriented software using multiple
textual and graphical views with view consistency. Fig. 5.4. shows the basic abstractions
used by IspelM. These abstractions include:

• Base elements: base clusters, which group related classes; base classes, which
store information about classes for an object-oriented language; and base
features, which store information about class attributes, methods, inherited
features and deferred features. These base elements are connected by various
relationships: generalisation, which specifies one class is generalised to another;
client-supplier relationships, which indicate a class is used by another; and class
and feature ownership, which indicates which cluster a class is owned by and
which class a feature is owned by respectively.

• Class diagram subset views contain subset components of base components that
are to be rendered graphically. Subset components are: class icons, which are
partial views of base classes (class name and class feature names); generalisation
glue, which is a view of base generalisation relationships; and client-supplier

Chapter 5 Modelling and Specifying Environments with MViews Page 102

glue, which views both base features (aggregate client-supplier relationships)
and base client-supplier associations. Textual code views represent a textual
rendering of base components. Subset components for textual code views are:
class text, which represents a class’s interface, part of a class interface or class
documentation; and method text which represents a method interface and
implementation or method documentation.

• A class diagram display view renders class diagram subset views and
components in a graphical form. Users interact with this rendering using tools
(direct manipulation) or dialogues (directly update subset view data). Textual
code display views render textual code subset views as text and users edit this
text interactively. Updated text is then parsed and the updates sent to textual
subset components which update base components appropriately.

Chapter 5 Modelling and Specifying Environments with MViews Page 103

class
"window"

class
"drawing_window"

class
"figure"

feature
"figures"

features

owning_class

generalisation client-supplier

Base View: Program

class_icon
"window"

class_icon
"drawing_window"

class_icon
"figure"

generalisation
glue

client-supplier
glue

type_name

class_text
"figure"

method_text
"features"

Class Diagram View Class Text View

window

drawing_window

figure

figures

%updates_start(26)
%updates_end

 class(figure,
 parents([]),
 features([
 ...
])).

 %updates_start(87)
%updates_end

 drawing_window::features :-
 ...

cluster
"drawing classes"

fig. 5.4. Basic abstractions of IspelM.

SPE can be thought of as a specialisation of IspelM for programming Snart. Chapter 8
describes an architecture and implementation for IspelM and SPE based on the MViews
architecture and implementation from Chapters 6 and 7.

Chapter 5 Modelling and Specifying Environments with MViews Page 104

5.4.3. Basic Abstractions of MViews

From the discussion of MViews in Section 5.3. the following basic abstractions can be
made. An MViews program, P, is represented by the 4-tuple:

P =def <C,A,R,V>

where:
• C is the set of components that comprise the program, made up of <Component

,ComponentKind> values, where Component is of type Integer (unique for P) and
ComponentKind is of type String;

• A is the set of attribute triples of the form <Component,AttributeName,Value>,
where AttributeName is of type String and Value’s type is one of Boolean,
Integer, String, List(Value), or Enumerated, where Enumerated is of the form
<Value1,...,Valuen> and Valuei is of type String;

• R is the set of relationships between components, represented as triples of the
form <Relationship,Parent,Child>, where Relationship, Parent and Child types are
all of type Component;

• V is the set of views, as triples of the form <Component,Focus,Elements>, where
Focus (of type Component) is the owning component of the view and Elements is a
sequence of (possibly disjoint) Component values represented in the view10.

For some program, p, C(p) = all the Component values for p; R(p) are all the relationship
component values for p; and V(p) all the view component values for p. For some
relationship, r, Parent(r) = the parent Component for r and Child(r) = the child Component
for r.

The dependents of a component are all those components related to it, i.e.:
Dependents(p,c) =def {r|r�R(p) � (Child(r)=c Δ Parent(r)=c)}≈
 {d|∃r:r�R(p)�d=Child(r)�c=Parent(r)}≈
 {d|∃r:r�R(p)�d=Parent(r)�c=Child(r)}

Update records are represented as value lists of the form
<Component,UpdateKind,V1,...,Vn> where UpdateKind : String. A program, P1, is
manipulated by successively applying a sequence of operations <O1,...,On> to P1 to form
Pn+1. Any operation, Oi, applied to a component, Cj, produces a new state, Pi’, and sends
an update record, Uo, to the dependents of Cj. Further operations may be generated by
dependent component interpretation of these update records to produce the final state,

10We could describe the Elements and Focus of a view using relationships but this view representation helps

for purposes of abstraction and reasoning with MViews program graphs.

Chapter 5 Modelling and Specifying Environments with MViews Page 105

Pi+1. The visual representation of any views, {V1,...,Vm}, containing Cj (or one of it’s
dependents, if updated by Uo) will be re-rendered to reflect the changed program state.

5.4.4. Defining Component Kinds with MVSL

Section 5.4.3. defines a conceptual representation for an instance of a program stored in an
MViews environment. Each component has a ComponentKind associated with it which
describes the “type” of the component and component attribute values also have
associated types. To specify the state of all programs a particular MViews environment
can represent we can use this notion of component and attribute types to produce a
component specification for the environment.

Fig. 5.5. shows an example component specification from IspelM defining two component
kinds, class and generalisation. Base component types are differentiated into base element
and base relationship which together comprise the components of a base program graph.
Base element types define base program graph nodes while base relationship types define
base program graph edges. Attributes for a component are defined by attributes and
relationships the component needs to access by relationships. The significance of
operations and updates is described in the following sections. Appendix F describes the
complete concrete syntax for MVSL.

Chapter 5 Modelling and Specifying Environments with MViews Page 106

-- The base element class
--
base element class
 attributes
 class_name : string
 kind : [normal, abstract]
 relationships
 cluster : one-to-one cluster
 generalisations : generalisation.child
 client_suppliers : client_supplier.parent
 classifiers : classifier.parent
 features : one-to-many feature
 specialisations : one-to-many class
 all_features : one-to-many component all_feature
 operations
 ...
 updates
 ...
end class

-- Base generalisation relationship
--
base relationship generalisation
 parent class
 child class
 relationships
 renames : one-to-many rename
 operations
 ...
 updates
 ...
end generalisation

fig. 5.5. An example of basic state definitions for MVSL.

Attributes are declared as AttributeName : AttributeType, with allowable types being
integer, boolean, string, list(Type), and [enumerated_value1,...,enumerated_valuen].
Attributes can also be declared as the same type as an attribute of some other component
using AttributeName1 : like Component.AttributeName2. For an instance of a component
kind, the value of one of the component instance’s attributes must be of the same type as
the attribute is declared as in MVSL. A relationship component declares, in addition to its
attributes and relationships, distinguished parent and child attributes (as shown for
generalisation in fig. 5.5.). These are declared with component types which determine
the component kinds the relationship connects. For example, generalisation declares its
parent and child to be classes in fig. 5.5.

All inter-component connections are described in terms of relationships. A component
declares the relationship components it is interested in accessing as RelationshipName :
RelComp, where RelComp is a relationship component name. The component declaring the
relationship must be either the parent or child of the relationship component and this is

Chapter 5 Modelling and Specifying Environments with MViews Page 107

indicated by appending a .parent or .child qualifier to each relationship component
name. For example, classifiers for a class in fig. 5.5. are declared as classifiers :
classifier.parent, which indicates that a class instance is interested in all classifier
relationships to itself where it is the parent (as classes are also the children for a group of
classifier relationship instances).

Relationship names for a component refer to the relationship components connected to an
instance of the defining component. For example, the value of classifiers for some
instance of class from fig. 5.5. will be all classifiers connected to the class instance where
the class instance is the parent of the classifier relationships.

Relationships may also be declared as simple link relationships, of the form
RelationshipName : one-to-one CompKind or RelationshipName : one-to-many

CompKinds, where CompKind is a component kind name. This is a short-hand declaration
included so simple component linking relationships (which define no attributes or
relationships of their own) needn’t be defined as relationship components. The value of
such a relationship name for a component instance is either the connected component
instance (for one-to-one relationship links) or a list of component instances (for one-to-
many links). For example, the value of features for an instance of class from fig. 5.5. is a
list of feature instances connected to the class by any class.features link relationships
where the class instance is the parent for the features relationship.

A base view component is used to group base elements and relationships. Only one base
view may be defined per MVSL specification. Fig. 5.6. shows the definition for a base view
for IspelM. An IspelM base view, as represented in fig. 5.4., maintains relationships to the
clusters and classes that comprise an object-oriented program. These are defined by
clusters and classes one-to-many relationships in fig. 5.6. Appendix D gives a complete
MVSL specification for IspelM.

Chapter 5 Modelling and Specifying Environments with MViews Page 108

-- Program for IspelM
--
base view program
 attributes
 name : string

 relationships
 clusters : one-to-many cluster
 classes : one-to-many class

end program

fig. 5.6. A base view defined by IspelM.

5.4.5. Subset Views and Components

Subset components represent subsets of the base view’s components and are grouped by
subset views. MVSL allows subset elements, subset relationships and subset views to be
declared, as shown in fig. 5.7.

Chapter 5 Modelling and Specifying Environments with MViews Page 109

-- Class icons represent class name/kind and arbitrary
features (as their names)
-- owned by base class.
--
subset element class_icon
 attributes
 class_name : like class.class_name
 kind : like class.kind
 feature_names : list like feature.feature_name

 relationships
 view : one-to-one class_diagram_view
 base : one-to-one class

end class_icon

-- Generalisation Glue
--
subset relationship generalisation_glue
 parent class_icon
 child class_icon
 attributes
 name : string

 relationships
 view : one-to-one class_diagram_view
 base : one-to-one classifier

end generalisation_glue

-- Class text
--
subset element class_text
 attributes
 class_name : like base_class.name

 relationships
 view : one-to-one class_code_view
 base : one-to-one class

end class_text

Chapter 5 Modelling and Specifying Environments with MViews Page 110

-- Class diagram view
--
subset view class_diagram_view
 components
 class_icon, generalisation_glue, cs_or_feature,
classifier_glue

 attributes
 name : string

 relationships
 focus : one-to-one class

end class_diagram_view

fig. 5.7. Subset views and subset view components from IspelM.

Subset elements and relationships can define the base components they view and subset
view they are contained in using relationships. Subset views define the subset components
they can contain by components Elements. In fig. 5.7., class_icon and
generalisation_glue define their state to be a subset of their base component state.
class_icon could also define relationships such as generalisations :

generalisation_glue and client_suppliers : client_supplier_glue if these are to be
accessed from class_icon. These relationships correspond to those defined in fig. 5.4. for
IspelM subset views and components. For example, MVSL defines a class_icon to be
linked to its base class by relationship base and to its view by relationship view, which
corresponds to the relationships in fig. 5.4. for class_icon. Similarly generalisation_glue
is linked to its base generalisation and subset view, and class_diagram_view is linked its
focus base class.

Composite subset components can be defined by having a subset component dependent
on two or more base components using multiple relationships. Client-supplier glue is
defined in this way so it can view a base feature (if its an aggregate client-supplier
relationship) or base client-supplier (if its a feature call or argument/local variable
association). Subset components can also be related to one another to produce subset
component dependencies. Subset components receive updates from base components and
can transform these into operations on themselves. Subset components can also transform
updates on themselves into operations on their base components.

5.4.6. Operations

Instances of programs defined using MVSL need to be manipulated, which corresponds to
a program being constructed and changed. Components need to be added and deleted

Chapter 5 Modelling and Specifying Environments with MViews Page 111

and component attributes changed. Given the fundamental component kinds used by
MVSL, a basic set of operations can be defined, as described in table 5.3.

Operation In Arguments Out Arguments Description
add_element CompKind ComponentID create a new element component
delete_component ComponentID deletes any component from the

MViews program graphs
get_attribute ComponentID, Attribute Value fetch component’s attribute value
update_attribute ComponentID, Attribute,

NewValue
 update component’s attribute value

establish CompKind, Parent, Child
or
CompKind.RelName,
Parent, Child

ComponentID

establish a relationship between two
components

dissolve CompKind, Parent, Child
or
CompKind.RelName,
Parent, Child

 dissolve relationship between two
components

create_view CompKind ComponentID create new view component
add_view_component CompKind, ComponentID add a component to a view
remove_view_componen
t

CompKind, ComponentID remove a component from a view

store_update ComponentID, List(Value) store an update against a component
record_update ComponentID, List(Value) record an update against a component

(propagate to dependents)

table 5.3. Basic operations for MVSL.

Elements are added using add_element and components deleted using delete_component.
Attributes are fetched and updated with get_attribute and update_attribute. An
alternative syntax for attribute fetch (get_attribute) is Component.Attribute(Value) and
for attribute update (update_attribute) is ComponentID.Attribute:=Value. Relationships
are established and dissolved with establish and dissolve and views created with
create_view. View components are added and removed using add_view_component and
remove_view_component. Update records can be propagated to dependents using
record_update and stored against components using store_update11.

While the set of operations from table 5.3. is sufficient for modifying program graphs,
additional operations can be defined which use these basic operations. These component-
specific operations allow “macro-operations” to be defined which provide application-
specific operations useful for allowing reuse of common sequences of program graph
changes. Procedural-style commands are also defined which support conditional execution
of operations and looping. These are shown in table 5.4.

11Update records are stored as lists of values and the distinguished component attribute updates :

list(list(Value)) is used to hold these stored update records for each component.

Chapter 5 Modelling and Specifying Environments with MViews Page 112

Command Syntax Description
if <boolean expression> then
 <operations if true>
else
 <operations if false>
end if

if-then-else statement. The else-part is optional.

while <boolean expression true> do
 <operations>
end while

while statement. Loops through operations while the
expression remains true.

forall <variable> on <list> do
 <operations>
end forall

forall statement. Interates through all values in list and
executes operations with variable set to each list value in
turn.

table 5.4. MVSL procedural commands.

Variables are used to hold non-component related values. Arguments and local variables
used in component-specific operations have types similar to component attributes.
Arguments are defined to pass values to an operation (designated by the prefix in) and/or
return values produced by an operation (designated by out). Global values can also be
defined and an initialisation operation is provided to define the initial state for an MViews
environment (as shown in fig. 5.8). The scoping of MVSL operations is similar to methods
in most object-oriented programming languages with the attributes, relationships and
operations defined by a component referred to by name only inside the defining
component’s operations. Examples of component-specific operations from IspelM are
shown in fig. 5.8. To apply these operations to a component the syntax
Component.Operation(Argument1,...,Argumentn) is used.

Chapter 5 Modelling and Specifying Environments with MViews Page 113

-- The base element class
--
base element class
 ...
 operations
 -- add feature
 --
 add_feature(in name : like feature.feature_name,
 in kind : like feature.kind,
 in type : like feature.type_name,
 out new_feature : feature) is
 add_element(feature,new_feature)
 new_feature.init(kind,type)
 establish(class.features,self,new_feature)
 end add_feature
 ...
 -- Map this class icon to a base class
 --
 map(in do_map : boolean) local
 base_class : class
 is
 base_class := program.find_class(class_name)
 if base_class \== nil then
 if do_map then

 establish(subset_relationship,base_class,self)
 end if
end class

Chapter 5 Modelling and Specifying Environments with MViews Page 114

-- Class icon.
--
subset element class_icon
 ...
 operations
 -- reselect new class
 --
 reselect_class(in name : like class.class_name)
 local
 other_class : class
 is
 other_class := program.find_class(name)
 if other_class \== self then
 dissolve(subset_relationship,base,self)
 class_name := name
 remap
 end if
 end reselect_class
 ...
end class_icon

-- Global values
--
program : program
 -- base view reference

-- Initial computation
--
initialise
 add_element(program,program)
 program.record_update(init)
end initial

fig. 5.8. Some component-specific operations from IspelM.

The value of an expression is defined by MVSL in a similar manner to most programming
languages. Operators include addition and subtraction for integers and boolean algebra.
In addition to arguments and local variables, component-specific operations define a
distinguished local variable self which allows an operation to determine the component it
is being applied to. Functional operations can be defined for a component which are
component-specific operations that return a value. A functional operation is declared of
the form OpName(...Arguments...) : Type is ... end OpName. Functional operations
refer to their result using a distinguished variable result (in a similar manner to Eiffel
functions).

Relationships can be established between a component and a “nil component” value,
indicated by the value nil, which allows the actual relationship to be created but later

Chapter 5 Modelling and Specifying Environments with MViews Page 115

reestablished to an actual component12. A nil value can be returned by a function and is
the default value for all the attributes of a component when it is first created.

MVSL currently permits a procedural environment specification where variables can be
assigned a value (in addition to component attributes being assigned a value) and
operations and commands are assumed to be applied in sequence to a program state. A
functional specification could be used where variable names define values that can not be
assigned to. The procedural forall and while commands could be replaced with mapping
functions and recursive functions respectively. Operations must be sequential as each
successive operation produces a new program state from the program state produced by
its prior operation. This could be described by functional composition where, for a
program state p and two operations f and g, the final program state is g(f(p)). A concrete
representation of this might be f ; g where f and g are operations.

5.4.7. Update Operations

When a component’s state is changed by an operation (i.e. its attributes or relationships
modified or it is deleted) it must broadcast this change to any components dependent on
its state with an appropriate update record. Dependent components then interpret this
update record and apply further operations to reconcile their state to that of the changed
component (to maintain a consistent program state). Components define update operations
to process update records sent to them by other components, as shown in fig. 5.9.

12This is useful when only partial information for determining the components to relate is supplied the

relationship or the components to relate depend on attribute values or other relationship values for the

relationship.

Chapter 5 Modelling and Specifying Environments with MViews Page 116

base relationship generalisation
 ...
 updates
 -- When establish/dissolve generalisations,
 -- maintain specialisations list attribute
 -- Store updates against owning_class, not
generalisation.
 --
 establish(rel:relationship, kind : string,
 parent : class, child : class) where
 rel = self and kind = “generalisation”
 is
 owning_class.store_update([add_gen,child,parent])
 parent.specialisations := parent.specialisations
++ {self}
 end establish

 dissolve(rel:relationship, kind:string, parent :
class, child : class) where
 rel = self and kind = “generalisation”
 is

 owning_class.store_update([remove_gen,child,parent])
 parent.specialisations := parent.specialisations -
- {self}
 end establish
 ...
end generalisation

Chapter 5 Modelling and Specifying Environments with MViews Page 117

subset element class_icon
 ...
 updates
 remap_feature(name, new_name:like
feature.feature_name,
 new_type:like feature.type_name,
 new_kind:like feature.kind,
 show:boolean) where true local
 feature : feature
 is
 feature := base.find_feature(new_name)
 if feature = nil then

 base.add_feature(new_name,new_type,new_kind,feature)
 end if
 remove_feature_name(name)
 if show then
 add_feature_name(new_name)
 end if
 end remap_feature

 -- Translate base attribute updates into subset
changes
 --
 update_attribute(class : class, name : string,
 old : string, new : string) where
 class = base and name = “class_name”
 is
 class_name := new
 end update_attribute
...
end class_icon

fig. 5.9. Update operations from IspelM.

Updates are “guarded”, input-only operations. They are only executed if their component
receives an update record with the same name as the update operation, the same number
and type of arguments, and if the expression guard for the update operation evaluates to
true. This provides a simple pattern match algorithm for determining which update to
apply. Update operations have input-only arguments (outputs do not make sense) and
hence the in keyword is discarded for them.

Subset and base component updates are propagated to each other by subset components
defining update operations to detect updates to their base component and to themselves.
Subset components detect base component updates and transform them into appropriate
operations on themselves (if necessary). A subset component also detects updates on itself
and transforms these into base component updates (if appropriate).

Chapter 5 Modelling and Specifying Environments with MViews Page 118

We currently assume the implementation language for MViews provides its own
persistency model (such as an object store or database). Chapters 7 and 10 discuss the
issue of program persistency in further detail.

5.5. A Formal Specification of MVSL

5.5.1. Operational Semantics

Operational semantics provide a mechanism for specifying programming language static
and dynamic semantics using validity and meaning functions. Given a program construct,
validity functions provide a boolean result indicating whether the construct is valid or not.
Given a program execution “state” and a program construct, meaning functions return a
new state which is defined to be the effect of “executing” the construct in the old state.
Reviews of operational and denotational semantics can be found in (Tennent 76, Gordon
79). MVSL was specified using operational semantics and then, to verify the correctness of
this specification, we implemented the operational specification using Gofer (Haskell)
(Jones 92). (Finlay and Allison 93) provides an example of the usefulness in verifying a
formal specification via an implementation using a functional language.

An abstract syntax for MVSL is defined which allows us to represent the structure of
MVSL programs without the additional syntactic sugar used in the MVSL concrete syntax.
Identifiers defined by MVSL are associated with type values which describe the type of
attributes, relationships and operations. The state of an MViews program is described by a
tuple which represents the views and program graphs stored by an environment. The
basic operations and commands for MVSL are defined as functions which map an initial
state and operation to a new state, hence defining the effect of executing the operation.
Two forms of update records are used in this formal specification. One form is used to
broadcast changes between program components and these components interpret these
update records with update operations. The other form is used to communicate with
MVisual and is part of the program state. Whenever an update record is generated by a
program component a corresponding “output” update record is recorded in the program
state to inform MVisual of the component change.

5.5.2. Concrete vs. Abstract Syntax

MVSL programs, as described in Section 5.4., contain much syntactic sugar that hides the
actual structure of an MVSL specification. It is convenient to be able to avoid such
semantically irrelevant details by using an abstract form of syntax that specifies the
structure of programs and not how they are represented as strings of symbols (Tennent
76). Fig. 5.10. shows a concrete syntax for an MVSL program and its equivalent abstract
syntax (using Gofer notation).

Chapter 5 Modelling and Specifying Environments with MViews Page 119

base element class
 attributes
 class_name : string
 kind : [normal,abstract]
 relationships
 features : one-to-many feature
 generalisations : generalisation.child
 operations
 add_feature(in name : string, in type : string,
 out new_feature : feature)
 is
 add_element(feature,new_feature)
 new_feature.init(name,type)
 establish(class.features,self,new_feature)
 establish(feature.owning_class,
 new_feature,self)
 end add_feature
end class

BaseElement “class”
 [Attribute “class_name” StringType,
 Attribute “kind” Enum [“normal”,”abstract”]]
 [Relationship “features” OneToMany “feature”,
 Relationship “generalisations”
 (CompAttr “generalisation” “child”)]
 [Operation “add_feature”
 [InArg “name” StringType,
 InArg “type” StringType,
 OutArg “new_feature” CompType “feature”] Void
 [AddElement “feature” (Ident “new_feature”) :&
 ApplyOp (FuncOp “new_feature” “init” [])
 [Ident “name”,Ident “type”] :&
 EstablishLink (CompAttr “class” “features”)
 (Ident “self”) (Ident “new_feature”) :&
 EstablishLink (CompAttr “feature” “owning_class”)
 (Ident “new_feature”) (Ident “self”)]]

Concrete Syntax Abstract Syntax

fig. 5.10. A concrete MVSL program example and its equivalent abstract syntax form.

Fig. 5.11. gives an example of an abstract syntax definition for MVSL using Gofer notation
(abstract syntax productions are defined as user defined data types). Appendix C gives a
full Gofer implementation for this operational semantics specification for MVSL. This
abstract syntax definition for MVSL mirrors the basic abstractions made by MVSL for
defining declarations (base views, elements, etc.), commands (operations and procedural
control structures), expressions and types.

data Program = Pro [Decl] Command

data Decl = BaseView Ide [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] |
 BaseElement Ide [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] |
 BaseRelationship Ide ParentDecl ChildDecl [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] |
 GraphicView Ide [Ide] [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] |
 GraphicIcon Ide [Ide] [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] |
 ...

data AttributeDecl = Attribute Ide Type
data RelationshipDecl = Relationship Ide Type
data OperationDecl = Operation Ide [OpArgumentDecl] [LocalDecl] Command |
 Function Ide [OpArgumentDecl] Type [LocalDecl] Command
...

data Command = Exp := Exp |
 Eifthen Exp Command Command |
 Ewhile Exp Command |
 AddElement Ide Exp |
 DeleteComponent Exp |
 Establish Type Exp Exp Exp |
 Dissolve Type Exp Exp |
 Store Exp UpdateValue |
 ...

data Exp = IntLit Int |
 StringLit String |
 True_ | False_ |
 Ident String |
 Op Opr Exp Exp |
 FuncOp Exp Ide [Exp]

data Type = BoolType |
 StringType |
 IntType |
 ListType Type |

Chapter 5 Modelling and Specifying Environments with MViews Page 120

 ComponentType Ide |
 CompAttrType Ide Ide |
 ...

fig. 5.11. Some abstract syntax definitions for MVSL.

5.5.3. Declaration Types

Abstract syntax declarations define identifiers that refer to components and variables.
These identifiers are used to determine the type of variables and structure of components
when despatching component-specific operations, selecting an update operation to apply,
and when matching update operation arguments and types. Thus a type map from
identifiers to their type structure is required. This type map could also be used to
determine the static validity of declarations, commands and expressions (for example, that
the same component kind isn’t defined twice, a component-specific operation actually
exists for a component, and that elements of an expression have compatible types). Fig.
5.12. illustrates some of the type map definitions for the operational specification of MVSL.

-- Declaration value maps type identifier to type value
--
type DeclValue = Ide -> TypeValue

-- TypeValue
--
data BasicKind = KBaseView | KBaseEl | KBaseRel |
 KGraphicView | KGraphicIcon | KGraphicGlue |
 KTextView | KTextElement |
 KComp | KLinkRel

data TypeValue = TCompData BasicKind [Ide] CompTypes |
 TString |
 TInteger |
 TOneToMany TypeValue |
 TComp Ide |
 TCompAttr Ide Ide |
 ...

-- Component types map component attribute etc. names to CompType values
--
type CompTypes = Ide -> CompType

data CompType = CAttribute TypeValue |
 CRelationship TypeValue |
 COperation OpArgs TypeValue OpLocals CommandMeaning |
 CUpdates [CUpdate] |
 CNotDefined

-- Command/exp meaning: given some function which maps Commands/Exp to new States/Values,
-- return a State/Value given a State
--
type CommandMeaning = (State -> Command -> State) -> State -> State
type ExpMeaning = (State -> Exp -> Value) -> State -> Value

-- Arguments and local variables for operations
--
type OpArgs = [(Ide,InOrOut,TypeValue)]
data InOrOut = In | Out

type OpLocals = [(Ide,TypeValue)]

Chapter 5 Modelling and Specifying Environments with MViews Page 121

Fig. 5.12. Type and component declaration values for MVSL.

DeclValue is defined to be a type whose value is a function mapping identifiers to
TypeValues. TypeValue is a user defined data type which specifies an identifier’s type is a
string, integer, one-to-one relationship, component identifier, component attribute,
component definition, and various other types (as defined in Appendix C).

A component definition (TCompData) has a basic kind (one of base view, base element,
subset relationship, etc.) which is defined by BasicKind. Components define a set of
identifiers whose types are component values (attributes, relationships, operations and
update operations). The type CompTypes is used to map component definition identifiers to
component value types. The value of CompTypes is a function which maps component
identifiers to their component value types (defined by CompType). A component definition
also includes a list of all the identifiers defined for the component (i.e. the domain of
CompTypes for the component).

Operations and update operations define arguments, a type (for functional operations),
local variables and a command. An operation command does not have a type as such, but
rather a meaning when the operation is executed. This is defined as the meaning of the
command given a particular program state (defined as CommandMeaning), i.e. the effect of
executing the operation command (the type of State is given in Section 5.5.5.). Similarly,
an update operation guard expression has a meaning which is its value for a particular
program state (the type of Value is defined in Section 5.5.5). Component-specific
operations and update operations are despatched for components in a similar manner to
methods for object-oriented languages. Thus the operational semantics specification for
MVSL requires these command and expression meanings (and, in fact, the whole
DeclValue for a program), in addition to a program State, to specify the dynamic
semantics for an MVSL program.

5.5.4. Building a Type Map for MVSL Program Declarations

Given a list of abstract syntax component declarations for a program, a type map must be
constructed for these declarations. Fig. 5.13. shows part of the definition for
program_decls, a function which returns a type map (DeclValue) for a list of abstract
syntax declarations ([Decl]) .

-- Compute the declarations value for a list of program declarations
--
-- Returns DeclValue for program and a list of identifiers to create locations for (i.e. globals)
--
-- rel_comps computes any link relationships defined by the component
-- and adds a DeclValue for their name (name = CompKind.RelName)
--
program_decls :: [Decl] -> DeclValue -> [Ide] -> (DeclValue,[Ide])
program_decls [] dv gs = (dv,gs)
program_decls (d:ds) dv gs = (new_dv,new_gs) where
 (n,tv,rs,globals) = decl_value d

Chapter 5 Modelling and Specifying Environments with MViews Page 122

 (new_dv,new_gs) = program_decls ds
 (updateDeclValue (rel_comps dv rs n) n tv) (gs++globals)

-- Function over-riding for DeclValue
--
updateDeclValue :: DeclValue -> Ide -> TypeValue -> DeclValue
updateDeclValue dv n tv i = if i==n then tv else dv i

-- Compute the Ide/TypeValue/Link Relationships/Globals for a component/global declaration
--
rel_comps :: DeclValue -> [RelationshipDecl] -> Ide -> DeclValue
rel_comps dv [] comp_name = dv
rel_comps dv ((Relationship name (OneToOne _)):rs) comp_name = new_dv where
 new_dv = rel_comps (updateDeclValue dv (comp_name++"."++name) link_rel) rs comp_name
rel_comps dv ((Relationship name (OneToMany _)):rs) comp_name = new_dv where
 new_dv = rel_comps (updateDeclValue dv (comp_name++"."++name) link_rel) rs comp_name

-- Compute the Ide/TypeValue pair for a declaration and any relationships it defines
--
decl_value :: Decl -> (Ide,TypeValue,[RelationshipDecl],[Ide])
decl_value (BaseView name as rs os us) = (name,tv,rs,[]) where
 (names,comp_ts) = default_types KBaseView (update_types (op_types (rel_types (attribute_types
 ([],emptyCompTypes) as) rs) os) us)
 tv = (TCompData KBaseView names comp_ts)
decl_value (BaseElement name as rs os us) = (name,tv,rs,[]) where
 (names,comp_ts) = default_types KBaseEl (update_types (op_types (rel_types (attribute_types
 ([],emptyCompTypes) as) rs) os) us)
 tv = (TCompData KBaseEl names comp_ts)
decl_value (BaseRelationship name pd cd as rs os us) = (name,tv,rs,[]) where
 (names,comp_ts) = default_types KBaseRel (update_types (op_types (rel_types (attribute_types
 (parent_types (child_types ([],emptyCompTypes) cd) pd) as) rs) os) us)
 tv = (TCompData KBaseRel names comp_ts)
...

-- Compute attribute types for list of attribute declarations
--
attribute_types :: ([Ide],CompTypes) -> [AttributeDecl] -> ([Ide],CompTypes)
attribute_types (names,ct) [] = (names,ct)
attribute_types (names,ct) ((Attribute n t):as) =
 attribute_types ([n]++names,(updateCompTypes ct n (CAttribute (type_value t)))) as

-- Compute relationship types for list of relationship declarations
--
rel_types :: ([Ide],CompTypes) -> [RelationshipDecl] -> ([Ide],CompTypes)
...

-- Compute operation types for list of operation declarations
--
op_types :: ([Ide],CompTypes) -> [OperationDecl] -> ([Ide],CompTypes)
op_types (names,ct) [] = (names,ct)
op_types (names,ct) ((Operation n arg_decls loc_decls command):os) =
 op_types ([n]++names,(updateCompTypes ct n (op_value arg_decls loc_decls (op_meaning command)))) os
op_types (names,ct) ((Function n arg_decls t loc_decls command):os) =
 op_types ([n]++names,(updateCompTypes ct n (fn_value arg_decls t loc_decls (op_meaning command)))) os

-- Compute update types for list of update declarations
--
-- This produces a list of guarded, input-only operations which are
-- event-driven by updates on a component.
--
update_types :: ([Ide],CompTypes) -> [UpdateDecl] -> ([Ide],CompTypes)
 update_types ([n]++names,(updateCompTypes ct n (CUpdates [upd_op]))) us
...

-- Value of an operation declaration
op_value :: [OpArgumentDecl] -> [LocalDecl] -> CommandMeaning -> CompType
op_value as ls command = (COperation (op_arg_types as) TVoid (local_types ls) command)

-- Value of a "functional operation" is same as for operation but with a type
fn_value :: [OpArgumentDecl] -> Type -> [LocalDecl] -> CommandMeaning -> CompType
...

Chapter 5 Modelling and Specifying Environments with MViews Page 123

-- Value of an "update operation" is same for operation but arguments are input-only
update_value :: [LocalDecl] -> [LocalDecl] -> ExpMeaning -> CommandMeaning -> CUpdate
...

-- Bind operation arguments to in/out status and type
--
op_arg_types :: [OpArgumentDecl] -> OpArgs
...

-- Bind local variables to type
--
local_types :: [LocalDecl] -> OpLocals
...

-- Bind update arguments to type
--
update_arg_types :: [LocalDecl] -> OpArgs
...

-- Value of an abstract syntax type
--
type_value :: Type -> TypeValue
type_value (StringType) = (TString)
type_value (IntType) = (TInteger)
type_value (OneToMany c) =(TOneToMany c)
type_value (ComponentType n) = (TComp n)
...

-- Default attributes and component types for a component given its "BasicKind"
--
data DefaultType = Default Ide CompType

default_types :: BasicKind -> ([Ide],CompTypes) -> ([Ide],CompTypes)
...

fig. 5.13. Constructing the DeclValue and CompTypes functions.

For each component or global abstract syntax declaration (Decl), the function decl_value
returns the identifier used to refer to the component or variable, its TypeValue, any link
relationship declarations for the component, and any global variables it defines. All link
relationships (named as “CompName.RelName”) have simple component definitions and the
function rel_comps extends DeclValue with these definitions so link relationships can be
treated in the same way as more complex component relationships.

Each attribute, relationship, etc. declaration for a component needs an identifier to
CompType mapping (defined as CompTypes for a component definition TypeValue). The
functions parent_types, child_types, attribute_types, relationship_types,
operation_types and update_types return an identifier/CompTypes pair given a list of
component value declarations. The type of an operation or update operation includes
identifier to TypeValue mappings for the arguments and local variables defined by the
operation, and a meaning for the operation command and guard expression.

5.5.5. State

MViews represents programs as object dependency graphs with subset views also being
object dependency graphs. The state of an MViews environment will hence be similar to
that described in Section 5.4.2. with components, attribute values, relationships and views.

Chapter 5 Modelling and Specifying Environments with MViews Page 124

Relationships and views can be modelled as components with attribute values
corresponding to their parent, child and view components values.

In addition to this program and view state, an MVSL program state needs to map
identifiers to corresponding values. An environment (Tennent 76) is used to map identifiers
to denotable values (literals, pointers, and component values) while a store (Tennent 76) is
used to map locations to expressible values (literal values: integers, strings, and
component identifiers). This allows operation arguments and local variables to be defined
as extending an environment (when executing the operation command) and the
environment to be restored to its former state (after execution of an operation command).

Fig. 5.14. illustrates the state definitions for the operational specification of MVSL.

-- CompStore
type CompID = Int
type CompStore = CompID -> Ide -> CompValue
data CompValue = NoCValue | CValue Dv

emptyCompStore :: CompStore
emptyCompStore _ _ = NoCValue

new_comp :: CompStore -> Ide -> (CompStore,CompID)
new_comp s k = new_comp' 1 where
 new_comp' i = case s i "class" of
 NoCValue -> (updateCompStore s i "class" (Rv (Vstring k)),i) ; _ -> new_comp' (i+1)

updateCompStore :: CompStore -> CompID -> Ide -> Dv -> CompStore
updateCompStore s c a v i j = if i==c && j==a then (CValue v) else s i j

remove_comp :: CompStore -> CompID -> CompStore
remove_comp s c i j = if i==c then NoCValue else s i j

-- All relationships for a component are stored by "relationships"
comp_rels :: State -> CompID -> [CompID]
comp_rels s c = rels where
 rels = case comps s c "relationships" of
 (CValue (Rv (Vlist rel_values))) -> values_to_comps rel_values
 _ -> []

-- View components for a view are stored in "components"
view_comps :: State -> CompID -> [CompID]
view_comps s c = vcomps where
 (CValue (Rv (Vlist comp_values))) = comps s c "components"
 vcomps = values_to_comps comp_values

-- Denotable values
data Dv = Loc Location | Rv Value | CompValue CompID Ide

-- Expressable values
data Value = Vnum Int | Vbool Bool | Vstring String | Vcomp CompID | Vlist [Value] | Nil

-- Store/Location for state variables
type Location = Int
data ValueOrUnused = Used Value | Unused
type Store = Location->ValueOrUnused

new :: Store -> Location
updateStore :: Store -> Location -> Value -> Store

-- Environment for state variables
data ValueOrUnbound = Bound Dv | Unbound
type Env = Ide -> ValueOrUnbound

Chapter 5 Modelling and Specifying Environments with MViews Page 125

updateEnv :: Env -> Ide -> Dv -> Env

-- Update records = “term” of form Kind(Value1,Value2,...)
data UpdateRecord = UpdateRec Ide [Value]
data Output = OV CompID UpdateRecord

-- The MViews program state is a tuple with component and location stores, an environment
-- and output list.
-- State also stores the DeclValue for a program as operations and updates must be
-- despatched on a per-component basis (could pass this value to all functions using
-- State, but its easiest to put it here).
--
type State = (CompStore,Env,Store,[Output],DeclValue)

-- Update/query state elements
update_comps :: State -> CompStore -> State
update_comps (_,e,s,o,dv) c = (c,e,s,o,dv)
...
comps :: State -> CompStore
comps (c,_,_,_,_) = c
...

fig. 5.14. A program state for MVSL.

5.5.6. Commands, Operations and Update Operations

Expressions

Expressions are evaluated with respect to a given program state. An expression can be
evaluated to a denotable value (for assignment and variable parameter arguments) or an
expressible value (for use in computation). Fig. 5.15. illustrates the meaning functions for
expressions.

Chapter 5 Modelling and Specifying Environments with MViews Page 126

-- Get the value (Value) of an expression (i.e. an rvalue)
--
rval :: State -> Dv -> Value
rval s (Loc l) = r where (Used r) = (store s) l
rval s (Rv v) = v
rval s (CompValue c a) = cv where
 (CValue (Rv (Vstring ct))) = (comps s c "class")
 (TCompData bk vs comp_types) = (declarations s) ct
 cv = case (comp_types a) of
 (CAttribute t) -> av where
 (CValue (Rv av)) = (comps s) c a
 (CRelationship t) -> (rel_value c s a t)
 (COperation [] t [] command) -> fn_result where
 ...

-- Get the denotable value for an expression (i.e. an lvalue)
--
exp_val :: State -> Exp -> Dv
exp_val _ (IntLit i) = Rv (Vnum i)
exp_val _ (StringLit s) = Rv (Vstring s)
exp_val s (Ident i) = ev where
 (Bound ev) = (env s) i
exp_val s (CompVal e a) = (CompValue c a) where
 (Vcomp c) = exp_rval s e
exp_val s (FuncOp c_exp arg_exps) = ev where
 (CompValue c a) = exp_val s c_exp
 (CValue (Rv (Vstring ct))) = (comps s c "class")
 (TCompData bk vs comp_types) = (declarations s) ct
 ev = case (comp_types a) of
 (COperation args t locs command) -> fn_result where
 ...
 _ -> (CompValue c a)
exp_val s (Op op lexpr rexpr) = opval op lv rv where
 lv = rval s (exp_val s lexpr)
 rv = rval s (exp_val s rexpr)
 opval Plus (Vnum a) (Vnum b) = (Rv (Vnum (a+b)))
 opval Minus (Vnum a) (Vnum b) = (Rv (Vnum (a-b)))
 ...

fig. 5.15. Expression meaning (including functional operations) for MVSL.

rval returns the expressible value given a denotable value. exp_val returns a denotable
value given an expression. Literals are returned as a denotable form of their expressible
value, identifiers return their denotable value in the current environment, operators are
evaluated, and a functional operator returns a value (if an operation) or component value
(if attribute or relationship). The value of a functional operation is defined in a similar
manner to component-specific operations but also returns a value. Functional operations
are currently defined to not alter the state of an MVSL program (as rval and exp_val do
not return a new State). This restriction could be removed by returning a new State as
well as a value for expressions (Tennent 76).

Expression and other meaning functions assume they are not given an invalid expression,
command or operation for a given program DeclValue and State. Our current Gofer
implementation returns a function exception if invalid abstract syntax values are given to
meaning functions. This could be eliminated by performing static type checking for a
given program (possibly when computing DeclValue) and not asking for the meaning of
an invalid program. Another approach might use a continuation-style meaning function

Chapter 5 Modelling and Specifying Environments with MViews Page 127

specification (Tennent 76) which returns an “answer” (including error messages) for the
whole program an expression or command is executed in.

Commands

To specify the dynamic semantics of an MVSL program, meaning functions for
commands, operations and update operations are defined. The meaning of a command is
the State returned after executing a command in a given program state. Fig. 5.16. shows
example meaning functions for assignment and if-statements defined by the operational
specification for MVSL.

-- Meaning of all commands
--
command_meaning :: State -> Command -> State
command_meaning s c@(l := r) = assign s c
command_meaning s c@(Eifthen e c1 c2) = if_then s c
command_meaning s c@(Ewhile e com) = while s c
...
command_meaning s c = operation_command s c

-- lv := rv
--
assign :: State -> Command -> State
assign s (lexp := rexp) = assign_result s lv rv where
 lv = exp_val s lexp
 rv = rval s (exp_val s rexp)

-- assign_result
--
-- if state variable => update store
-- if component attribute => update component store
--
assign_result :: State -> Dv -> Value -> State
assign_result s (Loc l) rvalue = update_store s (updateStore (store s) l rvalue)
assign_result s (CompAttr c a) rvalue = new_s where
 (CValue (Rv old_v)) = (comps s) c a
 updated_s = update_dependents s c (UpdateRec "update_attribute" [Vcomp c,Vstring a,old_v,rvalue])
 new_s = update_comps updated_s (updateCompStore (comps updated_s) c a (Rv rvalue))

-- if e then c1 else c2
--
if_then :: State -> Command -> State
if_then s (Eifthen expr if_command else_command) = new_s where
 (Vbool ev) = rval s (exp_val s expr)
 new_s = if ev then command_meaning s if_command
 else command_meaning s else_command

fig. 5.16. Command, assignment and if-statement meanings for MVSL.

The effect of assignment is to update the Store (if a variable) or CompStore (if a component
attribute). Component attribute assignment equates to an update_attribute operation,
which generates and propagates an update record using update_dependents (see below).
A conditional statement evaluates its boolean expression and, if this expression evaluates
to true, returns the State produced by executing its first command, or if false, the State
produced by executing its second command.

Chapter 5 Modelling and Specifying Environments with MViews Page 128

Basic Operations

The meaning functions for operations return a State which is the effect of applying the
operation to a component given an initial program state. Fig. 5.17. illustrates the meaning
functions for the add_element and establish basic operations.

Chapter 5 Modelling and Specifying Environments with MViews Page 129

- Meaning of basic operation "commands"
--
operation_command :: State -> Command -> State
operation_command s c@(AddElement k e) = add_element s c
operation_command s c@(DeleteElement e) = delete_element s c
operation_command s c@(Establish kind p ch v) = establish_rel s c
...

-- add_element(in Kind,out CompID)
--
add_element :: State -> Command -> State
add_element s (AddElement kind new_var) = new_s where
 (comp_s,new_c) = add_component s kind
 (Loc new_loc) = exp_val comp_s new_var
 new_s = update_store comp_s (updateStore (store comp_s) new_loc (Vcomp new_c))

-- Add a new component and set given variable to the new component ID
--
add_component :: State -> Ide -> (State,CompID)
add_component s kind = (new_s,new_c) where
 (new_comps,new_c) = new_comp (comps s) kind
 (TCompData bk vs ct) = declarations s kind
 alloc_attributes [] cs c ct = cs
 alloc_attributes (n:ns) cs c ct =
 case (ct n) of
 (CAttribute t) ->
 if n == "class" then alloc_attributes ns cs c ct
 else updateCompStore (alloc_attributes ns cs c ct) c n (Rv Nil)
 _ -> alloc_attributes ns cs c ct
 new_s = update_comps s (alloc_attributes vs new_comps new_c ct)

-- establish_rel(in Kind,in Parent,in Child,out NewRel)
--
establish_rel :: State -> Command -> State
establish_rel s (Establish kind parent child new_rel) = new_s where
 rk = rel_kind_type kind
 (Vcomp p) = rval s (exp_val s parent)
 (Vcomp c) = rval s (exp_val s child)
 (comp_s,new_r) = do_establish_rel s rk p c
 (Loc new_loc) = exp_val comp_s new_rel
 new_s = update_store comp_s
 (updateStore (store comp_s) new_loc (Vcomp new_r))

do_establish_rel :: State -> Ide -> CompID -> CompID -> (State,CompID)
do_establish_rel s rk p c = (new_s,new_r) where
 (r_s,new_r) = add_component s rk
 new_rs = updateCompStore (updateCompStore (comps r_s) new_r "parent" (Rv (Vcomp p)))
 new_r "child" (Rv (Vcomp c))
 new_pcr = updateCompStore new_rs p "relationships"
 (Rv (Vlist (comps_to_values([new_r]++comp_rels r_s p))))
 new_pcc = updateCompStore new_pcr c "relationships"
 (Rv (Vlist (comps_to_values ([new_r]++comp_rels r_s c))))
 updated_s = update_comps r_s new_pcc
 new_s = update_dependents updated_s c
 (UpdateRec "establish_rel" [Vstring rk,Vcomp p,Vcomp c])

fig. 5.17. The add_element and establish operation meaning functions.

Component-Specific Operations

Component-specific operations are applied to a component by allocating component,
argument and local variables, executing the operation’s command to produce a new
State, and then deallocating the variables (by returning the initial State environment).

Chapter 5 Modelling and Specifying Environments with MViews Page 130

This final State is defined to be the meaning of the component-specific operation.
Component-specific operations are defined to have a scope like object-oriented language
methods and can access values defined by the component they are applied to. Fig. 5.18.
illustrates part of the meaning function for component-specific operation application.

-- CompExp.OpName([ArgExp])
--
apply_operation :: State -> Command -> State
apply_operation s (ApplyOp exp arg_exps) = new_s where
 (CompValue c op) = exp_val s exp
 (CValue (Rv (Vstring ct))) = (comps s c "class")
 (TCompData bk vs cts) = (declarations s) ct
 arg_vals :: [Exp] -> State -> [Value]
 arg_vals [] s = []
 arg_vals (e:es) s = (arg_vals es s)++[(exp_rval s e)]
 new_s = case (cts op) of
 (COperation args t locs command) -> op_result where
 arg_vals = eval_args arg_exps s
 old_env = env s
 pre_op_s = alloc_self (alloc_locals (alloc_and_bind_args
 (alloc_comp_values s vs c) args arg_vals) locs) c
 post_op_s = dealloc_comp_values (dealloc_args (dealloc_locals
 (dealloc_self (command command_meaning pre_op_s)) locs) args) vs c
 op_result = update_env post_op_s old_env
 (CUpdates updates) -> apply_updates updates s c (arg_vals arg_exps s) vs
 -- call update operation as an operation

-- Evaluate lvalues for arguments
eval_args :: [Exp] -> State -> [Dv]
...

-- Allocate component values
alloc_comp_values :: State -> [Ide] -> CompID -> State
alloc_comp_values s [] c = s
alloc_comp_values s (n:ns) c = alloc_comp_values new_s ns c where
 new_env = updateEnv (env s) n (CompValue c n)
 new_s = update_env s new_env

-- Allocate & bind arguments for operation
-- In arguments have new location which is the Value of actual argument
-- (i.e. value parameters)
-- Out arguments have same Dv as actual argument
-- (i.e. variable parameters)
--
alloc_and_bind_args :: State -> OpArgs -> [Dv] -> State
alloc_and_bind_args s [] [] = s
alloc_and_bind_args s ((n,In,_):as) (v:vs) = new_s where
 rv = rval s v
 l = new (store s)
 new_store = updateStore (store s) l rv
 new_env = updateEnv (env s) n (Loc l)
 new_s = alloc_and_bind_args (update_store (update_env s new_env) new_store) as vs
alloc_and_bind_args s ((n,Out,_):as) (v:vs) = new_s where
 new_env = updateEnv (env s) n v
 new_s = alloc_and_bind_args (update_env s new_env) as vs

-- Allocate locals for operation
alloc_locals :: State -> OpLocals -> State
...

-- Allocate "self" variable for operation
alloc_self :: State -> CompID -> State
...

-- Deallocate a list of identifiers from Store
dealloc :: State -> [Ide] -> State
...

Chapter 5 Modelling and Specifying Environments with MViews Page 131

-- Deallocate "self" variable for operation
--
dealloc_self :: State -> State
...

-- Deallocate arguments for operation
--
dealloc_args :: State -> OpArgs -> State
...

-- Deallocate locals for operation
--
dealloc_locals :: State -> OpLocals -> State
...

-- Deallocate component values
--
dealloc_comp_values :: State -> [Ide] -> CompID -> State
...

fig. 5.18. The component-specific operation meaning function.

Update Operations

When an operation is applied to a component it generates an update record which is
propagated to the component’s dependents. These dependents test the update record
against their update operations and execute any update operations which match the
update record. A match is valid if the update operation has the same kind, number, and
type of arguments, and its guard expression evaluates to true. Fig. 5.19. illustrates how
this update propagation process is carried out by providing a meaning function
update_dependents.

-- Dependents for a component are:
-- 1) itself
-- 2) all relationships it participates in
-- 3) all other components its connected to via its relationships
--
dependents :: State -> CompID -> [CompID]
dependents s c = deps where
 rs = comp_rels s c
 deps = [c]++rs++collect_deps rs s c
 collect_deps [] s c = []
 collect_deps (x:xs) s c = cd where
 (CValue (Rv (Vcomp parent))) = comps s x "parent"
 (CValue (Rv (Vcomp child))) = comps s x "child"
 cd = if parent == c then [child]++collect_deps xs s c
 else [parent]++collect_deps xs s c

-- Send update record to dependents for a component
--
update_dependents :: State -> CompID -> UpdateRecord -> State
update_dependents s c u = new_s where
 update_dependents1 [] s _ = s
 update_dependents1 (d:ds) s u =
 update_dependents1 ds (update_from s d u) u
 output_s = update_output s ((output s)++[(OV c u)])
 new_s = update_dependents1 (dependents s c) output_s u

-- Process update from another component
--
update_from :: State -> CompID -> UpdateRecord -> State
update_from s d (UpdateRec kind arg_vals) = new_s where
 (CValue (Rv (Vstring k))) = comps s d "class"
 (TCompData bk vs ct) = (declarations s) k

Chapter 5 Modelling and Specifying Environments with MViews Page 132

 new_s = case (ct kind) of
 (CUpdates updates) -> apply_updates updates s d arg_vals vs
 _ -> s

-- Apply an update to a component (if it supports the update)
--
-- Update operations are performed by finding a match (correct kind,
-- number and type of args and guard that evaluates to true) and
-- applying the operation as for component-specific operations
--
apply_updates :: [CUpdate] -> State -> CompID -> [Value] -> [Ide] -> State
apply_updates [] s d arg_vals vs = s
apply_updates ((UpdateOp args locs g command):us) s d arg_vals vs =
 if same_length_and_type (reverse args) arg_vals s
 then upd_s else apply_updates us s d arg_vals vs where
 vals :: [Value] -> [Dv]
 vals [] = []
 vals (v:vs) = (vals vs)++[Rv v]
 old_env = env s
 pre_op_s = alloc_self (alloc_locals (alloc_and_bind_args
 (alloc_comp_values s vs d) args (vals arg_vals)) locs) d
 upd_s = case (g exp_rval pre_op_s) of
 (Vbool True) -> op_result where
 post_op_s = dealloc_comp_values (dealloc_self (dealloc_locals (
 dealloc_args (command command_meaning pre_op_s) args) locs)) vs d
 op_result = update_env post_op_s old_env
 _ -> apply_updates us s d arg_vals vs

same_length_and_type :: OpArgs -> [Value] -> State -> Bool
...

fig. 5.19. Update propagation for MVSL components.

5.5.7. Program Meaning

The meaning of an MVSL program is defined to be a sequence of output update records
the program generates given a set of input updates (assumed to be from MVSL). Fig. 5.20.
illustrates this meaning function for a program.

-- MVSL program meaning
--
data Input = IV Ide [Value]

-- Meaning of a Program is defined by its outputs given a set of inputs and definition
--
program :: Program -> [Input] -> [Output]
program (Pro decls command) i = out where
 (dv,gs) = program_decls decls emptyDeclValue []
 init_s = alloc_globals (emptyState dv) gs
 com_s = command_meaning init_s command
 out = output (run_program i com_s)

-- Need globals for program definition
--
alloc_globals :: State -> [Ide] -> State
...

-- Program is "run" by interpreting a sequence of "inputs" from MVisual
--
run_program :: [Input] -> State -> State
run_program [] s = s
run_program (i:is) s = new_s where
 new_s = run_program is (apply_input_update i s)

-- Translate input "update" record into operation on a component
--

Chapter 5 Modelling and Specifying Environments with MViews Page 133

-- Conceptually, MVisual generates these updates in respose to user interaction
-- MVSL's outputs are interpreted by MVisual which then updates view renderings
-- to indicate program change
--
apply_input_update :: Input -> State -> State
apply_input_update (IV "update_attribute" [Vcomp c,Vstring name,new]) s =
 assign_result s (CompValue c name) new
apply_input_update (IV "add_element" [Vstring kind]) s = new_s where
 (new_s,_) = add_component s kind
apply_input_update (IV "delete_component" [Vcomp c]) s =
 do_delete_component s c
...

fig. 5.20. The meaning of an MVSL program.

5.5.8. MVSL Programs

Using this Gofer implementation of the operational specification for MVSL, programs can
be “executed” to produce outputs. Fig. 5.21. shows the concrete syntax for a simple MVSL
program and Fig. 5.22. a corresponding abstract syntax for the program and the output
update records produced when this program is “executed”. The write operation, which
generates an output update record, is introduced to illustrate the order of update
operation application.

p : program
new_class : class
new_icon : new_icon

base view program
 attribute name : string
 relationship classes : one-to-many class
end program

base element class
 attributes name : string
 operations
 print_name is write self.name end print_name
 add (in lv : integer, rv : integer) : integer local
 temp : integer is
 temp := lv + rv
 result := temp
 end add
 updates
 update_attribute(comp : class, name : string, old : string, new : string) where
 name = “name” is
 write new
 end update_attribute
end class

subset element class_icon
 attributes
 name : string
 x : integer
 relationships
 view : one-to-one class_diagram
 base :one-to-one class
 updates
 update_attribute(class : class, cname : string, old : string, new : string) where
 cname = “name” is
 if name \== new then
 name := new
 end if
 end update attribute
end class icon

Chapter 5 Modelling and Specifying Environments with MViews Page 134

subset view class_diagram
 components class_icon
end class_diagram

initialise is
 create_view(program,p)
 add_element(class,new_class)
 add_element(class_icon,new_icon)
 establish(class_icon.base,new_class,new_icon)
end initialise

fig. 5.21. Concrete syntax for a simple MVSL program.

This program defines a base view program, a base element class, a subset element
class_icon, and a subset view class_diagram. The initial state for the environment is one
which contains a program, class and class_icon (with the class_icon a “subset” of the
class). When the class.name attribute is updated, class_icon is informed of the change
and updates its own name attribute to reflect the change to its base class (using an update
operation for update_attribute). In the example in fig. 22., class.name is updated by an
input update record which causes class_icon to update its own name attribute value.
class_icon.x is also updated by an input update record. The operations applied to the
MVSL program state produce corresponding output update records.

MVSL Program:
--
-- MVSL test program
--
test1 :: [Output]
test1 = output where
 output = program (Pro
 [(Global "p" (ComponentType "program")),
 (Global "new_class" (ComponentType "class")),
 (Global "new_icon" (ComponentType "graphic_icon")),
 (BaseView "program" [Attribute "name" StringType]
 [Relationship "classes" (OneToMany "class")] [] []),
 (BaseElement "class" [Attribute "name" StringType] []
 [(Operation "print_name" [] [] (EWrite (CompVal (Ident "self") "name"))),
 (Function "add"
 [InArg "lv" IntType,InArg "rv" IntType] IntType
 [Arg "temp" IntType]
 (((Ident "temp") := (Op Plus (Ident "lv") (Ident "rv")) :&
 ((Ident "result") := (Ident "temp")))))]
 [(Update "update_attribute"
 [Arg "comp" (ComponentType "class"),
 Arg "name" StringType,
 Arg "old" StringType,
 Arg "new" StringType]
 (Op Eq (Ident "name") (StringLit "name"))
 []
 (EWrite (Ident "new")))]),
 (SubsetElement "class_icon"
 [Attribute "name" StringType,
 Attribute "X" IntType]
 [Relationship "view" (OneToOne "class_diagram"),
 Relationship "base" (OneToOne "class")] []
 [(Update "update_attribute"
 [Arg "class" (ComponentType "class"),
 Arg "cname" StringType,
 Arg "old" StringType,
 Arg "new" StringType]
 (Op Eq (Ident "cname") (StringLit "name"))
 []
 ((Eifthen (Op Neq (Ident "name") (Ident "new"))

Chapter 5 Modelling and Specifying Environments with MViews Page 135

 ((Ident "name") := (Ident "new"))
 (Eskip))))]),
 (SubsetView "class_diagram" (Components ["class_icon"]) [] [] [] [])]
 ((CreateView "program" (Ident "p")) :&
 (AddElement "class" (Ident "new_class")) :&
 (AddElement "class_icon" (Ident "new_icon")) :&
 (EstablishLink (CompAttrType "class_icon" "base") (Ident "new_class") (Ident "new_icon"))))

Inputs to program:
 [(IV "update_attribute" [Vcomp 2,Vstring "name",Vstring "NewName"]),
 (IV "update_attribute" [Vcomp 3,Vstring "X",Vnum 10])]

Output of function query “test1”:
 [OV 3 (UpdateRec "establish_rel" [Vstring "class_icon.base", Vcomp 2, Vcomp 3]),
 OV 2 (UpdateRec "update_attribute" [Vcomp 2, Vstring "name", Vstring "OldName", Vstring "NewName"]),
 OV 0 (UpdateRec "write" [Vstring "NewName"]),
 OV 3 (UpdateRec "update_attribute" [Vcomp 3, Vstring "name", Nil, Vstring "NewName"]),
 OV 3 (UpdateRec "update_attribute" [Vcomp 3, Vstring "X", Nil, Vnum 10])]

fig. 5.22. Abstract syntax for MVSL program and its output update records.

5.6. Specification of Visual Appearance and Semantics

5.6.1. Rationale for MVisual

MVSL describes the base and subset level of an MViews system. To describe the display
and user interaction aspects a graphical specification called MVisual is used. This
separation of descriptions allows programmers to define an MViews environment in two
steps: the first describes the state of an MViews environment using MVSL; the second
describes the user interaction and display views using MVisual. A graphical specification
for user interaction was chosen as it provides a more natural and expressive
representation although it uses a somewhat less rigorous notation (including example-
based definitions), similar to the PARTS instance-based programming system (LaLonde
and Pugh 93). The two formalisms conceptually interact by passing update records.
Updates generated by MVisual are translated into operations or update operations on
MVSL components and MVSL updates are sent to MVisual for interpretation.

5.6.2. MVisual Fundamentals

Fig 5.23. illustrates the fundamental specification components of MVisual. Each MVisual
definition is contained in a “View” which has a name and zero or more arguments. MVSL
components are referred to by name (possibly an argument name for their enclosing
view). The appearance of icons, glue, views and dialogues (referred to as visual entities) is
defined graphically. For example, Component Name from fig. 5.23. is an icon made up of
various graphical figures.

MVSL components are referred to by their name (possibly an argument name) in an oval,
other MVisual views are referred to by name in a rectangle, and visual entities by a picture
relating to their appearance (possibly containing a name for clarity). Additional
information can be specified by pointer indicators (for example, click-area names, the

Chapter 5 Modelling and Specifying Environments with MViews Page 136

MVSL component value(s) a visual component value represents, and so on). Click-areas
on icons are highlighted by a grey rectangle which can also be used to highlight aspects of
a specification for clarity, naming or preciseness. Alternative visual forms can be specified
by two or more pointers from the same place.

View Name(...Arguments...)

View

name MVSL component

Update flowupdate

Pointer Indicator

General:

Constraints
constraint

expression

Display View/
Display Component

Name

Component Name

Component
Descriptions

Click Area

Alternative
forms/flows

Highlight

fig 5.23. Fundamental visual components of MVisual.

Updates correspond to events which are either user interactions, MVSL update records or
MVisual updates. Update flow between visual entities, MVSL components and MVisual
views is specified by grey arrows annotated with an update name and (possibly)
argument values. An update may flow to an MVSL component which defines a user
interaction to be the application of an update operation to the MVSL component.
Alternately, the update can flow to a view name (which indicates the view is displayed),
or to another update flow (indicating the user interaction update generates a new update
which in turn is sent to further components). Constraints can be added against appearance
components or update flows to indicate conditions that must be satisfied for updates to be
sent.

5.6.3. Icons and Glue

Appearance

Fig. 5.24. shows an example view defining the visual appearance for MVSL class icons.
Appendix E contains a full specification of IspelM using MVisual.

Chapter 5 Modelling and Specifying Environments with MViews Page 137

ClassName
FeatName1
FeatName2

normal abstract

class_icon : Appearance

class_icon:
class_name

feature_names
kind

fig. 5.24. A visual appearance for MVSL class icons.

The class_icon : Appearance view defines the visual appearance for an MVSL
class_icon (as defined in Section 5.4.) and a generic class_icon is represented in the oval.
Some attribute values of class icon (class_name, feature_names and kind) correspond to
values in the visual specification for a class icon, shown as it appears in SPE (see Chapter
4). The ClassName text value for the visual appearance is derived from
class_icon.class_name (indicated by a pointer from the MVSL class_icon attribute
value). FeatName1 and FeatName2 represent an example feature_names list from
class_icon and are grouped to indicate they are derived from the same MVSL attribute.
The kind of a class_icon determines the border for the visual appearance of a class icon.
This is specified by an alternative pointer indicating which border appearances are used
for different values of class_icon.kind.

Fig. 5.25. shows the appearance of client-supplier glue for MVSL cs_or_feature subset
relationships. Multiple views are used to avoid clutter and constraints (inside oval-
cornered rectangles) indicate values of MVSL attributes used to determine appearance.
Class icons are indicated by a short-hand appearance with Client and Supplier names (to
illustrate the relationship the client-supplier glue represents).

Chapter 5 Modelling and Specifying Environments with MViews Page 138

Client

Supplier

AttributeName

cs_glue : Attributes

kind=aggregate and
level=code

FeatureName :
LocalName

cs_glue : Locals
Client

Supplier

ClientFeature :
->SupplierFeature

cs_glue : Feature Calls

kind=call

Client

Supplier

cs_glue : Abstract Aggregate/Locals

(kind=local or
kind=aggregate)
and level=design

and client_feature=''
and client_name =''

Client

Supplier

cs_glue:
parent
child

client_feature

cs_glue:
client_feature
client_name

kind = local

cs_glue:
client_feature

supplier_feature

fig. 5.25. Visual appearance of MVSL cs_or_feature subsets.

Interaction

MVisual continues the MVSL theme of update record propagation between components
and models user interaction by update propagation between visual entities and MVSL
components. When a user interaction (described as an update record) is applied to some
MVisual entity further update records may be generated which define the effect of the
user interaction. These additional updates are then sent to MVisual entities and/or MVSL
components (possibly different from the one the original update was applied to). Fig. 5.26.
shows the effect of double-click updates on class icons.

A class icon defines “click areas” which determine the action taken if a double-click occurs
within the click area (shown as shaded boxes inside the class icon in fig. 5.26.). Double-
clicking on the left side of a class icon will open a dialogue for view or feature selection
(indicated inside a square “view” box with the dialogue name and arguments). Double-
clicking on the right side of a class icon class or feature name will display the
default_text_view for the class or feature clicked on. MVisual assumes suitable values for
default_text_view and the display update operation are defined for components and
textual views (as they are common operations), but for preciseness these could be defined
in MVSL and MVisual.

Chapter 5 Modelling and Specifying Environments with MViews Page 139

 class_icon : pointer tool double-click points

ClassName
FeatName1
FeatName2

ClassName.
default_text_view component views

(ClassName)

component views
(FeatName1)

FeatName1.
default_text_view

FeatName2.
default_text_view

class features(ClassName,
ClassName.features,Icon)

dc

component views
(FeatName2)

display

dc

dc

dc dc

dc

dc

dc

display

display

(dc = double-click)

class info
(ClassName,Icon)

oc
class features(ClassName,

ClassName.all_features,Icon)

(oc = option-click)

oc

fig. 5.26. The effects of double-click/option-click actions on class icons.

5.6.4. Views

Fig. 5.27. describes the appearance of class icon views and the effects of addition tools on
class diagram components. For example, the class icon tool () produces an add_icon
update when clicked on an empty view position (this update is sent to the view itself).
add_icon is a parameterised update which includes the kind of icon to add. Click-areas are
used to restrict the application of some updates (for example, adding a feature to a class
icon). Rubber-banding from one class icon to another (for example, from class icon Name3
to Name2 in fig. 5.27.) will add a generalisation, client-supplier or classifier glue
connection, depending on which relationship tool is currently selected. The event to
generate depending on the selected relationship tool is determined by an annotation on
each of the event flow arrows from the rubber_band line (genfor generalisation, C/Sfor client-
supplier, and clafor classification). For example, if the generalisation tool (gen) is selected, a
rubber band between two class icons will generate an add_glue(gen,Name3,Name2) update
event.

When specifying an environment using MVisual, some assumptions could be made about
the graphical user interface and view support. For example, MViews and IspelM assume a
Macintosh-like tool and graphics window and the provision of generic editing operations,
tools and updates. For example, the selection tool () and rubber_band editing and
update behaviour is assumed to be understood (but could be explicitly defined in
MVisual).

Chapter 5 Modelling and Specifying Environments with MViews Page 140

C/S

cla

gen

ViewName

Name
Feat1
Feat2

Name2

Name3

attribute

Class Diagram View : Addition Tools

Feat1
Feat2

add_feature(Name,'')

add_icon(class)

View rubber_band
add_glue(cl,

Name3,Name2)

add_glue(gen,Name3,Name2)

add_glue(cs,
Name3,Name2)

click

click

gen

C/S
cla

fig. 5.27. Class diagram view appearance and addition tool updates.

MViews textual view appearance and interaction is assumed to be in the form of a text
window with standard text editing operations. Parsing and unparsing, however, are
defined for each environment, as is update unparsing. Fig. 5.28. illustrates the application
of updates to a textual view with a Snart-like syntax.

 Class Text View : Applying Updates
%updates_start(Text1)
%updates_end

 class(Name1,
 parents([
 P1([rename(a,b)]),
 P2]),
 features([
 Attribute1:Type1,
 Attribute2:Type2,
 Method1,
 Method2(deferred)
])).

 %updates_start(Text2)
%updates_end

 Class1::Method1(A,B,C) :-
 code.

 Predicate(A,B,C) :-
 code.

rename_class(Name1,New)

change_kind(
Name1,Old,normal)

"class(New,"
(1)
(2)

(1)
(2)

change_kind(
Name1,Old,abstract)

(3)
(3)

"class(Name1,"

"abstract_class(Name1,"

add_feature(FeatureName,
TypeName)

"FeatureName:TypeName"
(4)

add_feature(FeatureName,'')
(5) "FeatureName"

remove_feature(Method1)

(4)

(5)

(6)
""

Fig. 5.28. Parsing and update application to a text view with a Snart-like syntax.

This specification uses a combination of example-based programming and visual
programming to describe the effects of applying different updates to a text view. An
example of textual view component renderings provides an illustration of how view
components are rendered in the textual view (example-based programming). Update
flows describe where update records are applied to the view’s text and describe the
resulting text after applying the update (visual programming). These update flows are

Chapter 5 Modelling and Specifying Environments with MViews Page 141

annotated with numeric labels to indicate which resulting text corresponds to which input
update record. For example, a rename_class(Name1,New) update record will update text of
the form “class(Name1”, and change it to “class(New,”. MVSL does not define the textual
appearance of base elements and relationships but assumes MVisual will provide an
example-based specification for rendering subset components in textual views.

5.6.5. Dialogues

Dialogues are used for structured user interaction and are specified in a similar manner to
icons, glue and views. Fig. 5.29. shows the dialogue fundamentals used by MVSL.
Dialogue components can be highlighted with borders to indicate groupings of values.
These dialogue components correspond to those used by Macintosh dialogues but could
be changed to reflect another user interface system’s standard.

Dialogues: Button

Button

Button

Default Button

Value1
Value2
Value3 Menu selection

Name1
Name2 Radio

TextValue

EditValue

Text

Edit Field

Name1
Name2

Check boxes

Dialogue Border

fig. 5.29. MVisual dialogue fundamental appearance and interaction components.

A simple example of MVisual dialogue specification is shown in Fig. 5.30. The effect of
selecting a view name for a component in the view selection dialogue from MViews is to
send a display update to the appropriate view.

Chapter 5 Modelling and Specifying Environments with MViews Page 142

 component views (Component)

ViewName2

Select Cancel

ViewName1

ViewName3

Component.
find_view(ViewName2) display

Component.
subset_views

click

fig. 5.30. The view selection dialogue from MViews.

Fig. 5.31. shows the feature addition dialogue for IspelM. This allows programmers to add
or update feature names for a class icon and also modify attributes associated with a
feature.

 add_feature (ClassIcon,FeatureName)

Feature Name:

Type:

Kind:
attribute
method
deferred
inherited

Cancel

Change
Remap

Show
Hide

Remove

NewFeatureName

NewTypeName

NewFeatureName

click, return
remove

click

click

click

change,
remap

on
off

remove_feature_name(
NewFeatureName)

add_feature_name(
NewFeatureName)

ClassIcon

ClassIcon

remap_feature(
FeatureName,

NewFeatureName,
NewTypeName,

Kind,Show)

change_feature(
FeatureName,

NewFeatureName,
NewTypeName,

Kind,Show)

FeatureName:
feature_name

type_name
kind

remove_feature_name(
NewFeatureName)

fig. 5.31. The feature addition dialogue for IspelM.

The values of FeatureName and Type are supplied by an MVSL base feature (look-up of the
base feature is assumed to be implicit given a class icon/feature name pair, but could be
explicitly defined as ClassIcon.base.find_feature(FeatureName)). Change, Remap, Show
and Hide send updates to the MVSL class icon with appropriate information from the

Chapter 5 Modelling and Specifying Environments with MViews Page 143

dialogue. The Kind radios relate to the feature kind attribute (possible values attribute,
method, deferred or inherited) and are grouped by a highlight box.

5.7. Discussion and Future Research

5.7.1. Requirements Satisfaction

Section 5.1. identified several requirements for a system for building programming
environments that support multiple textual and graphical views. Section 5.2. indicated
that most existing environment implementation models do not satisfy all of these
requirements or provide less than ideal approaches. This section illustrates how the
MViews model of Section 5.3. satisfies these requirements and proposes enhancements to
MViews that could provide better support for such environments.

Program Representation

Environments require abstract and flexible program structure and semantics
representation schemes. MViews supports a general model of program representation
using elements, relationships and views. Program components are linked via relationships
(which can represent both structural and semantic links) and all components can hold
tagged attribute values. Operations can be associated with each kind of component to
support component-specific manipulations.

This program representation scheme is sufficient for both high-level and low-level
program components using a model of programs as graphs with nodes (elements) and
labelled edges (relationships) (Arefi et al 90). It also supports graphical (visual)
programming language representation which often have a graph-based structure, unlike
standard abstract syntax trees (Backlund et al 90, Golin and Reiss 90). This scheme is more
suitable for program representation than those of Unidraw, Dannenburg’s ItemList, and
Wilk’s object dependency graphs, all of which assume components with a less appropriate
structure (such as item lists, objects with references, or hierarchical graphical diagram
components). Its level of abstraction can be compared favourably with abstract syntax
grammars (Reps and Teitelbaum 87), decorated abstract syntax grammars (Backlund et al
90), and deterministic, directed graphs (Arefi et al 90), in terms of structural representation
and manipulation (as MViews supports a basic set of graph operations similar to those of
abstract syntax tree manipulation operations).

The storage of semantic attributes and relationships using the same scheme as structural
components is similar to that of GARDEN. The specification of how semantic values are
calculated, however, does require more effort than attribute grammars (Reps and
Teitelbaum 87, Magnusson et al 90) and graph-based attribute grammars (Hudson 90,
Backlund et al 90) as MViews requires recalculation to be explicitly defined using program

Chapter 5 Modelling and Specifying Environments with MViews Page 144

update detection or extra component-specific operations. For IspelM the current MViews
approach has not proved too cumbersome. If the low-level static semantics of statements
were to be defined (as opposed to higher-level constraints and semantics such as class
interfaces), however, an attribute grammar or action equation-like (Kaiser 85) specification
would be much more suitable and abstract. Such a semantics model could be used in
conjunction with the current MViews representation by using program updates to drive
the recalculation algorithm (as in Mjølner environments (Minör 90)) and by storing
recalculated semantic values as attributes and relationships.

Multiple Textual and Graphical Views

SPE-like environments require support for textual and graphical views, preferably
utilising models similar to those employed for program representation. In MViews, views
are represented as graphs in the same manner as the base program graphs they view. This
has the advantage that the view representation and manipulation strategy is the same as
the base program and hence simplifies the specification of view structures and operations
(as these can often mirror those of the base).

MViews defines subset views to be graphs which are a partial copy of the base program
graph. Display views render subsets in a textual or graphical form which programmers
see and interact with. This model supports textual and graphical representations of
subsets of a base program and these views share the techniques used to model and
manipulate the base program. Subsets can have the same structure as the base program
graph or a different structure, depending on the requirements of the display/subset view.
This approach achieves similar levels of abstraction to that of Unidraw (Vlissides 90) and
the ItemList structure (Dannenburg 91).

Program and View Modification

Changes to program views must be translated to base program updates and views should
supply editing mechanisms appropriate for their rendering. MViews base and subset
views and components are both manipulated using graph operations. This facilitates
translation of updates between the two levels as the structures updated and operations
applied at one level are often very similar (or the same) as the structures used and
operations required to reflect the change in the other. MViews provides a subset view and
base representation scheme of similar abstraction to that of Dannenburg’s ItemList. These
are generally more efficient at translating subset and base changes than Smalltalk and
Unidraw-like systems (Wilk 91).

MViews provides free-editing text views and interactively edited graphical views. Both
editing mechanisms are translated into structure-editing operations but this process is
hidden from programmers. In general programmers prefer to free-edit textual expressions

Chapter 5 Modelling and Specifying Environments with MViews Page 145

and control structures (as their conception of this level of a program is as tokens rather
than trees and graphs) and structure-edit interfaces and inter-module (and class)
relationships (Welsh et al 91). As programmers tend to find template and menu-driven
structure-oriented editors cumbersome and unnatural to use (Minör 90, Welsh et al 91)
MViews tries to provide the most appropriate representation for programmers given the
level of program abstraction being manipulated.

One consequence of this approach is that parsing of textual views requires structures that
can be compared to base components. Thus textual views can not be used to provide
multiple views of control structures as these can not usually be uniquely identified. Such
views are not very useful in general and MViews assumes that either the base components
for such detailed views are completely regenerated by textual parsing or such detail is
stored as a stream of text and given to existing compilers (with parsing only updating
higher level structures such as variable declarations and class and method interfaces). For
graphical languages or graphical representations of structure or semantics this problem
does not occur. All icons and glue are linked directly to corresponding base components
and hence can be multiply viewed and updated.

Textual structure-oriented editing of class interfaces may, for some programmers, be more
appropriate than free-editing. MViews could be extended to provide textual structure-
oriented editors like Mjølner or UQ2 (Welsh et al 91) by translating abstract syntax tree
manipulations into graph operations with graphical views used to display an unparsed
abstract syntax tree (stored as an MViews subset program graph). Generation of structure-
oriented editors from grammars is usually easier and more abstract than building
interactive editors and parsers by specialisation of an MViews-like model (Garlan 86,
Backlund et al 90, Minör 90, Whittle et al 92). This means the construction of MViews-
based environments would require more effort than comparable structure-oriented
environments like Dora and Mjølner, but MViews environments may be more
“programmer friendly” (as flexible support for interactive editing is provided).

Automatic, Efficient Consistency Management

Changes to base components must be propagated to all views affected by the change.
Language semantics must be recalculated appropriately and incremental semantic and
view updates should be made where possible. MViews uses a concept of object
dependency to propagate update records describing component changes. These update
records are interpreted by the dependents of a component (including its subset view
components) which take appropriate action (recalculate semantic values, apply operations
to update their own state, re-render their display, etc.). This propagation mechanism uses
relationships and updates are automatically sent to dependents. Lazy application of
updates could be used for views and semantic recalculation for efficiency (Wilk 91).

Chapter 5 Modelling and Specifying Environments with MViews Page 146

MViews supports incremental view updates as the exact change is sent to subset view
components. These can make changes based on the precise change to their base
component state and display views need only redisplay information based on updated
subset components. An added advantage of MViews over Smalltalk and Unidraw-like
models is that subset view components do not have to repeat base component
information. For example, textual view components can expand the base updates sent to
them to indicate the change made whereas the other models must repeat the base
information to be able to determine the kind of change made. If subsets do, in fact,
duplicate base information, the exact change to subset components can be determined
from base update records.

MViews does not directly support the notion of object inferiors, superiors and transitive
object dependencies, as supported by (Wilk 91). Currently, if an object X is dependent on
an object Y, X is always informed of changes to Y but only informed of changes to Y’s
component objects (part-of relationships) if Y decides to broadcast its sub-component
changes. One approach to enhancing this support might be to introduce explicit part-of
relationships which would automatically broadcast changes to sub-components of a
component to the component’s dependents.

Recording Previous Changes

Providing a change history for a program component is useful for documenting the
modification history of program components. MViews supports such a facility by
allowing update records to be stored against program components for future reference.
Such a facility is not directly supported by most other models which may not allow such a
facility to be easily implemented. For example, the Smalltalk MVC model can not always
determine the exact change made to a model and Dannenburg’s ItemList and Wilk’s object
dependency graphs do not allow recorded changes to be directly accessed.

Undo and redo of User Manipulations

Undo and redo of user manipulations is necessary so programmers can undo (or redo)
changes they have made which may have had unseen transitive effects (since the updates
will have been propagated to affected base components). MViews supports a generic
undo/redo mechanism by recording update records generated by subset view
components. These can be sent back to the components for reversal or reapplication. Such
a facility can also provide a transaction mechanism where all program state changes for an
editing operation have to be reversed if the operation is invalid (i.e. the operation is
aborted). MViews provides a facility of comparable abstraction to GARDEN and Unidraw
but it is also compatible with semantic recalculation and view-to-base consistency
management (undoing an update record generates operations which in turn generate
further updates etc.).

Chapter 5 Modelling and Specifying Environments with MViews Page 147

MViews could be extended so that updates could be undone or reapplied out of strict
sequence order. This would provide a mechanism for arbitrary undo/redo of view
updates and perhaps “macro operations” where updates are reapplied to different view
states (similar to PECAN’s macros based on an undo history (Reiss 85)). The main
problem with such a mechanism is that the operations performing the undo/redo must
check whether the current program state will support such an action (as updates undone
out of order may be inconsistent). This is discussed further in Chapters 7 and 10.

Program and View Persistency

A program must be persistent over successive invocations of an environment. While the
MViews model does not assume a specific persistency mechanism, one can be modelled
using operations to save and load a component’s state. Version control, configuration
management and multi-user access to programs are not currently supported. These could
be modelled, however, by grouping updates in versions and by programmer (i.e. by who
generated the update). Multiple versions could be supported by allowing programmers
their own distributed workspace, similar to (Nascimento and Dollimore 93), and merging
of versions by merging update records associated with different versions. Like arbitrary
undo/redo, this would require testing of updates to ensure undo/redo is consistent given
a program graph state (as updates may be done out-of-sequence or applied to program
components that no longer exist in the current version). Chapter 10 discusses these issues
in more detail.

Tool Integration and Extensibility

Environments need to provide consistent user interfaces, a common tool data storage or
translation mechanism and allow new or exsisting tools to be integrated into the
environment. MViews supports tool user interface integration via a consistent dialogue
and display view interface. Tools use the base view for a cannonical data storage
repository and define subset views which can provide a partial view of the base and even
different structures to the base. Subsets can also be used to export and import data from
tools and use subset components to relate external tool data to internal base view data.
Update records could be used in an analagous manner to FIELD’s selective broadcasting
system (Reiss 90a) for propagating changes to MViews structures to and from external
tools via subset views.

5.7.2. MVSL

MVSL provides a simple specification language for MViews systems. A basic set of
“component kinds” is provided to capture the fundamental abstractions of MViews
environments with a component’s state defined by typed attributes and relationships to
other components. A basic set of operations is provided for manipulating MViews

Chapter 5 Modelling and Specifying Environments with MViews Page 148

programs which can be augmented with component-specific operations. Updates are
interpreted by each component using guarded input-only operations which carry out
further operations in response to an appropriate update record.

MVSL is sufficient to abstractly model the basic concepts of component state, operations
and update responses for MViews systems. Component relationships and response to
updates are explicitly defined. This approach directly supports the object dependency
model of MViews to be concisely and clearly expressed, unlike most specification
languages where such facilities must be modelled with more basic structures.

MVSL is not a fully-fledged programming language and it is difficult or impossible to
express some concepts. For example, there is no concept of reusable operations or
functions and inheritance is not supported between components, making MVSL only
suitable for abstract environment state analysis and not detailed specification. In addition,
MVSL assumes all components connected to a component are dependents and propagates
update records to them (perhaps unnecessarily). The scheduling of update record
propagation is assumed to be immediately following the application of an operation,
which does not allow for efficient implementation using lazy application of update
operations. Since MVSL is strongly typed it is difficult to express the management of
update records which are lists of values of arbitrary types.

As MVSL can not be used to completely specify an environment, we have developed an
object-oriented architecture for MViews systems based on the concepts introduced in this
chapter. This can be used as the basis for an object-oriented implementation of MViews
and hence be reused to design and implement new environments. MVSL can be used as a
preliminary analysis tool or documentation aid and then the object-oriented architecture
used to model an environment in more detail using class specialisation. Chapter 6
describes this architecture while Chapter 7 provides a Snart implementation of this
architecture. This object-oriented design and implementation allows MViews
environments to be modelled and efficiently implemented by specialising a reusable
framework of classes.

5.7.3. Operational Specification of MVSL

The operational specification of MVSL illustrates that an MVSL program is well-defined in
terms of its effect on an MViews program state. An MViews program is stored as a State
containing component attribute values which represents an instance of the MVSL program
specification. Meaning functions for expressions, commands, basic operations,
component-specific operations and update operations are defined which return a new
State given an MVSL construct. The meaning of an MVSL program is a list of update
records generated by MVSL when “executing” an environment specification given a list of
input update records.

Chapter 5 Modelling and Specifying Environments with MViews Page 149

This specification can be improved by defining the static semantics of an MVSL program.
Currently an MVSL program is not type-checked before execution and errors are indicated
by Gofer function exceptions in the output update stream. To support functional
operations with side-effects (i.e. that can change the program state) the result of exp_val
should be a new State as well as a denotable value. A continuation-style specification
could be used to produce error messages when invalid operations are attempted.

5.7.4. MVisual

MVisual allows the user interaction aspect of MViews environments to be defined using a
natural graphical specification “language”. MVisual provides a graphical notation for
specifying the appearance of MVSL subset views, elements and relationships. It also
provides a mechanism for specifying how users interact with these visual entities and the
effects of such user interaction (in terms of update record flow). MVisual uses MVSL
component values to define where visual entity values are derived from and passes
updates to MVSL components as a result of visual entity modification. The MVisual
notation is less rigorous than MVSL with assumptions being made about editing tools and
dialogue appearance and behaviour and permits partial specification of component
behaviour.

MVSL and MVisual interact using update records. MVisual assumes MVSL will interpret
update records sent to components appropriately and MVSL assumes MVisual will
interpret the updates it generates. This model assumes each notation will synchronise
input and output appropriately and the operational specification for MVSL assumes this.
While MVisual provides a concise, natural mechanism for expressing the appearance of
views and dialogues, and user interaction with these entities, it is not ideal for all such
specification. Particular failings are when trying to specify constraints on dialogue
interaction, complex MVisual to MVSL to MVisual update flow, and explicit requests for
user input from MVSL.

For dialogue constraints, the values of different edit fields may depend on values of radios
and other edit fields. For example, in the client-supplier update details dialogue Client
Name and Supplier Feature values are only valid for certain values of Kind. Expressing
these constraints with MVisual notation becomes quite cumbersome, especially when
error actions or edit field skipping are to be defined (i.e. error message reporting and/or
specifying that an edit field is not to be used given certain constraints). A textual
specification of such constraints and error message generation may be more concise than a
graphical one.

When a complex flow of control from MVisual to MVSL and back to MVisual occurs,
MVisual does not clearly indicate that the flow back from MVSL is a result of the original
user interaction. For example, an expand update sent to a subset view from a dialogue

Chapter 5 Modelling and Specifying Environments with MViews Page 150

could use an add_view_component update from MVSL to indicate an expansion into the
display view is required. Currently, such an expansion for IspelM is specified as a
response to the original MVisual expand update in a different MVisual view with no
indication that MVSL performs add_element and add_view_component operations. An
indication of such flow-of-control would be useful for clarity in MVisual.

Both MVSL and MVisual are currently used by defining an MViews environment using a
drawing program and text editor. An MViews-like environment supporting multiple
views of an MVSL/MVisual specification would be make this definition process much
easier and allow a specification to be browsed. It may also permit limited generation of
reusable classes from the architecture in Chapter 6 from MVSL/MVisual specifications.
Chapter 9 briefly discusses the requirements for such a specification environment.

5.8. Summary

SPE-like environments require a flexible program representation scheme, support for
modelling multiple textual and graphical views of programs, and editing operations to
manipulate these representations and views. They also require efficient, automatic
detection and propagation of changes to support view consistency and language-specific
semantic recalculation. View editing should be appropriate for the view’s rendering, a
generic undo/redo facility should be supplied by the environment, and an abstract
program saving and reloading mechanism be supported.

MViews provides a novel set of abstractions for implementing such environments based
on object dependency graphs. Programs are represented as graphs made up of elements
and relationships grouped by a base view. This representation is sufficient for storing
structural and semantic information for both tree-based and graphical languages. Views of
this program graph are represented in the same manner by subset view graphs and these
subset views are manipulated using the same graph operations as the base program
graph. Subset views can be displayed and edited as either text or graphics. Update records
are generated to document component changes and these are propagated to dependent
components. Update records can be used to translate changes between subset and base
view components (and vice-versa), be recorded to document changes to components, used
to implement a generic undo/redo facility, provide incremental, efficient subset/display
view updates, and drive semantic recalculation.

MVSL is an abstract specification language used to describe the state of base and subset
graphs, and the editing semantics of these graphs, for an MViews environment. An
operational specification for MVSL illustrates that the basic concepts of MViews can be
captured using an object dependency graph state and basic graph manipulation
operations on this state. MVisual provides a mechanism for specifying the display view
and user interaction component of an MViews environment. MVisual utilises example-

Chapter 5 Modelling and Specifying Environments with MViews Page 151

based and visual programming-based specification techniques to describe the appearance,
effects of user interaction and effect of MVSL operations on the user interface for an
environment. MVisual and MVSL interact using update records to pass changes between
the subset and display levels of MViews.

Neither MVSL nor MVisual can currently be used to specify enough information for an
environment implementation. Chapter 6 demonstrates how the basic abstractions of
MViews can be used as the basis for an object-oriented architecture for designing an
implementation of an environment. This architecture is comprised of classes which are
specialised to describe environments like IspelM. Chapter 7 shows how a Snart
implementation for MViews can be derived from this architecture. Chapter 8 uses the
architecture of Chapter 6 to produce a model for IspelM and uses the Snart framework of
Chapter 7 to implement this model. This implementation of IspelM is then further
specialised to produce an implementation for SPE.

Chapter 5 Modelling and Specifying Environments with MViews Page 152

Chapter 6 An Object-Oriented Architecture for MViews Page 153

Chapter 6

An Object-Oriented Architecture for
MViews

Chapter 5 describes the MViews model for interactive software development
environments. MVSL is used to abstractly specify the state and editing semantics for base
and subset views of an environment using a textual language. MVisual is used to
abstractly specify the display views and user interface for an environment using a
graphical notation. Neither of these specification languages, however, are sufficient for
deriving an implementation of an MViews environment.

This chapter describes a language-independent, object-oriented architecture for MViews.
Component kinds are described by classes, component attributes by attribute classes, and
operations by class methods and an MViews environment program is stored as objects
(instances of these classes). A new environment is constructed by specialising this
framework of classes appropriately. This object-oriented design for MViews is much more
suitable for implementing an environment as it provides more detail than MSVL and
MVisual and is much closer to an (object-oriented) implementation language. Since this
architecture is derived from the fundamentals of Chapter 5 it can be used to translate
MVSL and MVisual specifications for an environment into an object-oriented design. This
design can then form the basis for an implementation of the environment.

The rationale for an object-oriented architecture for MViews is discussed and an overview
of the fundamental classes for the architecture is given. Each group of related classes is
then described in more detail with the purposes of their major attributes, methods and
interactions with other classes explained. Chapter 7 uses this object-oriented architecture
for MViews as the basis of an object-oriented implementation of MViews as a framework
of Snart classes. Chapter 8 uses this architecture and the Snart framework of Chapter 7 to
model and implement IspelM and SPE.

6.1. An Object-Oriented Architecture for MViews

As discussed in Chapter 2, several approaches to implementing programming
environments are possible. To produce a reusable MViews system either a programming

Chapter 6 An Object-Oriented Architecture for MViews Page 154

environment (PE) generator with its own specification language (similar to MVSL) could
be implemented, or a specialisable framework of classes used. The Synthesizer Generator
(Reps and Teitelbaum 87), MELD (Kaiser and Garlan 87), and Mjølner/ORM (Magnusson
et al 90) provide specification languages based on abstract syntax and attribute grammars
which are translated into an implementation. Unidraw (Vlissides 90), (Haarslev and
Möller 90), and Interviews (Linton et al 88) provide object-oriented frameworks for
implementing drawing editors, visualising object-oriented systems, and constructing
graphical user interfaces respectively. We chose the second approach for several reasons:

• Many aspects of a good, interactive PE, such as editor functionality and
interfaces, require specialisation and fine-tuning on a scale difficult to provide
with a specialised PE generator (Vlissides 90, Ratcliffe et al 92). A reusable,
object-oriented framework allows more flexible extensions to be implemented
and reuse of existing code libraries and tools. It provides the full power of a
general-purpose programming language but within a conceptual model (the
reusable framework) for the environment.

• Generated PEs often provide poor or inappropriate user interfaces and can lack
adequate response-time performance (Minör 90). The most common approach
to generated environments involves producing structure-oriented editors from
abstract syntax descriptions (Reps and Teitelbaum 87, Minör 90, Ratcliffe et al
92). Structure-oriented editing of both text and graphics is a common feature of
such languages (Whittle et al 92) but this approach has yet to gain wide-spread
favour with programmers (Minör 90, Whittle et al 92, Welsh et al 91). Reusable
frameworks can provide a more tailorable, interactive model of user interaction
(Vlissides 90).

• Generated environments provide a high-level of abstraction in both the
specification of their program structures and semantics and their editing
operations (Minör 90, Reps and Teitelbaum 87). Disadvantages with this level of
abstraction, however, are the implicit constraints put on environment
implementers with respect to adding flexible language semantics (Kaiser 85,
Hudson 90) and lack of general-purpose programming power for implementing
unusual or extended facilities (Kaiser and Garlan 87, Vlissides 90). An object-
oriented framework can achieve a reasonably abstract representation of a
conceptual model via good use of appropriate abstractions (Vlissides 90) while
still incorporating flexible, general-purpose programming facilities.

• As we wanted to experiment with parts of the MViews model during
development to determine appropriate approaches, we did not initially know
what a PE generator language for MViews should support. An extensible object-
oriented framework supported a more flexible, experimental development
platform for modelling MViews environments.

Chapter 6 An Object-Oriented Architecture for MViews Page 155

A partially-generated MViews environment may provide a good compromise between the
desire for a concise, abstract specification of an environment and the requirement of a
flexible, efficient implementation to provide a useable end-product. Chapters 9 and 10
briefly discuss using MVSL and MVisual to generate classes specialised from classes in the
MViews architecture. These classes could then be further specialised to implement
efficient or unusual language structures, semantics and editing tools.

6.2. Overview of the MViews Architecture

6.2.1. Components as Classes

The MViews architecture defines classes based on the abstractions described in Chapter 5.
Extra abstractions are introduced to allow more precise modelling of different
environment facilities and to make the architecture more reusable (by providing extra
reusable components and additional functionality). Fig. 6.1. shows the hierarchy of classes
for MViews. MVSL basic component kinds are modelled as classes (for example, base
views as base_view and graphical icons as graphic_icon). MVSL component attributes are
represented by objects associated with a component and relationships are defined as
attributes which refer to relationship component objects.

Environment-specific component kinds are defined by specialising classes appropriately.
For example, a class_icon for IspelM can be defined by specialising graphic_icon from
the MViews framework and defining appropriate extra attributes (such as class_name and
feature_names) and methods (update_attribute for class_name and add_feature_name for
feature_names).

Chapter 6 An Object-Oriented Architecture for MViews Page 156

one to one graphic glue

many to many subset rel

relationship one to many

component

subset comp display comp

viewable base com text base combase comp

view comp

view

text disp com

graphic disp com

graphic icon

base view

subset view display view

graphic disp vie

text disp vie

fig. 6.1. An object-oriented hierarchy of MViews components.

Table 6.1. illustrates how the MVSL and MVisual components are mapped onto MViews
architecture classes. An MVSL component is implemented by a class specialised from one
or more MViews architecture classes. An MVisual component is implemented with its
corresponding MVSL component as a class specialised from one or more MViews
architecture classes. Additional, abstract classes are introduced by the MViews
architecture to factor out common data and behaviour from different MViews
components. For example, component, view and relationship classes do not have direct
MVSL equivalents but are used to capture common component, view and relationship
behaviour. New environments do not use these abstract classes directly but specialise new
classes from those shown in table 6.1. The following sections briefly describe how MVSL
and MVisual components are implemented by these architecture classes and what extra
information these classes provide.

MVSL/MVisual Components MViews Architecture Class(es)
base view base_view

base element One of:
 base_comp
 viewable_base_comp
 text_base_comp

Chapter 6 An Object-Oriented Architecture for MViews Page 157

base relationship One of:
 base_comp
 viewable_base_comp
 text_base_comp
One of:
 one_to_one
 one_to_many
 many_to_many

subset view
display view

One of:
 graphic_disp_view
 text_disp_view

subset element and
graphical display icon

graphic_icon

subset relationship and
graphical display glue

graphic_glue

subset component and
textual display component

text_disp_comp

subset to base component
relationships

subset_rel

Table 6.1. Mapping of MVSL and MVisual components onto MViews architecture classes.

6.2.2. Base Components

A base view in MVSL groups base components and base views are implemented by
specialising the base_view class. base_view supplies features for locating components
using unique identifiers and look-up tables, managing subset views, and mapping
between components and their kinds. All components are created by calling methods
supplied by base_view13.

Base elements from MVSL are implemented as classes specialised from base_comp.
Additional classes are introduced for modelling base components that can have subset
components (i.e. can be viewed), as viewable_base_comp, and base components which can
have textual forms, as text_base_comp. viewable_base_comp provides features for
managing subset view components, including view management and navigation facilities.
text_base_comp provides additional features for managing text forms associated with base
components, and base components with textual view renderings are specialised from this
class. Base relationships specialise base_comp, viewable_base_comp and text_base_comp,
but also specialise one relationship class (one_to_one, one_to_many or many_to_many).
These relationship classes provide features for representing and managing component
relationships and may use different kinds of collection classes to group the components of
the relationship (usually lists).

Implementing MVSL base components as classes specialised from a variety of MViews
architecture classes allows environment implementers to specify more detailed base

13 This can be used to assist in supporting environment evolution, as described in Section 6.7.

Chapter 6 An Object-Oriented Architecture for MViews Page 158

component functionality. The main advantage of the architecture classes is the additional
data and behaviour they provide for managing views and view components, managing
text forms, and managing component relationships. MVSL specifications ignore the detail
of these tasks and are thus further refined when they are modelled by specialising classes
from the MViews architecture.

6.2.3. Subset and Display Views and Components

MVSL describes subset components while MVisual gives the display component
rendering for these subset components. While this separation is useful for the purposes of
abstract specification, it is not usually useful to implement subset components and display
components independently, as they are closely interdependent. A display needs partial
views of base component values to render and update (i.e. a subset component state and
operations) while a subset component requires a rendering which it must inform of
changes to itself so it can be re-rendered (i.e. a display component). Subset views and their
corresponding display views are modelled by specialising graphic_disp_view and
text_disp_view. These display view classes contain the subset view management features
and tools for rendering and editing graphical or textual view components.

Subset elements rendered as graphical icons are specialised from graphic_icon.
graphic_icon includes features for managing a subset element and features for rendering
and manipulating a graphical icon. Subset relationships rendered as graphical glue are
specialised from graphic_glue. Subset components rendered as text forms are specialised
from text_disp_comp. text_disp_comp provides features for manipulating text forms
including unparsing and inserting readable update record descriptions, applying selected
update records, and determining the text associated with a textual display component.

MVSL and MVisual subset and display views and components are modelled by classes
specialised from these MViews architecture classes. The use of one MViews architecture
class for each MVSL/MVisual subset and display component pair provides a concrete link
between a view’s program graph-based state and its rendering and manipulation. The
MViews architecture classes also provide additional features which support view
navigation, graphical and textual component manipulation, graphical and textual editing
tools and an undo/redo mechanism. These allow new views and their editors to be
quickly defined based on an MVSL view state specification and MVisual
appearance/interaction specification for an environment.

6.2.4. Subset/base Relationships

MVSL subset components specify the base components they are mapped to by
relationships. These subset/base relationships are implemented by specialising
subset_rel (itself a many-to-many relationship). subset_rel defines a general view

Chapter 6 An Object-Oriented Architecture for MViews Page 159

consistency mechanism whereby subset to base component attribute mappings are
supplied and subset_rel keeps these attributes consistent under change. Any additional
view consistency functionality is expressed by specialising subset_rel (for example,
automatically expanding components into a view when new base relationships are
established). subset_rel also provides additional features for lazy view consistency
management. This subset_rel relationship class allows new environments to quickly
specify base and subset component attribute consistency. viewable_base_comp also uses
subset_rel relationships to maintain base component to subset view relationships (used
to support view navigation).

6.2.5. Additional Abstract Classes

The MViews architecture defines several additional abstract classes which are briefly
described here. These abstract classes are not specialised by new environments but are
used to abstract out common functionality from other MViews architecture classes.

The component class generalises data and behaviour common to all MViews components.
These include modelling the basic operations of MVSL as methods. For example an
update_attribute(Comp,Name,NewValue) operation is done by a method call of the form
Comp.update_attribute(Name,NewValue)14. Basic operations could now be thought of as
being applied to components in the same manner as component-specific operations in
MVSL. All kinds of MViews components generalise to component.

MViews views group program graphs and the view class provides methods for managing
view components. This includes add_view_component and remove_view_component
methods (for the corresponding MVSL operations) but also additional methods for
iterating through these view components and deleting the components when the view is
deleted.

Relationships are modelled by the relationship class which provides methods for
establishing, reestablishing and dissolving relationships. Relationship arity can be one-to-
one (i.e. relates a parent and child), which is modelled by one_to_one, one-to-many
(relates one parent to many children), modelled by one_to_many, or many-to-many (relates
many parents to many children), modelled by many_to_many.

subset_view models the subset view state and operations for MViews. display_view is a
specialisation of subset_view and models display view-related concepts such as tools,
menus and interactive editing of display view components. A display view can render a

14We use an Eiffel-like syntax for describing method calls and attribute access as “feature calls”. This syntax

is the same as that used by MVSL for attribute and relationship access and operation application.

Chapter 6 An Object-Oriented Architecture for MViews Page 160

subset view either textually or graphically and hence graphic_disp_view and
textual_disp_view specialisations of display_view are introduced. These provide extra
state and operations specific to each kind of rendering and view editing mechanism.

The MViews architecture defines subset_comp to describe subset component state and
operation semantics. The display component rendering and editing semantics is defined
by display_comp, a specialisation of subset_comp. Thus the MViews architecture captures
the rendering and editing semantics for a display component in display_comp, which also
includes subset component structure and semantics inherited from subset_comp.
display_comp and its specialisations provide additional methods for display component
rendering and manipulation.

6.2.6. User Interface and Persistency

MViews assumes a language-specific user interface which provides menus and dialogues
for display views and display components. Component persistency is assumed to be a
language-specific issue which may be implemented by explicit save and load component
methods or an invisible object persistency or object-oriented database mechanism.
Chapter 7 describes a user interface and persistency mechanism for the Snart framework
implemented by Snart methods and LPA MacProlog.

6.2.7. Summary

This overview illustrates how MVSL and MVisual specifications can be modelled using
classes which are specialised from MViews architecture classes. Attributes and
relationships are modelled as class attributes and class attributes with relationship
components respectively. Fundamental MVSL operations, component-specific operations
and update operations are modelled as class methods. The MViews architecture classes
provide many more data and behavioural abstractions than MVSL and MVisual
specifications. These extra abstractions allow MVSL and MVisual specifications to be
further refined to include view management for base components, rendering and editing
for display components, a concrete link between a view’s state (subset view) and
rendering/interaction (display view), and many more facilities. In the following sections
the MViews architecture class structures and methods are explained in more detail.

6.3. Components

Fig. 6.2. shows the basic structure and methods provided by the component class using the
class diagram notation from SPE.

Chapter 6 An Object-Oriented Architecture for MViews Page 161

6.3.1. Component State

component defines the state of all MViews components and provides methods for
manipulating this state. Attributes are stored as a one-to-many relationship attributes to
attribute. Each attribute has a value (which is one of str_value (strings), int_value
(integers), etc. as appropriate). Attributes are accessed via get_attribute and modified via
update_attribute. These attribute manipulation methods could be augmented for
specialised kinds of attributes, for example, handling list attributes. In addition, while
some attributes may hold values, others can compute values (for example, all ancestor
classes for a class in IspelM). MViews supports data-driven programming by extending
these operations or changing the behaviour of record_update and update_from (see
Chapter 7 for a more thorough discussion of this).

component

store_update

comp_kind

dissolve_rel

establish_rel

update_from

update_dependents

update_attribute

updated

set_updated

remove_dependent

record_update

get_attribute

delete

base_deleted

add_dependent

component
dependents

record_update
->update_from

attribute

name

attributes

value

value

str_value int_value list_value comp_value

update_record

values

kind

component

update_records

fig. 6.2. Basic structure and methods for component.

Relationships may be established and dissolved by establish_rel and dissolve_rel. As
operations are applied to components via method calls, an MVSL operation
establish(Kind, Parent, Child, NewRel) equates to either of the method calls
Parent.establish_rel(Kind, Parent, Child, NewRel) or Child.establish_rel(Kind,
Parent, Child, NewRel) (depending on whether the relationship is to be established by
the parent or child component).

The component kind for a specialisation of component can be determined by the method
call comp_kind, which returns a string equating to an equivalent MVSL component kind

Chapter 6 An Object-Oriented Architecture for MViews Page 162

(i.e. the call ClassIcon.comp_kind(Value) for some class_icon instance will return Value
= “class_icon”).

6.3.2. Update Records

Update records are generated by operations modifying a component state. For example,
the method call Parent@establish_rel(Kind, Parent, Child, NewRel) will generate the
an update record with kind = establish and values NewRel, Parent, Child15. A short-
hand notation used in this chapter for update records is establish(NewRel, Parent,
Child). This is a “term” with functor the kind of the update record, first argument the
component the update record was generated by and remaining arguments the values held
by the update record.

Update records are propagated for a component by calling
record_update(UpdateRecord,UpdateName). update_dependents returns a list of dependent
component objects for a component and record_update sends updates to these
dependents by calling update_from(UpdateRecord,UpdatedComponent). Dependents
implement an update_from method which decodes updates and takes appropriate action
(for example, applying further updates to the dependent by calling methods).
store_update(UpdateRecord) is used to store an update record against a component (i.e. to
document the changes the component has undergone) and stored update records are
maintained by a one-to-many relationship update_records to update_record.

Various operations are employed to maintain a list of a component’s dependents
(add_dependent and remove_dependent) and update_dependents can be over-ridden in sub-
classes of component to define certain relationships to always relate dependents to a
component. When a component generates an update record by calling record_update,
set_updated is called which indicates a component’s state has been changed (by setting
the updated flag to true). This can be used for persistency management and for
determining that attribute recalculation should take place for the component.

6.3.3. Persistency

Components are assumed to be made persistent and reloaded from persistent storage in
an implementation-language dependent manner. A component can be deleted, however,
which means its persistent form (and those of any of its sub-components via part-of
relationships) would be removed. Thus the delete method equates to the MVSL
delete_component operation.

15The “Kind” value does not need to be stored in the update record as this can be determined from the

component kind of NewRel.

Chapter 6 An Object-Oriented Architecture for MViews Page 163

6.4. Base Program Components

Base components are used to represent the canonical form of a program. They equate to
the dictionary information of CASE tools such as the OOATool (Coad and Yourdon 91)
and TurboCASE (StructSoft 92) and database representations of Dora (Ratcliffe et al 92)
and FIELD (Reiss 90b). Base components can store update records to document changes to
they have undergone. Fig. 6.3. shows the structure and methods for each kind of base
component and associated classes.

6.4.1. View Components

The view_comp class defines view to be the view a component can be contained in (a base
view or subset view). MVSL assumes components define this as a relationship but our
architecture allows an object attribute to be used for this purpose. View components
define a name they are referred to by their owning view and view_name returns this as a
string (for example, an IspelM base class might return “Base Class ClassName” where
ClassName is equivalent to the MVSL value for class.class_name). View components also
define a user name (as a string returned by user_name) which corresponds to the
component kind (comp_kind) for a component but in a printable form (for example the
user name for class_icon might be “Class Icon”).

viewable_base_comp

update_dependents

view_selection

rename_views

remove_subset_display

download_attributes

calc_view_name

add_text_view

add_subset_display

add_graphic_view

subset_view_in

view_id

subset_views

subset_owned

view_id

name

subset_owned

component

view_comp

view_name

view

user_name

base_comp

unremove

removed

remove

text_base_comp

update_text

update_text_form

text_selected

save_text

remove_text_form

find_text_form

element_text

display_text

default_text_view

create_text_view_form

add_text_form

text_form

last_update_id

kind

id

name

text_forms

subset_rel

subset_rels

fig. 6.3. Base components structure and methods.

6.4.2. Base Components

Base components are marked for removal using remove, rather than directly calling their
delete method. This allows such operations to be reversed with unremove, and also allows
MViews to “garbage-collect” all removed components together, limiting the effect on
interactive performance.

Chapter 6 An Object-Oriented Architecture for MViews Page 164

IspelM defines base_cluster as a specialisation of base_comp (see Chapter 8 for further
details).

6.4.3. Viewable Base Components

Some base components can be rendered in views (for example, IspelM generalisations and
classifiers), some can have text forms of themselves (classes and features), while some can
not be viewed at all (clusters). viewable_base_comp provides attributes and methods for
maintaining views of a base component.

Subset component references can be added to and removed from a base component (using
add_subset_display and remove_subset_display) and this establishes a subset/base
relationship (subset_rel) between a base component and its subset components. The
views a base component’s subset components are contained in are stored against the base
component in subset_views (as a reference to the view, possibly a unique id). This allows
a base component to provide a view selection dialogue for navigating through its views
(by calling view_selection). Views that a base component owns (i.e. is the focus of) are
stored in subset_owned as these views must be deleted if the base component is deleted.
Views a base component owns need to be renamed if base component attributes used to
construct the view name are updated. rename_views propagates this rename to all owned
views of the base component .

Base components can be created and initialised by a subset component (when the subset
component is added to a view). download_attributes(AttributeList,SubsetComp) allows
a new base component to copy this subset component’s data. The dependents of a base
component include all of its subset components (related by subset_rel) and hence
update_dependents is redefined for viewable base components.

IspelM defines base generalisation, client-supplier and classifier relationships as base_gen,
base_cs and base_cl respectively. These are all defined as specialisations of
viewable_base_comp.

6.4.4. Textual Base Components

Some base components have subset components which are rendered in textual display
views. MVSL assumed MVisual supplied the text for a subset component with a textual
display view component rendering. The MViews architecture, however, needs some
mechanism for storing this text and for storing different textual renderings of the same
base component. Base components which can have textual display view renderings are
described by text_base_comp.

text_base_comp stores textual renderings of base components as text forms. Conceptually,
a text form is a program graph stored as a single base component in the form of a

Chapter 6 An Object-Oriented Architecture for MViews Page 165

sequence of textual characters (i.e. a coarse-grained component storage). The data in this
“graph” can be recovered by parsing the text and generating or updating other
overlapping program graph information. Text forms and program graph information may
be disjoint or overlap. For example, class definitions can be stored as text or as a program
graph in IspelM, but method implementations are only stored as text forms and their
structure recovered by parsing. Fig. 6.4. shows a text form and program graph from
IspelM.

class(figure,
 features([
 draw,
 hide,
 visible : boolean,
 window : window
])).

class
"figure"

feature
"draw"feature

"hide"

feature
"visible"

feature
"window"

Text Forms

figure::hide(Figure) :-
 Figure@window(Window),
 Window@remove_figure(Figure),
 Figure@visible := false.

Program Graph

fig. 6.4. Class and method text forms and a program graph from IspelM.

The MViews architecture places no constraint on using text forms or program graph
representations for different tasks. The Dora data representation scheme (Wang et al 92)
assumes a fine-grained PCTE storage scheme (i.e. all program components are stored as
“program graphs”). MViews allows efficient, compact representation as text forms (which
are edited using textual display views), program graph components (which are a finer-
grained representation but usually less efficient in terms of memory and persistent
storage), or a combination of both (possibly over-lapping).

text_base_comp provides methods to add, remove, find and update text forms
(add_text_form, remove_text_form, find_text_form and update_text_form). In addition,
text_base_comp provides methods for managing text forms when they are displayed in
textual display views. These include creating new text forms in a view
(create_text_view_form), displaying a text form in a view (display_text), and saving a text
form’s text to persistent storage (save_text). Textual display views can be associated with
text_base_comps and methods for managing these views include storing a default textual
view reference for the base component (default_text_view), displaying the default text
view when selected (text_selected) and unparsing updates from the base component
into the text form in a textual display view (update_text).

Chapter 6 An Object-Oriented Architecture for MViews Page 166

IspelM defines base classes and features as base_class and base_feature, both of which
are specialised from text_base_comp.

6.5. Subset and Display Components

Fig. 6.5. shows the structure and methods defined for subset and display components.
Subset components are implemented by subset_comp (i.e. are components of a subset
view) while display components are implemented by display_comp (i.e. are components of
a display view).

view_com

subset_co

base_change_attribute

base_update_attribute

change_attribute

update_attribute

uplift_attributes

undo_op

remap

redo_op

prepare_to_remap

map_element

discard_op

map

one_to_o

graphic_gl

dissolve

establish

point_arrow

parent_point

parent_arrow

parent

get_connection_poi

child_point

child_arrow

child

display_co

update_display

update_details

undraw_component

hide_component

init_details

draw_component

remove_base_component

text_disp_co

base_text

update_text

text_form

last_update

forget_latest_updates

find_updates_start

find_text_range

change_text_form

apply_update

graphic_disp_c

shift_location

select

double_clicked

deselect

graphic_ic

valid_glue

get_valid_glue

connect_icons

connection_point

add_icon_and_glue

glue

regio

rectangle

id

click_regio

fig. 6.5. Subset and display component structure and methods.

6.5.1. Subset Components

MVSL assumes a subset component will implement its own mapping operations to
establish relationships to base components. As this is a common operation for all kinds of
subset components, however, and since extra operations like remapping are required16,
subset_comp implements various mapping methods. These include mapping a subset

16Remapping is used when a programmer wants to change the details of a subset component and have it

mapped to a different base component (i.e. not update the base component the subset component is already

mapped to).

Chapter 6 An Object-Oriented Architecture for MViews Page 167

component to a base component (map), a deferred subset component-specific method that
actually does the mapping (map_component), and remapping of subset components
(prepare_to_remap and remap).

Subset components are usually created without being attached to a base component and
then try to map themselves to an appropriate base component using map. Subset
components may also not be mapped to base components if the base component they
were mapped to has been deleted. Systems such as Dora (Ratcliffe et al 92), Unidraw
(Vlissides 90) and the Object Design Editor (ODE) (Leidig and Mühlhäuser 91) require a
view component to always be attached to a model component (and thus must
automatically update view composition when models are deleted or no longer exist). This
automatic update may or may not be what a programmer desires and may result in
confusing or inappropriate view layouts and composition. MViews environments allow
programmers to determine changes to subset views rather than automatically trying to
update a view after an update.

Subset components implement a record_update method which sends their updates to
their enclosing subset view. The subset component’s view records the updates on itself
and its components (much as a base component records its updates) and uses them to
reverse or redo operations. Undo and redo of interactive manipulation is supported by
sending a subset component or view update records it generated to undo or redo. Update
records are discarded by subset views when they are no longer required for undo/redo
and this process can delete subset components no longer required (i.e. that have been
disconnected). This undo/redo mechanism is very generic (all basic operations are
handled automatically) and extensible (new operations simply record update records or
are built from a sequence of basic operations).

Subset components send update records to their display components by calling a subset
component method update_display(UpdateRecord). This method is implemented by
display components, which are specialisations of subset components (see below). Display
components and dialogues update subset components directly by sending them
operations. Thus the MVSL subset component to MVisual display component update
propagation mechanism is handled by update_display. The MVisual display component
to MVSL subset component update propagation is handled by display components (and
possibly dialogues) applying operations to subset components.

6.5.2. Display Components

Display components render a subset component in a graphical or textual form. As
discussed in Section 6.2., the MViews architecture defines display components as
specialisations of subset components. Thus a display component object actually includes
all of the data and methods for the subset component it renders. This mechanism explicitly

Chapter 6 An Object-Oriented Architecture for MViews Page 168

defines the relationship between a subset component and its display component rendering
(implicitly defined by MVSL and MVisual) as an inheritance relationship between
display_comp and subset_comp.

A display component renders its subset component state using draw_component and
removes this rendering using undraw_component. Display components can initialise and
update their subset component state using init_details and update_details which
typically use dialogues to modify subset component attribute values. hide_component
deletes the subset component for a display component from its view while
remove_base_component marks the base component for a display’s subset component as
removed.

A display component is drawn, undrawn or updated when its subset component sends it
update records. The display component decides on an appropriate action to take by
redefining the update_display method inherited from its subset component. A graphical
display component can have one or more “sub-components” related to it which comprise
part of its visual appearance. Sub-components are related to the display component using
relationships and can thus be sent update records when the display component changes
(they are dependent components). This allows a constraint system to be implemented to
control related display components, similar to systems provided by LOGGIE (Backlund et
al 90) and Unidraw (Vlissides 90).

6.5.3. Textual Display Components

Textual display components are a rendering of a text_base_comp text form.
text_disp_comp records the id for the text_base_comp text form they render as base_text.
text_disp_comp provides methods to change this base text form (change_text_form),
expand updates into the text form’s text from its base component (update_text) and apply
updates expanded from the base component (apply_update).

Textual display components have a “range” in their view determined by an updates_start
comment and the updates_start of their following component (or the end of the display
view’s window). Fig. 6.6. illustrates the text owned by text display component text forms.

Chapter 6 An Object-Oriented Architecture for MViews Page 169

/*updates_start(73).
update(1).% rename create to init
<...new updates expanded here...>
updates_end. */

class(window,
 parents([]),
 features([
 lpa_window(atom),
 buttons(list(button)),
 current_button(button),
 create,
 add_pic,
 chg_pic,
 del_pic,
 make_name,
 add_button,
 clicked,
 shift_clicked,
 make_current])).

class
"window"

class
"figure"

Display View

Update
Expansion

"Selected" Components
from (start/end of
 cursor selection)

Display
Components

Owning
Text

Range of
textual display
component
text forms

/*updates_start(57)
updates_end.*/

class(figure,
 parents([]),
 features([
 hide,
 draw,
 create,
 resize])).

fig. 6.6. Associating window text with textual display components, inserting updates, and
selecting textual display components.

The updates_start comment is also used to expand updates into a text view to inform
programmers of changes to base information (possibly) not yet reflected in the text view.
When a textual display component is updated, the update record is unparsed into a form
readable by programmers and inserted after the last update in its updates_start
comment. For example, the update record update_attribute(Feature, feature_name,

OldName, NewName) might be unparsed into the form % rename feature OldName to

NewName. The selected display components for a textual display view are those which have
some of their text (including their updates_start comment and update records) within the
cursor selection range of the text window. Fig. 6.6. illustrates how a text form is associated
with display components, how updates are expanded into a text form after the
updates_start comment, and how the selection range is determined.

Programmers usually treat textual program definitions as a series of tokens rather than
structures at a low level of detail (e.g. expressions and to some degree control structures),
suggesting a free-edited model of interaction rather than structure-edited as in the Mjølner
(Minör 90) and Dora (Ratcliffe et al 92) environments. MViews assumes textual display
components are “modified” by having their text changed by interactive text editing.

Chapter 6 An Object-Oriented Architecture for MViews Page 170

Textual display components can also be modified by selecting part of their text and
applying menu-driven operations (see textual display views below).

Sometimes updates need to be “forgotten” and not expanded after parsing a textual
display view, as a programmer is not interested in the change (as they are aware of it17).
When MViews actually applies an update to a view to update the text for a component18,
MViews uses incremental token parsing and substitution to perform the update (see
Chapter 7 for more details of this process).

IspelM defines class and method textual display components as class_text and
feature_text, both specialisations of text_disp_comp. These render base program text
forms for classes and features. Documentation text forms are provided for base classes and
features and more than one documentation form per component is supported (by
allowing multiple documentation text forms to be defined for a base component).

6.5.4. Graphical Display Components

MViews treats graphical display views as graph renderings made up of icons (nodes) and
connector glue (edges). Both of these graphical display components can have sub-
components representing part of a graphical display component. This representation
scheme suffices for most MViews environments which treat diagrams as “boxes and
glue”. Further extensions could be made to provide similar capabilities to Unidraw, which
supports arbitrary graphics, connectors and scalable glue (Vlissides 90).

graphic_disp_comp provides methods for selecting (select) and deselecting (deselect)
graphical display component renderings and methods to interpret click (double_clicked)
and drag (shift_location) editing operations on a display component. It also provides a
list of “click regions” (as click_regions) which can be used to determine where inside the
component rendering’s border a click occured. The manner in which a graphical display
component generates a rendering is assumed by the MViews architecture to be language
and user interface toolkit-specific.

Graphical programming of object-oriented systems usually manipulates actual program
structures (Ratcliffe et al 92) suggesting an interactive structure-oriented editing mode

17Usually this occurs when the change is made to this textual view and hence the programmer made the

change and doesn’t wish to be needlessly informed of it by an update record. This facility can be turned off,

however, so programmers are always informed of any change thus ensuring no “unintentional” changes

slip through.

18This “apply update” operation is typically done after programmer request but can be automatic.

Chapter 6 An Object-Oriented Architecture for MViews Page 171

rather than parsed as with GREEN (Golin and Reiss 90). MViews graphical display views
provide tools which are used to interactively edit graphical display components and their
subset component data.

6.5.5. Icons

Icons are connected by graphical glue which is attached at connection points on the icon
border or inside its rendering. graphic_icon defines methods allow icons to be connected
by glue (connect_icons), new icon and glue to be added (add_icon_and_glue), glue
connection points to be determined (connection_point) and glue validity to be
determined (get_valid_glue and valid_glue).

IspelM defines one graphical icon class_icon as a specialisation of graphic_icon.
class_icon defines MVSL subset class_icon data and methods (such as class_name and
kind) and provides methods which implement the MVisual interaction for class icons.

6.5.6. Glue

graphic_glue is used to connect icons and, in addition to being a graphic_disp_comp, is
also a specialisation of the one_to_one relationship class (see below). Glue implements
methods for determining icon connection points (get_connection_points, parent_point
and child_point), arrow methods (parent_arrow, child_arrow, and point_arrow) and
establish and dissolve methods for connecting class icons. Connector points on icons
(such as Prograph dataflow entity pins (Cox et al 89) and Unidraw slots and pads
(Vlissides 90)) can be implemented as sub-components, or icons being connected by glue
can supply connection points for the glue using the connection_point method.

IspelM defines generalisation, client-supplier and classifier glue as gen_glue, cs_glue and
cl_glue, all specialisations of graphic_glue.

6.6. Relationships

6.6.1. Relationships

MViews component relationships are modelled in the MViews architecture by the
relationship class. This is specialised into relationships of different arities. Fig. 6.7. shows
the relationship classes defined by MViews.

Chapter 6 An Object-Oriented Architecture for MViews Page 172

 relationship

reestablish
establish
dissolve

many_to_many

update_dependents
reestablish
parents
establish
dissolve
children

one_to_many

update_dependents
reestablish
parent
establish
dissolve
children

one_to_one

update_dependents
reestablish
parent
establish
dissolve
child

fig. 6.7. MViews relationship class structure and methods.

relationship defines methods that equate to MVSL establish, reestablish and dissolve
operations. Link relationships are modelled by the architecture as relationship
components with no additional attributes, relationships or methods of their own.

6.6.2. One-to-one

One-to-one relationships relate a parent component to a child component. one_to_one
implements establish, dissolve and reestablish for a single inter-component
relationship. These methods produce update records of the form
establish(RelComp,Parent,Child). The dependents of a one-to-one relationship are its
parent and child components plus any defined by dependents (inherited from component).

6.6.3. One-to-many

One-to-many relationships relate a parent component to one or more children
components. one_to_many implements establish, dissolve and reestablish for single-
parented multiple inter-component relationships. The dependents of a one-to-many
relationship are its parent and children components plus any defined by dependents.

6.6.4. Many-to-many

Many-to-many relationships relate one or more parent components to one or more
children components. many_to_many implements establish, dissolve and reestablish for
a multi-parented multiple inter-component relationships. The dependents of a many-to-
many relationship are its parents and children components plus any defined by
dependents.

Chapter 6 An Object-Oriented Architecture for MViews Page 173

6.6.5. Subset/Base Relationships

MViews base components can have zero or more subset components. MVSL assumes
these subset components provide update operations which translate base component
updates to subset component updates and vice-versa. The MViews architecture, however,
abstracts out this base component to subset component “update mapping” into
subset/base relationships. A subset/base relationship implements both the base
component to subset component update translation and the subset component to base
component update translation. Subset/base relationships are many-to-many relationships
thus allowing a subset component to be a composite “subset” of two or more base
components.

Subset/base relationships act as an interface between a base component and its subset
components and are dependents of both their base components and subset components.
Subset/base relationships receive updates from their base components and update their
subset components, if these subset components are interested in the base update, so the
subset components are consistent with their base components. Fig. 6.8. shows some
subset/base relationships for an MViews program and its views.

...

Base View
and Base Components

Subset Views and
Subset Components

Subset
Relationships

Display Views
(rendered in windows)

fig. 6.8. Some subset/base relationships connecting base components and subset components.

All subset components of the same kind for a base component are linked to a single
subset/base relationship object for the base component. For example, three class icons for
a base class in IspelM are linked to the same class icon subset/base relationship. This
allows for efficient update processing for each kind of subset component as only one
subset/base relationship processes a base update record for all subset components of the
same kind. Lazy propagation of base updates to subset components can also be supported
by recording base updates against subset components for later processing. This is useful

Chapter 6 An Object-Oriented Architecture for MViews Page 174

for subset views that are hidden and hence there is no point in immediately updating their
subset components and thus having the display components re-rendered (usually an
expensive operation as graphical user interfaces consume much processing power
(Dannenburg 91, Vlissides 90, Backlund et al 90, Minör 90)).

Subsets relationships are created by subset components and maintain relationships
between all their base components and subset components. Fig. 6.9. shows the
subset/base relationship structure and methods.

subset_rel

update_from_subset
update_from_base
update_from
dissolve
establish

many_to_many

viewable_base_comp

remove_subset_rel
add_subset_rel

parents

subset_comp

create_subset_rel
find_subset_rel

children

fig. 6.9. Subset/base relationship structure and methods.

The parent components of a subset_rel are viewable_base_comp objects (denoted by the
parents aggregation relationship in fig. 6.9.) and the child components are subset_comp
objects (denoted by the children aggregation relationship in fig. 6.9.). subset_rel
redefines establish and dissolve which create and remove relationships between base
components and subset components. subset_rel receives update records from its base
components and subset components. It calls update_from_base and update_from_subset
appropriately to map an update into a corresponding change in the related components.

The separation of subset components and base components by subset/base relationships
allows the same subset component to be connected to different (or the same) base
components using different subset/base relationships which transform base and subset
update records differently. For example, a bar graph display component illustrating the
run-time performance for part of a program could model any kind of base collection
component (hashtable, list, graph) using a different subset/base relationship to interpret
the base component data and update records (see Chapter 9 for further details). This bar
graph display component could also be used to animate a sorting algorithm using a
different subset/base relationship which transforms sorting algorithm update records into

Chapter 6 An Object-Oriented Architecture for MViews Page 175

bar graph operations (see Chapter 9). A subset/base relationship performs a similar task
to “watcher” objects in Tarraingim (Noble and Groves 93).

IspelM defines subset/base relationships for classes, features, generalisations, classifiers
and client-supplier relationships. Features are modelled as a special case of client-supplier
glue (a named and typed aggregate connection at the code (implementation) level) and a
client-supplier subset/base relationship translates between base features and base client-
suppliers to client-supplier glue.

6.7. Views

6.7.1. Views

MViews uses views to group base program graph components (base views), group subset
graph components of these base components (subset views) and to group renderings of
subset components as display components (display views). Fig. 6.10. shows the structure
and methods supported by different specialisations of views.

view

discard_op

redo_op

undo_op

remove_view_component

add_view_component

view comp

view

undo_op

redo_op

discard_op

components

base view

find_component_id

current_view

set_current_view

remove_subset_view

alloc_unique_id

add_subset_view

subset view

subset_focus

set_focus

make_current_view

focus

display view

update_details

remove_base_component

hide_component

expand_info

add_component_view

add_component

hide

display

visible

selected_components

paste

cut

copy

clear

graphic disp view

update_details

add_component_view

expand_info

remove_base_component

hide_component

add_component

add_icon

add_glue

text disp view

update_details

remove_base_component

hide_component

expand_info

add_component_view

add_component

parse_view

make default text view

locate_component

apply_updates

subset views

operation

undo

redo

name

discard

abort

operations

update record

values

component

kind

update records

fig. 6.10. View structure and methods for MViews.

Chapter 6 An Object-Oriented Architecture for MViews Page 176

Views maintain a one-to-many relationship to the components they enclose (components)
and provide methods to add and remove these components (add_component and
remove_component). Both views and their components support undoing, redoing and
discarding of update records by undo_op(UpdateRecord), redo_op(UpdateRecord) and
discard_op(DoneOrUndone, UpdateRecord).

6.7.2. Base Views

A base_view corresponds to an MVSL base view declaration. base_view maintains a one-
to-many relationship to all subset view objects held in memory with subset_views. A
current view (typically the subset view whose display view window is the front window) is
maintained in current_view and changed with set_current_view(SubsetView). Base
views allocate unique component id values for views and their components using
alloc_unique_id (so all component ids are unique for a given base view). A base view also
supports look up of component objects using this id with find_component_id.

base_view maintains a list of “history” operations used to implement undo/redo in
operations. An operation stores a list of update records generated by components for
each interactive editing operation (which may generate several update records) performed
on display views. Subset views and their components record the update records they
generate by sending them to their base view (using record_update). The base view can
then undo or redo these interactive operations on programmer request by sending the
update records generated by the operation to the creating component’s undo_op or redo_op
method as appropriate. discard_op is used when operations are no longer required
(typically a limited number are kept by the base view, as with Unidraw commands
(Vlissides 90)).

IspelM defines one base view to store object-oriented program data (which IspelM calls a
program). This class extends base_view to support component kind-specific look-up tables
to locate classes, features and predicates by name.

6.7.3. Subset Views

A subset_view contains several subset_comps which comprise a subset program graph,
and hence subset_view corresponds to an MVSL subset view declaration.

A subset view has a focus (the base component that “owns” the view), referred to by
focus, and a subset component that is linked to this focus component, referred to by
subset_focus. The subset_focus component can not be removed from the subset view
unless another subset component is designated the focus for the view (by set_focus). A
subset view can be made the current view by calling make_current_view which indicates
that editing operations are to be applied to this subset view’s display view.

Chapter 6 An Object-Oriented Architecture for MViews Page 177

6.7.4. Display Views

A display_view renders a subset_view in a textual or graphical form and hence is
equivalent to the MVisual notion of a display view. Display view components render
subset components and the display view is assumed to group these renderings in a
window (assumed to be provided by the implementation language/user interface toolkit
for MViews).

display_view is a specialisation of subset_view and hence behaves as a subset view
component as well as a display view component. A display_view may be shown or
hidden (i.e. its window shown or hidden) by display and hide and this display status is
indicated by visible.

A display_view provides methods for manipulating the display components it encloses.
These methods include cut, copy and paste of selected display components, adding
display components (add_component), hiding the subset components for selected display
components (hide_component) and removing these subset component’s base components
(remove_base_component), expanding selected display component information from the
base view (expand_info), updating a component’s details (update_details), and adding a
new view for a display component (add_component_view).

6.7.5. Textual Display Views

text_disp_view is a specialisation of display_view and is used to render textual display
components for a subset view’s components. A text_disp_view thus corresponds to an
MVisual textual display view. Textual display views are parsed to update the base
component information of their subset components using parse_view. A textual view is
composed of a linear sequence of text forms distinguished by updates_start comments. A
textual display component can be located given a cursor position in this text by
locate_component.

Textual display component text forms are manipulated by modifying their text using free-
editing operations. Menu-driven commands are used to modify the display components
and their subset components (such as add_component, hide_component, etc.). When a
textual display view’s subset view becomes the current view the textual display view
unparses any updates on its display components (i.e. inserts a human-readable form of
new base component update records into the text form text of its display components).
These updates can be applied to the text forms by apply_update.

IspelM defines one textual display view class_text_view which is a specialisation of
text_disp_view. This view is used to render class and method code and for viewing base
component documentation.

Chapter 6 An Object-Oriented Architecture for MViews Page 178

6.7.6. Graphical Display Views

graphic_disp_view is a specialisation of display_view and is used to render graphical
display components for a subset view’s components. A graphic_disp_view thus
corresponds to an MVisual graphical display view.

Graphical display views maintain a one-to-many relationship to graphical display
components (either icons or glue). New icons and glue are added to the display view with
add_icon or add_glue. Graphical display view components are manipulated via direct
manipulation using tools (which call hide_component, expand_info, etc.) or by dialogues.

IspelM defines one graphical display view class_diagram_view which is a specialisation of
graphic_disp_view. A class diagram view is used to represent and manipulate class
diagrams made up of class icons and generalisation, client-supplier and classifier glue.

6.7.7. View Composition and Layout

The composition of subset views is controlled by programmers adding and deleting
components to and from the subset view (via display view manipulations). Automatic
expansion of data from base components can be supported by subset components
interpreting base component update records or expanding base component information
when requested by programmers. For example, an IspelM class icon could expand all the
feature names of its base class by adding new feature names when its base class is
updated.

The layout of display views is controlled by programmers rather than automatic graph
layout algorithms, although these could be implemented by display views. ODE supports
automatic graph layout and expansion into views (Leidig and Mühlhäuser 91), as does
Graspin (Mannucci et al 89). EDGE (Newbury 88) also supports automatic layout with
users being able to modify graphs to suit their requirements using constraints.

MViews allows programmers to determine both the layout and composition of views and
informs them of changes to view data (by expanding update records or changing icon and
glue graphical appearance). It does not attempt to modify or correct subset view
inconsistencies nor graphical view layouts. MViews allows programmers to make
appropriate modifications in response to indications of the updates affecting subset view
components.

Automatic layout often produces unsuitable layouts when applied to frequently changing
graph-based diagrams (Paulisch and Tichy 90). MViews subset and display views are
typically used for applications which have a long life-span (for example class diagrams
and code) and automatic view layout for these applications would generally produce
large-scale re-layout which may confuse or hinder programmers (Paulisch and Tichy 90).

Chapter 6 An Object-Oriented Architecture for MViews Page 179

For this reason graphical display views do not currently support an automatic layout
algorithm. There is no reason why one should not be implemented for them, however, as
most algorithms use graph topology and icon and glue sizes, both of which can be
determined from MViews graphical display components and their renderings. Such
layout algorithms would be of great assistance for display views which are generated
frequently, such as for call graphs (Reiss 90b) and object debugging traces (Kleyn and
Gingrich 88).

6.7.8. Application Framework

Each MViews system may have one or more separate base views under construction.
Subset and display view components from one program may be copied to another using
display view cut and paste operations. Base component copying must be implemented in
an application-specific manner, as base components can have very complex inter-
component relationships, whereas inter-component relationships for subset and display
components are generally restricted to their enclosing view components and base
components. Each running MViews system has one application component which keeps
track of all base views. The application creates new programs or reloads old programs
from persistent storage.

6.8. Operations and Update Records

6.8.1. Operations and Update Operations

As discussed in Section 6.2., MVSL operations and MVisual updates are implemented by
class methods in the MViews architecture. Basic operations are implemented by methods
defined by the MViews architecture classes. For example, component defines
update_attribute(AttributeName, NewValue) to implement the update attribute
(Comp.AttributeName:=NewValue) operation from MVSL. display_view defines the method
display to implement the MVisual display update on “view” graphical entities.

Component-specific operations are defined by implementing new methods for the
specialisations of MViews architecture classes which use the basic operation methods
defined for MViews. For example, an add_feature(NewName,NewKind,NewType) operation
for base classes in MVSL could be implemented by the method
add_feature(NewName,NewKind,NewType) for base_class (where base_class is specialised
from base_text_comp). This add_feature method would create a new base_feature object,
establish a class.features relationship to the feature’s owning class and initialise the new
feature by calling an init(NewName, NewKind, NewType) method for base_feature (which
uses update_attribute to initialise feature_name, kind and type_name for base_feature).

Chapter 6 An Object-Oriented Architecture for MViews Page 180

The MViews architecture assumes an update_from method is implemented by components
to determine a component’s response to an update record. This update_from method
equates to update operations in MVSL and, given an update record, will apply operations
to a component which defines its response to an update record. This method might be
implemented by a case-statement on an update record’s kind and values (to determine a
sequence of methods to call to implement the update operation). The Snart
implementation of the MViews architecture uses a Prolog-style pattern matching on
update records, which are represented as terms (see Chapter 7).

6.8.2. Update Record Generation and Storage

After applying an operation to MViews components, the method implementing the
operation will generate an update record and call
record_update(UpdateRecord,UpdateName) to propagate (and possibly store) the change
this operation has caused to the component.

Fig. 6.11. shows uses the update_attribute operation to illustrate how an operation
generates an update record, how this update record is propagated to dependents of the
generating component by record_update, and how it is stored against the component
using store_update. This example uses base features and classes from IspelM to also show
how updates can be passed from a generating component to another component for
storage and propagation.

1. The update_attribute method is called for a base feature. update_attribute
changes feature_name to “calcValue”.

2. update_attribute generates an update record to describe the change done to the
base feature and calls record_update with this update record to indicate a change
has taken place.

3. record_update broadcasts this update record to dependents of the base feature (in
this case its owning class and feature subset/base relationships).

4. Upon receiving an update record from one of its sub-components (in this case a base
feature), update_from for a base class uses store_update to store the update record
received to document the change its sub-component (and hence itself) has undergone.

5. update_from for the base class also propagates the sub-component update record to
its dependents (in this case a class subset/base relationship).

6. The class subset/base relationship receives the update record from its base component
and sends it to its subset (in this case a class display component for a text view).

Chapter 6 An Object-Oriented Architecture for MViews Page 181

7. The class text display component unparses the update from its base component into
its text form’s text. For some updates, such as renaming of the class, this may also
generate operations (to change the display component’s class_name to that of its
updated base class name). This may generate further update propagation in a similar
manner to step 1.

1

2

feature
"calcVal"

class
"value"

class subset rel

feature subset rel

update_attribute(
feature_name,

calcVal,
calcValue)

Operation:

record_update

update_attribute(feature_name,
calcVal,calcValue)

/*updates_start
update(1). % rename feature
 calcVal to calcValue
updates_end.*/

class(value,
 ...
).

record_update

store_update

3

4

65

update_text

record_update

3

update_attribute(feature_name,
calcVal,calcValue)

record_update
class subset &
display comp

update_from_base

7

fig. 6.11. Generation, propagation and storage of update records by update_attribute.

6.8.3. Composite Update Records

Update records are generated by basic operations in MVSL and the corresponding
MViews architecture methods generate similar update records. For example,
CompID.delete generates update records of the form delete_component(CompID),
CompID.establish_rel(Kind, CompID, Child) generates establish(NewRel, CompID,

Child) and so on.

Methods defined for specialisations of MViews architecture classes can also generate their
own “composite” update records, if required. For example, the method call
Icon@shift_location(NewX, NewY) for a graphic_icon object generates a
shift_location(CompID, DX, DY) update record when an icon is dragged interactively.
This corresponds to generating two update_attribute records update_attribute(CompID,
X, OldX, NewX) and update_attribute(CompID, Y, OldY, NewY). These two basic update
records are still produced for any dependents who only want to be informed of the change
in state of one of an icon’s location attributes. The composite update, however, is generally
more useful for sub-icons and glue which only want to know the change in an icon’s
location and hence need only provide update response processing for a shift_location

Chapter 6 An Object-Oriented Architecture for MViews Page 182

update record. Chapter 10 discusses extending this composite update record system to
provide automatic composite update record generation from basic update records.

6.8.4. Update Record Propagation

Update records generated by MViews methods are propagated to all dependents of the
generating component. These dependent components may invoke further methods in
reponse to these update records which in turn may generate further update records for
propagation. Fig. 6.12. illustrates how an operation method sent to a display component is
propagated to change the MViews program state. The steps in the propagation are:

1. a. Textual view is updated by typing, and parsing gives parse tree to subset/base
relationship (located via display/subset component associated with text form) and
subset/base relationship updates base component.

 b. Graphical or textual view component is updated by direct manipulation, menu or
dialogue.

2. Method call for display component translated into method(s) call for subset
component (if necessary) by display component.

3. Method call for subset component generates update records which are sent to its
dependents (subset/base relationships) which interpret these update records with
update_from (which calls update_from_subset).

4. Subset/base relationship’s update_from_subset method translates subset component
update records into base component method calls if the base components are affected
by these subset component updates.

5. Base component stores the update record (if required) using store_update.

6. Dependent components of base component sent update records generated by base
component’s methods (these dependent components include subset/base relationships
of the base component, if any).

7. Subset/base relationships interpret base update records and determine if their subset
components need updating. update_from_base calls subset component methods if
necessary.

8. Subset component’s methods record their update records and record_update sends
these update records to display components by calling update_display for the
display components.

Chapter 6 An Object-Oriented Architecture for MViews Page 183

9. Display components either re-render themselves in response to the update records
sent to update_display or expand these update records into a human-readable form
to indicate changes affecting them (using update_text).

display
component

base
component

dependent
base component

textual
display

component

subset
component

update
records

1a

1b

2

3

4

5

6

7

8

6

6

Flow of updates

Dependency
Relationship

MViews
Component

8

7

subset
component

subset
component

subset
rel subset

rel

subset
rel

graphic
display

component

99

Same Object

fig. 6.12. Flow of change after a display operation is performed.

After applying an operation to a subset (or display) component, the component’s
enclosing view records the update record generated to implement undo/redo. This
undo/redo mechanism is currently sequential and global i.e. updates must be undone in
reverse order to how they were applied and must be undone across all views (thus
MViews supports undo as a history of operations, similar to Unidraw). A useful extension
would be to allow updates to be undone and redone in an arbitrary order, and “generic”
updates to be applied as a group to a view, as in PECAN (see Chapters 7 and 10 for more
discussion of such facilities).

Chapter 6 An Object-Oriented Architecture for MViews Page 184

6.8.5. Constraints, Semantic Attribute Recalculation and Lazy Updates

When a component is modified by a method call (operation), constraints can be checked to
ensure the operation is valid. These can be defined by over-riding the operation method in
a sub-class or by over-riding record_update in a sub-class. The MViews architecture
supports a facility to abort partially applied operations if constraint checking fails. Any
update records stored by an operation object are then deleted and their effects reversed (in
the same way as undo). For example, if an IspelM base class is renamed to the same name
as some other class, an error message can be displayed and the rename (update attribute)
operation aborted.

As all dependent components are notified of a component update, any dependent part of
their state can be recomputed to reflect the change (attributes recomputed, constraints
checked or the component marked for deletion). This provides a data-driven/event-
driven mechanism similar to attribute grammars (Reps and Teitelbaum 87) and Garlan’s
dynamic view updates (Garlan 87) and Wilk’s lazy consistency management (Wilk 91).
Update records sent to a component could also be stored for lazy interpretation when a
value affected by the change is required, or this update record interpretation could be
deferred until a programmer requires computation to be performed (i.e. demand-driven
evaluation).

A component receiving an attribute update record can use update_from to update its own
attributes which depend on the updated attribute (in the other component or even itself).
This provides a data-driven scheme where object dependency subsumes attribute-
dependency in a similar manner to attribute grammars. An extension to this approach
could provide a table which maintains a list of <Attribute,<Object,Attribute> list>
pairs for all of attributes which depend on other <Object,Attribute> values. This would
support data-driven attribute recalculation in a similar manner to (Reps and Teitelbaum
87), possibly with an incremental recalculation algorithm (Hudson 90).

The MViews architecture allows update records received by a component to be stored.
The component can then be marked as “has updates needing actioning”. Combined with
the above approach of attribute dependency, this allows lazy and demand-driven attribute
updating and object dependency propagation schemes to be implemented. Accessing an
object attribute would cause any unactioned updates to be processed, possibly computing
a new value for the required attribute. Alternatively, updates can be processed when
received, but mark dependent attributes (and, transitively, any of these attribute’s
dependents) as “need recomputation”. Accessing a “needs recomputation” attribute
would cause it to be recomputed before being returned (i.e. it is lazily re-evaluated).

Cyclic dependencies are permitted but no automatic detection of this is currently
assumed. Unidraw uses a similar model for a dataflow state variable propagation

Chapter 6 An Object-Oriented Architecture for MViews Page 185

mechanism (Vlissides 90) but checks for cycles by storing a list of all visited components
resulting from an initial attribute update. Such a model could be employed by MViews
when an attribute is changed to detect cyclic dependencies and either stop the change
propagation or flag an error.

6.9. Discussion and Future Research

In this section we evaluate the MViews architecture with respect to program
representation and manipulation, view and view component representation and
manipulation, and operation and update record support. Possible future extensions to this
architecture are also discussed.

6.9.1. Components

This component class captures the basic notion of an MVSL component. This representation
works well for defining basic operations, component attributes and for representing
update records. It also provides a flexible scheme for composing component-specific
operations which make use of basic operations (and other component-specific operations)
via method calls. This scheme does loose some of the abstractness (though not
expressiveness) of MVSL when describing relationships and update operations.
Relationships must be represented as a combination of attribute value (with a relationship
component type) and specialisations of (or parameterised) relationship classes.

For example, class.features must be represented as an attribute of type one_to_many
relationship component. The value of class.features is thus a one-to-many relationship
to feature and class.features.children gives the list of features owned by a class.
Establishing and dissolving such a relationship requires establish_rel and dissolve_rel
for a component to be over-ridden to call establish and dissolve for one_to_many for
class.features. The MVSL description of class.features from Appendix D allows such
a relationship to be expressed and manipulated more succinctly.

Similarly, to implement update operations, the MViews architecture must over-ride
update_from and implement a case-based selection on update record kinds and values.
This is less abstract than describing update record responses with MVSL but once again
does not actually lose any power of expression (all update responses from MVSL can still
be described using the MViews architecture).

6.9.2. Base Components

The MViews architecture describes MVSL base elements and relationships by
specialisations of base_comp. These specialisations define extra attributes and methods for
supporting text form management, subset/base relationship, component and view
management, and delayed base component removal. MVSL components are thus not only

Chapter 6 An Object-Oriented Architecture for MViews Page 186

described as specialisations of base_comp but also as specialisations of base components
with extra characteristics as appropriate.

One disadvantage of this approach is that an MVSL base component must be described by
an MViews architecture class specialisation which “knows” about its viewing mechanism.
For example, MVSL does not require a base class to know whether it has text forms or any
subset components at all but assumes MVSL subset views and MVisual display views and
components define these notions. A further disadvantage is that the MViews architecture
currently assumes components which have text forms (which may or may not have textual
view renderings) can also have graphical view forms. A better structure for the base
component classes to solve these problems might be to specialise base_comp to
graphic_view_base_comp, text_form_base_comp, and text_view_base_comp. MVSL base
components could then be modelled as specialisations of one or more of these classes (i.e.
multiple inheritance) as appropriate or even all three (if no assumptions about the kind of
base component viewing are made).

6.9.3. Subset and Display Components

The MViews architecture describes MVSL subset components as specialisations of
subset_comp and MVisual display components as specialisations of display_comp (which
are themselves specialisations of subset_comp). This scheme works well for most
applications and provides a concrete, implementable relationship between a subset
component and its display component using specialisation. For environments where a
subset component can have several different display components this scheme is not as
abstract as MVSL and MVisual. A specialisation of subset_comp can be defined with
multiple specialisations from itself and display_comp to represent this situation. This
requires more effort than an equivalent MVSL/MVisual specification as methods may be
over-ridden by both the subset_comp specialisation and display_comp specialisations (and
thus require some form of reconciliation under multiple inheritance).

6.9.4. Views

MVSL views are defined by the MViews architecture as specialisations of view with
display_view defined as a specialisation of subset_view. As with subset and display
components, this subset and display view representation scheme works well for
modelling most environments described with MVSL and MVisual. Specialising
display_view into text_disp_view and graphic_disp_view provides a natural way of
expressing the kind of rendering the view supports. The architecture must provide
appropriate methods for display view interaction, however, which define MVisual
component manipulation assumptions (for example, display component addition and
details updating).

Chapter 6 An Object-Oriented Architecture for MViews Page 187

6.9.5. Relationships

relationship models MVSL relationships and is specialised to relationships of one-to-one,
one-to-many and many-to-many arities. Subset/base relationships abstract out the base to
subset and subset to base translation of update records into component operations
(method calls). Partial automation of this update propagation can be provided by a
mapping of base component attributes and relationships to subset component attributes
and relationships and vice versa.

Extending this relationship representation scheme to explicitly define part-of relationships
would assist in implementing automatic update record propagation via transient
dependencies (Wilk 91). The MViews architecture assumes an object-oriented
implementation language will support multiple inheritance (so the relationship classes
can be reused in conjunction with other component specialisations). This could be modelled
by a relationship component attribute in such specialisations (i.e. relationship objects
whose methods are called by the component specialisations they are created for) but this
would not be as natural as the architecture’s approach.

6.9.6. Operations and Update Records

MVSL basic, component-specific and update operations are modelled as record_update
and update_from methods. This update record propagation mechanism is very flexible
and provides an efficient method of implementing view updating and attribute
dependencies. Storage of update records allows components to document their changes
and supports a generic undo/redo mechanism.

6.10. Summary

The MViews architecture has been developed to abstract out the common features of
environments which support multiple textual and graphical views of a program with
consistency management. This architecture provides a set of reusable components based
on the concepts of Chapter 5 which allows MVSL and MVisual environment specifications
to be modelled as specialisations of appropriate MViews architecture classes. IspelM can
be defined in terms of this MViews architecture by specialising classes to describe
program representation as graphs (base components and view), views of these program
graphs (subset and display components and views), and operations and update responses
for each kind of component (using methods and method over-riding). The MViews
architecture provides additional classes and class attributes and methods for supporting
concepts of MViews environments. These include base component classes with methods
to manage views and text forms, display components for textual display components
(including update unparsing and application) and graphic display components (including

Chapter 6 An Object-Oriented Architecture for MViews Page 188

icon and glue support), and display views (including textual and graphical renderings of
program fragments).

Novel aspects of the MViews architecture include its use of the component class to model
generalised object dependency graphs. These graphs are used for representing program
structural and semantic information in the same manner. Subset graphs are represented in
the same way as base program graphs and display views and components are defined as
specialisations of subset views and components. MViews solves the textual view
consistency problem in a novel manner by unparsing update records stored against base
components and can automatically apply some of these updates to text forms on
programmer request. Components can determine their response to update records sent via
the object dependency mechanism and this can be used for general object dependency
(attribute recalculation etc.), constraint maintenance, and efficient subset and display view
updating. Storage of update records supports a generic undo/redo facility and
documentation of program component changes.

This object-oriented architecture for MViews can be used to create an object-oriented
design for environments specified with MVSL and MVisual. Such a design requires an
implementation to produce an environment and thus an implementation for the MViews
architecture is necessary. Chapter 7 discusses an implementation of the MViews
architecture in Snart which produces an object-oriented framework for MViews. Chapter 8
uses this architecture to produce a design for IspelM and uses the Snart framework to
produce an implementation of this design for IspelM and SPE.

Chapter 6 An Object-Oriented Architecture for MViews Page 189

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 191

Chapter 7

An Object-Oriented Implementation of
MViews

Chapter 6 described an object-oriented architecture for MViews systems based on the
model and specification languages in Chapter 5. To construct executable environments
this architecture must be implemented using a programming language. In this chapter an
implementation of MViews as an object-oriented framework in Snart is described. This
framework provides a set of classes that support the component structures and operation
methods described in Chapter 6. New environments specialise these Snart classes to
implement their own program representation, subset and display views and components,
user interface, persistency management, and interfaces to existing compilers and run-time
systems and/or the static and dynamic semantics of a language.

The reasons for implementing MViews as a Snart framework and advantages of choosing
this implementation language over comparable approaches are discussed. The
implementation of each type of component from Chapter 6 is described with particular
attention to Snart-specific implementation decisions. The framework is evaluated with
future extensions and alternative implementation approaches for MViews briefly
discussed. Chapter 8 reuses the object-oriented architecture of Chapter 6 to model IspelM
and reuses the Snart framework to implement this IspelM model and to specialise IspelM
to produce SPE.

7.1. A Snart Framework

Development of the MViews architecture commenced with a denotational semantics
specification of the graph representation of program state and the operations performed
on that state (defined in Chapter 5). From this specification MViews class hierarchies were
derived for the object-oriented architecture of Chapter 6. Class responsibilities and
services were determined from MVSL and MVisual operations and updates and the
MViews and IspelM architectures implemented.

These design and implementation processes were concurrent with feedback between each.
This evolutionary software development implied a need for a language supporting

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 192

experimental programming. Some aspects of both MViews and IspelM were not easy to
determine without a prototype implementation (particularly user interaction through
display views and persistency management for programs). The architecture used to model
MViews in Chapter 6 is object-oriented, assuming multiple inheritance, encapsulation of
data and behaviour, and polymorphism. It is thus more natural and easier to implement
this architecture in a language supporting such concepts, rather than non-object-oriented
languages, such as C or Pascal.

Prototype implementations of MViews and IspelM were initially attempted using Quintus
Prolog’s ProTALK on a DECstation 2100 (see Chapter 3 and (Quintus 91)) and THINK C (a
C++-like language on the Macintosh (Symantec 91)). The object-oriented facilities of
ProTALK were not at all satisfactory and difficult to use and its environment very
rudimentary. THINK C provided only simplistic object extensions to C and was difficult
for prototyping due to its strongly typed nature (forcing many long compilations when
class hierarchies were changed). Both languages provided little high-level support for
prototyping or constructing user interfaces. Quintus Prolog’s X-windows interface
facilities were very low-level while THINK C provided the THINK Class Library (TCL)
framework for accessing the Macintosh Toolbox facilities. Both required major effort to
build even simple user interfaces compared with LPA MacProlog and these interfaces
proved much less flexible or extensible.

As discussed in Chapter 3, Snart was designed to be a simple language combining
Prolog’s untyped, logic programming facilities inside an imperative object-oriented
structure. Snart was designed to be fast in execution time, have efficient object storage,
and have an extended environment for object-oriented programming. Its simplicity
compared with other available prototyping languages (Smalltalk (Goldberg and Robson
84), CLOS (Keene 89) and ProTALK) is an advantage together with complete control over
Snart’s implementation. For some aspects of our work Snart itself evolved to support a
dynamic object tracing facility for dynamic program visualisation and visual debugging
(see Chapter 9), and object persistency management to experiment with transparent
MViews program persistency.

Although Snart is essentially untyped, Snart program structures could be ported to
strongly-typed languages such as Eiffel, C++ or Kea. The high-level support for building
graphical user interfaces in LPA MacProlog and incremental compilation inside the LPA
environment help make Snart an excellent rapid-prototyping language. While MViews
could be implemented in other object-oriented languages, such as Protalk, C++
(Stroustrup 86), Smalltalk or CLOS, we determined that Snart would be a suitable
implementation language for an experimental prototype.

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 193

7.2. MViews Framework Complexity

Table 7.1. shows the breakdown of code in MViews. In addition to implementing the
MViews architecture classes from Chapter 6 the Snart implementation of MViews
provides groups of Prolog predicates which implement:

• basic persistency management (for reading and writing terms and objects to
files)

• LPA MacProlog menus and dialogues and support predicates
• unparsing predicates and classes for data structure support
• class interfaces to LPA MacProlog window processing predicates

MViews Components Lines

component
 view_comp

370
280

relationships
 subset_rel

231
212

base_comp
 viewable_base_comp
 text_base_comp

120
328
338

subset_comp 397
display_comp
 text_disp_comp
 graphic_disp_comp
 graphic_icon
 graphic_glue

101
390
169
196
381

view
 base_view
 subset_view
 display_view
 text_disp_view
 graphic_disp_view

172
388
570
267
532
985

application 275
dialogues and menus 581
persistency support 456
undo/redo support 550
misc. (unparsing, data structures) 454

Total: 8743

table 7.1. Complexity of the MViews implementation.

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 194

7.3. Components

7.3.1. Component State

All component classes from the MViews architecture are implemented as Snart classes. A
Snart class interface defines generalisation classes, attributes, and methods (operations) for
each kind of component. Snart allows attribute and method names to be Prolog variables
which are bound at run-time. For example, a call of the form Comp@Attribute:=Value is
valid if Comp and Attribute are bound to appropriate values at run-time. The Snart
framework implements component attributes as object attributes, rather than a one-to-
many relationship to attribute objects, as defined by the architecture in Chapter 6. This
attribute representation is both space and execution time efficient as a component object
needs no extra objects to represent its attribute values. Operation methods are
implemented as Snart methods with method arguments supplying information used by
the operation. Relationship component objects are accessed via object attributes with
establish_rel and dissolve_rel methods supplied to manipulate component
relationships. One-to-one relationships can also be implemented by Snart object attributes
directly referencing other component objects.

The Snart framework currently assumes component objects are referenced by their Snart
object id or an application-specific unique component identifier. Component classes can
define a unique_id method which is used by the base_view to look-up components for a
program. When a component is reloaded from persistent storage a new Snart object is
created for it. unique_id provides a component reference which exists across different
reloads of a component as different Snart objects, and thus can be used by relationships
and attributes representing relationships to refer to components.

7.3.2. Update Records

Update records are represented as Prolog terms of the form UpdateKind(Component,
Value1, ..., Valuen). Terms are used rather than objects for efficiency and because all
update record processing is provided by components rather than the update record itself.
Thus update records need not be represented with an object-oriented structure (i.e. we
need only store data and not data and behaviour).

Fig. 7.1. shows some Snart code from the MViews component class implementation. The
component class name is prefixed by “mv_” to distinguish it from classes belonging to
specialisations of MViews.

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 195

abstract_class(mv_component,
 parents([]),
 features([
 dependents:list(mv_component),
 updated:boolean,
 id:integer,
 ...
 get_attribute,
 update_attribute,
 ...
 record_update,
 update_dependents,
 update_from,
 set_updated,
 ...
])).

% Get an attribute value
%
mv_component::get_attribute(Component,Attribute,Value) :-
 Component@Attribute(Value).

% Update attribute
%
mv_component::update_attribute(Component,Attribute,NewValu
e) :-
 default_value(Component,Attribute,nil,OldValue),
 Component@Attribute:=NewValue,
 Component@record_update(

 update_attribute(Component,Attribute,OldValue,NewValue)
,'Update Attribute'), !.

% Record update against component
%
mv_component::record_update(Component,Update,Name) :-
 Component@set_updated,
 Component@update_dependents(Dependents),
 mv_broadcast(Dependents,Update,Component).

mv_broadcast([],_,_) :- !.
mv_broadcast([Dependent|Dependents],Update,Component) :-
 Dependent@update_from(Update,Component),
 mv_broadcast(Dependents,Update,Component).

% Return all components dependent on changes to this
component
%
mv_component::update_dependents(Component,Dependents) :-
 default_value(Component,dependents,[],Dependents).

% Component has been updated
%
mv_component::set_updated(Component) :-
 Component@updated:=true.

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 196

% Process Update/AppUpdate from another component
%
mv_component::update_from(Component,Update,FromComponent).

fig. 7.1. Part of the component class implementation in Snart.

Attributes are updated by calling Comp@update_attribute(Attribute, NewValue) for some
component Comp. Update records are generated by calling record_update(UpdateRecord,
UpdateName) with a Prolog term representing the update. Update records are broadcast to
all dependents of a component (returned by Comp@update_dependents(DependentsList))
and these dependents interpret the update record with
update_from(UpdateRecord,FromComponent). The Snart framework provides more
flexibility than MVSL for designating dependent components. Some relationships can be
designated to relate dependents to a component (via over-riding of update_dependents)
and some components can be made dependents dynamically (by calling
add_dependent(Component) and remove_dependent(Component)).

Snart methods are executed in the same manner as Prolog predicates and several method
implementations can be defined for the same method name. This supports an abstract
implementation of update_from by defining an update_from method implementation for
each kind of update record (and update record values) a component should respond to.
This supports MVSL update operation selection (dependent on update record kind and
number and type of values) via declarative Prolog “pattern-matching” using multiple
method implementations for update_from. Fig. 7.2. shows an example component
update_from method that responds to different update record kinds and values. The last
update_from method implementation passes the update record to the update_from method
for the parent class of comp for processing.

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 197

comp::update_from(Comp,update_attribute(Comp,name,OldName,
NewName),Comp) :-
 % i.e. update_attribute of name on Comp itself
 ...
comp::update_from(Comp,update_attribute(SubComp,name,Old,N
ew),SubComp) :-
 % i.e. update_attribute of name on a sub-component of
Comp, SubComp
 SubComp@comp_kind(comp2),
 ...
comp::update_from(Comp,delete_comp(SubComp),SubComp) :-
 % sub-component of Comp deleted
 ...
comp::update_from(Comp,establish(Rel,Parent,Comp),Rel) :-
 % relationship Rel established between Parent and Comp
 Rel@comp_kind(rel_comp),
 ...
comp::update_from(Comp,UpdateRecord,FromComponent) :-
 Comp@parent_update_from(UpdateRecord,FromComponent).

fig. 7.2. Update operation implementation in the Snart framework.

store_update stores update records as terms but uses an additional method
app_update(UpdateRecord, AppUpdateRecord) to convert an update record into an
“application-specific” form. Any update records stored for a component must use the
component’s unique_id, rather than the component’s Snart object reference. A unique_id
must be used as stored update records are saved and reloaded and thus must not directly
refer to Snart object ids which may change when components are reloaded. A declarative
get_update_text method implemented for each component returns a list of atoms which
are printed to describe the human-readable form of an update record. This is used for
update record browsing and as the unparsed form of an update record in a textual display
view.

In addition to the methods defined by the MViews architecture, component implements
methods for list attribute management. List attributes are implemented as Prolog lists and
can be used instead of one-to-many relationship components for very efficient one-to-
many relationship implementation. A component must over-ride establish_rel and
dissolve_rel, however, to manage such “list” relationships.

7.4. Base Program Components

7.4.1. View and Base Components

view_comp is implemented as a Snart class which inherits from component. base_comp
inherits from view_comp and specialisations of base_comp (i.e. base components which are
not viewable) are implemented by inheriting base_comp.

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 198

7.4.2. Viewable Base Components

viewable_base_comp uses a list attribute subset_rels for its subset/base relationships as
object references. References to the subset views a base component owns are stored as a
list of Prolog terms of the form ViewName(Location) where ViewName is the name of the
view and Location is used to locate the view’s persistent form. Subset views a base
component is viewed in are stored as a list of subset view unique_id values. A dialogue
allows programmers to browse and select the views a base component is represented in.
These representations were used rather than relationship components to support very
efficient subset view and relationship management.

7.4.3. Textual Base Components

Text form data for text_base_comp is stored as Prolog terms in a component_text list
attribute. As with update records, storing text forms as objects is not necessary, as text
forms only store data and are manipulated entirely by their owning base component19. A
persistent storage location describes how to find the text associated with a text form and
this text is displayed as the rendering of the base component in a textual display view.

7.5. Subset and Display Components

Fig. 7.3. shows the extended subset and display component hierarchies and methods.

19Hence using an object-oriented representation for text forms is not required. This flexibility of using Snart

objects or Prolog terms to store data proved very useful for both MViews and IspelM. Typically, objects are

used for MViews component data and terms for “structured” data associated with components (i.e.

“complex” attribute values).

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 199

display_comp

update_display

undraw_component

draw_component

text_disp_comp

delete_tokens

add_tokens

replace_tokens

change_tokens

next_token

find_tokens

update_text

apply_update

undraw_component

draw_component

graphic_disp_comp

undraw_component

draw_component

is_icon

is_glue

shift_location

select

get_picture

deselect graphic_icon

graphic_glue

view_comp

subset_comp

reconnect_component

disconnect_component

create_subset_rel

find_subset_rel

relink_subset

discard_op

redo_op

undo_op

calc_view_name

base_deleted

base_update_attribute

term

picture

term

frame

fig. 7.3. Extended subset and display component classes for the Snart framework.

7.5.1. Subset Components

subset_comp defines remap_on_reload to remap a reloaded subset component to a base
component possibly using the base component’s stored update records to update its own
state. The Snart framework permits in-core subset components only to be updated
immediately when base component changes are made (for efficiency). remap_on_reload
can be used to reconcile a reloaded subset component’s state to the base.

base_deleted implements an efficient deletion method for subset components when their
base view has been deleted (i.e. the current program closed by a programmer). undo_op,
redo_op and discard_op implement declarative methods similar to update_from which
determine how to reverse, reapply or discard an update record. relink_subset is used
when a subset component is reloaded from persistent storage or copied using copy or cut
to relink subset component relationships as new Snart objects are generated.
find_subset_rel and create_subset_rel locate and create subset/base relationships for a
subset component by their Snart class name. disconnect_component and
reconnect_component remove and add a subset component to its enclosing subset view.

7.5.2. Display Components

display_comp uses a declarative form of update_display to determine if a display
component should be re-rendered or not. Specialisations of display_comp can take further
action on update records, for example only re-rendering part of their display (incremental
updates) or unparsing an update record to indicate a change.

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 200

7.5.3. Graphical Display Components

Graphical display components are rendered as GDL pictures of arbitrary complexity. One
display can be composed of several sub-display components which render different parts
of a base and hence can be interacted with separately. These sub-displays are created and
deleted by their “parent” and are dependents of their parent (hence they are notified of
any changes their parent undergoes via update_from and can update their own state
accordingly). The default action of update_display is to always re-draw the display
component entirely (i.e. undraw_component and then draw_component). All
graphic_disp_comp operations are implemented using GDL predicates with data stored in
the graphic_disp_comp object.

When interactively selecting display component MViews needs to know if a mouse click
or marqui selection has covered a component’s picture. LPA’s picture location predicate
uses only the front picture item in a composite picture and this proved very
unsatisfactory. MViews implements a selection mechanism using a frame defined by each
class of graphical display component and determines whether the click-point is inside this
frame or selection encloses the frame. Click-points within the frame can be defined using a
list of terms of the form Name(Top,Left,Height,Width) stored in click_regions.

7.5.4. Textual Display Components

draw_component for text_disp_comp inserts the text of a base text form into a textual
view’s text window and undraw_component removes this text. This text processing uses
LPA text window manipulation predicates. update_display called by the
text_disp_comp’s subset component indicates base component update records are
available for unparsing into the text. update_text is called to perform this unparsing
(which uses the base component’s declarative get_update_text method) and writes the
token list returned into the text window.

Token processing for incremental application of updates is performed with LPA text
window manipulation predicates and Prolog pattern-matching. These token manipulation
methods include find_tokens, add_tokens, replace_tokens and delete_tokens.
find_tokens incrementally parses each Prolog token in the view at a time and returns a
match based on a given regular expression (or fails if a match can’t be found). The
matched tokens are returned as a list of terms of the form
(TokenStart,TokenEnd,TokenValue) where TokenStart and TokenEnd delimit the token’s
range in the window and TokenValue is a Prolog atom describing the token’s value. The
returned token list can be used by other token manipulation functions to change the text in
the view which thus applies the update record to the view. Fig. 7.4. shows an example
find_tokens method call for a textual display view where a class definition start is being
searched for (which may be text of the form “abstract_class(Name” or “class(Name”).

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 201

TextDisplayComp@find_tokens(
 [[abstract_class,’(‘, Name],
 [class,’(‘,Name]],
 [NameToken])

/* updates_start(78).
update(5). % rename window to gwindow
updates_end. */

class(window,
 parents([]),
 features([
 name:string,
 ...
])).

Name = window
NameToken=(78,83,window)

Method Call:

Prolog variables returned:Textual view contents:

fig. 7.4. An example of find_tokens for a textual display view.

7.6. Views

Fig. 7.5. shows extra methods and structure for views. The Snart framework view class
provides methods to manage view component creation
(create_component(Kind,Component)) and to translate a component’s object reference to
and from various forms (used for persistency management, schema evolution and
framework specialisation). component_to_kind(Component,Kind) and
kind_to_component(Kind,Component) translate a view component’s Snart object id into its
comp_kind value and vice-versa. If this kind has been renamed (i.e. an implementer of an
MViews environment changes this value) these methods can be over-ridden to translate
an old kind into an appropriate new comp_kind value.

Abstracting this component creation facility into view classes supports framework
specialisation (for example, SPE specialised from IspelM) where specialised classes must
create and manipulate classes from the same framework level as themselves. For example,
SPE might define an spe_program, a specialisation of program from IspelM, which needs to
manipulate spe_base_class, not base_class from IspelM (as spe_base_class extends
base_class for Snart programming). spe_program can over-ride kind_to_component so any
unspecialised IspelM classes used by SPE create the correct spe_base_class object.

Additional methods are provided to translate component objects to references (i.e. returns
the Snart object id and its comp_kind which can be used to recreate and relink components
with a list of terms of the form OldRef(NewRef)) and vice-versa using
component_to_ref(Component, Kind(Ref)) and ref_to_component(Kind(Ref),

OldRefList, NewRefList, Component). Similarly, component_to_unique(Component,

Kind(UniqueID)) returns a component’s unique_id/comp_kind pair while

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 202

unique_to_component(Kind(UniqueID), Component) creates a component object given its
unique_id and comp_kind.

subset view

display_view

rename_view

set_focus

base view

kind_to_view

view_to_kind

find_component_id

reload_subset_view

current_view

alloc_unique_id

subset view

display view

make_current_view

menus

lpa_window

location

font

create_window

text disp vie

forget latest updates

process_term

done_parse

init_parse

parse_view

graphic disp vie

shift_pictures

redraw_components

view

process_menu_item

create_component

unique_to_component

ref_to_component

kind_to_component

component_to_ref

component_to_kind

component_to_unique

operation

undo

redo

discard

abort

update_records

operations

fig. 7.5. Extra view methods and structure for the Snart framework.

7.6.1. Base View

The base view records the current_view as an attribute and all subset view components
currently in memory as a list attribute subset_views (for efficiency). Components can be
located by their unique_id and loaded from persistent storage (for example, by calling
reload_subset_view) when accessed, by find_component_id. The base view allocates
values for unique_id methods with alloc_unique_id.

A base view stores a list of editing operations (as operation objects) using operations and
these are used to provide a global undo/redo facility. An editing operation is composed of
a list of update records that are sent back in sequence to their generating components for
undo/redo. A base view also stores a list of subset views using subset_views. This allows
all in-core subset views to be accessed from the base view.

7.6.2. Subset Views

A renamed subset view must inform its display view of this change by calling
rename_view so it can rename its LPA window. When the focus of a subset view is
changed by set_focus the subset view may need to be deleted from one place on
persistent storage and saved to another (depending on how subset views are stored).

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 203

When a subset view or one of its components is updated, any update records generated
are recorded as a list of update record terms in an operation object, which the base view
stores as a list attribute operations. After an Undo menu item is selected, the previous
editing operation is reversed by reversing each of its component update records by calling
undo for operation. Each update record is sent to its generating component for reversal (by
calling methods which reverse the update record’s change). A component may pass an
update record to its parent class for reversal.

7.6.3. Display Views

Subset views are specialised to display views. All display views have an associated LPA
window referred to by name using a string attribute lpa_window. Display views also
provide additional support for window manipulation using create_window, font and
location.

7.6.4. Textual Display Views

Textual display views use an LPA text window to display the text associated with base
component text forms and LPA text window predicates are used for manipulating this
text.

Parsing Support

parse_view is called to parse an updated textual display view. MViews assumes a Prolog
syntax for text views and uses LPA window processing predicates to read terms and
identify text forms. Each term read in is given to process_term which uses the textual
display component that “owns” the term to compute changes in a base component.
Methods are called for the base component to change its state to be consistent with the
parsed text. Programmers are usually aware of the changes made to the text view and
hence don’t need to be informed of them via update records. Thus these base updates
caused by parsing can be “forgotten” by a text component by calling
forget_latest_updates.

The main complication with parsing involves identifying the text form which “owns” the
term (i.e. the text form which encloses the term read in). Textual display views provide a
locate_component method which, given the end position of the read-in term, locates the
display component whose text form encloses the term. Originally the framework had
updates_start as a term itself and the parser identified the “owning” display component

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 204

from its ID stored as updates_start(ID)20. This approach, however, means any existing
language compiler (for example, the Snart compiler) can not read and compile the text
window, as extra terms are present it doesn’t understand. The current approach just adds
updates as comments which are ignored by the standard Prolog term parser but are used
by MViews textual display views and components.

Unparsing

Base information is unparsed into a text view when: a new textual display component is
added to the view; a text form is generated when first displayed; or update records are
applied on components in the view. Textual display components store the base text form
id they render and this text form is generated by base components when required. A
simple unparser provides predicates to write information based on a “template” into a
given text window. This uses base component information to generate text and lays it out
in an application-specific way. Garlan’s flexible unparsing scheme (Garlan 86) and the
unparsing grammars of the Mjølner environment (Minör 90) provide similar facilities
based on unparsing languages for abstract syntax grammars.

Applying Updates

To have MViews apply an update to a view a programmer: selects the update records to
apply using mouse selection; or asks for all updates records for the selected display
components to be applied. MViews determines the update records to apply by reading
their update(Number) part and then applies each update record in sequence to the view. If
an update record can not be applied (either the textual display component does not
implement an application for the update kind, or the view’s text has been changed by the
programmer so the update is no longer able to be applied21) its update record is left. If the
update was applied successfully (i.e. the text changed), then its update record is removed
from the view.

20In fact, the ID was originally unparsed as an application-specific name, for example “window” or

“window::create”. This approach means only one text form per base element can be displayed in a text view

at one time. Thus a documentation text form could not be displayed with a code text form (hence the use of

a textual display component ID now).

21IspelM can automatically apply such updates as renaming classes and features, adding or removing

features from a class or deleting a class or feature from a view. Adding client-supplier relationships to a

class can not be automatically applied (as they are implemented as feature calls) nor an update applied if the

view’s text has been altered (for example, a class or feature already renamed by the programmer and a

rename update record is applied using its old name).

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 205

7.6.5. Graphical Display Views

Graphical display components may receive several update records from their subsets that
result from one editing operation. For example, if a client-supplier glue component has
two or more attributes changed via a dialogue, it will receive an update_attribute update
record for each attribute change. These graphical display components need only be re-
rendered once, however, for efficiency.

Graphical display views store a list of their components which require redrawing using a
redraw_components list attribute. Graphical display components are entered in this list by
add_redraw_component(Component) and are then marked as “being redrawn” by setting a
boolean flag redraw for the component. A graphical object may be entered in the
redraw_components list several times before is actually redrawn.

Graphic display views provide tools for manipulating display components. Each tool is
implemented as an LPA graphics window tool which calls a graphic view method when
selected, deselected, or there is a click in the window. MViews uses LPA predicates to
implement mouse processing, dragging of pictures, marqui selection, rubber-banding and
text editing and graphical display views provide these facilities as methods.

Copying and pasting graphical objects is more complex than copying text. Selected
display components are duplicated and references updated to the copied objects (using
component_to_ref from the display view). When pasting objects, the copied components
must again be duplicated and then added to the new view, their references updated, and
then be redrawn. The MViews framework does not currently support the copying of base
data in this manner, but calls remap on the pasted components to relink them to the base or
to recreate base data.

7.7. Relationships

7.7.1. Relationship Classes

Relationship components are modelled by relationship and its specialisations. They can
also be modelled by component or component list attributes, if desired. The advantage
with modelling relationships as component classes is that they support component
methods, and can hence be referred to directly, made dependents of other components,
and be dynamically purged and reloaded from persistent storage. Multiple inheritance
between Snart classes is used to define base and subset components as base and
subset/base relationships.

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 206

7.7.2. Subset/base relationships

The subset_rel class translates subset component update records into operations on their
base component(s) if the base components are affected by the subset component updates.
It also translates base component update records into subset component operations if the
subset components are affected by the base updates. Updating a component attribute,
establishing or dissolving component relationships, and creation and deletion of a
component are all operations that may need to be propagated between a base component
and its subset components.

As a base component may have several subset components in several views. As updating
a subset component and re-rendering its display component is often costly, only subset
components in the current (front) view need be immediately updated. If a subset/base
relationship receives update records from a base component and one or more of its subset
components are not in the current view, the update records received are stored against the
subset components’ views until they become the current view. Then any components with
updates are modified in the normal way22. Subset views record a list of update records
and affected subset components to implement this process.

Currently the default subset_rel class propagates updates to in-core subset components.
Reloaded subset components are reconciled to their base component state using
remap_on_reload. This is used so MViews systems can support many subset components
for one base component with little impact on interactive performance when updating
these subset components. Sub-classing subset_rel can over-ride this default behaviour if
necessary.

subset_rel supports semi-automatic propagation of base and subset component attribute
updates using a base_to_subset method. base_to_subset can be redefined in
specialisations of subset_rel to define base component to subset component attribute
mappings. base_to_subset returns a list of terms of the form
BaseAttribute(SubsetAttribute) which is assumed to map base component attributes to
their subset component equivalent. For example, base_class from IspelM might define
class_name and kind and so might class_icon, hence a class_icon_subset_rel mapping
of [class_name(class_name), kind(kind)]. The default behaviour of subset_rel is to

22The updates could be processed in the background using idle time, similar to the incremental attribute

recalculation schemes of [Reps and Teitelbaum 87] and [Hudson 91]. LPA currently does not provide such

idle time processing facilities so MViews processes these delayed updates “on-demand” (when an updated

view is made the current view).

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 207

translate between these base and subset component attribute updates automatically, but
this can be over-ridden in sub-classes to support different attribute mappings.

7.8. Operations and Updates

7.8.1. Update Record Generation and Storage

The record_update(UpdateRecord,UpdateName) method is given update records as Prolog
terms and a human-readable name describing the update as an atom.
store_update(UpdateRecord) numbers each stored update record sequentially and stores
these update records as terms. store_and_record_update stores an update record and also
propagates it to the storing component’s dependents. This is useful for sub-components
that do not store update records themselves.

7.8.2. Update Record Propagation

Subset views implement undo and redo by recording a sequence of update records in an
operation object and the base view maintains a list of these operations which forms an
“editing history”. An editing history browser dialogue is provided by MViews which
allows several updates to be undone or redone at one time. This is implemented by
displaying a menu of operation names and allowing a programmer to select an update
record to undo or redo up to.

Update records are unparsed and printed in textual display views and an update record
browser dialogue as required. User-defined update records of the form
user_update(Tokens) can be added arbitrarily to document changes at a user-defined
level of abstraction. Extra comments can be associated with update records via the
updates browser and these are stored as a list of atoms. Update records are deleted by the
update record browser on user request or by MViews components (for example, when
semantic errors corrected or a new class compilation in IspelM performed). Update
records can also be moved to a component’s “update history”. These history update
records are not shown unless a programmer specifically asks to view them23. This
improves efficiency when a base component stores many update records and allows
programmers to view only recent update records they are currently interested in.

23Which leads to a concept of “active” update records associated with an element and “history” update

records documenting old changes to the component.

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 208

7.8.3. Constraints and Semantic Calculation via Operations

Sub-classing allows constraints and semantic calculation to be associated with operation
methods. In IspelM, a feature sub-class of an MViews base class can implement operations
for renaming the feature, attaching the feature to a class and changing the feature’s type.
The methods for these operations can include Snart code which ensure, for example,
features of a class have a unique name and the type for a feature is valid (either one of the
pre-defined Snart types or a class name).

7.8.4. Lazy Application of Update Records

The Snart framework provides support for lazily processing update records. On receipt of
an update record a component can record it in a list of update records stored in
lazy_updates. These update records can be processed together at a later date by calling
apply_lazy_updates for the component. This is useful for generating composite update
records which reflect more than one basic operation on a component and for determining
update record responses which depend on more than one update record.

For example, one approach to generating a shift_location(DX,DY) update record for
graphical display components might be to store update_attribute update records for the
x and y attributes of the component. After the editing operation on the graphical display
view has finished MViews can call apply_lazy_updates for any updated graphical display
components. If update records of the form update_attribute(Comp,x,OldX,NewX) and
update_attribute(Comp,y,OldY,NewY) are in the lazy_updates list for the component, a
new update record shift_location(DX,DY) (where DX=OldX-NewX and DY=OldY-NewY) can
be generated and propagated and the two update_attribute records discarded.

Care needs to be taken when using lazy update application and propagation that mutually
dependent components receive update records at appropriate times (otherwise their states
may be incompatible until all lazy update records have been processed). Chapter 10
discusses enhancements to MViews which would provide improved support for lazy
update processing.

7.9. User Interaction

Users interact with MViews programs via display views, with each display view having
its information rendered inside an LPA window. The front LPA window denotes the
current view and all editing operations are applied to this view.

In addition to display views, programmers interact with MViews through menus and
dialogues. Menus provide a structured mechanism to apply operations to display, subset
or base views. Display views interpret LPA menu selection events sent to them using a
declarative process_menu_item(MenuName,ItemName) method. process_menu_item method

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 209

decodes the menu selection and calls appropriate methods for the display view or selected
display view components. If the display view does not handle the selection,
process_menu_item calls process_menu_item method for its subset view (renamed by
Snart), which in turn may call process_menu_item for its base view or application. This
menu selection propagation allows menu processing to be handled by the most
appropriate view. LPA menus for different kinds of display views can be enabled and
disabled by calling menus, called when the display view’s subset view becomes the current
view (see Appendix A).

An LPA dialogue is comprised of interactors including text fields, editable text fields,
radios and check boxes, menu selections, and buttons. Dialogues are defined using LPA
dialogue manipulation predicates (see Appendix A). Dialogues either return entered
information, display information they are given, or update component objects directly
using method calls.

7.10. Persistent Program Storage

Programs must exist from one invocation of an MViews environment to another. The
MViews architecture assumes no special method of storing program data but the Snart
framework provides three approaches of differing levels of abstraction.

7.10.1. Term Data Files

The lowest level of persistency management uses “term data files” which provide a basic
mechanism for saving and loading Prolog terms to Macintosh resource files. Various
predicates are provided which create, open and close term data files and read, write and
delete terms in data files using resource ids.

LPA does not provide any Prolog term read and write facilities for resource files but
provides atom read and write facilities (i.e. text sequences up to 255 characters). MViews
extends this facility so terms can be read and written to resource files by:

• writing a term to an LPA text window
• saving the window as a sequence of atom resources
• reading a sequence of atom resources into a text window
• reading a term from the text window

Resource files are used rather than reading and writing of Prolog terms to text files for
efficiency and so random access using a resource id can be used. This allows many terms
to be saved in the same file and hence increases efficiency (less files need to be opened)
and terms can be read, written and deleted in any order. The Macintosh resource manager
maintains the resources and handles garbage-collection and resource file compaction.

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 210

7.10.2. Component Persistency Methods

Direct use of term files is not very abstract so MViews augments the component hierarchy
with extra methods to save and reload components. Components provide a save_data
method which returns all their data that needs to be made persistent as Prolog terms and a
load_data method that rebuilds the component from its persistent data on reload. save
and load are called to write and read a component (and possibly its sub-components) to
and from persistent storage. Semantic attribute values can be saved in the same manner as
program structure (as they are stored in the same form) or can be recalculated when a
component is reloaded. Relationships are saved as components or as attributes (if
represented as Snart object attributes or list attributes). save and load use the term data
file predicates and a resource id to save and reload component data.

If Snart object references are used to relate components these must be saved in some
persistent form and object references re-established on reload. The component_to_ref and
component_to_unique methods associated with views and the base view’s unique id look-
up tables support this relinking process. A unique id typically stores the component’s type
and a unique id number allocated by the base view for every component. It can also
contain the unique id for any parent component needed to locate the component. For
example, the unique id for a feature in IspelM is of the form feature(ClassID,FeatureID).

An MViews program need only be partially in memory at one time. Only some related
components need be in-core and components can be purged (written to persistent store if
updated and then deleted from memory). This allows some of a program’s views to be
cached and some of the program to be loaded. An MViews environment must ensure
appropriate view and program information is reloaded when required and this is
currently assumed to be managed in an application-specific manner (either by reloading a
component when accessed or reloading groups of sub-components for a component).

Some MViews components can be partially in-core (i.e. have only some of their attributes
and relationships in-core) and have only updated information saved. This incremental
saving and loading of component data is supported by augmenting the base component
operations with group management operations. Groups are identified by name and can be
saved and load independently.

MViews allows for schema evolution when an environment’s program storage is modified
or extended as new tools or facilities are added. The save and load methods can use a
version number to identify the format of reloaded data and take different restore actions
for different versions of a component’s structure.

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 211

7.10.3. Snart Object Persistency

A third method of storing component data uses the Snart object persistency mechanism
described in Chapter 3. This is very language-specific as it assumes the implementation
language is a “persistent language” with objects saved and reloaded when required. This
is the most abstract approach to program persistency but the limitations of the current
Snart object persistency mechanism mean only one program can be open at a time (as
multiple object stores are not currently supported).

7.11. Discussion and Future Research

7.11.1. Component Class Implementation

As the MViews architectural model is object-oriented it translates well into a framework of
Snart classes. Storing component attributes as Snart object attributes works well and has
proved an efficient way to implement the component attributes used by the MViews
architecture. Relationships as object references and lists of object references also provide
an efficient way to implement one-to-one and one-to-many relationships. The main
disadvantage with using attributes to model relationships is that establish_rel and
dissolve_rel methods must be implemented to manage them and generate appropriate
update records. One solution to this problem might be to define extra methods for
relationship attribute and list attribute processing which generate establish and dissolve
update records.

Environment program representations are implemented by sub-classing Snart component
classes and defining appropriate attributes, relationships and methods to store data, relate
components, and provide specialised component operations. This works well for defining
the structure and some semantic relationships between components of a program. More
complex semantics, in particular the behaviour of programs as opposed to static
constraints, are not so easy to implement in this framework. Combining MViews program
structure storage with an attribute grammar or similar semantics specification approach
may alleviate these problems. This is the approach taken by the SByS structure-oriented
editor (Minör 90) and the approach assumed by Kaiser’s attribute grammars (Kaiser 85).

While it is reasonably easy to specialise the Snart framework to implement an
environment, a declarative specification language like MVSL may still be useful. Such a
language could be used to generate MViews framework classes which could then be
further specialised to express operations and data in ways not easily done by MVSL or for
reasons of efficiency.

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 212

7.11.2. Operations and Update Records

Implementing the MViews architecture class methods as Snart methods was a natural
approach to providing basic operation methods and component-specific operation
methods. The use of a declarative update_from method achieves a level of abstraction close
to that of MVSL’s update operations for defining a component’s response to update
records.

Implementing update records as Prolog terms proved an efficient and flexible approach.
Originally these were implemented as objects, but this proved slow and cumbersome.
Classes had to be defined for each kind of update record (thus forming a hierarchy),
objects created and initialised for every update record then propagated by calling
record_update, and matching an update record object could not use as abstract a form of
update_form. This process caused a large performance over-head. As we used update
records we determined that associating functionality with them (i.e. an object-oriented
approach to storing update records) was not particularly useful. Most often functionality
was dependent on the kind of component using the update record, not the update record
kind. Thus components now implement update record creation (by calling
record_update), reversal (undo_op), redoing (redo_op), and discarding (discard_op). Sub-
classing allows the behaviour of update record treatment to be modified for
specialisations of a component class.

MViews assumes environments treat undo as a history of reversible (and redoable) update
records. If undo is to be treated as an editing operation itself (i.e. an undo is undone by
another Undo operation), sub-classing the base view can provide this. Allowing updates to
be undone and redone in an arbitrary order, and allowing a group of updates to be
applied to a generic component to implement macros, would be useful. To implement
such facilities, each component’s update record undo_op and redo_op methods would need
to ensure such an operation is valid before performing it. Such a system would need to
provide some mechanism of informing programmers of “invalid” updates, i.e. updates
that couldn’t be undone/redone as they no longer make sense (due to undo/redo of
previous or subsequent updates). Chapter 10 discusses this further in the context of
version control using update records.

7.11.3. User Interaction

Dialogues and Menus

Interaction with MViews environments is via display views or menus and dialogues.
Using LPA dialogue and menu predicates directly works well but is a problem when
dialogues and menus need to be specialised. Specification using absolute screen co-
ordinates is also not as abstract as an interface builder supporting interactive dialogue

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 213

construction (see Chapter 9). Provision for defaulting field values and checking entries
after editing dialogue fields would be very useful. A better correlation between display
views and dialogues may also be useful (i.e. treating dialogues as display views with
dialogue-style interactors).

Textual Display Views

Textual display views provide a novel method of integrating free-edited textual program
detail with interactively-edited, high-level program data. Textual views are assumed to
have a Prolog-readable format and hence parsing uses a Prolog-supplied read predicate
on text windows. Unparsing is done either by generating a text form (when creating a new
text form) or incrementally on a text form when updates are applied to a view. This
parsing/unparsing support is sufficient for systems using a Prolog-based textual view
syntax but needs substantial enhancement to support more general parsing (possibly
using Definite Clause Grammars (LPA 89a) or a yacc-like parser generator front-end).

As noted in Chapter 4, textual interaction is simplistic with textual displays providing
basic text editing operations and menus supporting access to subset and display
information. A text editor incorporating both structure-oriented and free-editing modes,
similar to the UQ2 editor (Welsh et al 91), would allow a more natural and useful editing
of high-level program structure. Currently unparsing and parsing are disjoint activities, as
are generating a new text form on creation (for example, a class definition’s text) and
automatically applying updates to a text view (by modifying its text). A closer relationship
between these two forms of unparsing and parsing would make specification of textual
views easier and more extensible (for example, all based on a grammar). Extending textual
display views to support hyper-text links for fast navigation and structure-oriented
editing may be useful but would necessitate a much more sophisticated treatment of text
windows. Fine-grained textual forms are supported in a limited way but improved textual
annotation capabilities would enhance this support24.

Using an existing text editor rather than the built-in LPA text editor would provide a more
extensible environment with users being able to select their preferred editor. This
approach, however, would not allow users to expand other text forms into a view or
selectively apply updates as easily. A similar facility could be built using editors such as vi
or emacs by writing interface code between the editor and MViews to perform the changes

24Fine-grained textual support means allowing parts of a term to be linked to different base components (i.e.

more than one “updates_start” link for each term). This would be useful for filtering out more term

information and also for multiple views of parts of a term (for example, for supporting views of pre- and

post-conditions, similar to Eiffel [Meyer 88, 92]).

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 214

on the views’ text (for example, using shell-scripts or C code). The user interface provided,
however, would not be as seamless as that of the current environment.

Graphical Display Views

Graphical displays could be extended to support a Unidraw-like diagram editor model
whose generic facilities would allow a wider range of graphical editors to be constructed
more abstractly than at present. Automatic layout of graphs (Tammassia et al 88, Paulisch
and Tichy 90, Mannucci et al 89), scalable glue and connector pins, and “parsing” of
graphical representations (Golin and Reiss, 90) would all enhance the power of MViews
graphical display views.

Browsing and Complexity Management

One aspect of the MViews framework that requires further enhancement is its support for
browsing and complexity management. This can be built out of dialogues and display
views, as has been done for IspelM, but little support is given directly at the MViews level.
Implementing such capabilities have proved very important to the useability of SPE and
hence more appropriate building blocks should be provided at the MViews level. This
could include generic classes or predicates that implement menu dialogues for component
browsing, support for partial base component viewing at the subset and display
component levels, and filtering mechanisms (active constraints) based on component
attribute values (useful for class responsibilities for IspelM).

7.11.4. Persistent Program Storage

One problem with the Snart framework is its handling of program persistency. Experience
with developing IspelM has shown that using save and load methods associated with
component classes is a less than ideal mechanism for storing programs. The disadvantages
of this approach include:

• Difficulty in implementing specialised component save/load operations.
Ensuring that all required data is in-core for a component is often quite difficult
as is relinking Snart object references using unique id values. For example,
when mapping a subset view-level feature to a class IspelM must ensure the
class is in-core and the required feature is in-core. No facilities are currently
provided by the framework to automatically reload components when accessed.

• Coarse-grained saving is used where data is converted from Snart object form to
savable data (using save_data). While this allows for a declarative reload
predicate, thus supporting schema evolution, extending an environment to
support new tools using the same base data is complicated. The base
components must reload the saved data in the same form as stored, thus a tool
not requiring some data still must reload it all.

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 215

• Look-up tables and relationships must be converted to and from persistent
forms. This process should be automatic but if Snart object references are used
these must be converted to and from a persistent form.

• Shared program data and version control are not supported and only one
MViews environment can work on a program at a time. This makes multi-user
development impossible and limits the size of systems that can be built.

Programs developed using Dora are stored in memory as C++ objects and are saved in a
PCTE object store using database commands (Wang et al 92). GARDEN uses an object-
oriented database management system which also supports transaction processing (Reiss
86). GARDEN objects are migrated to persistent storage as database objects and reloaded
as in-core objects for efficiency. Unidraw writes internal diagram components (stored as
C++ objects) to text files in a catalogue. EDGE (Newbury and Tircher 90) and
Dannenburg’s list system (Dannenburg 90) assume a text file representation scheme which
is parsed to reload data. Persistent languages treat run-time entities as persistent objects
which survive beyond one execution of a program with completely transparent saving
and reloading of data (Sajeev and Hurst, 92). A combination of these approaches may be
useful for MViews program persistency (see Chapter 10).

The Snart framework does not currently support different versions of the same program,
as do the Mjølner environments (Magnusson et al 90, Minör 90), nor does it provide
selective base program views for different tools as do MELD (Kaiser and Garlan 87) and
Dora (Wang et al 92). Version control, configuration management and multi-user program
updates are not supported. Chapter 10 discusses extending the Snart framework to
provide version control using update records, configuration management, and distributed
multi-user programming.

7.11.5. Implementation Language

Snart proved to be a good implementation language for MViews. Object-oriented support
including very flexible multiple inheritance was almost essential for developing the
framework. Integration with LPA predicates provided a large amount of ready-built
support, particularly for graphics and user interface building, which greatly enhanced the
development process. Declarative predicates for update operation processing
(update_from), undo and redo of update records (undo_op etc.), converting update records
to different forms (app_update and get_update_text), and applying update records
(apply_update) greatly simplified the implementation of MViews and its derivatives.
Backtracking via predicate failure proved useful for operation abortion and some
constraints checking. As some implementation of the MViews and IspelM frameworks
was experimental programming, with changes to classes and the model being frequent,
the choice of Snart for implementation proved worthwhile.

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 216

MViews could be implemented using a different Prolog (for example, Quintus with
ProTALK (Quintus 91b) or LPA with Prolog++ (Pountain 90)) or similar experimental
programming language such as CLOS or Smalltalk (Goldberg and Robson 84). It could
also be implemented in a strongly-typed object-oriented language such as Eiffel or C++.
Attributes would need to be stored as objects and their value types checked at run-time, as
done with an earlier version of MViews implemented in THINK C. This would allow
attribute names to be determined at run-time for methods like update_attribute.

The main disadvantage with strongly-typed languages is that support for the declarative
aspects of MViews is not directly provided. It is also much more difficult to modify the
hierarchy or method arguments (as many classes must be recompiled) in an experimental
way. As the MViews and IspelM models and frameworks have reached a point of some
stability, however, it is unlikely such major changes as occurred during their development
are as likely if implementation in another language is performed. The improved
performance from a strongly-typed language would be of great benefit for developing
larger software systems.

Update records can be implemented in other languages as either objects, record-style
structures, or “terms” stored as lists of values. While most other languages do not provide
Prolog’s unification-style pattern-matching, a similar processing of update records can be
done using case statements or by implementing a unify function.

7.12. Summary

MViews has been implemented as a framework of Snart classes. This object-oriented
implementation supports the MViews architecture’s abstractions and allows new
environments to be developed by appropriate specialisation of this framework. Basic class
groups include base components for program representation, subset and display
components for viewing and rendering part of a base program component, and views for
grouping program graphs and interactively modifying program renderings. Component
attributes and some relationships are stored as Snart object attributes and operations
implemented by methods. Update records are stored as Prolog terms and are interpreted
by declarative methods. Additional support includes saving and loading of data to
Macintosh resource files, declaratively specified dialogues and menus using LPA, parsing
and unparsing of text as Prolog terms, and generic textual and graphical program
manipulation methods.

Novel aspects of this implementation include the treatment of update records as Prolog
terms generated and processed in a declarative style. Update record terms are used to
document change (stored as application-specific terms), ensure view consistency and
provide object dependency propagation, describe textual form updates in a human-
readable form (update records are used to generate a Prolog atom list which is printed),

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 217

and support a generic undo/redo facility (by recording a list of component object update
record terms). MViews’ object dependency scheme also provides a mechanism for
supporting data-driven and lazy attribute recalculation.

Many extensions to the Snart framework are possible. These include more abstract
component persistency with shared access to programs, improved textual and graphical
editor construction facilities, and extended support for update records and language
semantic calculation. This framework is sufficient to demonstrate that the MViews
architecture is realisable by an implementation, and that MViews abstractions can be
reused to implement environments supporting multiple textual and graphical views with
consistency management. Chapter 8 describes a model for IspelM using the MViews
architecture and an implementation of IspelM and SPE using the Snart framework.
Chapter 9 illustrates how both the MViews architecture and its implementation can be
reused to extend IspelM and SPE and to construct other environments which support
integrated textual and graphical views of information.

Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 218

Chapter 8 Architecture and Implementation of IspelM and SPE Page 219

Chapter 8

Architecture and Implementation of IspelM
and SPE

Chapter 4 described the user’s perspective of the Snart Programming Environment.
Chapter 5 discussed how the common aspects of multiple textual and graphical views
with consistency could be factored out of SPE and similar environments to produce the
MViews model. Chapter 6 used this model as the basis for an object-oriented architecture
for designing such environments by reusing the MViews model. Chapter 7 presented a
Snart framework implementing the architecture of Chapter 6 and thus demonstrated that
MViews is realisable by an implementation.

In this Chapter we demonstrate that the major aspects of SPE can be factored out into
IspelM to produce a generic environment for programming object-oriented languages. An
object-oriented architecture for IspelM is developed by specialising classes from the
MViews architecture. This model describes how object-oriented programs are stored, the
different views of a program provided, support for browsing and complexity
management, and incremental saving and loading of programs. An implementation of
IspelM using the Snart framework from Chapter 7 is briefly discussed. The IspelM
implementation is further specialised to support Snart programming including integration
with the existing Snart compiler and run-time system (described in Chapter 3). The IspelM
architecture, its implementation, and the SPE implementation are evaluated and future
extensions proposed.

8.1. IspelM Architecture

Chapter 5 introduced IspelM, a generic software development environment for object-
oriented languages supporting multiple textual and graphical views of an object-oriented
program. The MVSL specification for IspelM defined base class and feature elements and
base generalisation and client-supplier relationship components. Subset views and
components included class diagram and class code views, class icon and feature text
elements, and generalisation and client-supplier glue relationships. MVisual defined the
display view renderings and interaction mechanisms used by IspelM.

Chapter 8 Architecture and Implementation of IspelM and SPE Page 220

As Chapter 5 noted, there is not sufficient information in the MVSL and MVisual
specifications to automatically generate an implementation for IspelM. To design an
implementation for IspelM the object-oriented architecture described in Chapter 6 can be
reused. This design is based on the MVSL and MVisual specifications in Chapter 5 and
Appendices D and E.

8.1.1. Overview of the IspelM Architecture

IspelM’s components can be described as specialisations of different classes from the
MViews architecture. Fig. 8.1. illustrates the basic specialisations used to describe IspelM.

cl_glue

gen_glue

cs_glue

object_icon

class_icon

feature_text

class_text

base_cluster

base_cl

base_cs

base_gen

base_feature

base_class

program

class_text_view

object_data_view

class_diagram_view

subset_relmany_to_many

one_to_many

one_to_one

relationship

text_base_comp

viewable_base_comp

base_comp

component

subset_comp

view_comp

text_disp_comp

display_comp graphic_icon

graphic_glue

graphic_disp_comp

base_view

view

subset_view

graphic_disp_view

text_disp_view

display_view

fig. 8.1. The basic component classes for IspelM.

In fig 8.1., the MViews classes are the abstract classes defined by the MViews architecture.
The IspelM classes are shown on the far right as specialisations of different MViews
classes. As the MViews architecture is used to model MVSL and MVisual components as
classes, appropriate specialisation of these classes allows IspelM to model its components
as classes. Also defined by IspelM, but not shown in fig. 8.1., are various subset/base
relationship components, which are specialised from subset_rel. The IspelM classes are
described in the following sections.

Chapter 8 Architecture and Implementation of IspelM and SPE Page 221

8.1.2. Base Clusters

Clusters are used to group classes according to a common purpose and are introduced by
the IspelM architecture. For example, if IspelM were to store an SPE implementation,
cluster groups may include “MViews classes”, “IspelM classes”, “SPE classes”, and “Misc.
classes”. Clusters are not currently viewable in IspelM and thus base_cluster is described
as a specialisation of base_comp. Fig. 8.2. shows the basic cluster structure and operations.

base cluste

remove_class

do_compile

cluster_name

add_class

program base comp

base classclasses

components

fig. 8.2. Base cluster class structure and methods.

8.1.3. Base Classes

Base Class Components

IspelM defines base class elements to store information about each class of object for an
object-oriented system. IspelM models MVSL base class elements as a base component
class base_class. Base classes can have subset components in subset views and can have
textual forms. Thus base_class is defined to be a specialisation of text_base_comp from
the MViews architecture. text_base_comp supplies structure and methods to support
subset views, subset components and text forms for base_class.

 Fig 8.3. shows the structure of base_class and the methods supplied for manipulating
class data, components, interface compilation, and views. This diagram groups related
attributes, relationships, and methods in generalisation “classes” for base_class to reduce
the cognitive complexity of the diagram.

Chapter 8 Architecture and Implementation of IspelM and SPE Page 222

base class

class views

view_name

class data

kind

class_name

update_attribute

class compile

compile_error

do_compile

needs_compiling

set_updated

class element

dissolve_rel

establish_rel

remove_gen

remove_feature

remove_cs

remove_cl

find_gen

find_feature

find_cs

find_cl

add_gen

add_feature

add_cs

add_cl

base feature

features

base cl

classifiers
base cs

client supplier

base gen

gens

text base comp

all feature

type

owning_class

owner_name

name

kind

all features

base class

specs

fig. 8.3. Base class structure and operations.

Base Class State

Base class attributes and relationships defined by MVSL are modelled as class attributes
and relationship components in the IspelM architecture. Structural class information
includes a one-to-many relationship to the features owned by the class as features, which
corresponds to the MVSL declaration features : one-to-may feature from Chapter 5.
Other relationships and attributes include: generalisation relationships to parents of the
class as gens to base_gen component relationships (i.e. gens : generalisation.child); the
class name (class_name) and its kind (kind) as attributes; a one-to-many relationship to
specialisation classes as specs (i.e. specs : one-to-many class); client-supplier
relationships to associated classes as client_suppliers to base_cs relationships (i.e.
client_suppliers : client_supplier.parent), and the complete class interface (i.e. all
inherited and owned features for the class) as all_features to all_feature components
(i.e. all_features : one-to-many all_feature). An additional kind of class-to-class
relationship is the classifier, used to define how a class can be classified to its sub-classes.
This can be used to model classification for languages such as Kea (Hosking et al 90) and
Snart (see Chapter 3)) or used for analysis in such systems as OMT (Rumbaugh et al 91).

Chapter 8 Architecture and Implementation of IspelM and SPE Page 223

Base Class Component-Specific Operations

Structure management operations defined by MVSL are modelled as methods for
base_class. These methods support initialising new components and relationships and
establishing relationships to them by over-riding establish_rel and defining
add_feature, add_cs, etc. These methods correspond to the add_cs and add_feature
operations from the MSVL specification for base class elements which use basic
component and relationship operations. The IspelM architecture methods reuse methods
defined by classes from the MViews architecture. For example,
Comp@update_attribute(Attribute, New) is used for the MVSL operation Comp.Attribute
:= New and Parent@establish_rel(Kind, Parent, Child, NewRel) for establish(Kind,
Parent, Child, NewRel).

Additional base class structure methods include removing relationships (dissolve_rel)
and locating class components (find_feature, find_cs, etc.). Class components can be
located by name (features and classifiers), information about the component
(generalisations and client-suppliers), or by their unique_id value. Classes also provide
methods for generating class interface information (i.e. compiling a class) as do_compile.
Compilation errors are stored as update records against the class and are deleted at the
start of a class compilation.

Base Class Update Operations

MVSL defines an update operation for base classes to ensure the class name is unique for a
program. This can be implemented in two ways for the IspelM architecture. update_from
can be redefined for base_class to check update records of the form
update_attribute(Class, class_name, OldName, NewName) and generate semantic error
update records if a class rename is invalid. Alternately, a constraint can be defined by
over-riding update_attribute inherited from text_base_comp (and defined by component)
to check for this problem.

8.1.4. Class Components

MVSL defines base elements and relationships for class sub-elements and relationships.
The IspelM architecture models these as components and relationship components by
defining component classes to model these MVSL definitions. Fig. 8.4. shows the structure
and methods of class components and relationship components and the MViews classes
they inherit from.

Features

The MVSL base feature element is implemented by the IspelM base_feature class which is
a specialisation of the MViews text_base_comp class. Features can have subset

Chapter 8 Architecture and Implementation of IspelM and SPE Page 224

components and text forms and are thus specialised from text_base_comp as are base
classes.

base_feature uses attributes to store information about its owning class as owning_class;
its name, which is unique to its owning class, as feature_name; its type as type_name; and
its kind (attribute, method, deferred, or inherited) as kind. update_attribute is redefined
to ensure feature renames are valid and view_name computes a name for subset views of a
feature. Base features record updates by sending them to their base class and may then
store the update themselves. This is accomplished by redefining record_update.

class element

all feature

type

name

kind

owner_name

owning_class

all features

base gen

renamed

parent

child

gens

base feature

owning_class

view_name

update attribute

type_name

record_update

kind

feature_name

features

client supplier

base cl

dissolve

establish

children

parent

record_update

remove_class

name

classifiers

text base comp
one to oneone to many

viewable base comrelationship

base cs

child

server_type

server_feature

record_update

parent

level

kind

client_name

client_feature

fig. 8.4. Class component structures and methods.

Generalisations

MVSL generalisations are base relationships and are modelled as relationship components
by the IspelM architecture. base_gen is a specialisation of both one_to_one (i.e. represents
a one-to-one relationship component) and viewable_base_comp (as generalisations are
viewable but do not have text forms). The parent and child attributes inherited from
one_to_one are over-ridden to be of type base_class (i.e. base_gen relates one class (the
parent of the generalisation) to another (the child, or sub-class)). This equates to the MVSL
parent and child relationship component declarations for base generalisation

Chapter 8 Architecture and Implementation of IspelM and SPE Page 225

relationships. Generalisations pass updates on themselves to their child (owning) class
and don’t currently store them against themselves.

Client-suppliers

Client-suppliers are relationship components relating classes by abstract or inherited
aggregation, feature calls, or local argument references. A client-supplier may be abstract
(design-level), inherited (defined by an ancestor of its owning class) or code-level (i.e. its
owning class is a direct client of its supplier class). Client-suppliers define attributes to
represent their parent (owning) base class, supplier (child) base class, a level (design, code,
or inherited), and a kind (aggregate (i.e. attribute), feature call, or local reference).
Aggregates have a client feature name, locals a client feature name/variable name, and
calls have client and supplier feature names. All have a supplier type string used to
determine the supplier base class (which may include parameterised classes, such as
list(ClassName)). Fig. 8.5. shows examples different kinds of client-supplier relationship
information.

base_el

component

associates

component

component

update_associates
->update_from

viewable_base_el

component

update_associates:
associates

Kind: aggregate
Level: inherited
Client feature: associates
Server type: list(component)

Kind: call
Level: code
Client feature: update_associates
Server type: component
Server feature: update_from

Kind: local
Level: design
Client feature: update_associates
Client variable name: associates
Server type: list(component)

fig. 8.5. Different kinds of client-supplier relationships and their information.

MVSL client-supplier base relationship components are modelled by the base_cs class
which, like base_gen, is a specialisation of both one_to_one and viewable_base_comp (for
the same reasons base_gen is). Client-suppliers pass their update records to their owning
class and do not store the records themselves.

Classifiers

MVSL defines classifiers as base relationships and IspelM models these by base_cl, a
specialisation of one_to_many and viewable_base_comp from the MViews architecture. One
classifier component thus relates its parent (base class) to zero or more children (classifier
base classes). base_cl provides methods to add and remove classes from the classification

Chapter 8 Architecture and Implementation of IspelM and SPE Page 226

relationships they represent using establish and dissolve inherited from one_to_many.
Classifiers pass all updates to their owning class by redefining record_update.

8.1.5. Programs

The MVSL specification for IspelM defines a base view called program to group base
program graph information. The IspelM architecture uses a program class which is a
specialisation of base_view. program has a name string attribute and one-to-many
relationships to the base clusters and base classes it groups (for look-up). program defines
methods which provide support for adding, removing, locating, and renaming clusters
and classes and supports global look-up tables for these components. Base program
components can be located given their unique_id (using find_component_id) or by using a
component-specific look-up operation (such as find_class). Fig. 8.6. illustrates the
program class structure and methods for IspelM.

program

rename_cluster

rename_class

remove_cluster

remove_class

name

get_classes

find_component_id

find_class

error_classes

compile_program

add_cluster

add_class

base class

classes

base cluste

components

fig. 8.6. IspelM program structure and methods.

8.1.6. Subset and Display Views and Components

MVSL defines subset views, subset elements, and subset relationships. MVisual defines
renderings and interaction mechanisms for the display views and components of these
MVSL subset components. The MViews architecture defines display views and
components to be specialisations of subset views and components. We can thus define
these IspelM subset and display view as specialisations of MViews display view classes.
Similarly, we define subset and display view components as specialisations of MViews
display component classes.

Chapter 8 Architecture and Implementation of IspelM and SPE Page 227

Class Diagram View

The MVSL specification for IspelM defines a class diagram view as a subset view. It also
defines subset components including class icons (subset elements) and generalisation,
classifier, and client-supplier glue (subset relationships). MVisual supplies a rendering
and interaction specification for class diagram views and for these class diagram view
components. The IspelM architecture defines class_diagram_view as a specialisation of
graphic_disp_view and class_icon as a specialisation of graphic_icon. gen_glue, cs_glue
and cl_glue are all specialisations of graphic_glue. Fig. 8.7. shows the structure and
methods for these classes.

class_icon defines a relationship (feature_names) and methods to support feature name
storage manipulation. It also defines class_name and kind attributes which mirror those of
base_class. map_component either finds a base class to map a class icon to or creates a new
base class from the class icon attribute and relationship information.

cs_glue mirrors the attributes of base features and client-supplier relationships. cs_glue is
used to render features of base classes which equate to code-level client-supplier
aggregates. cs_glue, cl_glue and gen_glue define map_component methods which find or
create appropriate base components to map to. map_component is used rather than defining
establish_rel for class icons to do this mapping as cl_glue and cs_glue require extra
relationship component information to be initialised to identify the appropriate base
component to map to.

Chapter 8 Architecture and Implementation of IspelM and SPE Page 228

class diagram vie

graphic disp com

components

graphic icon graphic glu

class icon

map_component

kind

class_name

valid_connectors

connect_icons

add_icon_and_glue

gen glue

map_component

cs glue

supplier_feature

supplier_type

client_name

client_feature

map_component

cl glue

name

map component

graphic disp vie

one to one

feature nam

name

feature name

fig. 8.7. Class diagram view and element structures and operations.

Class Text View

The IspelM architecture defines class_text_view to represent class text view subset and
display views defined by MVSL and MVisual respectively. class_text_view is a
specialisation of textual_disp_view from the MViews architecture. Class and feature text
view components are defined as class_text and feature_text classes, both
specialisations of textual_disp_comp. class_text defines a class name attribute used to
map class textual display components to a base class. feature_text defines class name
and feature name attributes used to map feature textual display components to a base
feature.

8.1.7. Subset/base relationships

The IspelM architecture defines subset/base relationship classes for each kind of subset
component class. These subset/base relationships translate update records generated by
subset components into base component operations and vice-versa. All subset/base
relationship classes are specialisations of subset_rel from the MViews architecture. All
IspelM subset/base relationships except client-supplier glue subset/base relationships use

Chapter 8 Architecture and Implementation of IspelM and SPE Page 229

the default action of subset_rel when translating subset component attribute updates into
base component attribute updates.

Client-supplier subset/base relationships are somewhat more complex in that they allow
client-supplier glue to map to either a base client-supplier relationship or base feature
component (this is because a code-level, aggregate client-supplier is the same as an
attribute (feature) for a class). The client-supplier subset/base relationship defines base_cs
and base_feature attributes which it maintains and uses to determine whether it is
connected to a base feature or base client-supplier. Update records are translated into
appropriate base component and display component operations using these attributes to
determine the kind of base component a display component is modelling.

8.2. IspelM Implementation

IspelM Components Lines
base_class
 data
 components
 compilation
 files
 views

16
159
432
511
525
431

base_feature
base_gen
base_cl
base_cs
base_cluster

446
212
216
209
215

class_icon (incl. subset_class)
gen_glue (incl. subset_gen)
cl_glue (incl. subset_cl)
cs_glue (incl. subset_cs)

864
106
214
504

class_text (incl. subset_class)
feature_text (incl. subset_feature)

205
163

class_diagram_view 160
class_text_view 488
program 1011
dialogues 785
application 119
misc. (menus, initialisation, etc.) 124

Total: 8115

table 8.1. Complexity of the IspelM Snart implementation.

Chapter 8 Architecture and Implementation of IspelM and SPE Page 230

8.2.1. Snart Implementation of IspelM

The IspelM architecture described in the previous section illustrates how an
MVSL/MVisual specification for IspelM can be translated into a design for implementing
IspelM using the MViews architecture of Chapter 6. To implement IspelM the Snart
framework of Chapter 7 can be reused. This produces a framework of Snart classes with
IspelM architecture classes implemented as Snart classes specialised from MViews
framework classes. This framework is itself reusable to produce language-specific
software development environments, such as SPE. Table 8.1. illustrates the complexity of
the Snart implementation of IspelM by showing a breakdown of code for each Snart class
implemented for IspelM.

8.2.2. Base Classes

Snart Base Class

base_class defined by the IspelM architecture is implemented as a Snart class base_class.
base_class is the most complex of IspelM’s classes and is implemented as five classes
implementing different parts of a class’s data and behaviour and a sixth class base_class
which inherits from all of these classes. Originally we implemented base_class as one
Snart class inheriting from text_base_comp but it became so large that modification and
recompilation was very time-consuming25. Fig. 8.8. shows the extra structure and methods
defined by the Snart implementation of base_class.

25This problem suggested a “multiple class view” system may be useful for Snart. This might provide

multiple class interfaces for different requirements (typically different class responsibilities) and allow

definition of a class over several LPA program windows.

Chapter 8 Architecture and Implementation of IspelM and SPE Page 231

base class

class view

create_text_form

get_update_text

generate_text

app_update

create_view

create_view_component

class data

class_purge

delete

base_deleted

purge

class compil

needs_compiling

do_compile

compile_error

class component

find_gen

find_feature

find_cs

find_cl

find_all_feature

class file

load_data

save_data

purge_group

set_group_data

save

load

get_group_data

term

all feature

fig. 8.8. Extra structure and methods for base classes.

Class Data

class_data implements the IspelM architecture base class’s class_name and kind
attributes as Snart class attributes. class_data also implements additional methods for
handling class purging, deletion and base view deletion. When a base class is deleted or
purged (removed from memory but not from persistent storage) its components (features,
generalisations, and so on) must also be deleted. Rather than use record_update to pass a
component_deleted(Class) update record to each component and let it interpret the
update, class_data calls the purge or delete methods of each component directly. This is
much faster than record_update (as a class may have many component objects) but
achieves the same result26. A special class_purge operation is used to keep only the
minimum amount of class information in memory.

Class Components

class_components stores each kind of class relationship as a list attribute of Snart object
references to class component objects (base_feature, base_gen, etc.) for efficiency.
base_gen, base_cs and base_cl relationship component classes are implemented as
viewable_base_comp specialisations. base_feature is implemented as a text_base_comp
specialisation. Look-up of base features a class owns is via unique_id or feature_name and

26record_update still generates a component_deleted(Class) update record but the base class’s

components are already deleted by this stage. The Snart framework’s support of this application-specific

propagation of change, together with the more general record_update/update_from form, allows

programmers to make a trade-off between abstraction and efficiency as they require.

Chapter 8 Architecture and Implementation of IspelM and SPE Page 232

is implemented as a sequential search of the features component object list. This could be
implemented more efficiently using a binary search or hashtable but use of IspelM (as
SPE) has indicated this simple approach is sufficient for most applications. Base
generalisation location is via its parent.class_name value and classifier look-up by name.
Client-suppliers are located by either unique_id or kind, level, supplier_feature,
supplier_name, client_type, and client_feature values. Only the appropriate values are
used in the look-up each kind of client-supplier relationship.

The entire interface for a class is stored as a list of terms of the form Name(OwningClass,
OwnerName, Kind, Type) in all_features. As with update records, using a Snart object to
store each inherited feature information is unnecessary (and when used proved very
inefficient) as all processing of this data is performed by base_class. Look-up of a feature
is done by feature_name and then OwnerName used to find the appropriate feature object
reference with find_feature for OwningClass. When a base class is recompiled,
all_features is regenerated if the class or one of its ancestor’s interfaces have been
changed.

Class Compilation

Computation of all_features is done in a similar manner to the Snart compiler’s
determination of a class interface (see Appendix A). Any base classes or components of
base classes marked “removed” are sent delete messages during this process (thus IspelM
uses class compilation to garbage-collect any removed base components). If the interface
for a class has changed, a language-specific compiler must be employed to regenerate the
dispatch table for the class (and possibly recompile any specialisations and clients of this
class). This compilation process is similar for most object-oriented languages but if
necessary sub-classing of class_compile can over-ride do_compile.

Class Views

Class view management extends text_base_comp to include creation of class subset views
and subset components using create_view and create_view_component. These methods
use the base view create_component method to create Snart objects. These objects
represent subset views and components for the appropriate kind of subset view a base
class owns. Text form creation and validation methods are defined and a declarative
get_update_text method unparses base class updates records into a human-readable
form. A declarative app_update method converts update records generated by MViews
classes into savable update record terms which don’t use Snart object ids (which change
when components are reloaded from persistent storage).

Chapter 8 Architecture and Implementation of IspelM and SPE Page 233

Class Files

Base class file management manages saving, loading and purging of class data. When a
class is saved it uses group management functions to determine whether various related
class components or attributes need saving. Class groups are saved to resources by
MViews framework save and load methods. class_files implements declarative
get_group_data and set_group_data methods to translate between in-core and persistent
group data terms. For example, when a class’s features attribute is required and the class’s
features are not in-core, get_attribute calls load_groups([features]). load_groups loads
the feature data (as resource ids) from a class term data file and gives this data to
set_group_data. set_group_data then creates a new base_feature object for each resource
id and initialises it with the resource data (by calling load_data for the base_feature).

8.2.3. Class Components

base_feature is implemented as a specialisation of text_base_comp from the Snart
framework for MViews. base_feature attributes are implemented as Snart attributes and
record_update sends base feature update records to a feature’s owning class. Base features
are saved to their owning class’s term data file as a term and reloaded by save and load
methods implemented by base_feature.

base_gen, base_cs and base_cl are implemented as Snart classes which inherit from
viewable_base_comp and one_to_one (one_to_many for base_cl) using multiple inheritance.
These relationship component classes use Snart object ids to refer to the base classes they
relate. Their attributes are implemented as Snart attributes and they are saved and reload
to and from their owning class term data files as single Prolog terms. Restoration of their
Snart object references on reloading is done by using the base view look-up tables and
unique base class ids.

8.2.4. Programs

program is implemented as a Snart class which inherits from base_view. program uses
hashtables for locating classes (for efficiency) and these look-up tables are regenerated as
part of the reloading of clusters and classes when a program is re-opened. Compilation
and parsing support for IspelM is implemented by calling parse_view for updated textual
views and do_compile for clusters (and thus classes). When a program is saved or
compiled IspelM calls a class_purge method for base classes to ensure only necessary
information is held in-core.

program implements a “grass-catcher” similar to that provided by the Trellis/Owl
environment (O’Brien et al 87) for locating base classes with semantic or compile errors.
Compile-time and semantic errors are of the form semantic_error(Kind,Data) and

Chapter 8 Architecture and Implementation of IspelM and SPE Page 234

compile_error(Kind,Data) and are generated by the base_class do_compile method and
semantic calculation methods driven by update_attribute for base_class.

8.2.5. Subset and Display Views and Components

Class Diagram Views

class_diagram_view is implemented as a Snart class which inherits from
graphic_disp_view. class_diagram_view defines tools and methods which implement
these tool. Graphical display view tools are implemented by defining LPA MacProlog
GDL (Graphic Description Language) pictures27 to represent the tool and implementing
methods for tool functionality. The graphic_disp_view class provides generic add_icon
and add_glue methods as well as “manipulators” (of a similar nature to those of (Linton et
al 88)) for implementing line connection, icon dragging and double-clicking, marqui
selection, cut/copy/paste functions and component hiding and removal. Fig. 8.9. shows
the extra class diagram view and component structure and methods used by the Snart
implementation of IspelM.

class_icon is implemented as a Snart class inheriting from graphic_icon. get_picture for
class_icon returns a GDL description for a class icon. This picture is composed by using
data held in a class_icon object to produce GDL picture for the class icon. draw_component
inherited from graphic_icon uses LPA MacProlog predicates to draw and manipulate this
picture.

Class icons implement their feature names attribute as a list attribute of Prolog atom
values (i.e. strings). Originally, this was implemented by using sub-icons for each feature
name. This approach, however, proved to be slow in response time (due to many Snart
objects needing to be created) and more complex then necessary. class_icon implements
methods to add, remove and change feature names. Double-clicking on a class icon
performs the actions described in Chapter 4. Click-points are defined for browsing a
class’s views, selecting a class’s default text view, selecting feature views, and selecting
from a class’s features (either those owned by the class or from its full interface).
Connection processing creates new glue between class icons to represent generalisations,
client-suppliers (including features) and classifiers.

27See Appendix A for examples of such GDL pictures.

Chapter 8 Architecture and Implementation of IspelM and SPE Page 235

class diagram vie

gen_tool

cs_tool

cl_tool

class_tool

add_feature_tool

graphic disp vie

remove_tool

hide_tool

add_view_tool

connect_line

select_tool

shift_pictures

add_icon

add_glue

graphic disp com

components

graphic icon graphic glu

cs glue

update_details

get_picture

change_type

gen glue

update_details

get_picture

cl glue

update details

get_picture

class icon

double_click

get_picture

update_details

reselect_class

features_selection

all_features_selection

add_a_feature

str value

feature name

fig. 8.9. Extra class diagram view and component structure and methods.

Client-supplier glue (implemented by a cs_glue class which inherits from graphic_glue)
provides an update_details method which allows the supplier_type value for a client-
supplier relationship to be modified. If this value is changed the class icon acting as the
supplier must be remapped to a different base class. This is achieved by having the client-
supplier subset/base relationship call change_type for its subset component(s) and the
subset client-supplier glue calls reselect_class for affected class icon subset components.
reselect_class is implemented by unmapping a class icon from its old class and
remapping it to a new base class. All class icon feature names and connector glue is re-
validated by this process by checking feature names against the new base class’s

Chapter 8 Architecture and Implementation of IspelM and SPE Page 236

all_features list and re-mapping glue to base components. Any inconsistent feature
name values and glue components are deleted or left unmapped (and re-rendered to
indicate this) respectively. Client-supplier, generalisation and classifier glue classes
implement get_picture methods which return GDL pictures to act as renderings of these
graphical display relationship components.

Class Text Views

class_text_view is implemented as a Snart class which inherits from textual_disp_view.
Class text views implement language-specific parsers which produce Prolog terms by
parsing text associated with class and method text forms in the view. These terms are
given to a process_term method which computes changes in the base class/method
information from the parsed data. Changes are determined by first generating terms
equating to the current class/method state (class interface information for classes and
method name and interface information for methods). These terms are compared with the
parsed data terms and changes computed. For example, if a class feature does not appear
in the parsed term list but does in the current class features relationship then the feature
has been removed and its corresponding base feature must be removed. These changes are
applied directly to affected base components by calling methods for their objects.

Class text views allow new text forms to be expanded into the view and base data to be
expanded into a text form (such as class feature names and types). These facilities are
implemented by providing selection dialogues for the information to expand and then
either unparsing the information (for data expansion) or adding text forms to the view.

8.2.6. Subset/base relationships

Class, feature, generalisation and classifier subset/base relationship classes implement a
base component to subset component attribute correspondence method base_to_subset as
lists of terms of the form [BaseAttribute-SubsetAttribute,...].

Client-supplier subset/base relationship class cs_subset_rel redefines
process_update_from_base and process_update_from_display methods inherited from
subset_rel. cs_subset_rel determines the kind of base component it is connected to
(feature or client-supplier) before translating updates. This is done in a declarative manner
using update records sent to the subset/base relationship and values of base_cs and
base_feature attributes (updated when the relationship is established by its subset
component). For example, an update_attribute(Glue, client_feature, NewName) update
record from a client-supplier glue object must be converted into an
update_attribute(Feature, feature_name, NewName) operation on a base feature object
(and vice-versa).

Chapter 8 Architecture and Implementation of IspelM and SPE Page 237

8.2.7. Update Records

IspelM operations make use of the fundamental operations supplied by the MViews
framework and these MViews operations generate the set of update records described in
Section 5.3.3. IspelM components generate, propagate and respond to these fundamental
update records using behaviour they inherit from the MViews framework classes. IspelM
components store these update records in an application-specific form, however, so
IspelM components can be made persistent without using object IDs which may change
from one invocation of the environment to the next. IspelM also uses these stored update
records to form the update history for components and for unparsing into textual display
views. Table 8.2. shows how MViews’ fundamental update records are stored by IspelM
and the form these IspelM update records are unparsed into a textual display view or
update history dialogue.

MViews Update

Record

IspelM Update

Record

Textual view/update history

form

Description

update_attribute(Class,
 class_name,Old,New)

rename_class(Old,New) % rename Old to New Rename Class from Old to New

update_attribute(Class,
 kind,Old,New)

change_kind(ClassNam
e,
 Old,New)

% change class kind to New Change Class kind from abstract
to normal or vice-versa

update_attribute(Featu
re,

feature_name,Old,New
)

rename_feature(Old,Ne
w)

% rename feature Old to New Rename Feature from Old to
New

update_attribute(Featu
re,
 type_name,Old,New)

change_type(
FeatureName,Old,New)

% change type of FeatureName
to
 New

Change Feature type from Old to
New

update_attribute(Featu
re,
 kind,Old,New)

change_kind(

FeatureName,Old,New)

% change kind of FeatureName
to
 New

Change Feature kind to attribute,
method, deferred, or inherited

update_attribute(CS,
 Attribute,Old,New)

change_cs(CSName,
 Attribute,Old,New)

% change CSName Attribute to
New

Change a client-supplier
relationship Attribute to New

update_attribute(Cl,
 name,Old,New)

rename_classifier(Cl,
 Old,New)

% rename classifier Old to New Rename a classifier

establish(classes,
 Cluster,Class)

add_class(ClusterName,
 ClassName)

% add class ClassName

Adda class ClassName to a
cluster ClusterName

establish(features,
 Class, Feature)

add_feature(ClassName
,
 FeatureName)

% add feature FeatureName Add feature FeatureNamem to
class ClassName

establish(gens,
 Class, Gen)

add_gen(ClassName,
 ParentName)

% add generalisation to
 ParentName

Add generalisation from class
ClassName to parent class
ParentName

establish(css,Class,
CS)

add_cs(Classname,
 CSName)

% add client-server CSName Add client-server CSName to
class ClassName

establish(cls,Class,
Cl)

add_cl(Classname,
 ClName)

% add classifier ClName Add classifier ClName to class
ClassName

establish(rename,Gen,
 Rename)
dissolve(rename,Gen,
 Rename)

add_rename(ParentNa
me,
 Rename)
remove_rename(
 ParentName,Rename)

% add rename from ParentName
 Rename
% remove rename from
ParentName
 Rename

Add/remove rename of a
ParentName class feature

Chapter 8 Architecture and Implementation of IspelM and SPE Page 238

establish(classifier,
 Cl,Class)
dissolve(classifier,
 Cl,Class)

add_classify(ClName,
 ClassName)
remove_rename(ClNam
e,
 ClassName)

% add classify to ClassName
using
 ClName
% remove classify to ClassName
 using ClName

Add/remove classification to
class ClassName using classifier
ClName

Chapter 8 Architecture and Implementation of IspelM and SPE Page 239

remove(Class)
unremove(Class)

remove_class(
 ClassName)
unremove_class(
 ClassName)

% remove class ClassName
% unremove class ClassName

Mark/unmark a base class as
“removed”

remove(Feature)
unremove(Feature)

remove_feature(
 FeatureName)
unremove_feature(
 FeatureName)

% remove feature FeatureName
% unremove feature
FeatureName

Mark/unmark a base feature as
“removed”

remove(Gen)
unremove(Gen)

remove_gen(
 ParentName)
unremove_gen(
 ParentName)

% remove generalisation to
 ParentName
% unremove generalisation to
 ParentName

Mark/unmark a generalisation
to parent class ParentName as
“removed”

remove(CS)
unremove(CS)

remove_cs(CSName)
unremove_cs(CSName)

% remove client-supplier
CSName
% unremove client-supplier
 CSName

Mark/unmark a base client-
supplier relationship as
“removed”

remove(Cl)
unremove(Cl)

remove_cs(ClName)
unremove_cs(ClName)

% remove classifier ClName
% unremove classifier ClName

Mark/unmark a base classifier
as “removed”

table 8.2. IspelM update records.

8.2.8. User Interaction

Menus

The Snart implementation of IspelM uses LPA Prolog predicates to define extra menus for
textual and graphical display views. These call Prolog predicates which in turn call
display view process_menu_item methods.

Dialogues

The IspelM implementation uses LPA Prolog to implement dialogues which support
object-oriented program browsing and manipulation. Examples of the feature selection
and feature definition dialogues for class icons are shown in fig. 8.10. (see Chapter 4 for
the purpose of these dialogues).

fig. 8.10. The feature selection and feature definition dialogues for class icons.

Chapter 8 Architecture and Implementation of IspelM and SPE Page 240

Dialogue opening methods and predicates supply information to LPA dialogue predicates
and receive information back in Prolog variables. A method or predicate which opens a
dialogue can call component object methods to access component attribute and
relationship values and update component attributes.

8.2.9. Program Persistency and Execution

The program class implements process_menu_item methods to support save and load
program operations. program saves its components (clusters), clusters save their classes
and classes save their components. All IspelM program component data is stored in term
data files. Subset and display view data is assumed to be saved in term data files
associated with the focus component for the views. The program component, base
clusters, and base class instances each have a term data file. Class components are saved to
the term data file associated with their owning base class.

The IspelM framework assumes an interface to a language-specific compiler is
implemented. This allows base classes to either be generated from class information
supplied by IspelM or to compile textual code views to regenerate their executable
program data. Executing a program is assumed to be via a Prolog predicate call and
program implements methods to execute a program and delete objects created by a
program.

8.3. The Snart Programming Environment

To provide a software development environment for Snart programming, the IspelM
framework must be extended by specialisation to produce SPE. IspelM does not directly
support any form of language parsing, dynamic language semantics, or interface to an
object-oriented language compiler or run-time system. SPE extends IspelM to produce an
environment suitable for Snart programming by sub-classing from the IspelM framework.
Fig. 8.14. shows the extra classes defined for SPE.

Chapter 8 Architecture and Implementation of IspelM and SPE Page 241

program

spe program

intra_object_view

kind_to_component

create_component

find_pred

add_pred

delete_pred

run_pred

run_program

hashtable

predicates

spe class text vie

parse_view

base cluster

components

base class

classes

class text view

spe class

assert_terms

terms

load

save

generate_text

do_compile

update_attribute
base feature

features

spe feature

terms

generate_text

text disp comp

components

feature text class text

spe feature tex

apply_update

spe class text

apply_update

->parse view

object data view

object icon

fig. 8.14. Extra classes defined to implement SPE.

8.3.1. Parsing and Unparsing of Snart Programs

Parsing class definitions and method predicates generates lists of terms representing the
parsed information. A class definition produces generalisations (with renamed features)
and features (feature name/type pairs). These lists are compared against the base class
information by IspelM and base updates performed as necessary. spe_class_text_view
specialises class_text_view to provide this parsing and updating support for SPE. Update
application is done by incremental token parsing and substitution based on Snart syntax
and spe_class_text and spe_feature_text specialise class_text and feature_text to
provide Snart-specific update application.

When generating text forms for class text views SPE must unparse base class and method
data into Snart class and method predicate syntax. A class and method template is used to
layout the new text form and class and method interface data unparsed into the
appropriate place in this template. spe_class and spe_feature redefine generate_text to
support Snart-specific text form generation for class definitions and methods.

8.3.2. Validation, Compilation and Saving of Snart Programs

Snart classes can not have the same name as any Prolog predicate (as Snart generates a
term using the class name to store compiled class information). SPE ensures classes are not

Chapter 8 Architecture and Implementation of IspelM and SPE Page 242

named as or renamed to existing predicate values adding a predicate look-up table to
spe_program, a specialisation of program. spe_class and spe_feature also maintain lists of
terms defined by their text forms.

spe_program defines new kind_to_component and create_component methods so SPE-level
objects are created by IspelM and SPE classes. For example, rather than map_component for
a class_icon creating a base_class if one does not exist, it creates an spe_base_class by
calling spe_program’s create_component method.

SPE can assert Prolog terms (for example, Snart method implementations) and call the
existing Snart compiler to regenerate its data structures based on these new terms.
Alternatively, the Snart compiler can re-compile textual display view text windows and
thus generate updated class information. The first approach involves more work for an
implementer of environments as compilers may not directly allow such incremental
updates of a program data. It is more efficient than the second, however, which requires
both the environment and the language compiler to parse a textual view and update their
data structures and compiled code independently. SPE currently uses the first approach
and calls Snart compiler predicates to regenerate Snart class dispatch tables.

save for spe_class checks if predicates or Snart class information needs to be saved for a
Snart program. load reloads compiled Prolog terms from a term data file so Snart
programs developed in SPE can be executed from within the environment.

8.3.3. Running and Debugging Snart Programs

spe_program provides program execution facilities by implementing a “run predicate” to
execute a Snart program and a “delete predicate” to clean up objects created by a Snart
program. As SPE uses Snart objects to store its data, the object space of a running program
and SPE must be distinguished by the Snart run-time system. The run predicate creates
and initialises an object space for the program and deletion predicate deletes all Snart
objects associated with the program (as well as any windows created by the program).

SPE programs are debugged visually and textually. An object data view allows Snart
objects to be displayed and navigated between using graphic display views (showing the
state of a single Snart object) and the Prolog debugger is used to trace method and
predicate execution. Objects can be displayed by selecting their object id from the
debugger window and using a menu option, entering an object id, or double-clicking on
an object reference in an object data view. Object data views obtain object attribute values
via the Snart run-time system which provides a dynamic access function of the form
default_value(ObjectID, AttributeValue, DefaultValue, Value). object_data_view is
a specialisation of graphic_disp_view while object_icon is a specialisation of
graphic_icon.

Chapter 8 Architecture and Implementation of IspelM and SPE Page 243

8.4. Discussion and Future Research

8.4.1. IspelM Model

Program Representation

IspelM reuses the MViews architecture to model the structure and some high-level static
semantics for object-oriented programs. The MVSL definition of IspelM translates into
component and relationship component classes specialised from MViews architecture
classes. These IspelM classes define extra attributes, relationships and methods for object-
oriented program structures and structure manipulation. For program structure the
IspelM model works well and it can represent most important, high-level aspects of class-
based object-oriented languages as specialisations of MViews component classes.
Documentation and method implementation detail can be represented as text forms, as
can additional class interface information.

This model can be extended quite naturally to incorporate language-specific features such
as class contracts for Eiffel (Meyer 92), information hiding for Kea (Hosking et al 90), C++
(Stroustrup 86) and Eiffel, classifiers (Kea), and attribute typing for all strongly-typed
object-oriented languages. These additional features would necessitate defining new
component classes as specialisations from MViews classes with appropriate attributes,
relationships and methods. Some features which would be required for most other class-
based languages and are not currently modelled include generic classes28, method
arguments, and typing (and type checking) for method arguments and feature calls.

IspelM can model languages such as Smalltalk (Goldberg and Robson 84) and CLOS
(Keene 89) which use class-as-object representations by creating class objects based on its
internal representations (similar to how SPE creates Snart class definition predicates for
the Snart compiler to use). It is not clear, however, how suitable IspelM’s program
representation is for non-class-based object-oriented languages, such as SELF (Ungar et al
92), which use prototypes and traits objects to model object behaviour.

Some semantic calculation (such as inherited class interfaces) and constraints (such as
unique feature names per class) are captured well by IspelM. Other values, such as the
dynamic semantics of object-oriented programs, are more difficult to specify using
MViews’ object and attribute dependency mechanisms. Comparable approaches, such as
Kaiser’s action equations (Kaiser 85) or Hudson’s (Hudson 91) and Reps’ (Reps and

28IspelM does support simplistic, single parameter generics, such as list(ListType), for collection classes.

This should be extended so any parameterised class can be modelled including multiple parameter type

values.

Chapter 8 Architecture and Implementation of IspelM and SPE Page 244

Teitelbaum 87) attribute recalculation schemes, would offer more abstract and declarative
ways of specifying such language behaviour. The Mjølner environments (Magnusson et al
90) use a structure editor for representing and manipulating program structure (Minör 90)
and attribute grammars which are sent structure editing operations to model static and
dynamic semantics. A similar approach with MViews update records being used to drive
an attribute recalculation scheme is discussed in Chapter 10.

Views and View Components

The MVSL and MVisual specifications of IspelM defined basic program views for
visualising and constructing object-oriented programs. These include views for class
structure and basic control flow (class diagrams), adding class and method detail,
documentation, and possibly design information (textual views) and provide very basic
object data visualisation and navigation (object data views). The IspelM architecture
defines classes specialised from MViews architecture classes to model these views and
view components.

As discussed in Chapter 4, SPE (and IspelM) provide only a limited number of program
visualisation and construction views. Additional views might include inter-feature
relationships (including call sequencing and argument data), class contract views, and
improved program visualisation. These extra views could be defined using MVSL and
MVisual and translated into IspelM architecture classes in the same manner as class
diagram and class text views.

Abstraction

Some aspects of IspelM architecture classes could be better represented as part of (or
specialisations of) MViews classes. Program navigation is partly abstracted out as MViews
class methods which support click-points and menu dialogues for view navigation.
Expansion of class details (such as feature names or client-supplier relationships) is mostly
implemented by IspelM classes whereas ideally MViews classes should provide expansion
and menu selection methods reusable by IspelM and other environments.

8.4.2. IspelM Implementation

The IspelM architecture is implemented as a Snart framework of classes which reuse the
MViews Snart framework described in Chapter 7. This produces a framework of classes
suitable for constructing language-specific object-oriented programming environments,
such as SPE. Reusing the MViews Snart framework for IspelM greatly simplified
implementation of the environment. MViews’ base component classes were easily reused
to represent object-oriented program structures. Methods for manipulating these
structures were incorporated into IspelM classes and reused methods from MViews
classes. Display view classes and components defined by the IspelM architecture were

Chapter 8 Architecture and Implementation of IspelM and SPE Page 245

implemented as specialisations of MViews Snart classes. The MViews classes provided
much of the user interface and persistency functionality for IspelM classes.

The main areas of effort in developing IspelM were concerned with appropriate
interaction and representation schemes (particularly for graphical class diagram views),
program complexity management and navigation, program compilation and constraint
semantics, and program persistency management. Graphical views required some effort to
determine both the rendering of program components and how best to interact with these
graphical forms. Translating dialogue interactions into base component and subset view
component method calls also required some work. In particular, while LPA provides good
dialogue specification predicates, specifying dialogue layout and behaviour are still left
entirely to the implementer of IspelM. An interface builder and constraint system may be
useful extensions to MViews to simplify dialogue and graphical view construction
(discussed further in Chapter 9).

As MViews does not currently abstract out much complexity management or navigation
IspelM must implement these itself. Such techniques are probably useful in other systems
(see Chapter 9) and thus extra support at the MViews level should be provided. A
problem with this kind of abstraction, and view navigation and creation currently
supported by MViews, is tailoring dialogues and interaction to specific environments. For
example, specialisations of IspelM currently must redefine dialogues for display view
creation to conform to the application’s use of display views.

A similar problem arises with IspelM-level dialogues for feature specification and
expansion. IspelM treats all class features the same for representation in class icons but
distinguishes between “methods”, “attributes”, “deferred”, and “inherited” features in
some dialogues. SPE also requires additional constraints to be added to dialogue text
fields so valid Prolog atom values are used. Some languages, such as Kea (Hosking et al
90), do not make a distinction between class features, and some modelling techniques,
such as MOSES (Henderson-Sellers and Edwards 90), do distinguish between feature
name kinds in class icons at the analysis or design levels. More research is required to
determine suitable ways of allowing dialogues to be “configured” in sub-classes to
support application-specific dialogue tailoring without having to completely re-
implement dialogue layout and behaviour.

Language constraints and semantics are not implemented particularly abstractly using
MViews’ attribute and component dependencies. A more declarative style would be more
easily understood and extended than over-riding MViews methods and writing the code
in Prolog.

This MViews framework persistency mechanisms provide great flexibility and efficient
use of memory (as program data can be incrementally loaded, saved and purged).

Chapter 8 Architecture and Implementation of IspelM and SPE Page 246

Experience with implementing IspelM and SPE using the MViews framework has
indicated a need for a more abstract approach to MViews component persistency. The
main disadvantages with the current approach include: specialisation classes must
implement their own group management methods; classes must implement methods to
relink reloaded components; and specialisation classes must synchronise saving, loading
and purging of program data. An improvement might use an object-oriented database for
storing MViews data with in-core and persistent objects managed automatically by
MViews or the database (see Chapter 10 for further discussion of extending MViews
persistency management).

8.4.3. The Snart Programming Environment

Most of the effort in specialising IspelM to SPE involved adding language-specific parsing
and unparsing, interfaces to the Snart compiler and run-time system, and extra support
for saving and reloading Snart executable code. Most IspelM dialogues are suitable for
SPE and thus did not require modification for Snart programming29.

As noted in Chapter 7, a closer relationship between parsing and unparsing (both
incrementally and for generating text forms) would simplify tailoring IspelM for different
languages. In particular, for languages such as C++ or Eiffel a lot of effort would be
needed to write parsers to produce the Prolog structures used by IspelM for updating base
information. Additional support at the MViews level would also be needed to support
fine-grained text forms (for example, for class contract information).

Adding types to Snart, as suggested in Chapter 3, would allow more compile-time checks
and optimisations to be made and provide valuable information for SPE to generate client-
supplier relationships (for call-graphs and other view expansion/navigation facilities).
This would require intra-term parsing of Snart code to determine appropriate types and
strip out the type information (as it is not required for actually executing Snart programs).
This would require IspelM to be extended to cope with language types but, as a side-
benefit, this would make IspelM more applicable for programming strongly-typed object-
oriented languages.

8.5. Summary

An object-oriented architecture for IspelM has been defined using the MVSL and MVisual
specifications for IspelM from Chapter 5 and by reusing the object-oriented architecture of

29As noted previously, for other languages and object-oriented modelling techniques some modification of

IspelM’s views and dialogs would be required to suit the particular application language and CASE

methodology.

Chapter 8 Architecture and Implementation of IspelM and SPE Page 247

Chapter 6. IspelM reuses MViews architecture classes to produce a design for a novel,
integrated software development environment for object-oriented languages supporting
multiple textual and graphical views with consistency. IspelM allows an object-oriented
program to represented as an object dependency graph, be viewed and manipulated in
graphical and textual forms, be incrementally saved and loaded, and supports flexible
program visualisation, navigation and complexity management.

An implementation of IspelM as a framework of Snart classes is produced by reusing the
Snart framework form MViews described in Chapter 7. IspelM program and view
component classes are implemented by sub-classing appropriate MViews framework
classes. User interaction is provided by display views and components which implement
specialised display view, icon, glue and text component classes. These are manipulated
by tools for graphical views, typing and parsing text for textual views, and by using
dialogues and menus built using LPA predicates. IspelM is specialised to SPE by defining
new Snart classes which inherit from IspelM framework classes. These specialised classes
implement parsers and unparsers for Snart syntax, an interface to the Snart compiler and
run-time system, and compiled Snart code saving and loading support.

Development of IspelM and SPE architectures and implementations indicated that the
MViews architecture and frameworks of Chapters 6 and 7 significantly enhance
construction of software development environments. Providing a set of reusable classes
based on the MViews model of Chapter 5 allows new environments to be defined using
MVSL and MVisual and then an implementation designed by reusing the MViews
architecture. To implement an environment the Snart framework for MViews is reused.
This architecture and framework provide classes which abstract out the data storage,
multiple view support, change propagation, and some persistency management aspects of
software development environments based on the MViews model.

IspelM is suitable for specialisation to produce an environment for other class-based
object-oriented languages and SPE could be extended to support “typed” Snart programs.
The MViews architecture and implementation could be extended to better capture
program browsing and complexity management and provide enhanced support for
dialogue interaction. MViews should also provide more abstract component persistency
management for environments. This should support tools for version control and multi-
user, shared access to programs.

Chapter 8 Architecture and Implementation of IspelM and SPE Page 248

Chapter 9 Further Applications of MViews Page 249

Chapter 9

Further Applications of MViews

Chapter 8 illustrated use of the MViews architecture and framework for modelling and
implementing IspelM and SPE. This chapter demonstrates that the MViews model for
integrated software development environments can be reused for several other diverse
applications. The concept of multiple textual and graphical views of information with
automated consistency management is useful in many different applications. These
include, but are not limited to, entity-relationship modelling, dialogue painting, program
visualisation, debugging and animation, dataflow diagrams and programs, and more
detailed object-oriented analysis and design. Such applications can reuse MViews’ novel
aspects of flexible information storage (using base view components and relationships),
multiple textual and graphical view abstractions, and propagation and documentation of
change (using update records) in quite different ways.

This chapter describes several applications developed using MViews. Some have been
implemented using the Snart framework from Chapter 7 while others are abstract designs
illustrating how a system can be modelled using MViews abstractions. Some systems have
been designed and implemented by the author while others are being developed by other
researchers using MViews. An entity-relationship modeller provides graphical entity-
relationship diagrams and corresponding textual relational database schema for entities
and relationships. A dialogue painter provides a graphical dialogue painting view and
one or more textual views which define dialogue semantics and constraints. Program
visualisation using Snart and MViews is illustrated with a tally graph view of object
method calls, sorting algorithm animation, and a visual debugger for SPE. Extended
object-oriented analysis and design in SPE includes graphical method calling views and
textual class contract views. Dataflow diagrammers support dataflow modelling for
analysis and dataflow method implementations for SPE. Other systems include a
common building model represented and manipulated using derivatives of SPE and its
visual debugger and tool abstraction using MViews component specialisations.

Chapter 9 Further Applications of MViews Page 250

9.1. Entity-Relationship Modelling

9.1.1. Entity-Relationship and Relational Database Modelling

Entity-relationship (ER) modelling (Chen 76) is typically used to model database systems
by decomposing data into entities and relationships between entities. Entities and
relationships may have associated attributes and relationships can specify a cardinality
between related entities. An ER model can be successively refined to form the basis for a
relational database schema (RDS) (Teorey et al 86), typically composed of tables and table
fields.

ER models can be constructed and queried by graphical techniques (Czejdo et al 90,
Teorey et al 86), as can RDSs (Larson, 86). A typical approach, however, is to translate
high-level graphical ER (or extended ER) models into low-level textual RDS definitions
(Czejdo et al 90). One disadvantage with this approach is that extra information defined
by RDSs (such as keys, default values, constraints on table field values, and so on) must be
specified externally or added in some way to the ER model.

9.1.2. MViewsER

One solution to integrating ER and RDS specification is to provide graphical ER modelling
views and complementary textual RDS views, with consistency management between the
two. Fig. 9.1. shows an example of MViewsER, which takes this approach to database
model specification.

Chapter 9 Further Applications of MViews Page 251

fig. 9.1. MViewsER graphical ER views and textual RDS views.

MViewsER supports graphical ER diagram views with diagrams constructed using tools,
dialogues and menus. Textual RDS views contain a table definition including table fields,
field types, and zero or more field values used to specify various attributes for fields. RDS
views are parsed to update table information. The graphical ER views provide a high-level
specification system with details about RDS requirements ignored. Textual RDS views can
be generated from ER data and provide extra information about field types, defaults,
ranges and so on.

Consistency management is employed between ER diagrams and RDS tables. Currently
MViewsER assumes entity and relationship names and attribute names map to
corresponding RDS table names and field names. ER diagram views are updated directly
by changes to RDS table views and an update history is kept for entities and relationships
(and their corresponding RDS tables). RDS views are updated by unparsing update
records (as shown in fig. 9.1.), and some update records can be automatically applied by
MViewsER to reflect changes to entities and relationships. Other update records serve as
documentation to inform programmers of ER model changes that may or may not impact
on the RDS tables.

Chapter 9 Further Applications of MViews Page 252

9.1.3. Specification

MViewsER was initially specified using the MVSL and MVisual notations from Chapter 5.
The first task was to determine the base view and subset view components required by
MViewsER. An ER model is composed of entities and relationship elements which are
related by connection relationships (which hold the cardinality from the entity to the
relationship and possibly a name used by the relationship to refer to the entity). Entities
and relationships can hold attribute values which have a name, type and list of values.
This analysis results in MVSL base component specifications, some of which are shown in
fig. 9.2.

Two kinds of subset views are defined by MViewsER. ER diagram views contain entity,
relationship and attribute icons and connection and attribute glue. RDS views contain
table text forms. Fig. 9.3. illustrates some MVSL definitions for these view components.

base element entity
 attributes
 entity_name : string
 relationships
 relationships : connection.parent
 attributes : one-to-many attribute
 ...
end entity

base element relationship
 attributes
 rel_name : string
 relationships
 % note that a relationship may relate > 2 entities i.e. not necessarily binary
 entities : connection.child
 attributes : one-to-many attribute
 ...
end relationship

base relationship connection
 parent entity
 child relationship
 attributes
 order_entity : integer
 order_rel : integer
 name : string
 ...
end connection

base element attribute
 attributes
 attr_name : string
 attr_type : string
 attr_values : one-to-many attr_value
 ...
end attribute

fig. 9.2. Base component MVSL specification for MViewsER.

subset element entity_icon
 attributes
 entity_name : like entity.entity_name
 relationships
 base_entity : one-to-one entity
 ...
end entity_icon

subset element attr_icon
 attributes
 attr_name : like attribute.attr_name
 relationships

Chapter 9 Further Applications of MViews Page 253

 base_attr : one-to-one attribute
 ...
end attr_icon

subset relationship con_glue
 attributes
 order_entity : like connection.order_entity
 order_rel : like connection.order_rel
 relationships
 base_con : one-to-one connection
end attr_glue

subset element table_text
 relationships
 % mutually exclusive
 base_entity : one-to-one entity
 base_rel : one-to-one relationship
 ...
end table_text

fig. 9.3. Example subset view component specifications for MViewsER.

Entity Icon : Appearance and click-points

EntityName

double-click

component views
(EntityName) EntityName.

default_text_view

double-click

Connection Order:

Connection Name:

(EntityOrder,RelOrder)

ConnectionName

CancelChange Remap

ConnectionIcon:
order_entity

order_rel
name

ConnectionIcon

Connection Icon : Update Details

change_con(EntityOrder,
RelOrder,ConnectionName)

remap_con(EntityOrder,RelOrder,
ConnectionName)

click

return, click

fig. 9.4. Example display view component and dialogue specifications for MViewsER.

Using the MVSL subset view definitions as a basis, an MVisual specification for display
views and dialogues was developed for MViewsER. Fig. 9.4. illustrates some MVisual
views defining view component and dialogue appearance and behaviour.

9.1.4. Design

From the MVSL and MVisual specifications for MViewsER an object-oriented design for
the environment can be developed by reusing the architecture from Chapter 6. MVSL
definitions translate into base and subset component class specialisations while MVisual
specifications define the appearance and editing semantics for display views. Fig. 9.5.
shows a class hierarchy for MViewsER using the SPE class diagram notation. The MViews
architecture classes are abstract (shaded boxes) and the MViewsER classes are on the
right-hand side.

Chapter 9 Further Applications of MViews Page 254

component

subset_view

base_view

view

view_comp

subset_comp

one_to_manyrelationship

many_to_many

one_to_one

graphic_icon

graphic_disp_comp

text_disp_comp

base_comp text_base_comp

viewable_base_comp

display_comp

graphic_glue

text_disp_view

graphic_disp_view

display_view

er_diagram

table_schema

con_glue

attr_glue

entity_icon

rel_icon

attr_icon

table_text

base_entity

base_rel

base_con

base_attr

viewable_base_comp

er_program

fig. 9.5. A class hierarchy for MViewsER.

In addition to the classes shown, MViewsER defines subset/base relationships for icon,
glue and text form classes and specialises the one_to_many relationship class to represent
base component relationships. For example, a base_entity_rels class is defined to relate a
base entity to all of its base connections (which each relate the entity to a relationship).
These relationship class specialisations implement additional methods to manage the
location, compilation, and deletion of components they relate. This approach to modelling
MVSL component relationships proved to be much easier to manage and extend than the
IspelM approach of using list attributes.

9.1.5. Implementation

MViewsER is implemented by specialising the Snart framework of Chapter 7. The classes
defined by the MViewsER design are implemented as Snart classes which inherit from
MViews framework classes. MViewsER uses the Snart framework’s persistency methods
to save and load ER programs. Currently MViewsER loads all base program components
when a program is re-opened and saves updated components. This could be extended to
provide incremental base component loading, in a similar manner to IspelM.

MViewsER uses lazy update record application to implement a “stay with parent icon”
behaviour for attribute icons. When a relationship or entity icon is dragged, its attributes

Chapter 9 Further Applications of MViews Page 255

automatically shift their locations to conform to their parents new location. When an
attribute icon is dragged, however, its parent is not affected. The apply_lazy_updates
method for attr_icon examines any shift_location update records sent to attr_icon and
determines whether to move the icon or not.

MViewsER does not currently have a relational database interface. It could be extended to
support generation of actual relational schema, however, or even to support graphical
querying in a similar manner to (Santucci and Sottile 93, Czejdo et al 90).

9.2. Dialogue Painting

9.2.1. User Interface Specification

User interface specification in most programming languages is via a pre-defined set of
procedure calls (Apple 85, LPA 92), reusable object-oriented toolkits supporting graphical
user interface components (Linton et al 88), or extending the language with constructs for
graphical user interface specification (Haarslev and Möller 90). User interface
management systems (UIMSs) provide languages specific to graphical user interface
specification (Olsen and Dempsey 85) or interactive user interface specification using
graphical editing commands (Myers 89, Avrahami et al 89, Brown 91).

As noted by (Linton et al 88) and (Myers 90), both textual specification (via reuse of
toolkits or specialised programming languages) and interactive graphical specification of
graphical user interface components have advantages and disadvantages. Textual
specification allows other programs to make use of these user interface components
(including passing them data to output and being given input data) and provides a precise
method of specifying constraints and semantics. Interactive specification allows the
appearance of user interface components to be specified in a natural manner by placing
and sizing components as required.

A combination of these two approaches has been attempted in systems such as FormsVBT
(Avrahami et al 89) and Zeus (Brown 91) where textual dialogue specifications are used in
one view and a graphical form in another. These approaches provide consistency between
each view representation using a common parse-tree and event generation when the parse
tree is updated. (Haarslev and Möller 90) note that in this approach the graphical views
tend to constrain the textual representation as both must contain the same data. Other
UIMS approaches generate code from interactive descriptions which can be extended by
programmers to specify behaviour not easily captured in a graphical representation. A
major problem occurs when a graphical representation is changed as previously generated
code is over-written by new code. This produces a similar consistency problem to CASE
tools that generate code when the generated code or CASE diagrams are modified (see
Chapter 4).

Chapter 9 Further Applications of MViews Page 256

9.2.2. MViewsDP

MViewsDP is a dialogue painter for specifying Macintosh-style dialogues using LPA
MacProlog built-in dialogue predicates. MViewsDP provides a graphical view which
allows dialogue components to be interactively added, deleted and modified. This view
shows the form a dialogue will have when actually opened and used by LPA MacProlog.
One or more textual views are provided to specify additional information about the
dialogue. These contain a Prolog predicate defining the dialogue’s sub-components and
predicates used to set up initial values for dialogue fields, check the validity of entered
data, and carry out any processing of entered data for passing back to Prolog predicates
which invoke the dialogue. Fig. 9.6. shows an example of MViewsDP views and an
executing dialogue defined by MViewsDP.

fig. 9.6. An example of MViewsDP views and an LPA dialogue.

The graphical view has been interactively edited to describe the appearance of the
dialogue. The textual view describes the dialogue predicate’s Prolog variables (vars), its
initialisation predicate (initialise), its sub-components (components), checking predicate
(check) and final processing predicate (final). Dialogue sub-components are named in the
textual view by a prefix (unlike LPA dialogue specifications) which helps programmers to
determine which dialogue component has been updated. MViewsDP generates a
predicate to open the dialogue (an example of an open dialogue is also shown in fig. 9.6.)
and asserts other Prolog predicates defined in textual views. Graphical and textual views
are kept consistent with update records and an update history is kept. Graphical view

Chapter 9 Further Applications of MViews Page 257

components are redisplayed after receiving updates while textual views unparse updates
(as shown in fig. 9.6.).

A difference between MViewsDP and both IspelM and MViewsER is that graphical
dialogue sub-components must be enclosed by their owning dialogue’s border and are
displayed relative to their owning dialogue’s location. Sub-component icons are also
shifted are resized when their owning dialogue’s border is shifted or resized. These
dialogue sub-component icons must thus be sub-icons dependent on updates on their
owning dialogue. Adding dialogue sub-components to a textual dialogue specification
must always result in corresponding graphical sub-component icons in the graphical view
(as the graphical dialogue view must contain all dialogue sub-components).

9.2.3. Specification

MViewsDP is specified using MVSL and MVisual in a similar manner to MViewsER. A
complication is that a dialogue can contain several sub-components, all of which share
common characteristics (location, size and name). A natural way of describing this
relationship is to define dialogue sub-components as specialisations of a common MVSL
component. To support this MVSL is extended to support generalisation of one
component to another. The semantics of this are the same as for object-oriented languages
and extended entity-relationship generalisations (Teorey et al 89). A component
generalised to another supports all attributes, relationships and operations of its
generalisation and can be used whenever its generalisation may be used. Fig. 9.7.
illustrates some MVSL declarations for MViewsDP.

base element dialogue
 attributes
 name : string
 top : integer
 left : integer
 depth : integer
 width : integer
 relationships
 components : one-to-many dialogue_comp
 ...
end dialogue

base element dialogue_comp
 attributes
 name : string
 top : integer
 left : integer
 depth : integer
 width : integer
 relationships
 dialogue : one-to-one dialogue
 ...
end dialogue_comp

base element text_field
 generalisation dialogue_comp
 attributes
 text : string
 ...
end text_field

base element edit_field
 generalisation dialogue_comp

Chapter 9 Further Applications of MViews Page 258

 attributes
 initial : string
 final : string
 ...
end edit_field

subset element dialogue_comp_icon
 attributes
 name : like dialogue_comp.name
 top : like dialogue_comp.top
 left : like dialogue_comp.left
 depth : like dialogue_comp.depth
 width : like dialogue_comp.width
 ...
end dialogue_comp_icon

subset element dialogue_icon
 attributes
 ...
 relationships
 components : one-to-many dialogue_comp_icon
 ...
end dialogue_icon

subset element text_icon
 generalisation dialogue_comp_icon
 ...
end text_icon

 fig. 9.7. Some MVSL declarations for MViewsDP base components.

An MVisual specification for MViewsDP is used to define the appearance and editing
semantics for display views and dialogues. Fig. 9.8. illustrates some parts of an MVisual
specification for MViewsDP. Dragging a dialogue icon results in all of its sub-component
icons being shifted by the same amount. Sub-component icon details are updated by
dialogues which send events to their MVSL counter-parts.

Chapter 9 Further Applications of MViews Page 259

Dialog Icon : Shift Behaviour

TextField:

EditField

Button

TextField:

EditField

Button

shift_location(
DialogIcon,DX,DY)

Text field name:

Text field value:

RemapChange Cancel

TextName

TextValue

TextIcon:
name
text

TextIcon

return,click

click
change_text(Textname,TextValue)

remap_text(Textname,
TextValue)

TextDialog : Update Details

fig. 9.8. Some parts of an MVisual specification for MViewsDP.

9.2.4. Design

The MVSL and MVisual specifications for MViewsDP are translated into a design by
reusing the MViews architecture, in a similar manner to IspelM and MViewsER. Fig. 9.9.
shows the inheritance hierarchy for MViewsDP. The MViewsDP classes are shown on the
right. comp_icon and comp_icon are two abstract classes defined by MViewsDP to abstract
out common information and behaviour for dialogue sub-components.

dialog_icon and base_dialog both have a one-to-many relationship to comp_icon and
dialog_comp respectively. These dialogue sub-components are dependents of the dialogue
and its icon and hence are sent update records from the dialogue. Dialogue sub-
component icons are displayed relative to their owning dialogue icon’s position. Hence
they must shift their location when the dialogue icon is moved or resized and must ensure
they do not overlap the dialogue icon’s border.

9.2.5. Implementation

MViewsDP is implemented by specialising the Snart framework and basing the new Snart
classes on those defined in the design for MViewsDP. As with MViewsER entities and
relationships, base_dialog and dialog_icon use relationship components to manage their
relationships to instances of comp_icon and dialog_comp specialisations.

Chapter 9 Further Applications of MViews Page 260

MViewsDP uses the Snart persistency mechanism to save dialogue program states. This
proved to be a much more abstract way of handling incremental program saving and
loading than the MViews framework save and load methods. The MViewsDP classes are
persistent classes and do not have to provide any other facilities to save and reload their
states. This contrasts dramatically to the programming effort involved in supporting
incremental saving and loading in IspelM and simple program saving and loading in
MViewsER. For MViewsER, a significant portion of its development time was spent
defining what information for each component class needed to be saved and how to
restore it. Effort must also be expended to specify how this persistent information is
deleted when the component is deleted (for example, deleting an appropriate resource
from a save file). The MViewsDP approach using Snart object persistency proved to be a
much better way of handling program persistency. Chapter 10 draws on this experience to
develop an improved model for component persistency which also supports version
control and multi-user distributed programming.

componen

base com

one to on

many to man

relationshi one to man

subset com

view com

view

base vie

subset vie display vie

graphic disp vie

text disp vie

graphic glu

display com

viewable base com

text base com

text disp com

graphic disp com

graphic ico

dialogue vie

predicate vie

dp progra

dialog ico

comp ico

text ico

edit ico

button ico

base dialo

dialog com

base tex

base edi

base butto

dialog tex

fig. 9.9. Class hierarchy for MViewsDP.

Lazy update record processing was used to support comp_icon and dialog_comp update
record processing. comp_icon needs to determine whether shift_location(Dialog, DX,

Chapter 9 Further Applications of MViews Page 261

DY), update_attribute(Dialog, depth, NewDepth) and update_attribute(Dialog,

width, NewWidth) have been sent to a dialogue sub-component icon from its owning
dialogue. The dialogue sub-component icon can then reconfigure its state to conform to
that of its owning dialogue (if necessary).

Another interesting use of lazy update record processing is by dialog_comp. Changing the
position and size of dialogue sub-components is a common task which generates many
update records (typically four if the top, left, depth and width attributes of dialog_comp
are all updated by the one editing operation). dialog_comp uses lazy update record
processing to merge these updates into one update record of the form
change_comp(SubComp, OldTop, OldLeft, OldDepth, OldWidth, NewTop, NewLeft,

NewDepth, NewWidth). If only size or location is updated, update records of the form
change_size(SubComp, OldTop, OldLeft, NewTop, NewLeft) and change_size(SubComp,
OldDepth, OldWidth, NewDepth, NewWidth) are generated. This helps to reduce the
number of update records generated and hence assists programmers by reducing the
number of update records stored and expanded in textual views. Chapter 10 discusses
ways MViews can be extended to better facilitate and automate this kind of update record
composition.

9.3. Program Visualisation

Program visualisation systems allow programmers to see parts of their programs in an
abstract (possibly graphical) manner to help facilitate understanding and/or debugging of
programs (Meyer 90). In this section three dynamic30 program visualisation systems
developed using MViews are discussed. The first two are simple examples illustrating
some of the diverse applications MViews can be used for. The third is a visual debugger
for SPE being developed at the University of Auckland by Stephen Fenwick, based on a
prototype system that did not use MViews (Fenwick and Hosking 93).

All of these systems use the Snart object spying mechanism (described in Chapter 3 and
Appendix B) to generate low-level tracing events on objects. MViews converts these
events into update records which are propagated to subset and display view components
to drive animations and maintain subset and display view consistency with an executing
program.

30Dynamic program visualisation displays views of the execution state of a program. SPE supports static

program visualisation by allowing programmers to construct class diagram views illustrating the structure

of programs.

Chapter 9 Further Applications of MViews Page 262

9.3.1. Tally Graph of Method Calls

A tally graph of method calls to an object illustrates the amount of usage of individual
methods (Noble and Groves 92). Fig. 9.10. shows such a tally graph for a drawing_window
object from the drawing program described in Chapter 4. This bar graph view shows a
count of the method calls to the drawing_window object for an instance of the drawing
program. As the drawing_window object’s methods are called this tally graph is updated
dynamically.

fig. 9.10. An object method call tally graph for the drawing program.

The tally graph view is implemented as an extension to SPE. A user-specified object’s
entire interface is spied by a Snart predicate call of the form sn_trace_object(Object). The
spe_program object sends sn_entry(Object, Method(ArgumentList)) events generated by
the spied object to a hashtable base component as update records. This base hashtable
converts these update records into insert_item(Method,1) or
update_item(Method,NumCalls+1) method calls on itself. The hashtable is an “active” data
structure in that it inherits from component and generates update records when it is
changed.

The hashtable has a bar graph subset component which is specialised to a bar graph
display icon (which draws the axes shown in fig. 9.10.). The bar graph subset component
is connected to the base hashtable by a subset/base relationship. This subset/base
relationship translates hashtable update records into bar graph subset component method
calls by over-riding the subset_rel::update_from_base method. The bar graph display is
redrawn when it receives update_display calls from its subset component. Each bar graph

Chapter 9 Further Applications of MViews Page 263

bar is a sub-icon of the bar graph display icon and renders bar graph label and bar
pictures. A bar graph display view is used to enclose the bar graph display component in
a window. Fig. 9.11. shows the translation of object events into update records and bar
graph updates.

The base hashtable used by the tally graph view could have more than one subset view
with different kinds of display views. For example, a textual view might print out a
method call trace with the argument values for each method call (if the base hashtable
propagates the sn_entry events sent to it as update records). The base hashtable might
also store update records against itself to document all method calls sent to the Snart
object.

Spied
Snart

Object

spe_program
Object

hashtable
Object

subset
relationship

Object

bar graph
subst/display

Object

bar graph
subset/display view

Object

bar graph
iterm Object

bar graph
iterm Object

...

sn_entry(...)
sn_entry(...) insert(...)/

update(...)

update_bar(...)

update_display(...)

fig. 9.11. Spied object events and update record propagation for the method call tally view.

9.3.2. Sorting Algorithm Animation

Algorithm animation systems attempt to illustrate how an algorithm works by visually
demonstrating interesting events and corresponding data and control flow modifications
that occur during the algorithm’s execution (Brown 88, Stasko 89, Myers 90). Sorting
algorithms are a common example used. A graphical view illustrates how and when data
is compared and moved during execution of the sorting algorithm. Some animations also
show the commands being executed at each step of the algorithm. Such animations are
useful both for teaching how sorting algorithms work and for testing algorithms for
correctness (an error will result in an in-correctly sorted data structure) and efficiency (an
in-efficient or erroneous algorithm may produce an unduly long or incorrectly sequenced
animation).

A simple sorting algorithm animator has been implemented as an extension to SPE. Fig.
9.12. shows an example of the sorting animation view during execution. As the sorting

Chapter 9 Further Applications of MViews Page 264

algorithm compares two values, their bars are highlighted, and when two item’s values
are swapped, the bars are exchanged. This example shows the progression of a bubble-
sort algorithm sorting elements in a list.

To implement the sorting animation view, a sorting algorithm object’s compare(Item1,
Item2) and swap(Item1, Item2) methods, or a data structure’s set_item(Item, Value)
method, are spyed to generate “interesting events” (Brown 88) which drive the animation.
sn_entry events are sent to the spe_program object which then propagates the events (as
update records) to a subset/base relationship (with no actual base component - the spied
object is assumed to be the “base” component). This subset/base relationship uses exactly
the same bar graph subset and display components and views as used for the tally graph
view to display an animation of the sorting algorithm. The subset/base relationship
converts sn_entry(Object, compare(...)), sn_entry(Object, swap(...)) and
sn_entry(Object, set_item(...)) update records into appropriate bar graph subset
manipulation methods.

fig. 9.12. An example of a sorting animation view.

9.3.3. Visual Debugging

Visual debugging allows executing programs to be debugged using graphical diagrams
describing object data, relationships and control flow (Fenwick and Hosking 93). Cerno, a
visual debugging system for SPE, is under development at the University of Auckland
and reuses MViews to build graphical debugging views for Snart programs (Fenwick 94).

Chapter 9 Further Applications of MViews Page 265

fig. 9.13. An example of Cerno multi-object views.

Cerno defines views and view components to describe the state of an executing Snart
program. Viewed Snart objects have their methods and attributes spied so debugging
views can be updated when the objects change. This ensures view consistency with the
executing Snart program (i.e. the “base” view). A multi-object view shows one or more
Snart objects and references to other Snart objects. Programmers can specify which
attributes of an object are shown for each object view component. References are
expanded by programmers and object attribute values can be updated. Fig. 9.13. shows an
example of Cerno multi-object views.

Cerno is implemented by specialising the MViews Snart framework from Chapter 7.
Subset component classes are defined to represent Snart objects, list attribute values and
term attribute values. Corresponding subset/base relationships are sent update records by
the base view when the objects they view are updated by Snart. These update records are
translated into changes to subset components which are then re-rendered to reflect the
changes to the Snart objects.

Updates on Prolog lists and terms need to be handled by different subset components as
Snart does not store them as objects. A list attribute subset component is a dependent of
an object subset component. It is sent update records received by the object subset
component from a spied Snart object. Any update records describing changes to the list
attribute are converted into changes to the list attribute subset component and it redraws
its display to reflect this change. Terms are viewed as lists of a fixed length by converting
a Prolog term to a list using the =.. operator.

Object subset components can be rendered in a variety of ways, as shown in fig. 9.13. This
allows an object to display information about its attribute types (as a large object display

Chapter 9 Further Applications of MViews Page 266

component) or as a small form showing user-specified attributes and object references.
Snart classification is used to dynamically select between different types of display
components (for example, bar graphs or lists) depending on a programmer’s preference
for how an object’s data should be displayed. Further details about Cerno and its
implementation can be found in (Fenwick 94).

9.4. Other Applications of MViews

This section briefly discusses further applications of MViews currently under
development or planned for development. These systems are quite diverse in nature and
illustrate how the MViews notions of object dependency, update records, and multiple
textual and graphical views with consistency management can be usefully reused in
different systems.

9.4.1. Facets and Object Persistency for ICAtect

The ICAtect system (Amor et al 91) defines a Common Building Model for modelling
building designs. This model specifies classes of building components, attributes for these
components and relationships between these components. Instances of this model can be
constructed which define a particular building design. Existing CAD and engineering
tools can be interfaced to ICAtect and can thus use the Common Building Model for data
interchange. An initial prototype of ICAtect was implemented in Prolog and provided a
mainly textual interface (Amor 91).

A new version of ICAtect is being developed at the University of Auckland by Robert
Amor. This reuses SPE to model and construct a Common Building Model using SPE’s
class diagrams and the model is stored as Snart classes. Instances of the model are
constructed by using a derivative of Cerno to view and manipulate building designs. The
Snart persistency mechanism allows these instances to be automatically made persistent
by Snart.

Snart has been extended to incorporate facets. A facet is a named value associated with a
class attribute and is used to specify additional information about the attribute, such as
default values, a description, and type and constraint information31. For example, an
attribute might be declared as:

shape(facets([

 relationship(values),

 type(shape),

31A facet could be compared to a relational database table field value which specifies similar kinds of

information for table fields.

Chapter 9 Further Applications of MViews Page 267

 constraints(instanceof([shape])),

 description('The shape of this particular object, defined in the hybrid

edge data structure, see Y. E. Kalay in Computer Aided Design, Vol 21,

No. 3, April 1989')

])),

SPE and Cerno have been extended to incorporate this notion allowing facets to be
visually represented and manipulated. This provides a programmer-level visualisation
and visual programming interface for ICAtect with most facilities implemented by SPE
and Cerno. Snart objects produce a much faster performing building design database than
the original Prolog database terms used to define the Common Building Model and its
instances. SPE and Snart object persistency allow the Common Building Model and its
instances to be automatically and incrementally saved and reloaded.

9.4.2. Support for More OOA/OOD Notations

Extending SPE to incorporate more extensive design and analysis views would provide an
improved environment for such high-level software development tasks. Of particular
interest are graphical views which allow control and data flow between class features to
be specified (similar to those described in (Fichman and Kemerer 92)), textual class
interface contracts to be defined (for defining class contracts as used by (Meyer 92)), and
analysis to design (and vice-versa) consistency management.

Fig. 9.14. shows what examples of such views might look like. The top view is a feature
control and data flow view illustrating some feature calls between the figure and
drawing_window classes. This view also shows some of the arguments passed between
features including argument names, types, and input and output arguments. Some calls
are sequenced to show the order they occur from a method (for example,
drawing_window::clicked calls figure::pt_in_figure and then figure::select). This
kind of design-level view is useful for specifying detailed control and data flow between
individual class features (Fichman and Kemerer 92). The existing SPE class diagrams can
not capture this level of detail. Other facilities of this type of view might include
hypertext-like browsing capabilities which display method code views when a connection
is double-clicked on.

The class contract textual view defines high-level pre- and post-conditions associated with
methods (of a similar style to those of Eiffel (Meyer 92) but using Prolog clauses to specify
validity conditions). It also defines the arguments supported by methods (and could
define argument types as well).

Both the feature control and data flow view and class contract view must be kept
consistent with changes to other SPE views. Changes to these views must also be
propagated to other graphical and textual views which share information displayed in

Chapter 9 Further Applications of MViews Page 268

these views. Analysis and design views can be kept consistent with each other (for
example an abstract class diagram view and a feature control flow view) by update
records propagated between base components. For example, a change to an abstract client-
supplier relationship might affect a related feature control flow relationship. The feature
control flow can be made a dependent of the client-supplier and be sent update records.
These records can be used to update the control flow relationship’s state or be stored so
programmers are informed that it has been affected by a change to the client-supplier.

To extend SPE to support these (and other) analysis and design views, the MViews model,
architecture and framework can again be reused. Base classes and features would be
extended to support relationships to new base components representing method call
relationships, method arguments, and method pre- and post-conditions (possibly stored
as textual base components).

For feature control flow views class_icon could be specialised to a new class icon which
supports feature sub-icons. Dragging a class icon would shift its feature sub-icons while
shifting feature sub-icons would alter their position in relation to the owning class icon
(implemented in the same way as MViewsDP dialogue icons and dialogue sub-component
icons). Feature control and data flow connections would be graphic_glue specialisations
with sub-icons representing arguments and an attribute indicating feature call sequencing.

For class contract views class_text could be specialised so parsing a pre- or post-
condition updates the appropriate base component’s text form. MViews supports copying
text form data from part of a textual display view and, as the key-words before and after
are used to distinguish contracts (see fig 9.14.), these could also be used to locate the text
defined by pre- and post-conditions. Class contract text forms could be extended to
support partial class interface displays with inherited features and conditions, similar to
SPE’s class code text forms (see Chapter 4).

Chapter 9 Further Applications of MViews Page 269

figure
draw
hide

pt_in_figure drawing_window
add_pic

del_pic

clicked

in X,Y

%updates_start(7).
updates_end. */

abstract_class(figure,
 parents([]),
 features([
 window:drawing_window,
 visible:boolean,
 create(Window,Location)(
 before(is_object(w)),
 after(self@window==w)),
 draw(
 deferred,
 before(is_object(self@window))
 after(visible==true)),
 hide(
 before(is_object(self@window)),
 after(visible==false)),
 ...
])).

out Boolean

in Figure:figure

in Figure

figure
select

(1)

(2)

fig. 9.14. Examples of feature control flow and class contract views for SPE.

9.4.3. Dataflow Analysis Diagrams and Method Implementations

Dataflow diagrams (DFDs) are useful for systems analysis where they show high-level
dataflow between entities or classes and objects. DFDs can also be used for visual
programming. Low-level dataflow is specified between “boxes” along “wires”, and boxes
can either represent fundamental operations or be composed of other boxes and wires.
Methodologies using DFDs for analysis include Bailin Object-Oriented Requirements
Specification (Bailin 89) and Shlaer and Mellor Object-Oriented Analysis (Shlaer and
Mellor 88). Visual programming systems using DFDs include Fabrik (Ingalls et al 88) and
Prograph (Cox et al 89).

SPE could be extended to provide DFDs for both analysis and visual programming. Fig.
9.15. shows an analysis-level DFD view and a method DFD view. Analysis-level DFDs

Chapter 9 Further Applications of MViews Page 270

describe classes and methods (rather than disembodied processes, as used by conventional
DFDs for structured analysis (Fichman and Kemerer 92)), and show dataflow connections
(possibly named and including an indication of the data passed) between classes and
methods. Method DFDs show operations in boxes (which may be other class methods,
Prolog predicates or other DFDs) and connections (possibly named) between operation
boxes. Shaded wires indicate synchronisation of operations. This style of DFD program is
based on that used by Prograph (Cox et al 89), with additional support for boxes that
interface to textually implemented methods and Prolog predicates.

@visible(Visible)

==

true

@window(Window)@get_picture(Picture)

Visible

@add_pic(Picture)

Picture Window

figuredrawing_window

buttonwindow

click(X,Y)

set_button
(Button)

pt_in_figure
(X,Y)

draw
add_pic
(Picture)

pt_in_figure
(Boolean)

fig. 9.15. Examples of analysis-level DFD views and method DFD views for SPE.

To implement DFD views in SPE, base class and feature components must be extended to
incorporate dataflow relationships (for analysis DFDs) and dataflow box definitions (for
method DFDs). Analysis dataflow relationships require names and base components for
representing data passed via the dataflow connection. Method DFDs require base
component boxes and pins to represent the external structure of a box. They also require a
method of specifying the internal structure of boxes using other box interfaces (boxes and
pins) and wires between box pins. This internal structure could be specified in the base

Chapter 9 Further Applications of MViews Page 271

view or, as box definitions are hierarchical, the structure of a display view could be used
to define both the appearance and internal structure of a box.

Analysis DFD views can specialise the existing class_icon class and support dataflow
connection glue (with optional names and data values represented). Method DFD views
require box icons and pin sub-icons and wire glue. Analysis DFD diagrams can use
update records to keep them consistent with other views and can provide hypertext-like
capabilities for moving to other SPE views. Method DFD base component boxes must be
kept consistent under change. This includes updating a box’s internal specification using
update records (whether its specification is a DFD, Prolog predicate or textual method
definition) when its external interface is changed. DFD internal specifications are
hierarchical and thus can be updated automatically (by adding, moving or deleting a box’s
pins shown when the box is used in other method DFD views). Textual predicates or
methods used as boxes in method DFD views must be updated by expanding update
records into their textual display views. For example, if a DFD view renames wires or
adds pins to a box representing a Prolog predicate, the predicate’s textual definition,
currently defined in a class or feature text form, must have update records expanded in
the text form to reflect the change. Examples of such unparsed update records are shown
in fig. 9.16.

/* updates_start(7).
update(1). % rename pin (argument) Picture to LPAPicture
update(2). % add unnamed input pin
update(3). % remove output pin 1
updates_end. */

drawing_window::add_pic(Window,Picture,Drawn) :-
 ...

fig. 9.16. Unparsing update records from modified boxes into a textual method
implementation.

Fabrik and Prograph allow executing DFD programs to be displayed using the views
defined to construct the program (Fabrik’s diagrams are viewed as always executing, even
for partially constructed programs). SPE method DFDs could support such a facility if
MViews component classes are defined to hold the run-time execution state of boxes. Such
run-time base components could duplicate the composition and layout of method DFD
views to allow programmers to view the state of executing box pins. An alternative might
be to use Snart objects to store the state of an executing DFD box and spy these objects so
an SPE method DFD view can be used to browse the executing program’s state.

Chapter 9 Further Applications of MViews Page 272

9.4.4. Tool-based Abstraction

Garlan et al propose using tool abstraction to support the evolution of large-scale software
systems (Garlan et al 92). They compare and contrast using abstract data structures and
tool abstraction as the basic modelling technique for such systems. Tool abstraction
involves composing a system from reusable “tools” which supply data processing. Tools
share a set of abstract data structures which they update and data can “flow” between
tools for different processing. Garlan et al claim that while data abstraction eases design
changes for data representation, tool abstraction does the same for system functionality.

Two requirements for tool abstraction are: some method of determining whether data
structures have changed; and on data structure change, tools dependent on the data
structure state must be triggered so they can process data and maintain a consistent
system state (Garlan et al 92). One approach to driving this tool invocation process is by
utilising “active” data structures. Some object-oriented systems providing such facilities
include Smalltalk (Goldberg and Robson 84), Flavors (Moon 86) and many object-oriented
databases (Garlan et al 92). A problem with most approaches is similar to that for view
consistency discussed in Chapter 5: only an indication of some change or an indication of
some object attribute change is given to dependent objects (tools), rather than the actual
change that occured.

The MViews framework can be reused to support tool abstraction by using “active” data
structures which generate update records documenting the exact change a data structure
has undergone. Tools can also be implemented as component classes which are dependent
on various active data structures. Tools may even communicate via generation of update
records in contrast to explicit method invocation and thus may be dependents of one
another.

Fig. 9.17. shows an example (based on one from (Garlan et al 92)) of tool abstraction using
specialisations of MViews component class. In this example: an input tool reads lines from
a file and inserts them into a shared line buffer (an active list); a circular shifter tool
appends the first word from each line to the end of the line and stores them in a shifted
line active list; an alphabetiser tool orders this shifted line list; and an output tool writes
the sorted, shifted lines to a file. Fig. 9.17. shows the update records generated by each
data structure, which are used to drive this line shifting process, and the method calls on
data structures by tools. Tool classes can be specialised and new tools added by changing
the dependencies in the system (for example, to include an omit tool for removing blank
lines from the shifted line buffer before output (Garlan et al 92)).

Chapter 9 Further Applications of MViews Page 273

Line Buffer
(active list)

Shifted Lines
(active list)

Input

Circular shifter Alphabetizer

Output

Data structures

append(
List,Item)

append(Item)
append(
List,Item)

remove(Item),
insert(Item)

finished

remove_first(Item)

Method call

Update record propagation

append(Item)

Tools

fig. 9.17. Active data structures and tools supporting tool abstraction.

The MViews model alleviates some of the problems of tool abstraction discussed in
(Garlan et al 92). These include: explicit tool invocation (tools are invoked as required by
MViews’ object dependency mechanism); inefficient response to data changes (tools are
sent an update record describing exact data structure change and thus can provide
specialised, efficient processing, in the same manner as subset view updating (see Chapter
5)); lazy vs. eager data processing (tools can schedule processing of update records lazily
using MViews’ lazy update record processing); and tool scheduling (tools can be
dependent on one another and thus a tool can wait until another tool has processed data
before it processes data).

9.5. Discussion and Future Research

9.5.1. MViewsER

MViewsER provides graphical ER diagram views with corresponding RDS textual views.
Update records are used to propagate changes between these interactively edited ER
diagrams and free-edited and parsed textual RDSs. Unlike most ER diagram/RDS
systems, MViewsER propagates all changes affecting entities and relationships to RDS
views so programmers can determine whether they affect the RDS definitions. For
example, changing the cardinality of a relationship connection may affect field values
(such as defaults, descriptions and ranges) for both the connected entity and relationship
RDSs. Consistency management is employed to always keep renamed, added or deleted
entities, relationships and their attributes, and their corresponding RDS tables and fields,
consistent.

Chapter 9 Further Applications of MViews Page 274

MViewsER can be extended to allow programmers to explicitly define normalisation of
entities and relationships (Teorey et al 86). Entities and relationships can be implemented
as relational database tables or can be implicitly defined by table fields. For example, an
account-of relationship between customer and account entities might be zero-to-many
from customer to account and one-to-one from account to customer. A relational database
might store such relationships as a customer_id field in the account table, rather than have
a separate customer-of table with customer_id and account_id fields. A relational
database query can find all accounts for a given customer_id value, ID, by a simple query
of the form:

select account_id from account

 where account.customer_id = ID

Extended entity-relationship (EER) modelling, as used by (Teorey et al 89, Czejdo et al 90)
allows generalisation relationships to be defined between entities. For example, a
business_customer entity might be a specialisation of customer. MViewsER could support
such relationships, and mutual inclusively and mutual exclusivity constraints between
specialisation entities, by providing base generalisation relationships and graphic
generalisation glue.

(Teorey et al 89), (Czejdo et al 90) and (Santucci and Sottile 93) describe systems which
support graphical construction of ER queries. MViewsER includes relational database
definitions as well as ER diagrams and thus could, in theory, support more explicit and
efficient relational database graphical queries if MViewsER supported programmer-
defined normalisation of entities and relationships, as discussed above. A graphical ER
query on the customer entity requesting all accounts for a customer id could use the RDS
for customer and account to determine the database select query shown above. This
contrasts with some systems which apparently assume an ER model with both entities and
relationships implemented as relational database tables, such as (Czejdo et al 90) and
(Santucci and Sottile 93).

9.5.2. MViewsDP

MViewsDP provides a graphical dialogue painter view and one or more textual dialogue
and dialogue predicate views. This allows the appearance and layout of dialogues to be
interactively specified while dialogue constraints, input and output variables, and
defaulting and data conversion to be managed textually. Textual dialogue predicates are
asserted directly as LPA predicates while textual dialogue specifications are translated
into a predicate which implements dialogue data initialisation, dialogue opening, data
validation and final data conversion and return. In contrast to most interface building
systems, MViewsER allows different levels of detail to be supported naturally in each
view, keeps most aspects of graphical and textual dialogue specifications consistent, and

Chapter 9 Further Applications of MViews Page 275

indicates to programmers changes that can not be automatically applied to a dialogue
view.

MViewsDP currently provides button, text field and edit field dialogue sub-components.
This simple dialogue model could be extended to include radios, check-boxes, menu
selections and pop-up menu items (perhaps using the Lean Cuisine notation of (Apperley
and Spence 88)) so a more complete range of dialogues can be specified. MViewsDP could
also inform programmers of invalid dialogue formats by visual displays. For example, a
dialogue item whose border overlaps that of its owning dialogue could be rendered in red
to illustrate an error. Similarly, LPA MacProlog requires dialogue edit fields to have valid
input and output values (inputs must be non-variables and outputs can specify various
“reading mode” terms, such as gread(Variable) and tokens(TokenList)). MViewsDP
should ensure all dialogue sub-component definitions are correct before attempting to
generate LPA dialogue predicates. Errors could be reported using update records, as used
by SPE for compilation and semantic errors.

A generalised form of MViewsDP could be used to visually and textually specify more
general graphical user interfaces. MVisual demonstrated that visually specifying the
appearance and editing functionality of MViews views and view components is a natural
and expressive approach. An extended MViewsDP could be used to generate icon, glue
and view appearances (and possibly some functionality) using similar graphical and
textual views to dialogue specification views.

9.5.3. Program Visualisation

Program visualisation systems can be built using MViews and Snart’s object spying
mechanism. A tally graph view indicates a count of method calls to individual object
methods. A sorting algorithm animator displays each compare and swap step for sorting
algorithms. A visual debugger provides graphical multi-object views showing the state of
objects and their relationship to other objects.

While there are no plans to extend program animation views for SPE, the visual debugger
is currently being extended to provide control flow visualisation between object methods
and to support generation of multi-object views from SPE class diagrams and vice-versa.
Control flow between objects can be visualised by spying all methods of objects viewed in
a multi-object view. When a spied object calls another spied object’s method, the called
object generates events which can be used to graphically illustrate the current method call
(and method call sequencing). Arguments to method calls could be displayed when
requested by programmers or by default in a multi-object view.

Generating multi-object views from class diagrams (and vice-versa) will allow a “schema”
for multi-object views to be reused and saved with an SPE program. Update records will

Chapter 9 Further Applications of MViews Page 276

be used to keep schema and object views consistent under change. Spied object events can
be stored as update records against object icons to provide a history of attribute updates
and method calls on an object. This would allow programmers to review the “update
history” for objects and thus assist in locating incorrect attribute value assignments and
incorrect method calling sequences.

9.5.4. MViews

Development of IspelM and the systems described in this chapter have indicated good
and bad aspects of the MViews model, its specification languages, architecture and
framework. MViews greatly reduced the time taken, in comparison to using raw LPA
MacProlog, to model, design and implement the systems described in this chapter. For
example, MViewsER and MViewsDP took less than a person week each to develop from
initial specification with MVSL and MVisual to final implementation using the Snart
framework. The method tally view and sorting animation views took less than a day each
to design and implement. Use of MViews for the development of Cerno has lead to a
much faster development time, less errors during implementation and much improved
functionality and extensibility than with the original Cerno prototype which did not use
MViews (Fenwick 93 and 94). Similarly, development of IspelM and SPE has been greatly
enhanced, in terms of development time, extensibility and useful functionality, compared
with the original Ispel system (Grundy et al 91, Grundy and Hosking 93).

Of particular benefit when developing these environments has been:
• MViews’ model and specialisable component class hierarchy for defining base

view components and subset views and components for different systems. As
this is graph-based and stores both language structure and semantics it has
proved flexible for many diverse applications. Abstractions such as viewable
base components, graphical icons and glue, and graphical and textual display
views allows specialised components to be defined which inherit a large
amount of useful functionality (which is also consistent with other specialised
component state and behaviour).

• MViews’ object dependency model using update records is useful for
propagating changes between dependent components, maintaining view
consistency, indicating changes affecting detailed textual views, and
documenting component changes. A generic undo/redo facility and lazy
update record processing has supported quite diverse use of update records
including maintaining visual layouts and constraints and maintaining
component state consistency. The homogenous nature of MViews, with all these
facilities based on object dependency graphs using relationship components and
update record propagation, has made reuse of MViews very straightforward.

Chapter 9 Further Applications of MViews Page 277

• MVSL and MVisual for initial environment specification using the MViews
model. MVSL proved useful in the design of MViewsER and MViewsDP for
defining important component structures, operations and update responses.
These basic environment abstractions could be reasoned with at an abstract
level using their MVSL specifications. MVisual allowed the appearance and
basic functionality of display views for these environments to be defined for
MVSL subset views. MVSL and MVisual specifications do not capture all of the
information needed to define a new environment, but proved very useful for
initial design of an environment and for determining how subset and display
views interact.

• The MViews architecture and framework allowed an MVSL/MVisual
specification for an environment to be translated into an implementable design
and then a specialised framework of classes. Environment design refined MVSL
attributes and relationships to describe how they will be implemented, defined
subset/base relationships to translate between base and subset component
updates, and described MVSL subset views and components and MVSL display
views and components using one class of object. The framework refined this
design to describe exactly how components respond to update records using
declarative methods, implemented relationships and attributes using Snart class
attributes, and provided a persistency mechanism and user interface for the
environment. The added abstractions introduced by the architecture and
framework thus allowed new environments with good user interfaces to be
efficiently implemented.

Reuse of MViews has also indicated several areas which require more work to make
software development environment construction easier and more general:

• MViewsDP’s persistency management using Snart persistent objects proved to
be much better than that of IspelM and MViewsER. A large amount of effort
was expended in the development of IspelM and MViewsER just to define
component data to be saved and restored, let alone defining incremental
component saving and reloading. The Snart object persistency mechanism is a
much more preferable approach with saving and reloading of component
objects being almost transparent from MViewsDP (only calls to
sn_open_object_store, sn_close_object_store and sn_write_objects needed
to be added to the application class for MViewsDP). The Snart persistency
mechanism, however, needs significant enhancement to support facilities such
as version control and distributed, multi-user programming environments.

• MVSL and MVisual are useful for analysing environments and form a good
basis for a design using the MViews architecture. MVSL should support
component generalisation, however, and should allow subset components to
explicitly state the base component attributes and relationships they view and

Chapter 9 Further Applications of MViews Page 278

define automatic updating of these (where appropriate). It can be a tedious
process replicating base component data in subset components and specifying
update operations to maintain base and subset component consistency when the
semantics of this process are usually well defined (updating a subset component
attribute updates the base component attribute it views and vice-versa).
Specifying how an update record is stored should also be more easily defined.
MVisual should support calling MVSL operations as well as update operations
(i.e. MVisual should be able to receive values back from MVSL by sending an
event (update operation) to an MVSL component). Partial generation of MViews
framework classes, parsers and unparsers from MVSL and MVisual descriptions
would also greatly enhance environment development.

• Lazy update record processing proved to be very useful for composing update
records into more abstract records (for example, translating update_attribute
records for dialogue sub-components into resize and move records). It was also
useful for determining whether to reconfigure a sub-icon to its parent’s location
(as the sub-icon has to determine whether it was sent a shift_location from
itself and/or its parent). This lazy update record processing is quite low-level
and only supported by the Snart framework. More powerful methods of
specifying update record composition and lazy processing are required,
particularly support for these at the modelling and architecture levels.
Dependent component attribute recalculation could similarly do with more
abstract specification and better framework support.

Based on the aspects of MViews which require more work, Chapter 10 discusses future
research options which will help to improve MViews and the environments produced
using MViews.

9.6. Summary

MViews has been reused to produce several novel environments and systems. All have a
common underlying theme of canonical program representation based on object
dependency graphs, multiple textual and graphical views of this program, and
consistency management using update records. MViewsER provides graphical ER
diagrams and textual RDS views. These views share some information and are kept
consistent by update record unparsing and application and automatic component
updating. MViewsDP provides a graphical dialogue view and textual dialogue
specification and predicate views. All views share some information and are kept
consistent via update records. MViewsDP also uses update records to maintain graphical
icon positioning and composes abstract update records from fundamental update records
to reduce the number of records stored, losing no information in the process. Cerno
provides multi-object views of spied Snart objects and the views are kept consistent as

Chapter 9 Further Applications of MViews Page 279

objects change. Classification of MViews component classes is used to achieve dynamic re-
selection of object icon displays. Multiple, dependent subset components are used to view
Snart lists and terms and keep these displays consistent with object data. Sorting
animation and method tally graph views illustrate how MViews and Snart can be used to
produce more abstract visualisations of object-oriented programs.

MViews has several other applications and MViews environments can be extended in
various ways. ICAtect extends Snart, SPE and Cerno to support named facets for object
attributes. Analysis and design diagrams for SPE could use update records to maintain
analysis and design view consistency and allow programmers to specify more design
detail. DFDs support analysis-level, abstract dataflow between classes and methods.
Method DFDs provide a complementary visual programming technique for implementing
methods. Tool abstraction allows systems to be decomposed into co-operating tools which
are event-driven by tool and data structure changes. All of these systems reuse MViews’
update records, object dependency graph representations and textual and graphical view
abstractions.

Development of IspelM and the systems described in this chapter has indicated MViews
provides a very useful set of building blocks for integrated software development
environments. Of particular value are the novel MViews aspects of flexible object
dependency graph representation, homogeneous use of update records for change
propagation and documentation, and various abstractions for graphical and textual view
and view components. Facilities that require further work include more flexible and
concise MVSL and MVisual specifications, architecture and framework support for
attribute recalculation and lazy update record processing, and more transparent and
powerful component persistency management. Chapter 10 discusses some of the more
important aspects of MViews that require further research and summarises the research
contributions of MViews and MViews environments.

Chapter 9 Further Applications of MViews Page 280

Chapter 10 Conclusions and Future Research Page 281

Chapter 10

Conclusions and Future Research

This chapter summarises the main contributions of this research to the field of software
development environments. Using the discussions from the previous chapters,
conclusions are drawn about the suitability of MViews for modelling and constructing
ISDEs. The usefulness of IspelM, SPE and other systems developed using MViews (from
Chapter 9) is also briefly discussed.

While MViews greatly enhanced the development of these environments, their
development has indicated a need for a number of enhancements to MViews itself. These
enhancements include: the need for more abstract attribute recalculation specification,
lazy update record processing, and automatic support for update record composition;
more abstract component persistency, similar to Snart object persistency; reusable version
control and configuration management tools, and support for multi-user, collaborative
software development; and partial generation of environments from MVSL and MVisual
specifications, including unparser and parser generation. Important future research with
SPE and IspelM includes: support for “typed” languages, where many inter-class
relationships are automatically generated; reusing IspelM to produce environments for
other object-oriented languages; and formal user evaluation of MViews environments, to
determine how the provision of multiple textual and graphical views of software
development with automatic consistency management assists, or hinders, software
developers.

10.1. Research Contributions and Conclusions

10.1.1. Program and View Representation in MViews

MViews uses a novel object dependency graph mechanism for representing program
structure and semantics as a canonical form in a shared data repository. Programs are
represented as base program graphs which are comprised of elements (graph nodes) and
relationships (graph edges). Subset views of this base program graph are constructed and
are themselves program graphs comprised of subset element and relationship
components. Subset view components are connected to base components with

Chapter 10 Conclusions and Future Research Page 282

relationship components. Program graphs are modified by a small set of graph editing
operations.

This representation scheme is very general and flexible and can model both tree-based
languages and graph-based languages. Language semantics can be modelled and stored
as component attributes and subset views may represent and modify both structural and
semantic information, as appropriate. Relationships between components determine inter-
component dependencies and thus provide a structure for propagating component change
without the need for a separate object dependency network.

Experience with MViews has indicated a need for an abstract component persistency
mechanism. The MViews model and architectures can ignore the problem of program
persistency if object persistency is supported by the implementation language for MViews
systems. Providing architecture support for component persistency (via save and load
methods) is a language-independent model but language-based object persistency has
proved a much more abstract and easier to use approach.

10.1.2. Update Records for Change Propagation

MViews introduces the novel mechanism of update records for propagating a notification
of the exact change to a program graph component. An update record is generated by a
graph editing operation and propagated to all dependents of the updated component.
These dependents are determined using the relationships the updated component
participates in. Dependent components interpret update records they receive and may
perform operations to reconcile their own state to that of the updated component they
depend on. Update records provide a homogeneous solution to support different kinds of
change propagation in ISDEs.

Update records are used by MViews environments to support a novel approach to
graphical and textual view consistency. Update records may be unparsed in textual views
to document a change to components represented in the textual view. An environment
may also support automatic application of some update records to update the view’s text
forms, using incremental parsing and token substitution. This view consistency
mechanism allows high-level graphical software representations and low-level textual
program representations to be kept consistent automatically by an environment, no matter
which view has been changed.

Update records are also used by MViews environments to support change propagation
between base and subset components. This mechanism can support flexible, efficient
attribute recalculation and lazy update record processing. As subset components are
treated as dependents of their base components, update records provide a mechanism for
keeping multiple views of shared program components consistent. The MViews

Chapter 10 Conclusions and Future Research Page 283

architecture supports a novel concept of subset/base relationships which can
automatically translate between base and subset view attribute update records and
corresponding operations. These subset/base relationships also support efficient view
updating using lazy, demand-driven update record processing and their behaviour can be
redefined to support very general viewing of base program components.

MViews environments support a novel “component self-documentation” scheme. Update
records can be stored by a component to document changes the component has
undergone. Using a similar principle, update records can be stored by subset views to
implement a generic undo/redo facility for reversing and reapplying display and subset
view editing operations. This mechanism is similar to database transactions, except a
“transaction” is comprised of a sequence of update records, which are accessible to
components and are used for several complementary purposes.

Update records allow a wide range of systems to be modelled including those utilising
tool abstraction, multi-view editing, and general program dependency relationships. The
most important, novel uses of update records have been supporting free-edited textual
view consistency, dependent component state modification, and automatic component
change documentation. The diverse uses of update records, and their good performance
when implemented using Snart, suggests they are a very useful approach to handling
general change propagation in ISDEs.

10.1.3. View Editing and Tool Interfacing

Subset views are rendered in either graphical or textual forms using display views. These
display views also provide the editing tools for an environment with display view updates
translated into subset view updates and vice-versa. MViews thus provides a novel tool
integration mechanism via subset views whose rendering also supplies an editing tool for
the environment. Display views are constructed from a common set of graphical user
interface building blocks and may communicate (i.e. one view open another) via the
subset and base views. This provides tight user interface integration with all editing tools
having a common user interface. MViews supports the novel concept of interactively
edited graphical display views and free-edited and parsed textual display views, with full
view integration and consistency management via a canonical base program
representation.

Subset and display views may also be used to integrate other tools into an environment. A
subset view may simply provide access to the base view and translate data and editing
operations to and from an external tool format. For example, a version control tool might
be interfaced via a subset view and have a graphical user interface provided by a display
view. Subset view components could also be used to relate external tool information
(represented in a different format to MViews data) to base components. Subset views can

Chapter 10 Conclusions and Future Research Page 284

also propagate editing operations on base and subset components to external tools and
translate external tool editing operations into subset and base component updates.

The provision of graphical and textual program views, with appropriate editing styles to
the kind of view representation, has made MViews environments both easy and natural to
use. Subset view consistency via unparsed update records or subset component
modification in response to update records distinguishes the user interface of MViews
environment views from other environments. While subset views have not yet been used
for more general tool interfacing in MViews environments, they form a similar mechanism
to that of ICAtect’s external tool integration mechanism (Amor et al 91). This has been
used successfully to integrate design tools with different data representations. Update
record propagation between subset views and the base view provides a change
propagation mechanism between tools of similar capability to that of FIELD environment
selective broadcasting (Reiss 90a). Thus update records may prove useful for both data
change propagation and editing operation propagation between external tools and
MViews environments.

10.1.4. MVSL and MVisual

MVSL provides a specification language for defining the base and subset view states of an
environment. MVSL component specifications can be augmented with extra graph editing
operations built from a small set of fundamental operations. Update operations provide a
mechanism for interpreting update records generated by components a component is
dependent on.

MVisual provides a novel graphical specification notation for defining the user interface
aspects of MViews environments. Display view and display component appearances are
defined by example, as are dialogue and text form representations. A form of visual
programming specifies the update record flow between MVisual graphical entities. This
allows environment designers to define display view editing operations, the effect of
display view editing operations on subset views, and the effect of subset view change on
graphical entities.

Update records represent event flow between graphical entities and subset views and
components and graphical entities and dialogue sub-component values can be specified in
terms of subset view data defined in MVSL. MVSL and MVisual are currently assumed to
communicate via update records passed between graphical MVisual entities and MVSL
base and subset components. This loosely equates to the MViews architecture notion of
display views and components being specialisations of subset views and components with
communication by update records and method calls.

Chapter 10 Conclusions and Future Research Page 285

MVSL and MVisual are both useful for initial environment specification (as used for
MViewsER and MViewsDP in Chapter 9) and environment documentation (as used for
IspelM in Chapter 5 and Appendices D and E). MVSL proved useful for defining
important component structures, operations and update responses. These specifications
ignored considerations of exactly how attributes and relationships might be implemented
and stored, implementation-level detail of component generation, propagation, storage
and response to update records, and how base and subset view data is made persistent.
MVisual allowed the appearance and basic functionality of display views for these
environments to be defined for MVSL subset views. MVisual ignores implementation-
level consideration of how subset and display views synchronise their updates and how
display view editors are built. MVSL and MVisual specifications proved useful for the
initial design of environments as they ignore detailed consideration of subset and display
view communication, data storage, user interface functionality and efficiency, which have
to be considered at the MViews architecture and framework levels.

Experience with these environments suggests partial generation of Snart framework
classes from these specifications would enhance environment development. A crucial
issue with this generation is how flexible the generated framework classes remain (i.e.
how well they can be specialised to support activities not well expressed in MVSL and
MVisual) and how consistency management can be employed between environment
specification and implementation. MVSL should support more abstract language
semantics specification, perhaps using a form of graph-based attribute grammars
(Backlund et al 90, Hudson 91), and subset component specification in terms of base
components. Improved communication between MVSL and MVisual would make both
notations more expressive and useful.

10.1.5. MViews Architecture and Framework

Design and implementation of MViews environments uses an object-oriented architecture
and framework of classes, rather than most approaches of generating environments from
formal descriptions. The MViews approach is less abstract but more flexible than
environment generation. It has resulted in environments which have user interfaces
closely corresponding to those software developers prefer (such as interactively edited
graphical software representations and free-edited and parsed textual representations).

The MViews architecture and framework provides a large range of useful component data
and functionality. This allows environment developers to quickly design and implement
environments based on MVSL and MVisual specifications using extra abstractions
provided by the MViews architecture. This has resulted in very quick development of
environments which have a lot of useful functionality. Other researchers have used
reusable architectures to support programming environment and tool implementation
(Nascimento and Dollimore 93, Newbury 88, Ratcliffe et al 92, Reiss 86). The MViews

Chapter 10 Conclusions and Future Research Page 286

architecture and framework, however, provide a novel set of reusable abstractions for
both canonical program representation and integrated multiple textual and graphical view
support. Use of these reusable build blocks has greatly reduced the time and effort taken
to develop the environments described in this thesis than if MViews was not provided.

10.1.6. SPE and IspelM

SPE provides a novel, ISDE for analysing, designing, implementing and maintaining Snart
software. SPE provides a concrete example of an environment based on the MViews
model. Multiple textual and graphical views of software development are supported and
these include abstract analysis and design class diagrams, textual analysis and design
documentation views, textual program implementation views, and graphical debugging
views using Cerno. Software construction views are kept consistent using update records
and a canonical program representation.

SPE differs from comparable environments for object-oriented software construction by:
its integration of graphical analysis and design views with textual program
implementation views; its use of update records to maintain textual view consistency; and
its automatic change documentation facility for program components. SPE also reuses an
existing language compiler and run-time system, rather than re-specifying all static and
dynamic language semantics within the environment. Use of SPE has indicated a need for
more comprehensive analysis and design views of software development, version control
facilities, and support for multi-user, collaborative software development. Determining
the actual usefulness of SPE, via controlled user testing and evaluation, would provide a
concrete demonstration of the worth of MViews environments.

IspelM reuses the MViews architecture and framework to provide a generic environment
for object-oriented software development. IspelM demonstrates that MViews can be
reused to model, design and implement such environments using abstract specification
and object-oriented framework reuse. Reuse of the IspelM framework may indicate the
need for further generalisation of the facilities provided by IspelM. IspelM framework
reuse for Snart indicated language support for framework reuse may enhance the
development of new environments.

10.1.7. Reuse of MViews

The environments developed using MViews in Chapter 9 help to demonstrate the
flexibility of the MViews model and its wide range of applications. MViewsER provides a
multiple view entity-relationship (ER) diagrammer with complementary textual relational
database schema (RDS) views. MViewsER provides a novel mechanism for keeping these
ER diagrams and RDS views bi-directionally consistent using MViews’ update records.
An advantage over comparable systems is that changes to ER diagrams not directly

Chapter 10 Conclusions and Future Research Page 287

affecting RDS views are unparsed for programmers to be made aware of. ER and RDS
base component changes are automatically documented using update records providing a
modification history similar to that of SPE.

MViewsDP provides a graphical dialogue painter view with textual views for specifying
dialogue constraints, field defaults and return values. Use of MViews’ update records to
maintain graphical and textual view consistency, with automatic update record
application to textual and graphical views, maintains full view consistency. This produces
a novel environment where different views provide the most appropriate representation
for different aspects of dialogue specification.

Method tally and sorting animation views illustrate that MViews can be used for various
dynamic program visualisation applications. Cerno also illustrates this use of MViews but
in addition demonstrates that the MViews architecture and framework can be usefully
reused by other researchers. MViews and its derivatives are useful for constructing other
software development environment tools and applications. These include more analysis
and design views for SPE, dataflow method implementations for SPE, tool abstraction,
and building model construction.

10.1.8. Snart

Snart provides a small contribution to object-oriented language development. Snart
classifiers provide an imperative setting for dynamic classification, a language feature
previously only supported by Kea (Hosking et al 90). Snart uses classifiers to support
dynamic object class membership change, object feature spying for dynamic program
visualisation, and object persistency.

Various improvements to Snart can be made including multiple object stores for object
persistency, improved compilation optimisations, and better debugging facilities (such as
those provided by Cerno). Adding typed object variables to Snart would allow SPE and
IspelM to be expanded to cope with method arguments, automatic detection of inter-class
relationships, and proper compile-time type checking. Strong typing also has interesting
implications for the provision of imperative classification.

10.2. Future Research

Most of the previous chapters have contained brief discussions about possible future work
on MViews environments. We confine the discussion in this section to the “hard” future
research issues and leave discussion of cosmetic and performance improvements to the
previous chapters.

Chapter 10 Conclusions and Future Research Page 288

10.2.1. Abstract, Flexible Component Persistency

Experience with MViews has indicated that component persistency should not be part of
an environment’s abstract specification or architecture. It has also shown that persistent
objects may provide a mechanism of suitable abstraction and flexibility. Snart object
persistency, however, needs to be enhanced to accommodate both flexible and efficient
component object storage. MViewsDP uses Snart object persistency to store programs but
only supports one object store being open at one time (due to the restriction imposed by
Snart). This prevents the use of shared libraries and copying of components between
programs which are not contained in a single object store database. In addition, Snart
currently stores and loads objects individually to and from persistent storage. This can
prove inefficient for components which are part of other components or usually require
other components to be in-core (such as subset view components which are always
reloaded with their owning subset view component by the MViews architecture).

Snart can be extended to handle multiple object stores in a similar way to how multiple
object spaces are supported (used by SPE to separate SPE component objects and
application objects). One or more object spaces could be defined which have a
corresponding object store. Multiple object spaces used at one time require dereferencing
of object identifiers according to which store they belong to. Copying of objects between
stores could be supported by duplicating object data and copying it from one object store
to another. Coarse-grained object storage could be supported by writing multiple objects
to a single storage location and always reloading all these objects when one is accessed.
The MViews architecture supports a form of this where multiple object save_data terms
can be written to one text data file resource. This has indicated a much improved
performance when loading closely inter-dependent objects over loading each object
individually. Fig. 10.1. illustrates the format of a group of such object spaces and their
object stores.

Chapter 10 Conclusions and Future Research Page 289

In-core Objects and Spaces Persistent Objects and Stores

...

...

Object index table

Object

Coarse-grained storage

Object store/space

fig. 10.1. A group of shared Snart object stores and object spaces.

Some open research issues include how to abstractly specify the storage format of objects,
how to update an object store when a class’s interface is changed (i.e. object data is added
or removed), and how to support a “deep copy” of objects from one store to another. For
example, copying a class from one object store (say, a class library) to another (say, a
program using the library class) may result in other classes used by the copied class
needing to be copied and many component object references to be updated. The MViews
architecture allows such component relinking to be hand-coded at present, but this is not a
very abstract way of supporting such component duplication. The Snart object stores
currently save their old class interfaces so objects with new class interfaces can be
converted to their new forms. This is flexible but inefficient for large object databases.

10.2.2. Tool Integration Issues

MViews base views, subset views and update records provide a novel combination of
view-based tool integration, canonical form program representation, and program
dependency graph change propagation (see (Meyers 91) for a detailed discussion of these
and other kinds of multi-view editing environment integration mechanisms). MViews
supports the construction of editing tools by providing display views which render and
manipulate subset view components. At present MViews does not provide any additional
support for integrating external tools, as provided by FIELD (Reiss 90a) and Dora (Wang
et al 92) environments.

Chapter 10 Conclusions and Future Research Page 290

Base View

Subset view

Display View

Subset view

External Tool

Tool Data
Translator

View

MViews Environment

External Tool

Tool Data

Translator
View

Subset view

fig. 10.2. Examples of translator views for improved tool integration abstractions.

A possible approach to improving external tool integration would be to supply
“translation” views for subset views, rather than display views. These translation views
would have knowledge about the format of external tool data and may use subset view
components to map external data entities to base program components. Editing operations
from external tools may be converted into subset and base component operations. Update
records generated by base and subset components translated into external tool editing
operations or data modifications (if possible to do so). Translator views may need to parse
data stored by external tools and unparse MViews component data in a similar manner to
textual display views and components. A uniform approach to data parsing and
unparsing may provide useful to facilitate both kinds of views. Translator tools may also
require user interfaces (possibly display views) which provide a consistent user interface
to external tools. Fig. 10.2. illustrates how translator views might interface between
MViews and external tools.

10.2.3. Version Control and Configuration Management Tools

SPE currently does not support version control nor configuration management for
software. As these facilities are common to most software development environments
(Reiss 90a) reusable MViews tools to support these facilities would be useful. MViews
environments can store update records to document the changes components have
undergone. These stored records can form the basis of a flexible version control system.

Undoing and redoing the effect of a stored update records is straightforward. If stored
update records are allowed to be undone and redone out of strict sequence, however,

Chapter 10 Conclusions and Future Research Page 291

MViews must check it is valid to carry out the operation. For example, undoing an
attribute update if a component has been deleted does not make much sense unless the
deletion is first undone. Two versions of a component could be merged by applying the
update records of the second version to the component state described by the first version.
Some update records may be invalid, however, and should be stored and reported to the
programmer. Heuristics to automatically re-order update records so they can be applied
could be supported (for example, undoing a deletion and then undoing an attribute
update, as above). Added complications to this versioning process involve language
semantics recalculation. Merging, reversing or reapplying version update records will
require various language semantics to be rechecked to ensure a software system is still
valid. A version control tool may need to be specialised for a given environment to
support additional update records defined by components of the environment but not
used by MViews.

A related issue to version control is configuration management where multiple versions of
program components are held and a given program is configured from one version of
each of its components. This has implications on the way MViews components are stored
and a configuration management tool would need to ensure an object store has one
version of each object at any one time. This may require multiple object stores for one
group of program components or the configuration management tool may swap object
versions to reconfigure the program version. Some open research issues include: how
update records representing different versions are accessed by programmers from a
current version of a program (probably via the configuration management tool); how to
abstractly define configuration of components composed of other components (for
example, a base class component has many feature components in SPE, and a different
version of the class may have different versions of these features); the management of
versions of subset and display views (different view versions require different base
component versions and vice-versa); and storage of updated text form versions (where the
“update record” contains the whole text form data).

10.2.4. Multi-user, Distributed Software Development

SPE currently supports only single user software development. Supporting multi-user
software development could be achieved by providing each programmer a workspace
made up of object stores for particular versions of a software system. Changes to these
software versions could be exported to a shared program representation on-demand and
versions from different programmers merged as appropriate. A programmer could also
import updated versions from the shared representation and update their own versions.
Fig. 10.3. illustrates such a multi-user, distributed software development environment for
SPE.

Chapter 10 Conclusions and Future Research Page 292

Shared Software Representations

Base View

Subset Views

Base View

Subset Views

User Representation

Base View

Subset Views

User Representation

Base View

Subset Views

Base View

Subset Views

User Representation

Base View

Subset Views

export class/view version

import class/view version

Shared File Storage

Distributed File Systems and User Interfaces

fig. 10.3. A multi-user, distributed software development environment.

Some research problems for supporting such an architecture include: abstract specification
and efficient implementation of import and export tools; shared object store databases so
multiple programmers can read update records and version information (object databases
could be locked during version merging and an old object store database left readable);
and support for collaborative software development. A disadvantage with this system is
that programmers may spend a long time working on components which have been
updated in new versions by other programmers. Update records could be broadcast to
other environment invocations, similar to recalculated attribute values in Mercury (Kaiser
et al 87), to inform other programmers of recent component updates they may need to be
made aware of. Collaboration between programmers for software analysis and design
may require views for these phases of development being kept consistent automatically by
this update record broadcasting between environments.

10.2.5. Lazy Update Processing and Attribute Recalculation

MVSL does not currently provide any abstract mechanism for specifying language
semantics using attribute grammars or any other formalism. MVSL also does not support
the definition of update record composition and lazy update record processing. The Snart
framework for MViews provides low-level support for these mechanisms based on update
record storing and interpretation. Both specification and implementation of MViews-
based environments would be easier if these facilities were more powerful.

Chapter 10 Conclusions and Future Research Page 293

An approach to providing these mechanisms at a higher level of abstraction is to extend
MVSL so graph-based attribute grammars can be specified, at a similar level of abstraction
to that of LOGGIE (Backlund et al 90). Implementation of these grammars could use the
get_attribute method for component classes to recalculate attribute values (when
required) and return them. get_attribute would need to be modified to register a
component’s dependencies on other component attributes. For example, fig. 10.4. shows
an example attribute grammar based around MVSL components and a possible Snart
framework implementation. The 4-argument form of get_attribute registers the given
component and its attribute as a dependent of the recalculated attribute value (so the
dependent attribute will be notified of a change to all attribute values it depends on).
Further research is required to determine all the implications on attribute grammars of
MViews component persistency, version control, and multi-user software development.

MVSL code:

base element class
 ...
 relationships
 attribute all_features : one-to-many all_feature is
 % calculate all_features from parents and
class.features relationship
 ...
end class

Snart framework code:

 base_class::get_attribute(Class,
 all_features,AllFeatures,DepComp,DepAttr) :-
 % calculate value
 ...

 Class@register_dependent(all_features,DepComp,DepAttr),
 ...

 base_feature::get_attribute(Feature,environment,Env) :-
 ...
 Class@get_attribute(
 all_features,AllFeatures,Feature,environment),
 % calculate value

fig. 10.4. Attribute grammars for MVSL and the Snart framework.

Lazy update record processing could be handled in a similar manner by specifying what
update records are to be lazily processed and when their lazy processing should be
scheduled. Update record composition could be supported by sending update records to a
form of finite state automaton which composes a new update record from a sequence of
basic update records generated by a component. One implication of this approach is how
to determine when a composite update record shouldn’t be generated. For example, if a

Chapter 10 Conclusions and Future Research Page 294

MViewsDP dialogue sub-component is resized in one editing operation it generates a
composite update record instead of up to four update attribute records. If it is moved and
then resized over subsequent operations, it should not generate a composite record.

10.2.6. Partial Generation from Abstract Specification

The MViews approach of abstract environment specification using MVSL and MVisual
and then implementation using the Snart framework has proved very flexible. A
disadvantage, however, is that much common information, particularly about program
data representation and display view component appearance, must be replicated when
implementing an environment.

Generating reusable Snart framework classes from an abstract environment specification
may alleviate this problem. These generated classes would be reusable via specialisation
and would thus overcome the traditional generated environment problem of lack of
flexibility. Generating parsers and unparsers from grammars would assist the production
of textual display views which are currently implemented using Prolog code.

10.2.7. IspelM and SPE Enhancements

Adding typed variables to Snart would allow experimentation with automatically
generated inter-class relationships in SPE. Currently all inter-class relationships (such as
aggregation, method calling and classification) are specified by programmers using
graphical (and sometimes textual) display views. With a typed language many of these
relationships can be inferred by parsing method implementations and class interfaces.
This would generate a complete cross-reference database for classes, similar to that of
FIELD environments (Reiss 90a and 90b). An implication of this automatic generation of
relationships is how to efficiently update class relationships when a method or class is
changed (so only modified relationships need be changed).

Specialising IspelM for other object-oriented languages may indicate the need for more
object-oriented software development data and techniques to be stored at the IspelM level.
For example, an environment for C++ software development could reuse SPE’s analysis
and design views with little or no change but requires different parsing, unparsing and
compiler interface support. C++ classes have method argument types would should be
represented (preferably at the IspelM level, as this is common to all strongly typed object-
oriented languages).

The useful of SPE and other environments needs to be formally evaluated to determine
just how such environments enhance software development. (Meyers 91 and Myers 90)
note the difficulty in comparing new software development environments and visual
programming techniques to conventional environments. The latter often have much more

Chapter 10 Conclusions and Future Research Page 295

well-developed tools while the former are often research projects lacking the fine-tuning
and polishing of more traditional environments.

An approach to the evaluation of SPE might be to compare software development in SPE
to Snart software development using the original LPA MacProlog-based Snart
environment (as this simple environment has not been well-developed itself). One group
of unfamiliar Snart programmers could be given SPE to use while another given the LPA
environment. Development of a common program (such as the drawing program of
Chapter 3) would provide feedback on how SPE provides better or worse support than the
LPA environment. Developing more substantial programs in this manner would also be
required and evaluation of programmers’ subjective view of each environment may also
prove very useful (as different programmers often like or dislike different aspects of
software development environments (Glinert and Tanimoto 85)).

10.2.8. Imperative Classification and Framework Specialisation

Imperative classification in Snart has proved useful. Adding strong typing to Snart, as
suggested in the previous section, has a number of interesting implications on the use of
such imperative classifiers. For example, consider the example in fig. 10.5. from the
drawing program in Chapter 3. The example on the left shows drawing_window method
which converts a rectangle object into an foval object using the shape classifier. This
works well as Snart uses run-time typing so the use of rectangle attributes before the
classification and oval attributes after the classification is valid. The example on the right
has a typing problem, as Rect is declared as a rectangle. After the imperative
classification Rect now refers to an object of type foval!

drawing_window::rectangle_to_oval(Window,
 Rect) :-
 Rect@height(Vertical),
 Rect@width(Horizontal),
 Rect@classify(shape,foval),
 Rect@v_radius:=Vertical,
 Rect@h_radius:=Horizontal,
 Rect@draw.

drawing_window::rectangle_to_oval(
 Window:drawing_window,
 Rect:rectangle) :-
 Rect@height(Vertical),
 Rect@width(Horizontal),
 Rect@classify(shape,foval),
 % what does Rect now refer to?
 Rect@v_radius:=Vertical,
 Rect@h_radius:=Horizontal,
 Rect@draw.

fig. 10.5. An example of imperative classification in Snart and a typed version of Snart.

A solution to this might be to define the classify method as returning a new object
reference of the appropriate type. This still does not stop Rect, or other object references to
the classified rectangle, from assuming it is still an oval. Another solution might be to keep
track of all references to classifiable objects and invalidate those that become incompatible
with the object’s new type.

Specialisation of IspelM to produce SPE indicated the need for language support for such
framework specialisation. IspelM classes are not abstract classes and thus instances can be

Chapter 10 Conclusions and Future Research Page 296

created of them. One problem this causes in a specialisation of IspelM, such as SPE, is that
objects must be created as instances of SPE classes, if an SPE class specialises an IspelM
class. For example, base_class from IspelM is specialised to spe_base_class and all classes
used by SPE must create instances of spe_base_class, not base_class. The MViews
framework currently solves this problem by allowing environment implementers to over-
ride the base view method used to create new objects (kind_to_component) to support
creation of the correct class instance. This is hardly an ideal solution as language-level
support for framework specialisation would ensure the correct instance is always created.

10.3. Summary

MViews provides a novel model for ISDEs which support multiple textual and graphical
views of information with consistency management. MViews provides a model based on
object dependency graphs for representing program data and subset views of this
program data. Subset views are rendered graphically or textually with graphical views
interactively edited and textual views free-edited and parsed. The novel update record
mechanism is used to maintain textual view consistency, propagate changes between
components, support undo and redo of editing operations, and support component
change documentation.

MVSL and MVisual support the specification of environments based on the MViews
model. The MViews object-oriented architecture and Snart framework allow these
environments to be implemented much more easily than without the MViews abstractions
and building blocks. MViews has been reused to produce SPE, a novel ISDE for
constructing Snart software. Other environments constructed by reusing MViews include
an entity-relationship modeller with textual relational database views, a dialogue painter
with textual constraint specification views, and various program visualisation views for
SPE.

MViews can be extended in a number of ways to support the modelling and construction
of ISDEs which provide flexible version control, multi-user, distributed software
development, and partial environment generation from abstract specifications.

Chapter 10 Conclusions and Future Research Page 297

Chapter 10 Conclusions and Future Research Page 298

Glossary
Abstract class

A class which can not have any object instances. Usually used to factor out common data and
behaviour and is a generalisation class for other classes.

Aggregation relationship
An aggregation relationship between two classes indicates that an instance of one class is
composed of instances of the other class (i.e. a part-of relationship). For example, a drawing
window object may be composed of zero or more button objects. Aggregation relationships are
typically used for object-oriented analysis and are refined into client-supplier relationships.

Association relationship
An association relationship between two classes indicates one class makes use of the features of
the other class in some way. For example, a figure class may be associated with a drawing
window class, indicating the figure class uses the drawing window class in some manner.
Association relationships are typically used for object-oriented analysis and are refined into client-
supplier relationships.

Attribute grammars
Defining the static semantics of a software system in terms of attributes associated with the
syntactic structures of the software system.

Attribute recalculation
The process of recalculating attribute values after an attribute value has changed or some syntactic
modification has been made to a software system.

Base component
An element or relationship representing some base program information. Base components are
part of the base view and may have zero or more subset view components linked to them.

Base view
A collection of program graphs which forms a canonical representation of an entire program.

Change propagation
The process of propagating an update (change) to one software system component to other
components that may be affected by this change.

Class interface
The interface of a class is the set of all features defined by the class itself and inherited from all
the class’s generalisation classes.

Chapter 10 Conclusions and Future Research Page 299

Classification
Dynamic classification of an object from membership of one class to membership of a descendant
of this class. A classifier describes the set of valid descendant classes that can be used for the
classification of the object and a class may define multiple classifiers. Classification is usually
used to dynamically “specialise” an object’ class membership using data supplied by a user at run-
time.

Client-supplier relationship
A client-supplier relationship between two classes indicates the client makes use of one or more
features from the supplier. For example, a figure class may use the add picture method of a
drawing window class and hence a client-supplier relationship from figure to drawing window
exists.

Component
Some view, element or relationship of an MViews system (may be at the base, subset or display
level).

Concrete class
A class which can have object instances (as opposed to an abstract class used for the purpose of
factoring out common information).

Consistency management
The process of keeping software system data consistent under change. For example, if a software
system component is updated all other components dependent on the updated component’s state
must be updated in an appropriate way so the software system data is consistent. For example, if
the interface to a class is changed, all classes using this interface should be re-checked to ensure
they use the new interface correctly.

Display component
An element or relationship that is part of a display view. Display components include icons
(renderings of subset elements), glue (renderings of subset relationships) and textual display
components (text forms which represent subset components).

Display view
A graphical or textual rendering of a subset view. Display views also supply editor functionality
for manipulating display components.

Features
The features of a class are all the methods and attributes defined by the class, possibly including
all inherited attributes and methods.

Generalisation relationship

Chapter 10 Conclusions and Future Research Page 300

Generalisation relationships between classes specify that a class is generalised to one or more
other classes, and are typically used for object-oriented analysis. For example, a drawing window
class is generalised to a window class and thus inherits all the functionality of this window class.

Graphical view
A graphical rendering of a view of a software system. Usually edited interactively or via structure-
oriented editing (but may be free-edited using a drawing editor and parsed).

Inheritance relationship
Inheritance relationships between classes specify that one class inherits the data and behaviour of
another class. Inheritance is typically used for object-oriented design and implementation and
corresponds to generalisation. For example, a drawing window class inheriting from a window
class inherits all the data and behaviour of this window class.

Object dependency graph
A dependency network between objects where each object has zero or more other objects
dependent on its state. When the state of an object changes, its dependents must be notified of this
change so they can update their own state appropriately to keep the system consistent.

Programming environment
An environment which assists programmers to implement and debug programs by providing tools
for these tasks. Integrated programming environments provide an environment in which data and
user interface integration is supported (i.e. a common data repository and common user interface
is provided by the different tools).

Program visualisation
The process of viewing the static structure and/or dynamic behaviour of programs at a higher level
of abstraction than program text and debugger trace. Usually utilises some form of graphical
presentation.

Software development
The processes of analysing, designing, implementing, debugging and maintaining software
systems. In a broader sense it also incorporates project management, collaborative software
development, version control and configuration management. Integrated software development
environments provide an environment in which data and user interface integration is supported
(i.e. a common data repository and common user interface is provided by the different tools).

Software development environment
An environment which not only assists programmers to construct and debug programs, but
includes support for other software development tasks, such as analysis, design and maintenance.

Software system

Chapter 10 Conclusions and Future Research Page 301

A super-set of a “program”: software system data includes analysis and design information and
may include debugging, maintenance, version control, and project management information.

Structure-oriented editing
Editing textual and graphical view components via a menu-driven and/or template style. Each
syntactic program component is successively defined by expanding and filling in templates and
this process does not permit syntactic errors to occur.

Subset component
A subset element or relationship which is a partial view of some base component. Updating a
subset component is viewed as updating the base component in an appropriate way (for example,
changing attribute X of the subset component is viewed as changing attribute X of the base
component). Updating the base component may require the subset component to be updated in an
appropriate way (for example, changing attribute Y of the base component is viewed as also
changing attribute Y of the subset component). The subset component and its base component
may not necessarily have the same attributes (for example, the base component may have
additional attributes A and B while the subset component has attribute Z, and changing any of
these attributes does not affect the other component).

Subset/base relationship
The relationship between a base component and a subset component. When the base changes, the
subset component must be notified so it can reconcile its state to that of the base component.
Similarly, when the subset component is updated it must translate the update on itself into an
appropriate update on its base component. The MViews architecture provides a generic
subset/base relationship which translates attribute updates between base and subset components
(where they have attributes with the same name). This can be specialised to translate other updates
appropriately.

Subset view
A partial view of the base view. Subset views are also made up of program graphs which are
comprised of subset components.

Textual view
A textual rendering of a view of a software system. May be edited in either a free-edited or
structure-oriented style.

Unparsed update record
An update record which has been unparsed into a readable form for inclusion in a textual display
view to indicate a change in another view or in the update history browser dialogue. For example,
the update record update_attribute(Feature,feature_name,OldName,NewName) might be
unparsed into the form % rename feature OldName to NewName.

Update record

Chapter 10 Conclusions and Future Research Page 302

A description of the exact change applied to a software system component. For example,
update_attribute(Comp,Attribute,OldValue,NewValue) describes an update_attribute
operation applied to Comp renaming Attribute from OldValue to NewValue.

View
A view of a software system is a perspective on the system usually showing a subset of the entire
system’s state (i.e. a view contains a subset of all the elements and relationships between elements
of the software system). Views are often rendered in various graphical and textual forms and two
different views may represent the same software system data in the same or different ways.

View consistency
The process of keeping two independent views of the same software system data consistent under
change. For example, if a representation of the data is modified in one view, this should be
interpreted as the shared software system data being updated (in an appropriate way). Other views
of this data should also be updated and re-rendered appropriately so all views correctly reflect the
new state of the software system. MViews achieves view consistency by propagating update
records between subset and base components which translate these update records into appropriate
modifications on themselves.

Visual programming
The use of graphical views of program structure and/or behaviour to implement all or part of a
program. Such views are typically edited using interactive or structure-oriented editing.

Chapter 10 Conclusions and Future Research Page 303

Appendix A LPA MacProlog Facilities Page A305

Appendix A

LPA MacProlog Facilities

This appendix gives a brief overview of the facilities provided by LPA MacProlog for
constructing graphical user interfaces and “database” support. Snart programs can make direct
use of these facilities by calling predefined LPA predicates. Alternatively, Snart classes can be
defined which interface to these predicates to provide a class library for constructing user
interfaces, similar to Interviews [Linton et al 88] and the THINK Class Library [Symantec 91].

A.1. LPA Graphics

LPA provides a Graphics Description Language (GDL) where graphical pictures are specified
in a declarative way using Prolog terms [LPA 89b]. For example, fig. A.1. shows a GDL
description of a class icon from SPE. The class icon description is a list of basic graphical
pictures (i.e. a composite picture) including a filled, round rectangle (box), four text boxes
containing the names of the class and features shown, and a line separating the class name and
feature names. The location of each picture element is given in absolute co-ordinates. GDL
descriptions can include modifiers like blank(fillbox(...)) which indicates the round
rectangle is filled with a blank (white) pattern. Other modifiers include shading of filled
pictures with a variety of patterns, scaling and translation of pictures, and modification of the
drawing pen size, colour and drawing mode.

figure

draw
hide
resize

[blank(fillbox(100, 100, 90, 60, 12, 12)),
 textbox('Courier', 9, 0, 110, 104, 12, 30, 0, figure),
 textbox('Courier', 9, 0, 130, 104, 12, 20, 0, draw),
 textbox('Courier', 9, 0, 145, 104, 12, 20, 0, hide),
 textbox('Courier', 9, 0, 160, 104, 12, 30 0, resize),
 line((126,100), (126,60))]

Class Icon GDL description

fig. A.1. A GDL description for a class icon.

GDL pictures are added to graphics windows, which are Macintosh windows supporting a
drawing pane for rendering pictures and tool pane for manipulating pictures. Every graphics
window has a list of pictures associated with it, and every picture in this list has a unique name,

Appendix A LPA MacProlog Facilities Page A306

a GDL description, a local origin (how much to shift the picture when rendering it), and a selection
flag (selected pictures are highlighted with four squares around their frame).

LPA provides Prolog predicates to manipulate pictures in a variety of ways. For example:
• add_pic(class_diagram1, class_icon1, [blank(fillbox(...]) adds a new class

icon picture to window class_diagram1 identified by class_icon1;
• del_pic(class_diagram1,class_icon1) removes class_icon1 from class_diagram1;
• get_pic(class_diagram1,class_icon1,Description) binds Description to the GDL

picture description for class_icon1;
• sel_pics(class_diagram1,[class_icon1,...]) selects the list of given pictures;
• and shift_pics(class_diagram1,[class_icon1,...],(YDelta,XDelta)) moves the

named pictures by YDelta and XDelta.

Picture elements are drawn in order (i.e. the first element drawn first, the second over the top of
the first, and so on) and a window’s picture list is drawn in reverse order (i.e. the last picture
name being drawn first, the second to last next, and so on). LPA automatically redraws pictures
if they are affected by a change to other pictures in a window. This relieves the need for
programmers to implement their own window refreshing algorithms and greatly simplifies
such tasks as shifting pictures and modifying picture descriptions.

Graphics windows are composed of a drawing pane, a tool pane and an optional viewing pane.
Graphical editing tools are associated with a window and any editing operations applied to the
drawing window (clicking on pictures, dragging pictures and so on) are sent to a predicate
defined by the current editing tool. LPA provides predicates to implement rubber-banding,
marqui selection of pictures and cut-and-paste operations. Tool building predicates are
provided for editing text selections, dragging selected pictures and processing mouse clicks.
Advanced support for incremental picture redrawing and programmer-managed validation
and invalidation of drawing regions is also provided.

A.2. LPA Menus and Dialogs

LPA provides a comprehensive range of declarative menu and dialog specification predicates.
Fig. A.2. shows a menu definition for IspelM. Selecting a menu item results in a predicate call of
the form MenuName(MenuItem). Menu extensions such as checked items, menu styles, fonts and
picture items are also supported.

Dialog specification is one of the most useful aspects of LPA’s graphical user interface support.
Dialogs are defined in a similar manner to menus with a single predicate call. Fig. A.3. shows a
dialog definition from IspelM.

Default values for dialogs are supplied by the specification of a dialog (and can be bound
Prolog variables passed to the predicate defining the dialog). Returned values are passed back

Appendix A LPA MacProlog Facilities Page A307

in variables that were unbound on creation of the dialog. Both modal and non-modal dialogs
are supported with check boxes, radios, text fields, edit fields, pictures and menus being
supplied by LPA. Validation of input can be performed by providing a predicate to be called as
part of the dialog specification. Using Prolog to implement declarative input checking
predicates in conjunction with declarative dialog specification worked very well in the
implementation of MViews and IspelM.

% The Views menu.
%
mv_create_ViewsMenu :-
 kill_menu('Views'),
 install_menu('Views',
 ['Create Element View',
 'Kill View',
 'Rename View',
 'Make Current View',
 '(-',
 'Select Element View',
 'Select A View',
 '(-',
 'Make View Focus',
 'Make Default Text View']).

'Views'(Item) :-
mv select menu item('Views',Item).

Views Menu Views Menu Specification

fig. A.2. A menu description from IspelM.

% Get feature details.
%
is_feature_details(OldName,NewName,OldKind,NewKind,
 OldType,NewType,Show,Action) :-
 centred(Top,Left,200,290),
 is_convert_feature_kind(OldKind,
 OAttribute,OMethod,OAbstract,OInherited),
 !, mdialog(Top,Left,200,290,
 [button(110,150,20,60,'Change'),
 button(170,220,20,60,'Cancel'),
 button(140,150,20,60,'Remap'),
 button(110,220,20,60,'Hide'),
 button(140,220,20,60,'Remove'),
 text(10,10,16,220,'Feature name:'),
 edit(30,10,16,220,OldName,gread(NewName)),
 text(50,10,16,220,'Feature type:'),
 edit(70,10,16,220,OldType,gread(NType)),
 radio(110,10,16,90,'Attribute',OAttribute,NAttribute),
 radio(130,10,16,90,'Method',OMethod,NMethod),
 radio(150,10,16,90,'Deferred',OAbstract,NAbstract),
 radio(170,10,16,90,'Inherited',OInherited,NInherited),
 check(90,120,16,110,'Show Feature',on,NShow),
 text(90,10,16,100,'Feature kind:')],
 Btn,is_check_feature_details(NewName,NType,NAttribute,
 NMethod,NAbstract,NInherited,NewKind,NShow,Show,Action)),

 is_blank_or_atom(NType,NewType).

Feature Details Dialog Dialog Specification

fig. A.3. A dialog description from IspelM.

LPA supports text windows that provide an editing pane where users perform conventional
text editing operations (typing text, cut, copy and paste, and text selection and deletion).

Appendix A LPA MacProlog Facilities Page A308

A.3. LPA File and Resource Management

LPA provides access to the Macintosh file system including resource file management. Files are
treated as file name/volume id pairs. Resources are identified by numeric or atomic values and
in the current version of LPA store Prolog atom values (i.e. up to 255 text characters). Prolog
predicates can be saved in either text or code forms and reloaded incrementally or as an entire
“image”.

These facilities can be used to provide a rudimentary database in which arbitrary Prolog data
items can be stored. An arbitrary Prolog data item can be written to a text window and the text
window contents written to a file or resource (in the latter case, using several resources if the
window’s text is greater than 255 bytes, as described in Chapter 7). Given the “address” of the
data item’s text in a file (either as a file position or resource ID) the data can be converted back
into a Prolog term by performing a read at the file position, or reloading the text into a window
from resources and reading from the window.

Appendix B The Snart Language Page B309

Appendix B

The Snart Language

This appendix gives a more complete description of Snart than Chapter 3. The language
syntax and run-time object manipulation predicates and methods are described, together
with the extended LPA MacProlog environment for Snart. A description of the compiler
and run-time system implementation is given. A comparison of language features and
general philosophies is presented between Snart and other object-oriented Prolog systems.
A brief description of a version of Snart ported to Quintus Prolog is supplied together
with some proposed extensions to the language itself. Snart currently runs under LPA
MacProlog (LPA) on the Macintosh (version 4.5). For more information about LPA, see
(LPA 92).

B.1. Syntax

Snart programs are composed of three basic parts:
• class definitions which define the name and kind (abstract or normal) of a class,

the parents and renamed features for the class, and the features for the class
(attributes and their types, methods, deferred methods and classifiers)

• method predicates which implement methods for a class
• prolog predicates which interact with Snart method predicates (by being called by

method predicates and/or accessing Snart objects)

Snart class definitions, method predicates and Prolog predicates can be in the same LPA
program window, or in different program windows.

B.1.1. Class Definitions

Fig. B.1. shows the syntax for a Snart class definition. Abstract classes can not have
instances created of them. Parent classes, if specified, must exist and must not inherit from
the class being defined. Renamed features must also exist (i.e. be inherited from the parent
class) and must not be renamed to names of features either being defined in this class or
being renamed from other parent classes. Features are redefined in the new class by just
repeating the name used in the class’s parent.

Appendix B The Snart Language Page B310

Attribute types are not currently used except when defaulting values for an attribute (see
below). However, they should be valid attribute types as defined above. Classes in the
class name list of a classifier must exist, be sub-classes of the class being defined, and there
must be no repetition of a class or any of its descendants in the class name list (i.e. all
classes in the class name list must be disjoint under inheritance from the class being
defined).

ClassDefinition ::=
 ClassKind ‘(‘ ClassName ‘,’
 parents ‘([‘ParentList ‘])’ ‘,’
 features ‘([‘ FeatureList ‘])’ ‘)’;

ClassKind ::= abstract_class | class;

ClassName ::= atom;

ParentList ::=
 /* empty */
| Parent
| Parent ‘,’ ParentList;

Parent ::=
 ClassName
| ClassName ‘([‘ RenameList ‘])’;

RenameList ::=
 rename ‘(‘ FeatureName ‘,’ FeatureName
‘)’
| rename ‘(‘ FeatureName ‘,’ FeatureName
‘)’ ‘,’
 RenameList;

FeatureName ::= atom;

FeatureList ::=
 /* empty */
| FeatureDefinition
| FeatureDefinition,
 FeatureList;

FeatureDefinition ::=
 Attribute
| Method
| DeferredMethod
| Classifier;

Attribute ::= FeatureName ‘:’
AttributeType;

AttributeType ::= atom | term | boolean |
 integer | string |
 list ‘(‘ AttributeType ‘)’ | ClassName;

Method ::= FeatureName;

DeferredMethod ::=
 FeatureName ‘(‘ deferred ‘)’;

Classifier ::=
 FeatureName ‘:’ ‘[‘ ClassNameList ‘]’;

ClassNameList ::=
 ClassName
| ClassName ‘,’ ClassNameList;

fig. B.1. Syntax for Snart class definitions.

B.1.2. Method Predicates

Fig. B.2. shows the basic method predicate syntax for Snart.

MethodPredicateDefinition ::=
 MethodPredicate.
| MethodPredicate :-
 MethodPredicateDefinition;

MethodPredicate ::=
 ClassName ‘::’ FeatureName(
 ObjectVariable ‘,’ ArgumentList);

MethodPredicateDefinition ::=
 PrologPredicate;

ObjectVariable ::= PrologVariable;

ArgumentList ::=
 PrologTerm
| PrologTerm ‘,’
 ArgumentList;

fig. B.2. Syntax for Snart method predicates.

Multiple clauses for method predicates can be defined, with the appropriate clause being
executed in the same manner as for standard Prolog predicate clauses. The ClassName for
a method predicate must be a class name with a class definition and the FeatureName
used must be a method of this class. The first argument of a method predicate is always a
variable bound to the object ID of the object the method is being executed for (i.e. the

Appendix B The Snart Language Page B311

object sent the FeatureName message). Further arguments are bound to the remaining
arguments in the feature call.

B.1.3. Prolog Predicates

Prolog predicates may be defined use the conventional LPA Prolog predicate syntax.
These may be positioned before or after method predicates and class definitions they are
associated with, or defined in different program windows.

B.2. Objects

Objects are created using the create method common to all classes. Feature calls are made
using the @ operator, and attribute assignment using the := operator (fig. B.3.).

Object@create(ClassName,ArgumentList)

Object@FeatureName(ArgumentList)

Object@AttributeName:=AttributeValue

AttributeValue : PrologTerm;

fig. B.3. Syntax of object creation, feature calling and attribute assignment.

The create method call can have only a ClassName argument, in which case the new
object is just created and any create method predicate defined for it is not called. A feature
call may be a fetch of an attribute value (in which case it has one argument being a
variable or value which is unified with the attribute value of the object). If no such
attribute value has been assigned for the object, the call fails. If no such attribute exists for
the object’s class, execution of the program is aborted with an error message displayed.

If a feature call is a method call, the appropriate method predicate for the object is called
with the first argument being the object ID, the rest being the arguments given to the
feature call. If the method predicate call succeeds then the feature call succeeds, otherwise
the feature call fails. If the method doesn’t exist for the object’s class, execution is aborted.

Attribute assignment stores a value associated with the object which can be accessed by a
feature call of the form Object@AttributeName(Value). Attribute assignment always
succeeds unless the attribute doesn’t exist for the object’s class, in which case execution is
aborted.

Further method calls defined for all objects are described in table B.1.

Method Description

Object@dispose Disposes of Object

Object@copy(-NewObject) Duplicates Object and returns NewObject as duplicated

Object ID

Appendix B The Snart Language Page B312

Object@member(+ClassName) Succeeds if Object is a descendant of ClassName

Object@default(+Attribute,?Value) Returns value of Attribute for Object, or default value for

type if no value exists

Object@default(+Attribute,

 +Default,?Value)

Same as default/2, but returns Default if no value exists for

Attribute for Object

Object@is_object Succeeds if Object a valid Snart object

Object@object_attribute(+Attribute) Succeeds if Attribute a valid attribute for Object

Object@object_attribute(+Attribute,

 ?Type)

Returns type of Attribute for Object, fails if Attribute not a

valid attribute for Object

Object@print Prints out attributes and class for Object

Object@classify(Classifier,

 ClassName)

Classifies Object to ClassName using Classifier classification

attribute

Object@AttributeName?=Value Backtrackable attribute assignment, resets old value on

failure

table B.1. Method calls defined for all Snart objects.

The object manipulation methods described in table B.1. can also be invoked on an object
as a predicate. Table B.2. shows the correspondence of Methods to predicates. Predicate
invocation is more efficient, as it by-passes the Snart method despatcher.

Appendix B The Snart Language Page B313

Method Call Predicate Call

Object@dispose delete_object(+Object)

Object@class(?ClassName) returns the class an object belongs to

Object@copy(-NewObject) copy_object(+Object,-NewObject)

Object@member(+ClassName) member_class(+Object,+ClassName)

Object@default(+Attribute,?Value) default_value(+Object,+Attribute,?Value)

Object@default(+Attribute,

 +Default,?Value)

default_value(+Object,+Attribute,

 +Default,?Value)

- is_object(+Object)

Object@object_attribute(+Attribute) object_attribute(+Object,+Attribute)

Object@object_attribute(+Attribute,

 ?Type)

object_attribute(+Object,+Attribute,

 ?Type)

Object@print print_object(+Object)

Object@classify(Classifier,

 ClassName)

classify_object(+Object,+Classifier,

 +ClassName)

- is_class(+ClassName)

Object@AttributeName?=Value -

table B.2. Method calls and their equivalent predicate calls.

B.3. Environment

To support Snart programming, the LPA environment has been extended. Extra menu
items are added to provide location facilities for classes and method predicates, printing
of class and object data, compilation and optimization of classes, and deletion of objects.

B.3.1. Search Menu

Fig. B.4. (a) shows the Search menu from Snart. The LPA menu items are Find... through
to Call graph. These are documented in the LPA Environment manual (LPA, 89b).

Appendix B The Snart Language Page B314

figs. B.4 (a) and (b). The Snart Search and Eval Menus.

Find Class...
Find Selected Class
Find Named Class...

Find Class opens a dialog with all currently defined classes listed in a scrolling
menu. After selecting a class, the class definition is searched for in the LPA
program windows, and the class definition highlighted and its window brought to
the front. Find Selected Class locates and highlights the class name given by the
currently selected item of text in a window. Find Named Class asks for the name of
a class and highlights it.

Find Method Defn...
A dialog box with edit fields for the class and method names is opened. The user
keys the names and the method predicate for the class is located and highlighted.
Alternatively, the user may request menu dialogs of the currently defined classes
and the methods for a class name, and choose from these.

Find Object...
A dialog box with edit fields for an object ID, class name, and attribute values is
opened. After entering data into one or more fields, Snart searches all currently
defined objects for one or more that matches the description. If one is found, a
listing of the object’s class and attribute values is printed in a display window. If
more than one is found, their object ID’s are printed.

Find Named Object...
An object ID is requested and the object’s attribute values and class printed in a
display window.

Appendix B The Snart Language Page B315

Print Class...
Print Selected Class
Print Named Class...

Print Class requests a class from a menu dialog of all currently defined classes. The
class parents, attributes and methods are printed in a display window. Print
Selected Class prints details for the class name given by the currently selected item
of text in a window. Print Named Class asks for the name of a class and prints its
details.

B.3.2. Eval Menu

Fig. B.4. (b) shows the Eval menu from Snart. The LPA menu items Query... through to
Leash are documented in the LPA Environment Manual (LPA, 89b).

Compile Classes
Compile All Classes
Compile Selected...
Compile Named Classes...

Compile Classes recompiles the class definitions for all classes in modified program
windows. Their definitions are only recompiled if they have changed from their
previously compiled definition. Sub-classes are recompiled if their parents have
altered. Compile All Classes forces the recompilation of all Snart classes whether
they have been modified or not. Compile Selected compiles all classes selected from
a menu list. Compile Named Classes recompiles all classes entered by the user.

Spy Method...
No Spy Method...
Clear Method Spys

Spy Method requests class and method names, and sets a debugger spy point on
the selected method. No Spy Method... clears the spy point on the selected class and
method. Clear Method Spys clears all spy points on Snart method predicates.

Delete Class...
Delete Named Classes...
Delete Objects

Delete Class deletes the compiled definition of a selected class. Delete Named
Classes deletes the definitions of classes typed in by the user. Delete Objects
destroys all currently defined Snart objects.

B.3.3. Defining and Compiling Classes and Method Predicates

Snart class definitions and method predicates are defined in the same windows as LPA
Prolog code. After entering or modifying Snart code, the Snart classes are recompiled
(using the Compile Classes menu item) before invoking a Prolog predicate that uses the
classes. Class and method definitions may be modified but left uncompiled during
debugging.

Appendix B The Snart Language Page B316

Class definitions are converted into an internal form when a window is recompiled and
their method despatch tables are regenerated when the compiler is invoked. Method
predicates are basically ordinary Prolog predicates called on a message invocation, thus
methods use standard Prolog code and Snart feature calls.

Snart objects can be either deleted after their classes have been modified, and the program
re-executed to re-build them, or left intact and used with modified method predicate and
class definitions. If an old object is used (e.g. attribute accessed) with a new class and an
incompatibility occurs, Snart notifies the user of an error.

Errors in Snart (e.g. accessing an invalid attribute, calling a nonexistent method) are all
run-time errors detected by the Snart predicates. These cause termination of the current
Prolog process with appropriate debugging information. The only compile-time errors
detected are non-existent classes or duplicate feature names for a class.

B.3.4. Debugging Snart Programs

The LPA debugger is used to debug Snart method predicates. Snart objects can be printed
for debugging using the Search menu, and spy points set and cleared on methods using
the Eval menu. When tracing a method call, the LPA debugger calls the Snart method
despatcher to determine the attribute fetch or method predicate call to make.
Programmers can then decide whether to Leap through the call or Creep through the
method predicate code.

B.3.5. Saving Snart Programs

Snart classes and method predicates are saved along with normal Prolog code they are
defined with. On reloading a Snart program, the classes must be recompiled to restore
their definitions. Object code can be saved, and on loading the Snart classes do not have to
be compiled (the Snart compiler does not have to be loaded, only the Snart object
predicate definitions). Currently, no support is provided to make Snart objects persistent.
Object data can be saved as Prolog terms, and new objects created when the old data is
reloaded.

B.4. Compiler

Snart class definitions and method predicates are pre-compiled before invoking a Prolog
predicate that makes use of Snart. Thus we have a compilation phase similar to that of
object-oriented languages like Eiffel (Meyer, 88) and C++ (Winblad et al, 90).

Appendix B The Snart Language Page B317

B.4.1. Class and Method Predicate Storage

When LPA compiles program windows, class definitions and method predicates are read
with conventional LPA Prolog code, and are predicates of the form:

ClassDefinition = ClassKind(ClassName,parents(Parents),features(Features))
MethodPredicate = ClassName::MethodName(ObjectID,Arg1,...,Argn) :-

 MethodImplementation.

Class definitions must be converted into a predicate form with a unique predicate name,
rather than using “class” or “abstract_class”, as LPA Prolog does not allow predicate
definitions to be defined over different windows, or to be separated by other predicates.
Method predicates use an infix operator ‘::’ to link their class and method names, which
must be converted into a single atomic form.

For optimallity, the Snart compiler only recompiles a class if its definition has been
recompiled by LPA since the last invocation of the Snart compiler. Snart keeps an integer
property called sn_last_compile to remember the last compilation “time”of a class
definition. This is incremented each time a compilation is performed, and only class
definitions with numbers higher than the last compile are checked. Thus Snart must also
change class definition predicates to record the last time they were compiled by LPA.

Snart uses term_expansion/2 to convert class definitions and method predicates into an
internal form. Class definitions are prefixed by their name (with a ‘c_’ appended to ensure
they are unique from any other Prolog predicates), and have the last compilation time
number added to their definition. Method predicates have their class and method names
joined to form an atomic predicate name that can be directly called by the Snart method
despatcher. Fig.s B.6.. and B.7. illustrate this translation process using the drawing
program from Chapter 3 as an example.

abstract_class(figure,
 parents([figure]),
 features([
 visible(boolean),
 create,
 draw,
 resize(deferred)
])).

figure::create(FigureID) :-
 FigureID@visible := false.

class(rectangle,
 parents([
 closed_figure([
 rename(create,fig_create)
])
]),
 features([
 width:integer,height:integer,
 create,draw,resize
])).

rectangle::draw(RectangleID) :-
 RectangleID@width(Width),
 RectangleID@height(Height),
 draw_figure(rectangle,Width,Height).

fig. B.6. Rectangle class and method predicate definitions.

Appendix B The Snart Language Page B318

Snart must also have a mechanism for quickly finding all defined classes. In addition to
translating the class definition predicate into an internal form, Snart records the class
name as a property of the form:

<ClassName,sn_class_defn,PredicateName>

where:
PredicateName = concat(‘c_’,ClassName)

c_figure(10,[],abstract,

 [visible(figure,attribute,boolean),

 create(figure,method,’figure::create’),

 draw(figure,method,’figure::draw’),

 resize(figure,deferred,’’)]).

‘figure::create’(FigureID) :-

 FigureID@visible := false.

rectangle::draw’(RectangleID) :-

 RectangleID@width(Width),

 RectangleID@height(Height),

 draw_figure(rectangle,Width,Height).

‘c_rectangle(10,[closed_figure([

 rename(create,fig_create)])],

 [width(rectangle,attribute,integer),

 height(rectangle,attribute,integer),

 create(rectangle,method,

 ’rectangle::create’),

draw(rectangle,method,’rectangle::draw’),

 resize(rectangle,method,

 ‘rectabgle::resize’)]).

fig. B.7. Using term_expansion to convert rectangle class into internal form.

B.4.2. The Compilation Process

When a programmer has modified some class definitions or method predicates and wants
them recompiled, sn_compile_classes/0 is called. Snart firstly finds all classes using the
sn_class_defn property. It then determines if the class’s definition has been modified
(using the sn_last_compile property, which is incremented by one). For each modified
class definition, Snart recompiles the class.

To recompile a class, Snart processes the class’s features and parents lists. Each parent
class is recompiled if it has been updated since the last compilation. Features are inherited
from each parent, and are renamed according to the rename list associated with each
parent. Any duplicate features caused by multiple, repeated inheritance are removed. The
parents and class features lists are then merged with any features redefined in the class
replacing the parent features of the same name. The merged list is then checked for any
duplicates. Fig B.8. illustrates this process.

Appendix B The Snart Language Page B319

Compiling rectangle...
% class data
Parents = [closed_figure([rename(create,fig_create)])]
Features =
 [width(rectangle,attribute,integer),
 height(rectangle,attribute,integer),
 create(rectangle,method,’rectangle::create’),
 draw(rectangle,method,’rectangle::draw’),
 resize(rectangle,method,‘rectangle::resize’)]
% Compile closed_figure if necessary...
ParentFeatures=
 [visible(figure,attribute,boolean),
 fig_create(figure,method,’figure::create’),
 draw(figure,method,’figure::draw’),
 resize(figure,deferred,’’)]
% Merge ParentFeatures and Features reporting duplicates
(if any)
ObjectFeatures =
 [width(rectangle,attribute,integer),
 height(rectangle,attribute,integer),
 create(rectangle,method,’rectangle::create’),
 draw(rectangle,method,’rectangle::draw’),
 resize(rectangle,method,‘rectabgle::resize’),
 fig_create(figure,method,’figure::create’),
 visible(figure,attribute,boolean)]
ObjectParents = [closed_figure]

fig. B.8. Inheriting features and attaching method predicate names for a class.

The Snart compiler now determines if this new definition has altered since the last time it
compiled the class. The compiled class format is looked up and compared to the new
format. If either of the features or parent lists has changed, or the class’s kind has changed,
the new class definition is stored and the method dispatch table for the class regenerated.
If the class has changed, any children of the class are recompiled (to ensure their
definitions are kept consistent). Snart stores the children of a class using a list property
sn_children, which is updated each time a child class is compiled.

The compilation process is complete once all updated classes have been recompiled (and
the transitive closure of their children have been too, if necessary). Note if a class
definition has not yet been compiled (i.e. it has just been added by a programmer), it is
always compiled. Its sn_children property is set to [], and as any children of the class are
found, their names are added to this list.

B.4.3. Compiled Class Format

Snart stores compiled class definitions as a property of the form:
<ClassName,sn_class_data,ClassKind(ObjectParents)>

In addition to this predicate, Snart sets properties for each method and feature for the
class, of the form:

Appendix B The Snart Language Page B320

<ClassName,MethodName,MethodPredicate>

<ClassName,AttributeName,attribute(AttributeType)>

These are used by the method despatcher for quick look-up of a class’s method predicates
and attribute and classifier types. Deferred methods are not added to the despatch table
and abstract classes have no method or attribute despatch tables generated (as no
instances of abstract classes can be created). The full despatch table is generated for a class
(including all its inherited features) for maximum speed. Alternatively, only features
defined for a class (including its renames) can be generated and features looked up at run-
time by searching a class's ancestors.

B.5. Run-time System

B.5.1. Object Creation, Attributes and Destruction

Snart objects are identified by an integer atom (which is used as their object ID). On object
creation, a property of the form:

<ObjectID,sn_object,ClassName>

is set, which identifies the class an object belongs to. All Snart object predicates use this
property to determine whether an object is valid, and what class it belongs to.

When an object attribute is set by:
ObjectID@AttributeName:=Value

Snart checks the object is valid (by accessing its sn_object property) and checks the
attribute name is valid (by calling ClassName(AttributeName,attribute,Type)). Then
Snart sets a property of the form:

<ObjectID,AttributeName,Value>

On object attribute access of the form:
ObjectID@AttributeName(Value)

Snart simply looks up a property of the form:
<ObjectID,AttributeName,Value>

and returns Value bound to the property value. If the attribute value property is not
found, Snart checks the attribute name’s validity for the object’s class. If valid, the object
lookup fails, otherwise an exception is raised and the current Prolog process aborts.

On object deletion, Snart checks the object is valid, and then removes all attribute
properties associated with the object (including sn_object).

Appendix B The Snart Language Page B321

B.5.2. Method Calls

On a method call of the form:
ObjectID@MethodName(Argument1,...,Argumentn)

the Snart method despatcher first finds the object’s class (by looking up sn_object for
ObjectID), and then looks up a property of the form:

<ClassName,MethodName,Predicate>

If found, Snart then invokes the method predicate using:
Predicate(ObjectID,Argument1,...,Argumentn)

If the predicate look-up failed, Snart tries to find a default method predicate common to
all objects, and executes this if found. Otherwise Snart raises an exception saying the
method is invalid for the object, and aborts the current Prolog process

The called method predicate can fail, in which case Snart just fails the method call and
allows the calling predicate to take what ever action it desires (i.e. the method call fails in
the same manner a Prolog predicate fails).

When the create method is called for an object, the object ID given is expected to be a
variable. Snart firstly creates an object using new_object (see below). If a method predicate
ClassName::create is defined for the new object’s class, this is then called with the
remaining arguments of create.

B.5.3. Other Object Predicates and Methods

new_object(-ClassName,-ObjectID)

Creates a new object of type ClassName and returns the new object’s ID as ObjectID.
Aborts if ClassName is not a valid Snart class name.

object_class(-ObjectID,?ClassName) and ObjectID@class(?ClassName)

Returns <ObjectID,sn_object,ClassName> property for the given object.Aborts if the
object does not exist.

copy_object(-ObjectID,+NewObjectID) and ObjectID@copy(+NewObjectID)

Calls new_object to create NewObjectID of same class as ObjectID. Copies all property
values of ObjectID to NewObjectID. Aborts if ObjectID does not exist.

member_class(-ObjectID,-ClassName) and ObjectID@member(-ClassName)

Gets object’s class and does check of class membership using the parents the object’s class.
This check is recursive and fails if ClassName is not an ancestor of ObjectID.
member_class is optimised by keeping a list of all visited classes during the search. This is
because multiple, repeated inheritance can mean the object’s class inherits from a class

Appendix B The Snart Language Page B322

more than once, and the search process need not re-visit a class and check its ancestors for
ClassName if already checked once.

object_attribute(-ObjectID,-AttributeName) and

ObjectID@attribute(-AttributeName)

Gets a list of attributes for ObjectID’s class using the attribute look-up table and succeeds if
AttributeName is on this list. Three argument form returns the type of the attribute
requested.

classify_object(-ObjectID,-Classifier,-NewClass) and

ObjectID@classify(-Classifier,-NewClass)

Looks up classifier attribute and changes object’s class by changing sn_object. Also
records NewClass as value of Classifier property for ObjectID. On re-classifying this
object, attributes not compatible with old class are removed, then object re-classified. If a
class has more than one classifier and this object has been classified previously,
classify_object makes the object a member of both classes (if NewClass is not a
descendant of the object’s previous classification classes). Snart generates a new class of
the form ‘sn_merged([ClassName1,ClassName2,...])’. The method and attribute
despatch tables for this class are a union of the ClassName1 and ClassName2 tables. Aborts
if the classification is invalid (e.g. NewClass not on the list of classes for Classifier).

is_class(-ClassName)

Checks if ClassName has a predicate of the form snc_ClassName (i.e. is a valid, compiled
Snart class).

is_object(-ObjectID) and ObjectID@is_object

Looks up the <ObjectID,sn_object,ClassName> property for ObjectID. Succeeds if this
property is found, fails otherwise.

B.5.4. Object Spying

Snart objects can be spied by sn_trace_object(ObjectID[,FeatureNames]). This
generates events that equate to method entry/exit and attribute update by calling
sn_entry(ObjectID, Method(Arguments)), sn_exit(ObjectID, Method(Arguments),

Success?) and sn_set_value(ObjectID, Attribute, OldValue, NewValue). Calling
sn_untrace_object(ObjectID[,FeatureNames]) will remove the event generation for the
object or given features.

Object spying is implemented by classifying an object to a merged class made up of the
object’s orginal class and a special spy class. This spy class provides additional methods
sn_set_attribute and sn_despatch_method. These are used in preference to the default
method despatching and attribute updating by the Snart method despatcher if no
despatch table entries for a method or attribute are found. Classification deletes the
despatch table entries for classified classes and looks up values from the classes that form

Appendix B The Snart Language Page B323

the merged (union) class dynamically. Any sn_set_attribute and sn_despatch_method
methods defined are used in preference to this default look-up. Spied features thus
generate tracing events by having sn_set_attribute and sn_despatch_method generate
the events and then call the method defined by a classifier class to maintain an object’s
orginal behaviour.

B.5.5. Object Persistency

Snart objects can be stored in a persistent object store and reloaded when accessed.
Updated objects are rewritten to the store when it is closed or on demand.
sn_create_object_store(File,Path) and sn_open_object_store(File,Path) create and
open an object store respectively. Objects which inherit from a class sn_persistent are
assumed to be persistent and behave as such. sn_close_object_store(File) writes any
updated objects to the store and closes it. sn_write_objects updates the store without
closing it. Currently only one object store is allowed to be open at one time and object
stores can not be merged.

Persistent objects are implemented in a similar way to spyed objects with persistent
providing additional meta-level methods sn_alloc_id and sn_delete for allocating and
deleting persistent storage for a new object. sn_set_attribute marks an object as updated
so sn_write_objects will save its state. An additional predicate sn_find_object is defined
to reload an object from persistent storage when it is accessed for the first time (as its
object data won’t be in-core). Persistency and object spying are consistent as a spied,
persistent object will first generate events and then perform persistency-management
operations.

B.6. Performance

The object-oriented structure of Snart introduces an extra level of abstraction over
conventional Prolog. Snart programs are structured around classes and data is stored as
objects verses the conventional Prolog structure supported by LPA. We compare the
performance of Snart to LPA Prolog in three ways:

• speed
• memory requirements
• program structuring, reusability, debugging and maintenance

B.6.1. Speed

Fig. B.9. illustrates the performance of Snart feature calls compared with Prolog predicate
calls. This test used 100 calls to predicates that performed exactly the same processing.
The Snart method despatcher must look-up the correct method predicate to call for an
object (which involves getting the object’s class and finding the correct method predicate

Appendix B The Snart Language Page B324

the the method call selector). One argument feature calls may be either an attribute fetch
or a method call and Snart must determine whether to fetch an attribute value or call a
method at run-time. Hence the extra time needed for one argument calls verses other
kinds. Typically Snart feature calls incur a 40% execution time overhead compared to
Prolog predicate calls. As Snart methods may call conventional Prolog predicates to do
part of their processing, this overhead is often much less in Snart application programs.

Snart Methods vs Prolog Predicate Calls
T
i
m
e

(
s
e
c
o
n
d
s
)

50
45

40

35

30

25

20
15

10

5

0

Arguments to Call
0 1 2 3 4

Snart Methods Prolog Predicates

fig. B.9. Snart method predicate calls vs. Prolog predicate calls.

Fig. B.10. compares attribute fetching and assignment in Snart to prolog programs using
the Prolog database and LPA’s property management predicates. This test used 200
accesses or assignments of the same data for each technique. Snart attribute fetches and
assignment compare well to conventional LPA properties for getting and setting values.
However, Snart is significantly slower if the attribute has not been assigned a value (Snart
will try to find a method for the object if an attribute fetch on a one-argument feature call
fails, hence the extra over-head). The Prolog database is most efficient for looking up
attribute values (which have either been assigned or not). However, it is extremely slow
for modifying an attribute value (as the old clause must be retracted and a new clause
asserted).

Appendix B The Snart Language Page B325

Time for attribute access/setting
T
i

m
e

(
s
e
c
o
n
d
s
)

80

72

64

56

48

40

32

24

16

8

0

Operation
get value set value get non-existant value

Snart LPA Properties LPA Database

fig. B.10. Snart attribute access/assignment vs. Prolog database and LPA properties.

B.6.2. Memory Requirements

The memory requirements for programs using Snart objects and LPA properties are
almost identical. When creating many small objects, a small over-head is incurred as Snart
must store a class name against each object created. As property management in LPA is
more efficient in both time and space than using the Prolog database to store values, Snart
objects take up less space than similar programs using the database.

B.6.3. Programming in Snart vs. conventional LPA Prolog

Snart provides several improvements on raw LPA Prolog programming:
• program structuring around classes
• uniform treatment of data as objects (instances of classes)
• modification of classes does not necessarily invalidate object data
• reuse of programs via inheritance, type aggregation and client-server
• compile-time and run-time checking of classes for program and data

consistency

As Snart is a hybrid language, Snart programs can make use of any conventional LPA
Prolog program while using an object-oriented structure. This support for high-level
structuring enhances Snart programs compared with equivalent Prolog programs in
several ways:

• Snart programs are more easily modified, as changes to the class hierarchies are
easier to identify than changes to Prolog predicates (especially when changing
the way in which data is accessed and stored).

Appendix B The Snart Language Page B326

• Reuse of Snart programs is easier using inheritance and composition from
existing classes.

• Snart classes can be modified while preserving their instances (which is very
useful for debugging). Prolog programs using either the database or properties
are seldom as easy to change (Grundy 91).

• Snart programs have a more well-defined structure and can be organised into
frameworks and other building-blocks more naturally than conventional Prolog
code.

B.7. Comparison to Other Object-Oriented Prologs

Most object-oriented extensions to Prolog, including Protalk (Quintus 91), Prolog++
(Pountain 90) and ObjVProlog (Malenfant et al 89) treat classes as objects. Classes are
defined by creating instances of a “class” object, and objects by duplicating a class object
or creating instances of it. Snart treats classes like Eiffel and C++: as implementations of
abstract data types which are defined at compile-time. Thus Snart programs have a
similar design philosophy to strongly-typed object-oriented languages and do not use
concepts not readily portable to these languages.

Snart is a simple object-oriented language with classes being composed of parent and
feature definitions. ObjVProlog and other meta-class based languages define meta-level
classes which can in turn be specialised to provide new types of objects behaviour.
Examples include persistent objects and parallel objects (Malenfant et al 89). Snart treats
all feature calls the same with an identical syntax. Most other Prologs have different forms
of attribute access and method calling.

Snart class hierarchies are fixed at run-time, whereas other object-oriented Prologs
adopting the class-as-object approach can modify their set of classes as desired at run-
time. The Snart approach follows the same approach as class-based languages such as
C++ and Eiffel and is more appropriate for software engineering support for programs.
Lack of run-time class creation does not appear to make Snart any less useful as a
prototyping language in our experience.

Snart programs tend to be more easily maintained than Protalk programs which must
either define class creation predicates or store class definitions separately to Prolog
programs. Prolog++ programs define their class objects along with LPA Prolog code in
program windows in the same manner as Snart.

The implementation of Snart compiles classes into a very compact form with method
despatch tables being generated for each concrete class. Prolog++, Protalk and ObjVProlog
have similar yet different methods for handling method despatch. Prolog++ keeps a list of
super-classes which are searched on method look-up and the appropriate predicate called.

Appendix B The Snart Language Page B327

Protalk holds a predicate name which is called with an object ID, method selector and
method call arguments. This predicate then determines the action to take on the method
call. Attributes are accessed or set by calling the same predicate with an attribute name
and value (a variable for attribute look-up). The Protalk approach is very slow and adds
large over-heads for method calling over conventional Prolog predicate calling.

Prolog++ provides a number of compilation optimisations including first-term indexing
and direct method calling of inherited features. It also provides daemon support for data
and event-driven programming and information hiding. Snart could be extended to
support all these facilities and optimisations, but some are not in the style of languages we
may wish to implement Snart programs in.

Snart shares common object-oriented facilities with most other object-oriented Prologs.
Snart is based on the C++ notion of a distinction between classes and objects, however,
and hence is more suitable for implementing software and using as a representative
object-oriented language than other Prologs we have seen.

B.8. Quintus Snart

We have ported Snart to Quintus Prolog (Quintus 91a) which runs on Unix systems. This
port was done to illustrate Snart can be transferred to Prolog systems other than LPA
MacProlog and can run on machines other than the Macintosh. We briefly describe the
Quintus Prolog version of Snart and the differences between this version and the original
Macintosh Snart.

B.8.1. Compiler

The Snart compiler is basically the same for both the LPA and Quintus versions. Quintus
does not allow variable functor names which were quite extensively used in the Snart
compiler. As Quintus provides better module facilities and other program structuring
support, the Quintus version of the compiler is somewhat cleaner than the LPA version.
Both compilers generate exactly the same compiled class definitions and method and
attribute look-up tables.

B.8.2. Run-time System

The run-time systems for the two versions of Snart are significantly different. The Quintus
version currently uses the Prolog database to store object information, as Quintus does not
provide the property management facilities of LPA. Quintus also does not provide as
flexible predicate calling functions as LPA so the method despatcher is somewhat more
complicated. Both versions support the same object manipulation method and predicate
calls. To make the Quintus version perform better in terms of run-time speed (particularly

Appendix B The Snart Language Page B328

for attribute updating) we could implement a property management system similar to
that of LPA Prolog.

B.8.3. Environment

As Quintus Prolog uses a command-line environment, Snart provides access to its internal
predicates for compiler invocation and object manipulation. This allows programmers to
compile classes by invoking the predicate sn_compile_classes and to display objects by
calling ObjectID@print. The Quintus environment for Snart is not nearly as natural to use
as the LPA Prolog version. We could extend this to provide similar window-based
facilities by extending Quintus’s X-windows based environment to provide pull-down
menus for Snart similar to those provided by LPA.

B.9. Future Extensions

B.9.1. Explicit Redefinition and Information Hiding

Snart allows any feature inherited from a parent to be redefined in a class by simply
defining a new feature of the same name. Snart currently supports no information hiding
with all features being visible and accessible outside an object.

To provide explicit redefining is a very simple compilation check to ensure features
redefined have a redefine(FeatureName) entry in the rename list associated with a parent
class. To support information hiding run-time checks must be included to ensure access to
a private or protected feature is valid. To do this, the Snart compiler must inspect all
predicates (including method predicates) and associate a “called by” class with every
feature call. The method despatcher can then check whether methods and attributes are
being accessed correctly for the object being sent the message (as part of the feature look-
up process). Features accessed incorrectly can then cause the current Prolog process to
abort and report the error.

B.9.2. Data-driven Support

Data and event-driven programs are difficult to write in Snart without providing explicit
methods that set/get object attribute values and record updates to objects (as done for the
MViews framework described in Chapter 7). The disadvantage of this approach is that
attribute updates and other updates to an object must be explicitly catered for when
designing and implementing a program. Subsequent modification of the program may
require additional updates to be reported and hence modification of existing classes to
provide for the needs of these changes. Chapter 7 compares language-based and
framework-based support for data-driven programs in further detail.

Appendix B The Snart Language Page B329

To extend Snart to allow data-driven programs based on attribute changes is relatively
simple. A predicate can be associated with each class (or even each attribute of a class)
which is called when the attribute is set via the := operator. This can be built into Snart
with no loss of run-time efficiency, even for predicates with no need for an “update”
predicate by changing the attribute parameter of the
ClassName(AttributeName,attribute,Type) predicates in the look-up table for attributes.
The new parameter is the predicate to call to perform for attribute of the object’s attribute
(set_value at present). This predicate and any dependent objects that are sent messages on
the attribute update could be implemented to provide a similar facility to the Smalltalk
model-view relationship (Goldberg and Robson 84).

To extend Snart to notify other objects when an object’s methods are invoked or exit is
somewhat more difficult. This type of “update” is useful when complex changes are made
(e.g. an element is added to, removed from or simply moved within a list attribute) and
the kind of change is important, not just the fact that an update has occurred. MViews
requires these updates to be explicitly determined to record the kind of change (for storing
against base elements, updating subset view elements, redrawing display elements and
providing a generic undo/redo facility). Trapping every object method call, as done in the
Cerno debugger for tracing Snart programs (Fenwick and Hosking 93), is prohibitively
expensive. We could provide a facility similar to that for the Snart debugger (see Chapter
9) which causes “features of interest” to call predicates with their arguments before and
after execution.

B.9.3. Optimisations for Performance Enhancement

The run-time performance of Snart could be enhanced by performing several
optimizations when compiling Snart programs. Calls to renamed, inherited features could
be converted into direct predicate calls. For example, in the example in fig. B.11., we can
change the compiled code to that on the bottom right.

abstract_class(figure,
 parents([]),
 features([create,...])).

figure::create(Figure,Location) :-
 Figure@location:=Location,
 Figure@visible:=false.

class(rectangle,
 parents([figure(
 [rename(create,fig_create])]),
 features([create,...])).

rectangle::create(Rectangle,Location,
 Width,Height) :-
 Rectangle@fig_create(Location),
 Rectangle@width:=Width,
 Rectangle@height:=Height.

% Unoptimized code:

‘rectangle::create’(Rectangle,Location,
 Width,Height) :-
 Rectangle@fig_create(Location),
 Rectangle@width:=Width,
 Rectangle@height:=Height.

% Optimized code:

‘rectangle::create’(Rectangle,Location,
 Width,Height) :-
 ‘figure::create’(Ractangle,Location),
 Rectangle@width:=Width,
 Rectangle@height:=Height.

fig. B.11. Optimizing method despatch for Snart.

Appendix B The Snart Language Page B330

Snart can perform a simple optimization of its method and attribute look-up tables by
compiling them using an optimized LPA program window. Method predicates can also be
compiled using an optimized program window to give first-term indexing and other
optimizations. To allow for first-term indexing, however, Snart must not have the first
argument of method predicates being a variable for the ID of an object. We should thus
move this default variable to being, for example, the last argument of a method predicate.

If we extend Snart to allow for typed variables for object ID’s (see below), we can also
optimize the method despatcher at compile-time and perform various type checks (e.g. to
support information hiding and check for existing features at compile-time). Note that all
these optimizations require the Snart compiler to look at every predicate call in a term to
ensure that the appropriate checks and optimizations are performed. As this may be quite
a large overhead, optimizations should only be performed on user request.

B.9.4. Typed Variables

Adding typed variables to Snart also requires compile-time checking of all terms in a
Snart program to remove the typing information for asserted predicates. Fig. B.12. shows
a ‘typed’ version of the predicates in fig. B.11.

abstract_class(figure,
 parents([]),
 features([create,...])).

figure::create(Figure:figure,Location) :-
 Figure@location:=Location,
 Figure@visible:=false.

class(rectangle,
 parents([figure(
 [rename(create,fig_create])]),
 features([create,...])).

rectangle::create(Rectangle:rectangle,
 Location,Width,Height) :-
 Rectangle@fig_create(Location),
 Rectangle@width:=Width,
 Rectangle@height:=Height.

fig. B.12. Typed Snart variables.

As the general class of an object can now be determined at compile-time, the Snart
compiler could make any checks for incorrectly accessing private features outside a class,
accessing nonexistent features for a class and type mis-matches (e.g. adding figure objects
to a list of rectangle objects). Note that we must strip all this extra information about types
from terms before asserting them as it will confuse Prolog’s unification algorithm (an
integer object ID will not match an argument of the form Figure:figure).

B.9.5. Lazy, Functional Feature Evaluation

Snart currently provides support for object-oriented, logic programming (with an
imperative flavour being added by assignment to object attributes). It would also be
useful to provide lazy, functional evaluation of object features (functions) in a similar
manner to Kea (Hosking et al 90).

Appendix B The Snart Language Page B331

Snart could be extended to declare “functional” methods and attributes, as shown in fig.
B.13. area and volume are only re-evaluated when one of their dependent values is
changed (by attribute assignment or re-evaluation).

class(rectangle,
 parents([figure(
 [rename(create,fig_create])]),
 features([width:integer,height:integer
 functional area,...])).

rectangle::area(Rectangle,Area) :-
 Area is Rectangle@width *
Rectangle@height.

class(box,
 parents([]),
 features([base:rectangle,depth:integer,
 functional volume,...])).

box::volume(Box,Volume) :-
 Volume is Box@base@area * Box@depth.

fig. B.13. Lazy, functional features in Snart.

These features are evaluated in a lazy fashion, so they are not executed until their value is
actually required. We could then, for example, declare structures that are recursive and
hence (theoretically) infinite, but since their values are only evaluated when needed, only
take up as much space as required. In addition, we gain language-based support for such
concepts as attribute grammars (data-driven evaluation of language semantics) (Reps and
Teitelbaum 87) and tool-based abstraction using functional dependencies (Kaiser et al 92).

To implement functional features in Snart would require a similar mechanism to Kea,
where various dependencies are maintained between functional and possibly non-
functional attributes. A change propagation algorithm would re-evaluate any attributes
whose value depended on one or more changed values.

Appendix C A Gofer Implementation of MVSL Page C333

Appendix C

A Gofer Implementation of MVSL

--
-- MVSL Abstract Syntax Definition
--

infix 2 :=
infixl 1 :&

type Ide = String

data Program = Pro [Decl] Command

-- Declarations
--
data Decl = BaseView Ide [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] |
 BaseElement Ide [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] |
 BaseRelationship Ide ParentDecl ChildDecl [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] |
 SubsetView Ide ComponentDecl [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] |
 SubsetElement Ide [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] |
 SubsetRelationship Ide ParentDecl ChildDecl [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] |
 Component Ide [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] |
 Global Ide Type

data ComponentDecl = Components [Ide]
data ParentDecl = Parent Type
data ChildDecl = Child Type
data AttributeDecl = Attribute Ide Type
data RelationshipDecl = Relationship Ide Type
data OperationDecl = Operation Ide [OpArgumentDecl] [LocalDecl] Command |
 Function Ide [OpArgumentDecl] Type [LocalDecl] Command
data UpdateDecl = Update Ide [LocalDecl] Exp [LocalDecl] Command

data OpArgumentDecl = InArg Ide Type | OutArg Ide Type
data LocalDecl = Arg Ide Type

-- Commands & Operations
--
data Command = Exp := Exp |
 Eskip |
 Eifthen Exp Command Command |
 Ewhile Exp Command |
 Eforall Exp Exp Command |
 EWrite Exp |
 Command :& Command |
 AddElement Ide Exp |
 DeleteComponent Exp |
 Establish Type Exp Exp Exp |
 EstablishLink Type Exp Exp |
 Reestablish Exp Exp Exp |
 Disolve Type Exp Exp |
 Record Exp Ide [Exp] |
 Store Exp Ide [Exp] |
 CreateView Ide Exp |
 AddViewComponent Exp Exp |
 RemoveViewComponent Exp Exp |
 ApplyOp Exp [Exp]

Appendix C A Gofer Implementation of MVSL Page C334

-- Expressions
--
data Exp = IntLit Int |
 StringLit String |
 True_ | False_ |
 Ident String |
 Op Opr Exp Exp |
 CompVal Exp Ide |
 FuncOp Exp [Exp]

data Opr = Plus | Minus | Times | Divide | Gt | Lt | Eq | Neq | And | Or | Append | Remove

-- Types
--
data Type = BoolType |
 StringType |
 IntType |
 ListType Type |
 OneToOne Ide |
 OneToMany Ide |
 ComponentType Ide |
 CompAttrType Ide Ide
--
-- MVSL Declarations
--
-- Given a list of program declarations, produce a type-map
--

-- DeclValue maps type identifier to type value
--
type DeclValue = Ide -> TypeValue

emptyDeclValue :: DeclValue
emptyDeclValue _ = TNotDefined

updateDeclValue :: DeclValue -> Ide -> TypeValue -> DeclValue
updateDeclValue dv n tv i = if i==n then tv else dv i

-- BasicKind gives the basic kinds of MViews components
--
data BasicKind = KBaseView | KBaseEl | KBaseRel |
 KSubsetView | KSubsetEl | KSubsetRel |
 KComp | KLinkRel

-- TypeValue stores type for an identifier
--
-- Type values may be integers, lists, components, etc. or the whole
-- value for a component declaration.
--
-- A component's basic kind,attribute values (which must be allocated
-- when the component is created) and the type of each component value
-- (attributes, relationships, operations, etc.)
--
data TypeValue = TCompData BasicKind [Ide] CompTypes |
 TString |
 TInteger |
 TBool |
 TList TypeValue |
 TOneToOne Ide |
 TOneToMany Ide |
 TComp Ide |
 TCompAttr Ide Ide |
 TVoid |
 TAny |
 TNotDefined

instance Eq TypeValue where
 TString == TString = True
 TInteger == TInteger = True
 TBool == TBool = True
 TList t1 == TList t2 = t1 == t2
 TComp c1 == TComp c2 = c1 == c2

Appendix C A Gofer Implementation of MVSL Page C335

 TAny == _ = True
 _ == TAny = True
 _ == _ = False

-- CompTypes maps identifiers to their component type
--
type CompTypes = Ide -> CompType

emptyCompTypes :: CompTypes
emptyCompTypes _ = CNotDefined

updateCompTypes :: CompTypes -> Ide -> CompType -> CompTypes
updateCompTypes ct n v i = if i==n then v else ct i

-- A Component type is one of attribute, relationship, etc.
--
-- parent, child and components for relationships and views are stored
-- as CAttribute
--
data CompType = CAttribute TypeValue |
 CRelationship TypeValue |
 COperation OpArgs TypeValue OpLocals CommandMeaning |
 CUpdates [CUpdate] |
 CNotDefined

-- Updates may have >1 value (e.g. several update_attributes for
-- different types and guards).
--
data CUpdate = UpdateOp OpArgs OpLocals ExpMeaning CommandMeaning

-- Arguments are in or out
--
type OpArgs = [(Ide,InOrOut,TypeValue)]
data InOrOut = In | Out

updateOpArgs :: OpArgs -> Ide -> InOrOut -> TypeValue -> OpArgs
updateOpArgs oa n io t = oa++[(n,io,t)]

-- Local variables have identifier and type
--
type OpLocals = [(Ide,TypeValue)]

updateOpLocals :: OpLocals -> Ide -> TypeValue -> OpLocals
updateOpLocals ol n t = ol++[(n,t)]

-- Operations and update operations have a meaning given a State
-- (i.e. given one state produce another - see below for State etc.)
--
-- Update operation guards have a Value given a State (see below)
--
type CommandMeaning = (State -> Command -> State) -> State -> State
type ExpMeaning = (State -> Exp -> Value) -> State -> Value

-- Compute the declarations value for a list of program declarations
--
-- Returns DeclValue for program and a list of identifiers
-- to create locations for (i.e. globals)
--
-- rel_comps computes any link relationships defined by the component
-- and adds a DeclValue for their name (name = CompKind.RelName)
--
program_decls :: [Decl] -> DeclValue -> [Ide] -> (DeclValue,[Ide])
program_decls [] dv gs = (dv,gs)
program_decls (d:ds) dv gs = (new_dv,new_gs) where
 (n,tv,rs,globals) = decl_value d
 (new_dv,new_gs) = program_decls ds
 (updateDeclValue (rel_comps dv rs n) n tv) (gs++globals)

-- Compute the Ide/TypeValue/Link Relationships/Globals for a declaration
--
-- For each basic component kind the CompTypes value is computed, including the
-- attributes it defines (so space for these can be allocated when the

Appendix C A Gofer Implementation of MVSL Page C336

-- component is created), any default values for the component (see below),
-- and its declaration values are processed to produce a CompTypes value for each
-- identifier.
--
decl_value :: Decl -> (Ide,TypeValue,[RelationshipDecl],[Ide])
decl_value (BaseView name as rs os us) = (name,tv,rs,[]) where
 (names,comp_ts) = default_types KBaseView (update_types (op_types (rel_types (attribute_types
 ([],emptyCompTypes) as) rs) os) us)
 tv = (TCompData KBaseView names comp_ts)
decl_value (BaseElement name as rs os us) = (name,tv,rs,[]) where
 (names,comp_ts) = default_types KBaseEl (update_types (op_types (rel_types (attribute_types
 ([],emptyCompTypes) as) rs) os) us)
 tv = (TCompData KBaseEl names comp_ts)
decl_value (BaseRelationship name pd cd as rs os us) = (name,tv,rs,[]) where
 (names,comp_ts) = default_types KBaseRel (update_types (op_types (rel_types (attribute_types
 (parent_types (child_types ([],emptyCompTypes) cd) pd) as) rs) os) us)
 tv = (TCompData KBaseRel names comp_ts)
decl_value (SubsetView name els as rs os us) = (name,tv,rs,[]) where
 (names,comp_ts) = default_types KSubsetView (update_types (op_types (rel_types (attribute_types
 (comp_types ([],emptyCompTypes) els) as) rs) os) us)
 tv = (TCompData KSubsetView names comp_ts)
decl_value (SubsetElement name as rs os us) = (name,tv,rs,[]) where
 (names,comp_ts) = default_types KSubsetEl (update_types (op_types (rel_types (attribute_types
 ([],emptyCompTypes) as) rs) os) us)
 tv = (TCompData KSubsetEl names comp_ts)
decl_value (SubsetRelationship name pd cd as rs os us) = (name,tv,rs,[]) where
 (names,comp_ts) = default_types KSubsetRel (update_types (op_types (rel_types (attribute_types
 (parent_types (child_types ([],emptyCompTypes) cd) pd) as) rs) os) us)
 tv = (TCompData KSubsetRel names comp_ts)
decl_value (Component name as rs os us) = (name,tv,rs,[]) where
 (names,comp_ts) = default_types KComp (update_types (op_types (rel_types (attribute_types
 ([],emptyCompTypes) as) rs) os) us)
 tv = (TCompData KComp names comp_ts)
decl_value (Global name t) = (name,type_value t,[],[name])

-- Compute link relationships for a component
--
rel_comps :: DeclValue -> [RelationshipDecl] -> Ide -> DeclValue
rel_comps dv [] comp_name = dv
rel_comps dv ((Relationship name (OneToOne _)):rs) comp_name = new_dv where
 new_dv = rel_comps (updateDeclValue dv (comp_name++"."++name) link_rel) rs comp_name
rel_comps dv ((Relationship name (OneToMany _)):rs) comp_name = new_dv where
 new_dv = rel_comps (updateDeclValue dv (comp_name++"."++name) link_rel) rs comp_name

link_rel :: TypeValue
link_rel = TCompData KLinkRel [] emptyCompTypes

-- Compute parent declaration for component
--
parent_types :: ([Ide],CompTypes) -> ParentDecl -> ([Ide],CompTypes)
parent_types (names,ct) (Parent t) =
 (["parent"]++names,updateCompTypes ct "parent" (CAttribute (type_value t)))

-- Compute child declaration for component
--
child_types :: ([Ide],CompTypes) -> ChildDecl -> ([Ide],CompTypes)
child_types (names,ct) (Child t) =
 (["child"]++names,updateCompTypes ct "child" (CAttribute (type_value t)))

-- Compute component types for subset view
--
comp_types :: ([Ide],CompTypes) -> ComponentDecl -> ([Ide],CompTypes)
comp_types (names,ct) (Components comps) =
 (["components"]++names,updateCompTypes ct "components" (CAttribute (TList TAny)))

-- Compute attribute types for list of attribute declarations
--
attribute_types :: ([Ide],CompTypes) -> [AttributeDecl] -> ([Ide],CompTypes)
attribute_types (names,ct) [] = (names,ct)
attribute_types (names,ct) ((Attribute n t):as) =
 attribute_types ([n]++names,(updateCompTypes ct n (CAttribute (type_value t)))) as

Appendix C A Gofer Implementation of MVSL Page C337

-- Compute relationship types for list of relationship declarations
--
rel_types :: ([Ide],CompTypes) -> [RelationshipDecl] -> ([Ide],CompTypes)
rel_types (names,ct) [] = (names,ct)
rel_types (names,ct) ((Relationship n t):rs) =
 rel_types ([n]++names,(updateCompTypes ct n (CRelationship (type_value t)))) rs

-- Compute operation types for list of operation declarations
--
op_types :: ([Ide],CompTypes) -> [OperationDecl] -> ([Ide],CompTypes)
op_types (names,ct) [] = (names,ct)
op_types (names,ct) ((Operation n arg_decls loc_decls command):os) =
 op_types ([n]++names,(updateCompTypes ct n (op_value arg_decls loc_decls (op_meaning command)))) os
op_types (names,ct) ((Function n arg_decls t loc_decls command):os) =
 op_types ([n]++names,(updateCompTypes ct n (fn_value arg_decls t loc_decls (op_meaning command)))) os

-- Compute update types for list of update declarations
--
-- This produces a list of guarded, input-only operations which are
-- event-driven by updates on a component.
--
update_types :: ([Ide],CompTypes) -> [UpdateDecl] -> ([Ide],CompTypes)
update_types (names,ct) [] = (names,ct)
update_types (names,ct) ((Update n arg_decls guard loc_decls command):us) = nt where
 upd_op = update_value arg_decls loc_decls (exp_meaning guard) (op_meaning command)
 nt = case (ct n) of
 (CUpdates updates) ->
 update_types (names,(updateCompTypes ct n (CUpdates (updates++[upd_op])))) us
 CNotDefined ->
 update_types ([n]++names,(updateCompTypes ct n (CUpdates [upd_op]))) us

-- "Meanings" for operations and expressions
--
op_meaning :: Command -> (State -> Command -> State) -> State -> State
op_meaning c fn s = fn s c

exp_meaning :: Exp -> (State -> Exp -> Value) -> State -> Value
exp_meaning e fn s = fn s e

-- Value of an operation declaration
--
-- Defined as its argument's types and in/out status, its local's types
-- and the meaning of its associated command
--
op_value :: [OpArgumentDecl] -> [LocalDecl] -> CommandMeaning -> CompType
op_value as ls command = (COperation (op_arg_types as) TVoid (local_types ls) command)

-- Value of a "functional operation" is same as for operation but with a type
--
fn_value :: [OpArgumentDecl] -> Type -> [LocalDecl] -> CommandMeaning -> CompType
fn_value as t ls command = (COperation
 (op_arg_types as) (type_value t) (updateOpLocals (local_types ls) "result" (type_value t)) command)

-- Value of an "update operation" is same for operation but arguments are input-only
--
update_value :: [LocalDecl] -> [LocalDecl] -> ExpMeaning -> CommandMeaning -> CUpdate
update_value as ls guard command = (UpdateOp (update_arg_types as) (local_types ls) guard command)

-- Bind operation arguments to in/out status and type
--
op_arg_types :: [OpArgumentDecl] -> OpArgs
op_arg_types [] =[]
op_arg_types ((InArg n t):as) =
 updateOpArgs (op_arg_types as) n In (type_value t)
op_arg_types ((OutArg n t):as) =
 updateOpArgs (op_arg_types as) n Out (type_value t)

-- Bind local variables to type
--
local_types :: [LocalDecl] -> OpLocals
local_types [] = []
local_types ((Arg n t):as) =

Appendix C A Gofer Implementation of MVSL Page C338

 updateOpLocals (local_types as) n (type_value t)

-- Bind update arguments to type
--
update_arg_types :: [LocalDecl] -> OpArgs
update_arg_types [] = []
update_arg_types ((Arg n t):as) = updateOpArgs (update_arg_types as) n In (type_value t)

-- Value of a type
--
type_value :: Type -> TypeValue
type_value (BoolType) = (TBool)
type_value (StringType) = (TString)
type_value (IntType) = (TInteger)
type_value (ListType t) = (TList (type_value t))
type_value (OneToOne c) =(TOneToOne c)
type_value (OneToMany c) = (TOneToMany c)
type_value (ComponentType n) = (TComp n)
type_value (CompAttrType c a) = (TCompAttr c a)

-- Default attributes and component types for a component given its "BasicKind"
--
data DefaultType = Default Ide CompType

default_types :: BasicKind -> ([Ide],CompTypes) -> ([Ide],CompTypes)
default_types _ cts =
 addCompTypes [
 (Default "class" (CAttribute TString)),
 (Default "relationships" (CAttribute (TList TAny))),
 (Default "updates" (CAttribute (TList TAny)))] cts

addCompTypes :: [DefaultType] -> ([Ide],CompTypes) -> ([Ide],CompTypes)
addCompTypes [] (names,ct) = (names,ct)
addCompTypes ((Default n t):ds) (names,ct) = addCompTypes ds ([n]++names,(updateCompTypes ct n t))

--
-- MViews state definitions
--

-- A CompStore is used to record the attribute values for a component.
-- A distinguished attribute "class" gives the component kind for
-- a component instance.
--
type CompID = Int
type CompStore = CompID -> Ide -> CompValue
data CompValue = NoCValue | CValue Dv

emptyCompStore :: CompStore
emptyCompStore _ _ = NoCValue

new_comp :: CompStore -> Ide -> (CompStore,CompID)
new_comp s k = new_comp' 1 where
 new_comp' i = case s i "class" of
 NoCValue -> (updateCompStore s i "class" (Rv (Vstring k)),i) ; _ -> new_comp' (i+1)

updateCompStore :: CompStore -> CompID -> Ide -> Dv -> CompStore
updateCompStore s c a v i j = if i==c && j==a then (CValue v) else s i j

remove_comp :: CompStore -> CompID -> CompStore
remove_comp s c i j = if i==c then NoCValue else s i j

-- Relationships have parent/child attribute values in CompStore
--
is_rel :: State -> CompID -> Bool
is_rel s r = rel_kind where
 (CValue (Rv (Vstring kind))) = comps s r "class"
 (TCompData bk names cts) = declarations s kind
 rel_kind = case bk of
 KBaseRel -> True
 KSubsetRel -> True
 KLinkRel -> True
 _ -> False

Appendix C A Gofer Implementation of MVSL Page C339

-- All relationships for a component are stored by "relationships"
--
comp_rels :: State -> CompID -> [CompID]
comp_rels s c = rels where
 rels = case comps s c "relationships" of
 (CValue (Rv (Vlist rel_values))) -> values_to_comps rel_values
 _ -> []

-- View components for a view are stored in "components"
--
view_comps :: State -> CompID -> [CompID]
view_comps s c = vcomps where
 (CValue (Rv (Vlist comp_values))) = comps s c "components"
 vcomps = values_to_comps comp_values

values_to_comps :: [Value] -> [CompID]
values_to_comps [] = []
values_to_comps ((Vcomp c):vs) = [c]++values_to_comps vs

-- Denotable values
--
data Dv = Loc Location | Rv Value | CompValue CompID Ide

-- Expressable values
--
data Value = Vnum Int | Vbool Bool | Vstring String | Vcomp CompID | Vlist [Value] | Nil

-- instance of == for Value
--

instance Eq Value where
 (Vnum a) == (Vnum b) = a == b
 (Vbool a) == (Vbool b) = a == b
 (Vstring a) == (Vstring b) = a == b
 (Vlist a) == (Vlist b) = same_list a b
 (Vcomp a) == (Vcomp b) = a == b
 _ == _ = False

same_list [] [] = True
same_list (x:xs) (y:ys) = x == y && same_list xs ys

--
-- Store/Location for state variables
--

type Location = Int
type Store = Location->ValueOrUnused
data ValueOrUnused = Used Value | Unused

-- allocate new location in Store
--
new :: Store -> Location
new s = new' 0 where
 new' i = case s i of Unused -> i ; _ -> new' (i+1)

updateStore :: Store -> Location -> Value -> Store
updateStore s l v i = if i == l then Used v else s i

deallocStore :: Store -> Location -> Store
deallocStore s l i = if i==l then Unused else s i

emptyStore :: Store
emptyStore _ = Unused

-- return a list of n free locations from store
--
news :: Int -> Store -> ([Location],Store)
news n s = news1 n [] s where
 news1 0 ls s = (ls,s)
 news1 (n+1) ls s = news1' where
 l = new s

Appendix C A Gofer Implementation of MVSL Page C340

 news1' = news1 n (l:ls) (updateStore s l Nil)

--
-- Environment for state variables
--
type Env = Ide -> ValueOrUnbound
data ValueOrUnbound = Bound Dv | Unbound

updateEnv :: Env -> Ide -> Dv -> Env
updateEnv e "" v i = e i
updateEnv e id v i = if i == id then Bound v else e i

deallocEnv :: Env -> Ide -> Env
deallocEnv e id i = if i == id then Unbound else e i

emptyEnv :: Env
emptyEnv _ = Unbound

-- Given a list of names and locations, bind names to locations in environment
--
extendEnv :: [Ide] -> [Location] -> Env -> Env
extendEnv [] [] e = e
extendEnv (n:ns) (l:ls) e = updateEnv (extendEnv ns ls e) n (Loc l)

-- Update records are a "term" of form Kind(Value1,Value2,...).
-- Outputs are just update records on a component.
--
data UpdateRecord = UpdateRec Ide [Value]
data Output = OV CompID UpdateRecord

--
-- The MViews program state is a tuple with component and location stores, an environment
-- and output list.
-- State also stores the DeclValue for a program as operations and updates must be
-- despatched on a per-component basis (could pass this value to all functions using
-- State, but its easiest to put it here).
--

type State = (CompStore,Env,Store,[Output],DeclValue)

emptyState :: DeclValue -> State
emptyState dv = (emptyCompStore,emptyEnv,emptyStore,[],dv)

-- State update functions
--
update_comps :: State -> CompStore -> State
update_comps (_,e,s,o,dv) c = (c,e,s,o,dv)

update_env :: State -> Env -> State
update_env (c,_,s,o,dv) e = (c,e,s,o,dv)

update_store :: State -> Store -> State
update_store (c,e,_,o,dv) s = (c,e,s,o,dv)

update_output :: State -> [Output] -> State
update_output (c,e,s,_,dv) o = (c,e,s,o,dv)

-- State access functions
--
comps :: State -> CompStore
comps (c,_,_,_,_) = c

env :: State -> Env
env (_,e,_,_,_) = e

store :: State -> Store
store (_,_,s,_,_) = s

output :: State -> [Output]
output (_,_,_,o,_) = o

declarations :: State -> DeclValue

Appendix C A Gofer Implementation of MVSL Page C341

declarations (_,_,_,_,dv) = dv

--
-- MVSL Commands
--
-- Includes:
-- :=
-- if-then
-- while
-- forall
-- Command ; Command
-- Comp.Operation(...args...)
--

-- Meaning of all commands is the meaning of a basic command
-- or the meaning of a component-specific operation.
--
command_meaning :: State -> Command -> State
command_meaning s c@(l := r) = assign s c
command_meaning s c@(Eskip) = s
command_meaning s c@(Eifthen e c1 c2) = if_then s c
command_meaning s c@(Ewhile e com) = while s c
command_meaning s c@(Eforall v e com) = for_all s c
command_meaning s c@(EWrite e) = write s c
command_meaning s c@(c1 :& c2) = sequence s c
command_meaning s c = operation_command s c

-- Assignment of the form lvalue := rvalue
--
assign :: State -> Command -> State
assign s (lexp := rexp) = assign_result s lv rv where
 lv = exp_val s lexp
 rv = rval s (exp_val s rexp)

-- The effect of assign_result is to change the value of a variable
-- or change a component attribute value. For the second case, an
-- update record is generated.
--
assign_result :: State -> Dv -> Value -> State
assign_result s (Loc l) rvalue = update_store s (updateStore (store s) l rvalue)
assign_result s (CompValue c a) rvalue = new_s where
 (CValue (Rv old_v)) = (comps s) c a
 assigned_s = update_comps s (updateCompStore (comps s) c a (Rv rvalue))
 new_s = update_dependents assigned_s c (UpdateRec "update_attribute" [Vcomp c,Vstring a,old_v,rvalue])

-- Conditional execution of the form
-- if <expression> then <command-if-true> else <command-if-false> end if
--
if_then :: State -> Command -> State
if_then s (Eifthen expr if_command else_command) = new_s where
 (Vbool ev) = rval s (exp_val s expr)
 new_s = if ev then command_meaning s if_command
 else command_meaning s else_command

-- Conditional looping of the form
-- while <expression-true> to <command> end while
--
while :: State -> Command -> State
while s c@(Ewhile expr command) = new_s where
 (Vbool ev) = rval s (exp_val s expr)
 new_s = if ev then while (command_meaning s command) c
 else s

-- List iteration of the form
-- forall <variable> on <list> do <command> end forall
--
for_all :: State -> Command -> State
for_all s (Eforall var expr command) = do_forall e s v command where
 v = exp_val s var
 (Vlist e) = rval s (exp_val s expr)
 do_forall [] s v command = s
 do_forall (x:xs) s v command = new_s where

Appendix C A Gofer Implementation of MVSL Page C342

 v_s = assign_result s v x
 c_s = command_meaning s command
 new_s = do_forall xs c_s v command

-- Write command (for debugging)
--
-- Generates an "update record" which outputs an expression value
--
write :: State -> Command -> State
write s (EWrite e) = new_s where
 v = rval s (exp_val s e)
 new_s = update_output s ((output s)++[OV 0 (UpdateRec "write" [v])])

-- Sequentional commands of the form
-- <command1> <command2> ... <commandn>
--
sequence :: State -> Command -> State
sequence s (c1 :& c2) = command_meaning (command_meaning s c1) c2

--
-- The meaning of MViews Basic Operations
--
-- Defines:
-- update_attribute(in CompiD,in AttributeName,in NewValue)
-- add_element(in Kind,out CompID)
-- delete_element(in CompID)
-- establish(in Kind,in Parent,in Child,out NewRelID)
-- reestablish(in RelID,in NewParent,in NewChild)
-- disolve(in Kind,in Parent,in Child)
-- create_view(in Kind,out ViewID)
-- add_view_element(in ViewID,out CompID)
-- remove_view_element(in ViewID, in CompID)
-- record(in CompID,in Kind,in [Value])
-- store(in CompID,in Kind,in [Value])
-- Comp.Op([Value])
--

-- Meaning of basic operation "commands"
--
operation_command :: State -> Command -> State
operation_command s c@(Record e k u) = record_update s c
operation_command s c@(AddElement k e) = add_element s c
operation_command s c@(DeleteComponent e) = delete_component s c
operation_command s c@(Establish kind p ch v) = establish_rel s c
operation_command s c@(EstablishLink kind p ch) = establish_link_rel s c
operation_command s c@(Reestablish r p ch) = reestablish_rel s c
operation_command s c@(Disolve k p ch) = disolve_rel s c
operation_command s c@(CreateView k v) = create_view s c
operation_command s c@(AddViewComponent v e) = add_view_component s c
operation_command s c@(RemoveViewComponent v e) = remove_view_component s c
operation_command s c@(Store e k u) = store_update s c
operation_command s c@(ApplyOp e args) = apply_operation s c

-- add_element(in Kind,out CompID)
--
add_element :: State -> Command -> State
add_element s (AddElement kind new_var) = new_s where
 (comp_s,new_c) = add_component s kind
 (Loc new_loc) = exp_val comp_s new_var
 new_s = update_store comp_s (updateStore (store comp_s) new_loc (Vcomp new_c))

-- Add a new component and set given variable to the new component ID
--
add_component :: State -> Ide -> (State,CompID)
add_component s kind = (new_s,new_c) where
 (new_comps,new_c) = new_comp (comps s) kind
 (TCompData bk vs ct) = declarations s kind
 alloc_attributes [] cs c ct = cs
 alloc_attributes (n:ns) cs c ct =
 case (ct n) of
 (CAttribute t) ->
 if n == "class" then alloc_attributes ns cs c ct

Appendix C A Gofer Implementation of MVSL Page C343

 else updateCompStore (alloc_attributes ns cs c ct) c n (Rv Nil)
 _ -> alloc_attributes ns cs c ct
 new_s = update_comps s (alloc_attributes vs new_comps new_c ct)

-- delete_element(in CompID)
--
delete_component :: State -> Command -> State
delete_component s (DeleteComponent exp) = new_s where
 (Vcomp c) = rval s (exp_val s exp)
 new_s = do_delete_component s c

do_delete_component :: State -> CompID -> State
do_delete_component s c = new_s where
 updated_s = update_dependents s c (UpdateRec "delete_element" [Vcomp c])
 dissolved_r = disolve_relationships (comp_rels s c) updated_s
 new_s = delete_comp dissolved_r c

-- Disolve all relationships to component
--
disolve_relationships [] s = s
disolve_relationships (r:rs) s =
 disolve_relationships rs (do_disolve_rel s r)

-- Remove all component data from state
--
delete_comp :: State -> CompID -> State
delete_comp s c = new_s where
 removed_view = remove_from_view s c
 -- remove from owning view (if any)
 new_s = update_comps removed_view (remove_comp (comps removed_view) c)

-- establish_rel(in Kind,in Parent,in Child,out NewRel)
--
establish_rel :: State -> Command -> State
establish_rel s (Establish kind parent child new_rel) = new_s where
 rk = rel_kind_type kind
 (Vcomp p) = rval s (exp_val s parent)
 (Vcomp c) = rval s (exp_val s child)
 (comp_s,new_r) = do_establish_rel s rk p c
 (Loc new_loc) = exp_val comp_s new_rel
 new_s = update_store comp_s
 (updateStore (store comp_s) new_loc (Vcomp new_r))

do_establish_rel :: State -> Ide -> CompID -> CompID -> (State,CompID)
do_establish_rel s rk p c = (new_s,new_r) where
 (r_s,new_r) = add_component s rk
 new_rs = updateCompStore (updateCompStore (comps r_s) new_r "parent" (Rv (Vcomp p)))
 new_r "child" (Rv (Vcomp c))
 new_pcr = updateCompStore new_rs p "relationships" (Rv (Vlist (comps_to_values([new_r]++comp_rels r_s
p))))
 new_pcc = updateCompStore new_pcr c "relationships" (Rv (Vlist (comps_to_values ([new_r]++comp_rels r_s
c))))
 updated_s = update_comps r_s new_pcc
 new_s = update_dependents updated_s c
 (UpdateRec "establish_rel" [Vstring rk,Vcomp p,Vcomp c])

-- Convert CompIDs to Values
--
comps_to_values :: [CompID] -> [Value]
comps_to_values [] = []
comps_to_values (c:cs) = [comp_to_value c]++comps_to_values cs

comp_to_value :: CompID -> Value
comp_to_value c = (Vcomp c)

-- establish_rel(in Kind,in Parent,in Child)
--
establish_link_rel :: State -> Command -> State
establish_link_rel s (EstablishLink kind parent child) = new_s where
 rk = rel_kind_type kind
 (Vcomp p) = rval s (exp_val s parent)
 (Vcomp c) = rval s (exp_val s child)

Appendix C A Gofer Implementation of MVSL Page C344

 (new_s,new_r) = do_establish_rel s rk p c

-- reestablish_rel(in Rel,in Parent,in Child)
--
reestablish_rel :: State -> Command -> State
reestablish_rel s (Reestablish rel parent child) = new_s where
 (Vcomp r) = rval s (exp_val s rel)
 (Vcomp p) = rval s (exp_val s parent)
 (Vcomp c) = rval s (exp_val s child)
 new_s = do_reestablish_rel s r p c

do_reestablish_rel s r p c = new_s where
 (CValue (Rv (Vcomp old_p))) = comps s r "parent"
 (CValue (Rv (Vcomp old_c))) = comps s r "child"
 (CValue (Rv k)) = (comps s) r "class"
 -- "disolve" relationship for old_p/old_c
 updated_s1 = update_dependents s r
 (UpdateRec "disolve_rel" [k,Vcomp old_p,Vcomp old_c])
 dissolved_pcr = updateCompStore (comps updated_s1) old_p "relationships"
 (Rv (Vlist (comps_to_values (remove_all [r] (comp_rels updated_s1 old_p) (==)))))
 dissolved_pcc = updateCompStore dissolved_pcr old_c "relationships"
 (Rv (Vlist (comps_to_values (remove_all [r] (comp_rels updated_s1 old_c) (==)))))
 updated_s2 = update_comps updated_s1 dissolved_pcc
 -- "establish" relationship for p/c
 new_rs = updateCompStore (updateCompStore (comps updated_s2) r "parent" (Rv (Vcomp p)))
 r "child" (Rv (Vcomp c))
 new_pcr = updateCompStore new_rs p "relationships"
 (Rv (Vlist (comps_to_values ([r]++comp_rels updated_s2 p))))
 new_pcc = updateCompStore new_pcr c "relationships"
 (Rv (Vlist (comps_to_values ([r]++comp_rels updated_s2 c))))
 updated_s3 = update_comps updated_s2 new_pcc
 new_s = update_dependents updated_s3 c
 (UpdateRec "establish_rel" [k,Vcomp p,Vcomp c])

-- disolve_rel(in Kind,in Parent,in Child)
--
disolve_rel :: State -> Command -> State
disolve_rel s (Disolve kind parent child) = new_s where
 rk = rel_kind_type kind
 vp@(Vcomp p) = rval s (exp_val s parent)
 vc@(Vcomp c) = rval s (exp_val s child)
 rs = filter (rel_kind_child s rk c) (comp_rels s p)
 dislove_rels [] s = s
 disolve_rels (r:rs) s = disolve_rels rs (do_disolve_rel s r)
 new_s = disolve_rels rs s

-- Find all relationships with same kind/child from parent
--
rel_kind_child :: State -> Ide -> CompID -> CompID -> Bool
rel_kind_child s kind child rel = result where
 (CValue (Rv (Vcomp c))) = comps s rel "child"
 (CValue (Rv (Vstring rkind))) = comps s rel "class"
 result = if (child == c) && (rkind==kind) then True else False

-- Find all relationships of given kind i
--
find_kind_rels :: [CompID] -> State -> Ide -> [CompID]
find_kind_rels [] s kind = []
find_kind_rels (r:rs) s kind = rs where
 (CValue (Rv (Vstring rkind))) = (comps s) r "class"
 rs = if rkind == kind then [r]++find_kind_rels rs s kind
 else find_kind_rels rs s kind

-- Remove all values from relationships and dependents list for
-- dissolved relationship and delete the relationship component.
--
do_disolve_rel :: State -> CompID -> State
do_disolve_rel s r = new_s where
 (CValue (Rv (Vcomp p))) = comps s r "parent"
 (CValue (Rv (Vcomp c))) = comps s r "child"
 (CValue (Rv kind_val)) = (comps s) r "class"
 updated_s = update_dependents s r (UpdateRec "disolve_rel" [kind_val,Vcomp p,Vcomp c])

Appendix C A Gofer Implementation of MVSL Page C345

 dissolved_r = disolve_relationships (comp_rels updated_s r) updated_s
 dissolved_pcr = updateCompStore (comps updated_s) p "relationships"
 (Rv (Vlist (comps_to_values (remove_all [r] (comp_rels updated_s p) (==)))))
 dissolved_pcc = updateCompStore dissolved_pcr c "relationships"
 (Rv (Vlist (comps_to_values (remove_all [r] (comp_rels updated_s c) (==)))))
 new_s = delete_comp (update_comps updated_s dissolved_pcc) r

-- create_view(in kind,out ViewID)
--
create_view :: State -> Command -> State
create_view s (CreateView kind new_view) = new_s where
 (comp_s,new_v) = do_create_view s kind
 (Loc new_loc) = exp_val comp_s new_view
 new_s = update_store comp_s (updateStore (store comp_s) new_loc (Vcomp new_v))

do_create_view s kind = (new_s,new_v) where
 (v_s,new_v) = add_component s kind
 new_s = update_comps v_s (updateCompStore (comps v_s) new_v "components" (Rv (Vlist [])))

-- add_view_element(in View,in Comp)
--
add_view_component :: State -> Command -> State
add_view_component s (AddViewComponent view comp) = new_s where
 (Vcomp v) = rval s (exp_val s view)
 (Vcomp c) = rval s (exp_val s comp)
 new_s = do_add_view_component s v c

do_add_view_component s v c = new_s where
 new_comps1 = updateCompStore (comps s) c "view" (Rv (Vcomp v))
 new_comps2 = updateCompStore new_comps1 v "components"
 (Rv (Vlist (comps_to_values (view_comps s v++[c]))))
 new_s = update_comps s new_comps2

-- remove_view_element(in View,in Comp)
--
remove_view_component :: State -> Command -> State
remove_view_component s (RemoveViewComponent view comp) = new_s where
 (Vcomp v) = rval s (exp_val s view)
 (Vcomp c) = rval s (exp_val s comp)
 new_s = do_remove_view_component s v c

do_remove_view_component s v c = new_s where
 new_comps1 = updateCompStore (comps s) c "view" (Rv Nil)
 new_comps2 = updateCompStore new_comps1 v "components"
 (Rv (Vlist (comps_to_values (remove_all [c] (view_comps s v) (==)))))
 new_s = update_comps s new_comps2

-- Remove component from its view (if its in one)
--
remove_from_view :: State -> CompID -> State
remove_from_view s c = remove_view s c view where
 view = (comps s) c "view"
 remove_view s c NoCValue = s
 remove_view s c (CValue (Rv (Vcomp v))) = do_remove_view_component s v c

-- store_update(in Comp,in UpdateValue)
--
-- Updates are stored in default attribute "updates" for every component
--
store_update :: State -> Command -> State
store_update s (Store expr kind args) = new_s where
 arg_vals [] s = []
 arg_vals (x:xs) s = [rval s (exp_val s x)]++arg_vals xs s
 (Vcomp c) = rval s (exp_val s expr)
 (CValue (Rv (Vlist c_updates))) = (comps s) c "updates"
 new_updates = c_updates++[Vlist ([Vstring kind]++arg_vals args s)]
 -- i.e. updates stored as list of the form: [kind,Value1,...,Valuen]
 new_s = update_comps s (updateCompStore (comps s) c "updates" (Rv (Vlist new_updates)))

-- CompExp.OpName([ArgExp])
--
-- Component-specific operation meaning is:

Appendix C A Gofer Implementation of MVSL Page C346

-- - compute arguments
-- - allocate component values
-- (c.f. OO language method - scope = object's class values + args & locals)
-- - allocate value/variable arguments
-- - allocate locals
-- - allocate "self" local
-- - get meaning of operation command
-- - deallocate self
-- - deallocate locals
-- - deallocate arguments
-- - deallocate component values
--
apply_operation :: State -> Command -> State
apply_operation s (ApplyOp exp arg_exps) = new_s where
 (CompValue c op) = exp_val s exp
 (CValue (Rv (Vstring ct))) = (comps s c "class")
 (TCompData bk vs cts) = (declarations s) ct
 arg_vals :: [Exp] -> State -> [Value]
 arg_vals [] s = []
 arg_vals (e:es) s = (arg_vals es s)++[(exp_rval s e)]
 new_s = case (cts op) of
 (COperation args t locs command) -> op_result where
 arg_vals = eval_args arg_exps s
 old_env = env s
 pre_op_s = alloc_self (alloc_locals (alloc_and_bind_args
 (alloc_comp_values s vs c) args arg_vals) locs) c
 post_op_s = dealloc_comp_values (dealloc_args (dealloc_locals
 (dealloc_self (command command_meaning pre_op_s)) locs) args) vs c
 op_result = update_env post_op_s old_env
 (CUpdates updates) -> apply_updates updates s c (arg_vals arg_exps s) vs
 -- call update operation as an operation

-- Evaluate lvalues for arguments
--
eval_args :: [Exp] -> State -> [Dv]
eval_args [] s = []
eval_args (e:es) s = (eval_args es s)++[(exp_val s e)]

-- Allocate component values
--
alloc_comp_values :: State -> [Ide] -> CompID -> State
alloc_comp_values s [] c = s
alloc_comp_values s (n:ns) c = alloc_comp_values new_s ns c where
 new_env = updateEnv (env s) n (CompValue c n)
 new_s = update_env s new_env

-- Allocate & bind arguments for operation
--
-- In arguments have new location which is the Value of actual argument
-- (i.e. value parameters)
-- Out arguments have same Dv as actual argument
-- (i.e. variable parameters)
--
alloc_and_bind_args :: State -> OpArgs -> [Dv] -> State
alloc_and_bind_args s [] [] = s
alloc_and_bind_args s ((n,In,_):as) (v:vs) = new_s where
 rv = rval s v
 l = new (store s)
 new_store = updateStore (store s) l rv
 new_env = updateEnv (env s) n (Loc l)
 new_s = alloc_and_bind_args (update_store (update_env s new_env) new_store) as vs
alloc_and_bind_args s ((n,Out,_):as) (v:vs) = new_s where
 new_env = updateEnv (env s) n v
 new_s = alloc_and_bind_args (update_env s new_env) as vs

-- Allocate locals for operation
--
alloc_locals :: State -> OpLocals -> State
alloc_locals s args = new_s where
 loc_names [] = []
 loc_names ((n,_):ns) = [n]++loc_names ns
 an = loc_names args

Appendix C A Gofer Implementation of MVSL Page C347

 (ls,new_store) = news (length an) (store s)
 new_env = extendEnv an ls (env s)
 new_s = update_store (update_env s new_env) new_store

-- Allocate "self" variable for operation
--
alloc_self :: State -> CompID -> State
alloc_self s c = new_s where
 l = new (store s)
 new_store = updateStore (store s) l (Vcomp c)
 new_env = updateEnv (env s) "self" (Loc l)
 new_s = update_store (update_env s new_env) new_store

-- Deallocate a list of identifiers from Store
--
dealloc :: State -> [Ide] -> State
dealloc s ns = new_s where
 dealloc_ids :: [Ide] -> Env -> Store -> (Env,Store)
 dealloc_ids [] e s = (e,s)
 dealloc_ids (n:ns) e s = dealloc_ids ns (deallocEnv e n) (deallocStore s l) where
 (Bound (Loc l)) = e n
 (new_env,new_store) = dealloc_ids ns (env s) (store s)
 new_s = update_store (update_env s new_env) new_store

-- Deallocate "self" variable for operation
--
dealloc_self :: State -> State
dealloc_self s = dealloc s ["self"]

-- Deallocate arguments for operation
--
dealloc_args :: State -> OpArgs -> State
dealloc_args s [] = s
dealloc_args s ((n,In,_):as) = dealloc_args (dealloc s [n]) as
dealloc_args s ((n,Out,_):as) = new_s where
 new_env = deallocEnv (env s) n
 new_s = dealloc_args (update_env s new_env) as

-- Deallocate locals for operation
--
dealloc_locals :: State -> OpLocals -> State
dealloc_locals s args = new_s where
 loc_names [] = []
 loc_names ((n,_):ns) = [n]++loc_names ns
 an = loc_names args
 new_s = dealloc s (loc_names args)

-- Deallocate component values
--
dealloc_comp_values :: State -> [Ide] -> CompID -> State
dealloc_comp_values s [] c = s
dealloc_comp_values s (n:ns) c = dealloc_comp_values new_s ns c where
 new_s = update_env s (deallocEnv (env s) n)

-- record_update(in Exp, in Kind, in [Exp])
--
record_update :: State -> Command -> State
record_update s (Record comp_exp kind values) = new_s where
 eval_exps :: [Exp] -> State -> [Value]
 eval_exps [] s = []
 eval_exps (e:es) s =
 [(exp_rval s e)]++eval_exps es s
 (Vcomp c) = exp_rval s comp_exp
 new_s = update_dependents s c (UpdateRec kind (eval_exps values s))

-- Dependents for a component are:
-- 1) itself
-- 2) all relationships it participates in
-- 3) all other components its connected to via its relationships
--
dependents :: State -> CompID -> [CompID]
dependents s c = deps where

Appendix C A Gofer Implementation of MVSL Page C348

 rs = comp_rels s c
 deps = [c]++rs++collect_deps rs s c
 collect_deps [] s c = []
 collect_deps (x:xs) s c = cd where
 (CValue (Rv (Vcomp parent))) = comps s x "parent"
 (CValue (Rv (Vcomp child))) = comps s x "child"
 cd = if parent == c then [child]++collect_deps xs s c
 else [parent]++collect_deps xs s c

-- Send update record to dependents for a component
--
update_dependents :: State -> CompID -> UpdateRecord -> State
update_dependents s c u = new_s where
 update_dependents1 [] s _ = s
 update_dependents1 (d:ds) s u =
 update_dependents1 ds (update_from s d u) u
 output_s = update_output s ((output s)++[(OV c u)])
 new_s = update_dependents1 (dependents s c) output_s u

-- Process update from another component
--
update_from :: State -> CompID -> UpdateRecord -> State
update_from s d (UpdateRec kind arg_vals) = new_s where
 (CValue (Rv (Vstring k))) = comps s d "class"
 (TCompData bk vs ct) = (declarations s) k
 new_s = case (ct kind) of
 (CUpdates updates) -> apply_updates updates s d arg_vals vs
 _ -> s

-- Apply an update to a component (if it supports the update)
--
-- Update operations are performed by finding a match (correct kind,
-- number and type of args and guard that evaluates to true) and
-- applying the operation as for component-specific operations
--
apply_updates :: [CUpdate] -> State -> CompID -> [Value] -> [Ide] -> State
apply_updates [] s d arg_vals vs = s
apply_updates ((UpdateOp args locs g command):us) s d arg_vals vs =
 if same_length_and_type (reverse args) arg_vals s
 then upd_s else apply_updates us s d arg_vals vs where
 vals :: [Value] -> [Dv]
 vals [] = []
 vals (v:vs) = (vals vs)++[Rv v]
 old_env = env s
 pre_op_s = alloc_self (alloc_locals (alloc_and_bind_args
 (alloc_comp_values s vs d) args (vals arg_vals)) locs) d
 upd_s = case (g exp_rval pre_op_s) of
 (Vbool True) -> op_result where
 post_op_s = dealloc_comp_values (dealloc_self (dealloc_locals (
 dealloc_args (command command_meaning pre_op_s) args) locs)) vs d
 op_result = update_env post_op_s old_env
 _ -> apply_updates us s d arg_vals vs

same_length_and_type :: OpArgs -> [Value] -> State -> Bool
same_length_and_type [] [] s = True
same_length_and_type [] (a:b) s = False
same_length_and_type (a:b) [] s = False
same_length_and_type ((n,io,tv):as) (v:vs) s =
 if tv == (value_to_type v s) || (value_to_type v s) == TAny
 then same_length_and_type as vs s else False

value_to_type :: Value -> State -> TypeValue
value_to_type (Vbool b) s = TBool
value_to_type (Vnum i) s = TInteger
value_to_type (Vstring st) s = TString
value_to_type (Vlist []) s = TList TAny
value_to_type (Vlist (h:t)) s = TList (value_to_type h s)
value_to_type (Vcomp c) s = TComp k where
 (CValue (Rv (Vstring k))) = (comps s c "class")
value_to_type Nil s = TAny
value_to_type _ s = TNotDefined

Appendix C A Gofer Implementation of MVSL Page C349

--
-- Expression values for MVSL
--

-- Get the value (Value) of an expression (i.e. an rvalue)
--
rval :: State -> Dv -> Value
rval s (Loc l) = r where (Used r) = (store s) l
rval s (Rv v) = v
rval s (CompValue c a) = cv where
 (CValue (Rv (Vstring ct))) = (comps s c "class")
 (TCompData bk vs comp_types) = (declarations s) ct
 cv = case (comp_types a) of
 (CAttribute t) -> av where
 (CValue (Rv av)) = (comps s) c a
 (CRelationship t) -> (rel_value c s a t)
 (COperation [] t [] command) -> fn_result where
 old_env = env s
 pre_op_s = command command_meaning (alloc_self (alloc_comp_values s vs c) c)
 (Bound result) = (env pre_op_s) "result"
 fn_result = rval pre_op_s result

-- Get the denotable value for an expression (i.e. an lvalue)
--
-- The value of a functional operation name is one of:
-- - if name is CAttribute, = component attribute value
-- - if name is CRelationship, = one of:
-- - relationship components (where component is parent or child)
-- - component (if relationship is one-to-one link rel)
-- - list of components (if relationship is one-to-many link rel)
-- - if name is COperation = value of function (value of "result" after
-- executing function as per component-specific operations
--
exp_val :: State -> Exp -> Dv
exp_val _ (IntLit i) = Rv (Vnum i)
exp_val _ (StringLit s) = Rv (Vstring s)
exp_val _ True_ = Rv (Vbool True)
exp_val _ False_ = Rv (Vbool False)
exp_val s (Ident i) = ev where
 (Bound ev) = (env s) i
exp_val s (CompVal e a) = (CompValue c a) where
 (Vcomp c) = exp_rval s e
exp_val s (FuncOp c_exp arg_exps) = ev where
 (CompValue c a) = exp_val s c_exp
 (CValue (Rv (Vstring ct))) = (comps s c "class")
 (TCompData bk vs comp_types) = (declarations s) ct
 ev = case (comp_types a) of
 (COperation args t locs command) -> fn_result where
 arg_vals = eval_args arg_exps s
 pre_op_s = command command_meaning (alloc_self (alloc_locals
 (alloc_and_bind_args (alloc_comp_values s vs c) args arg_vals) locs) c)
 (Bound result) = (env pre_op_s) "result"
 fn_result = (Rv (rval pre_op_s result))
 _ -> (CompValue c a)
exp_val s (Op op lexpr rexpr) = opval op lv rv where
 lv = rval s (exp_val s lexpr)
 rv = rval s (exp_val s rexpr)
 opval Plus (Vnum a) (Vnum b) = (Rv (Vnum (a+b)))
 opval Minus (Vnum a) (Vnum b) = (Rv (Vnum (a-b)))
 opval Times (Vnum a) (Vnum b) = (Rv (Vnum (a*b)))
 opval Divide (Vnum a) (Vnum b) = (Rv (Vnum (a/b)))
 opval Gt (Vnum a) (Vnum b) = (Rv (Vbool (a>b)))
 opval Lt (Vnum a) (Vnum b) = (Rv (Vbool (a<b)))
 opval Eq a b = (Rv (Vbool (a==b)))
 opval Neq a b = (Rv (Vbool (a/=b)))
 opval And (Vbool a) (Vbool b) = (Rv (Vbool (a&&b)))
 opval Or (Vbool a) (Vbool b) = (Rv (Vbool (a||b)))
 opval Append (Vlist a) (Vlist b) = (Rv (Vlist (a++b)))
 opval Remove (Vlist a) (Vlist b) = (Rv (Vlist (remove_all b a (==))))

-- Get the Value for an expression
--

Appendix C A Gofer Implementation of MVSL Page C350

exp_rval :: State -> Exp -> Value
exp_rval s e = rval s (exp_val s e)

-- List manipulation functions
--

-- append_once - append new values to list if not already members of list
--
append_once :: [a] -> [a] -> (a->a->Bool) -> [a]
append_once list append compare = new_list where
 to_append = remove_all list append compare
 new_list = list ++ to_append

-- remove_all - remove all values in first list from second list
--
remove_all :: [a] -> [a] -> (a->a->Bool) -> [a]
remove_all r l compare = new_list where
 remove [] a = []
 remove (x:xs) y = if compare x y then remove xs x else [x]++(remove xs y)
 remove_all' [] l = l
 remove_all' (x:xs) l = remove_all' xs (remove l x)
 new_list = remove_all' r l

-- member - is given CompID a member of the CompID list?
--
member :: a -> [a] -> (a->a->Bool) -> Bool
member e es compare = result where
 member_test [] e = False
 member_test (x:xs) y = if compare x y then True else member_test xs y
 result = member_test es e

-- rel_value
--
-- Value of a relationship is one of:
-- list of relationship components (if relationship type is a component)
-- list of components (if relationship type is one-to-one, one-to-many)
--
rel_value :: CompID -> State -> Ide -> TypeValue -> Value
rel_value c s a (TCompAttr kind porc) = (Vlist (map comp_to_value comps)) where
 rels =filter (rel_kind s kind) (comp_rels s c)
 comps = parent_or_child_comps rels porc s c
rel_value c s a (TOneToOne comp) = rel where
 rk = rel_kind_comp s c a
 rels = filter (rel_kind s rk) (comp_rels s c)
 comps = parent_or_child_comps rels "parent" s c
 rel = if comps == []
 then Nil
 else (Vcomp comp) where
 (comp:rest) = comps
rel_value c s a (TOneToMany comp) = (Vlist (map comp_to_value comps)) where
 rk = rel_kind_comp s c a
 rels = filter (rel_kind s rk) (comp_rels s c)
 comps = parent_or_child_comps rels "parent" s c

-- Find all relationships of same kind and parent/child value
--
rel_kind :: State -> Ide -> CompID -> Bool
rel_kind s kind r = result where
 (CValue (Rv (Vstring rk))) = comps s r "class"
 result = if (kind==rk) then True else False
rel_kind_and_porc s kind r = result where
 (CValue (Rv (Vstring rk))) = comps s r "class"
 result = if (kind==rk) then True else False

-- Construct list of connected components (parent/child of relationships)
--
parent_or_child_comps :: [CompID] -> Ide -> State -> CompID -> [CompID]
parent_or_child_comps [] porc s comp = []
parent_or_child_comps (r:rs) "parent" s comp = porc_comps where
 (CValue (Rv (Vcomp p))) = comps s r "parent"
 (CValue (Rv (Vcomp c))) = comps s r "child"
 porc_comps = if p == comp then [c]++parent_or_child_comps rs "parent" s comp else

Appendix C A Gofer Implementation of MVSL Page C351

 parent_or_child_comps rs "parent" s comp
parent_or_child_comps (r:rs) "child" s comp = porc_comps where
 (CValue (Rv (Vcomp p))) = comps s r "parent"
 (CValue (Rv (Vcomp c))) = comps s r "child"
 porc_comps = if c == comp then [p]++parent_or_child_comps rs "child" s comp
 else parent_or_child_comps rs "child" s comp

-- "kind" for a component relationship given a component/attribute name pair
--
rel_kind_comp :: State -> CompID -> Ide -> Ide
rel_kind_comp s c a = k++"."++a where
 (CValue (Rv (Vstring k))) = comps s c "class"

-- "kind" for a relationship given a Type
-- The kind is either the relationship's component name or the owner/relationship name
--
rel_kind_type :: Type -> Ide
rel_kind_type (ComponentType c) = c
rel_kind_type (CompAttrType c a) = c++"."++a

--
-- MVSL program meaning
--
-- Given a type map and a sequence of "inputs", produce a sequence of "outputs"
--
-- Inputs are updates generated by MVisual (i.e. update records) and are translated into
-- operations by the current view.
--
-- Outputs are updates produced by executing MVSL operations on the current state
-- (which also stores the current inputs and outputs).
--

data Input = IV Ide [Value]

-- Meaning of a Program is defined by its outputs given a set of inputs and definition
--
program :: Program -> [Input] -> [Output]
program (Pro decls command) i = out where
 (dv,gs) = program_decls decls emptyDeclValue []
 init_s = alloc_globals (emptyState dv) gs
 com_s = command_meaning init_s command
 out = output (run_program i com_s)

-- Need globals for program definition
--
alloc_globals :: State -> [Ide] -> State
alloc_globals s gs = new_s where
 (ls,new_store) = news (length gs) (store s)
 new_env = extendEnv gs ls (env s)
 new_s = update_store (update_env s new_env) new_store

-- Program is "run" by interpreting a sequence of "inputs" from MVisual
--
run_program :: [Input] -> State -> State
run_program [] s = s
run_program (i:is) s = new_s where
 new_s = run_program is (apply_input_update i s)

-- Translate input "update" record into operation on a component
--
-- Conceptually, MVisual generates these updates in respose to user interaction
-- MVSL's outputs are interpreted by MVisual which then updates view renderings
-- to indicate program change
--
apply_input_update :: Input -> State -> State
apply_input_update (IV "update_attribute" [Vcomp c,Vstring name,new]) s =
 assign_result s (CompValue c name) new
apply_input_update (IV "add_element" [Vstring kind]) s = new_s where
 (new_s,_) = add_component s kind
apply_input_update (IV "delete_component" [Vcomp c]) s =
 do_delete_component s c

Appendix C A Gofer Implementation of MVSL Page C352

apply_input_update (IV "establish_rel" [Vstring kind,Vcomp parent,Vcomp child]) s = new_s where
 (new_s,_) = do_establish_rel s kind parent child
apply_input_update (IV "reestablish_rel" [Vcomp r,Vcomp p,Vcomp c]) s =
 do_reestablish_rel s r p c
apply_input_update (IV "disolve_rel" [Vcomp r]) s =
 do_disolve_rel s r
apply_input_update (IV "create_view" [Vstring kind]) s = new_s where
 (new_s,_) = do_create_view s kind
apply_input_update (IV "add_view_component" [Vcomp v,Vcomp e]) s =
 do_add_view_component s v e
apply_input_update (IV "remove_view_component" [Vcomp v,Vcomp e]) s =
 do_remove_view_component s v e
apply_input_update (IV "update" [Vcomp c,Vlist (Vstring kind:upd)]) s =
 update_from s c (UpdateRec kind upd)
apply_input_update _ s = s

Appendix D An MVSL Specification of IspelM Page D353

Appendix D

An MVSL Specification of IspelM

-- Global values
--
program : program
 -- base view reference

-- Initial computation
--
initialise
 add_element(program,program)
 record_update(program,“init”,[])
end initial

-- Program for IspelM
--
base view program
 attributes
 name : string

 relationships
 clusters : one-to-many cluster
 classes : one-to-many class

 operations
 -- Locate a class...
 --
 find_class(in name : like class.name) : class is
 local
 aclass : class
 begin
 result := nil
 forall aclass on classes do
 if aclass.name = name then
 result := aclass
 end if
 end forall
 end find_class

 updates
 -- Initialise program details
 --
 -- This update is send by the program_details dialog
 --
 details(in pname:string, in clname:string, in cname:string,
 in ckind:like base_class.kind) local
 cluster : cluster
 class : class
 view : class_diagram
 icon : class_icon
 is
 program.name:=pname
 add_element(cluster,cluster)
 cluster.name:=clname
 establish(program.clusters,program,cluster)
 cluster.add_class(cname,ckind,class)
 create_view(class_diagram,view)
 add_element(class_icon,icon)

Appendix D An MVSL Specification of IspelM Page D354

 add_view_element(view,icon)
 view.name:=‘root class’
 establish(icon.base,class,icon)
 end details

end program

-- Base cluster element
--
base element cluster
 attributes
 cluster_name : string

 relationships
 classes : one-to-many class

 operations
 -- class manipulation
 --
 add_class(in name : like class.class_name, in kind : like class.kind,
 out new_class : class) is
 add_element(class,new_class)
 new_class.kind := kind
 establish(cluster.classes,self,new_class)
 establish(program.classes,program,new_class)
 end add_class

 remove_class(in class : class) is
 dissolve(cluster.classes,self,class)
 dissolve(program.classes,program,class)
 end remove_class

end cluster

-- The base element class
--
base element class
 attributes
 class_name : string
 kind : [normal, abstract]

 relationships
 cluster : one-to-one cluster
 generalisations : generalisation.child
 client_suppliers : client_supplier.parent
 classifiers : classifier.parent
 features : one-to-many feature
 specialisations : one-to-many class
 all_features : one-to-many all_feature

 operations
 -- add/remove/find feature
 --
 add_feature(in name : like feature.feature_name,
 in kind : like feature.kind,
 in type : like feature.type_name,
 out new_feature : feature)
 is
 add_element(feature,new_feature)
 new_feature.init(kind,type)
 establish(class.features,self,new_feature)
 end add_feature

 remove_feature(in name : like feature.feature_name) local
 feature : feature
 is
 forall feature on features do
 if feature.feature_name = name then
 delete_comp(feature)
 end if
 end forall
 end remove_feature

Appendix D An MVSL Specification of IspelM Page D355

 find_feature(in name : like feature.feature_name) : feature local
 feature : feature
 is
 result := nil
 forall feature on features
 if feature.name = name then
 result := feature
 end if
 end forall
 end find_feature

 -- add/remove generalisations
 --
 add_gen(in parent : class, out new_rel : generalisation) is
 establish(generalisation,parent,self,new_rel)
 end add_gen

 remove_gen(in parent : class) is
 dissolve(generalisation,parent,self)
 end remove_gen

 -- add/remove/find client-suppliers
 --
 add_cs(
 in ckind : like client_supplier.kind,
 in cfeature : like client_supplier.client_feature,
 in cname : like client_supplier.client_name,
 in stype : like client_supplier.supplier_type,
 in sfeature : like client_supplier.supplier_feature,
 out new_cs : client_supplier)
 is
 if program.find_class(stype) then
 establish(client_supplier,self,program.find_class(stype),new_cs)
 else
 establish(client_supplier,self,nil,new_cs)
 end if
 new_cs.init(ckind,cfeature,cname,stype,sfeature)
 end add_cs

 remove_cs(in supplier : class) is
 dissolve(client_supplier,self,supplier)
 end remove_cs

 find_cs(
 in ckind : like client_supplier.kind,
 in cfeature : like client_feature,
 in cname : like client_name,
 in stype : like supplier_type,
 in sfeature : like supplier_feature) : client_supplier
 local
 cs : client_supplier
 is
 result := nil
 forall cs on client_suppliers do
 if cs.ckind = ckind and
 cs.client_feature = cfeature and
 cs.client_name = cname and
 cs.stype = stype and
 cs.sfeature = sfeature then
 result := cs
 end if
 end forall
 end find_cs

 updates
 -- Check rename of class is valid
 --
 update_attribute(class : class,
 name : attribute,
 oldname : string,
 newname : string)

Appendix D An MVSL Specification of IspelM Page D356

 where
 class = self and
 name = “class_name”
 is
 if program.find_class(newname) \= self then
 store_update(self,”error”,[base_class_name(new_name)])
 else
 store_update(self,“rename_class”,[oldname,newname])
 end if
 end update_attribute

end class

-- Class interface
--
component all_feature
 attributes
 owning_class : like class.class_name
 owner_feature : like feature.feature_name
 class_name : like feature.feature_name
 kind : like feature.kind
 type : like feature.type_name
end all_feature

-- Base generalisation relationship
--
base relationship generalisation
 parent class
 child class
 relationships
 renames : one-to-many rename

 updates
 -- Updates go to owning_class - not stored by generalisation
 --
 establish(kind : string, parent : generalisation, child : rename)
 where
 kind = “rename” and parent = self
 is
 store_update(parent,“add rename”,[self,rename])
 end establish

 dissolve(kind : string, parent : generalisation, child : rename)
 where
 kind = “rename” and parent = self
 is
 store_update(parent,“remove rename”,[self,rename])
 end establish

 -- When establish/dissolve generalistions,
 -- maintain specialisations list attribute
 --
 establish(rel:relationship,
 kind : string,
 parent : class,
 child : class)
 where
 rel = self and kind = “generalisation”
 is
 store_update(parent,“add_gen”,[child,parent])
 establish(class.specialisations,parent,self)
 end establish

 dissolve(rel:relationship,
 kind:string,
 parent : class,
 child : class)
 where
 rel = self and kind = “generalisation”
 is
 store_update(parent,“remove_gen”,[child,parent])
 dissolve(class.specialisations,parent,self)

Appendix D An MVSL Specification of IspelM Page D357

 end establish

end generalisation

-- Generalisation renamed features
--
component rename
 attributes
 parent_name : like feature.feature_name
 child_name : like feature.feature_name
end rename

-- Base client-supplier relationship
--
base relationship client_supplier
 parent class
 child class
 attributes
 kind : [aggregate,local,call]
 client_feature : like feature.feature_name
 client_name : like feature.feature_name
 supplier_type : like class.class_name
 supplier_feature : like feature.feature_name

 operations
 create_cs(
 in cfeature : like client_feature,
 in cname : like client_name,
 in stype : like supplier_type,
 in sfeature : like supplier_feature) is
 client_feature := cfeature
 client_name := cname
 supplier_type := stype
 supplier_feature := sfeature
 end create_cs

 -- Compute supplier for client-supplier (from supplier_type value)
 --
 compute_supplier is
 if program.find_class(supplier_type) then
 reestablish(self,parent,program.find_class(supplier_type))
 else
 reestablish(self,parent,nil)
 end if
 end compute_cs

 updates
 -- Recompute supplier on type change
 --
 update_attribute(cs : client_supplier,
 name:string,
 oldtype : like client_supplier.supplier_type,
 newtype : like client_supplier.supplier_type)
 where
 cs = self and name = “supplier_type”
 is
 compute_supplier
 store_update(parent,”update_attribute”,
 [self,supplier_type,oldtype,newtype])
 end update_attribute

 -- updates to parent
 --
 update_attribute(cs : client_supplier,
 name : attribute,
 oldtype : string,
 newtype : string) where
 cs = self
 is
 store_update(parent,“update_attribute”,[self,name,oldtype,newtype])
 end update_attribute

Appendix D An MVSL Specification of IspelM Page D358

 update_attribute(cs : client_supplier,
 name : attribute,
 oldtype : like client_supplier.kind,
 newtype : like client_supplier.kind) where
 cs = self and name = “kind”
 is
 store_update(parent,“change cs kind”,[self,”kind”,oldtype,newtype])
 end update_attribute

 -- Convert updates for class and store
 --
 establish(rel:relationship,
 kind:string,
 client : class,
 supplier : class) where
 rel = self and kind = “client_supplier”
 is
 store_update(parent,“add_cs”,
 [self,client_feature,client_name,supplier_type,supplier_feature])
 end establish

 dissolve(rel:relationship,
 kind:string,
 client : class,
 supplier : class) where
 rel = self and kind = “client_supplier”
 is
 store_update(parent,“remove_cs”,
 [self,client_feature,client_name,supplier_type,supplier_feature])
 end establish

end client_supplier

-- Base classifier relationship
--
base relationship classifier
 parent class
 child class
 attributes
 name : string

 updates
 -- Updates to class
 --
 update_attribute(cl : classifier,
 name:attribute,
 oldvalue:string,
 newvalue:string)
 where
 cl = self and name = “name”
 is
 store_update(parent,“rename classifier”,
 [self,name,oldvalue,newvalue])
 end update_attribute

 establish(rel:relationship,
 kind : string,
 owner : class,
 classify_to : class)
 where
 rel=self and kind = “classifier”
 is
 store_update(parent,“add_classifier”,[self,classify_to])
 end establish

 dissolve(rel:relationship,
 kind : string,
 owner : class,
 classify_to : class)
 where
 rel=self and kind = “classifier”
 is

Appendix D An MVSL Specification of IspelM Page D359

 store_update(parent,“remove_classifier”,[self,classify_to])
 end establish

end classifier

-- Base feature element
--
base element feature
 attributes
 feature_name : string
 kind : [attribute, method, deferred, inherited]
 type_name : string

 relationships
 owning_class : one-to-one class

 operations
 -- Initialise feature
 --
 init(in new_kind : like feature.kind,
 in new_type : like feature.type_name) is
 kind := new_kind
 type_name := new_type
 end init

 updates
 -- Updates against feature (if method) and owning_class
 --
 update_attribute(feature:feature,
 name:string,
 old : string,
 new : string)
 where
 feature = self
 is
 if name = “feature_name” then
 store_update(owning_class,”rename feature”,
 [self,old,new])
 if kind = method then
 store_update(self,”rename feature”,[self,old,new])
 end if
 else
 store_update(owning_class,”change feature type”,
 [self,old,new])
 if kind = method then
 store_update(self,”change feature type”,
 [“change feature type”,self,old,new])
 end if
 end if
 end update_attribute

end feature

-- Class icons represent class name/kind and arbitrary features (as their names)
--
subset element class_icon
 attributes
 class_name : like class.class_name
 kind : like class.kind
 feature_names : list like feature.feature_name

 relationships
 view : one-to-one class_diagram_view
 base : one-to-one class

 operations
 -- feature name maintenance
 --
 add_feature_name(in name : like feature.feature_name) is
 feature_names := feature_names ++ {name}
 end add_feature

Appendix D An MVSL Specification of IspelM Page D360

 remove_feature_name(in name : like feature.feature_name) is
 feature_names := feature_names -- {name}
 end remove_feature

 -- reselect new class
 --
 reselect_class(in name : like class.class_name)
 local
 other_class : class
 is
 other_class := program.find_class(name)
 if other_class \== self then
 dissolve(base,base,self)
 class_name := name
 map
 end if
 end reselect_class

 -- Map this class icon to a base class
 --
 map(in do_map : boolean)
 base_class : class
 is
 base_class := program.find_class(class_name)
 if base_class \== nil then
 if do_map then
 establish(base,base_class,self)
 end if
 else
 if do_map then
 program.default_cluster.add_class(class_name,kind,base_class)
 establish(sbase,base_class,self)
 end if
 end if
 end map

 updates
 -- Change/Remap a feature name
 --
 change_feature(name : like feature.feature_name,
 new_name:like feature.feature_name,
 new_type:like feature.type_name,
 new_kind:like feature.kind,
 show:boolean)
 local
 feature : base_feature
 is
 if base \== nil then
 feature := base.find_feature(name)
 if feature \== nil then
 feature.feature_name := new_name
 feature.type_name := new_type
 feature.kind := new_kind
 end if
 end if
 remove_feature_name(name)
 if show then
 add_feature_name(new_name)
 end if
 end change_feature

 remap_feature(name, new_name:like feature.feature_name,
 new_type:like feature.type_name,
 new_kind:like feature.kind,
 show:boolean) where true local
 feature : feature
 is
 feature := base.find_feature(new_name)
 if feature = nil then
 base.add_feature(new_name,new_type,new_kind,feature)
 end if
 remove_feature_name(name)

Appendix D An MVSL Specification of IspelM Page D361

 if show then
 add_feature_name(new_name)
 end if
 end remap_feature

 -- Translate base feature updates into feature_names
 --
 establish(class : class,
 kind : string,
 class : class,
 feature : feature)
 where
 kind = “class.features”
 is
 add_feature_name(feature.feature_name)
 end establish

 dissolve(class : class,
 kind : string,
 class : class,
 feature : feature)
 where
 kind = “class.features”
 is
 remove_feature_name(feature.feature_name)
 end dissolve

 -- Translate base attribute updates into subset changes
 --
 update_attribute(class : class,
 name : string,
 old : string,
 new : string)
 where
 class = base and name = “class_name”
 is
 class_name := new
 end update_attribute

 update_attribute(class : class,
 name : string,
 old : like class.kind,
 new : like class.kind)
 where
 class = base and name = “kind”
 is
 kind := new
 end update_attribute

 -- Translate subest updates into base updates
 --
 update_attribute(class : class_icon,
 name : string,
 old : string,
 new : string)
 where
 class = self and name = “class_name”
 is
 if base \== nil then
 base.class_name := new
 end if
 end update_attribute

 update_attribute(class : class_icon,
 name : string,
 old : like class.kind,
 new : like class.kind)
 where
 class = self and name = “kind”
 is
 if base \== nil then
 base.kind := new

Appendix D An MVSL Specification of IspelM Page D362

 end if
 end update_attribute

end class_icon

-- Generalisation Glue
--
subset relationship generalisation_glue
 parent class_icon
 child class_icon

 relationships
 view : one-to-one class_diagram_view
 base : one-to-one generalisation

 operations
 -- map gen glue to base generalisation
 --
 map(do_map : boolean)
 local
 parent_class : class
 child_class : class
 gen : generalisation
 is
 parent_class := parent.base
 child_class := child.base
 if parent_class \== nil and child_class \== nil then
 gen := child_class.find_gen(parent_class)
 if gen \== nil then
 if do_map then
 establish(base,gen,self)
 end if
 else
 if do_map then
 child_class.add_gen(parent_class,gen)
 establish(base,gen,self)
 end if
 end if
 end if
 end map

end generalisation_glue

-- Classifier glue
--
subset relationship classifier_glue
 parent class_icon
 child class_icon
 attributes
 name : string

 relationships
 view : one-to-one class_diagram_view
 base : one-to-one classifier

 operations
 -- Map to base classifier
 --
 map(in do_map : boolean)
 local
 parent : class
 child : class
 classifier : classifier
 is
 parent := parent.base
 child := child.base
 if parent \== nil and child \== nil then
 classifier := parent.find_cl(name,child)
 if classifier \== nil then
 if do_map then
 establish(base,classifier,self)
 end if

Appendix D An MVSL Specification of IspelM Page D363

 else
 if do_map then
 establish(classifier,parent,child,classifier)
 classifier.init(name)
 establish(base,classifier,self)
 result := classifier
 end if
 end if
 end if
 end map

 updates
 -- Base->subset
 update_attribute(cl : classifier,
 name : string,
 old : string,
 new : string) where
 cl = base and name = “name”
 is
 name := name
 end update_attribute

 -- subset->base
 update_attribute(cl : classifier_glue,
 name : string,
 old : string,
 new : string) where
 cl = self and name = “name”
 is
 if base \== nil then
 base.name := name
 end if
 end update_attribute

end classifier_glue

-- Feature or client-supplier glue
-- (represents features as aggregate client-suppliers)
--
subset relationship cs_or_feature
 parent class_icon
 child class_icon
 attributes
 client_feature : like client_supplier.client_feature
 client_name : like client_supplier.client_name
 supplier_type : like client_supplier.supplier_type
 supplier_feature : like client_supplier.supplier_feature
 kind : like client_supplier.kind

 relationships
 view : one-to-one class_diagram_view
 cs : one-to-one client_supplier
 feature : one-to-one feature

 operations
 -- map to cs or feature
 --
 map(in do_map)
 local
 parent : class
 child : class
 feature : feature
 cs : client_supplier
 is
 parent := parent.base
 child := child.base
 if kind = aggregate then
 -- map to base feature...
 if cs \== nil then
 disolve(cs,cs,self)
 end if
 if feature = nil and parent \== nil then

Appendix D An MVSL Specification of IspelM Page D364

 feature := parent.find_feature(client_feature)
 if feature \== nil then
 if do_map then
 establish(feature,feature,self)
 end if
 else
 if do_map then
 parent.add_feature(
 client_feature,aggregate,supplier_type,feature)
 establish(feature,feature,self)
 end if
 end if
 end if
 else
 if feature \== nil then
 disolve(feature,feature,self)
 end if
 if cs = nil and parent \== nil then
 cs := parent.find_cs(kind,client_feature,
 client_name,supplier_type,supplier_feature)
 if cs \== nil then
 if do_map then
 establish(cs,cs,self)
 end if
 else
 if do_map then
 parent.add_cs(kind,client_feature,
 client_name,supplier_type,supplier_feature,cs)
 establish(cs,cs,self)
 end if
 end if
 end if
 end if
 end susbet_kind

 updates
 -- Updates from base feature
 --
 update_attribute(feature : feature,
 name : string,
 old : string,
 new : string)
 where true
 is
 if name = “feature_name” then
 client_feature := new
 else
 if name = “type_name” then
 supplier_type := new
 end if
 end if
 end update_attribute

 -- Updates from client_supplier
 --
 update_attribute(cs : client_supplier,
 name : string,
 old : string,
 new : string)
 where true
 is
 if name = “client_feature” then
 client_feature := new
 else
 if name = “client_name” then
 client_name := new
 else
 if name = “supplier_type” then
 supplier_type := new
 else
 if name = “supplier_feature” then
 supplier_feature := new

Appendix D An MVSL Specification of IspelM Page D365

 end if
 end if
 end if
 end if
 end update_attribute

 -- If supplier_type changed => reselect child class
 --
 update_attribute(cs : cs_or_feature,
 name : string,
 old : string,
 new : string)
 where
 cs = self and name = “supplier_type”
 is
 child.reselect_class(new)
 if feature \== nil then
 feature.type_name := new
 feature.type_class := child
 else
 cs.supplier_type := new
 cs.supplier := child
 end if
 end update_attribute

 -- Updates to base
 --
 update_attribute(cs : cs_or_feature,
 name : string,
 old : string,
 new : string)
 where
 cs = self
 is
 if feature \== nil then
 if name = “client_feature” then
 feature.client_feature := name
 end if
 else
 if name = “client_feature” then
 cs.client_feature := new
 else
 if name = “client_name” then
 cs.client_name := new
 else
 if name = “supplier_feature” then
 cs.supplier_feature := new
 end if
 end if
 end if
 end if
 end update_attribute

end cs_or_feature

-- Class text
--
subset element class_text
 attributes
 class_name : like base_class.name

 relationships
 view : one-to-one class_code_view
 base : one-to-one class

 updates
 -- parse updates
 parsed_attribute(name : like feature.feature_name,
 type : like feature.type_name) where true local
 feature : feature
 is
 feature := base.find_feature(name)

Appendix D An MVSL Specification of IspelM Page D366

 if feature \== nil then
 if feature.type_name \== type then
 feature.type_name := type
 end if
 feature.kind := attribute
 else
 base.add_feature(name,attribute,type,feature)
 end if
 end parsed_attribute

end class_text

-- Feature text
--
subset element feature_text
 attributes
 class_name : like base_class.class_name
 feature_name : like base_feature.feature_name

 relationships
 view : one-to-one class_code_view
 base : one-to-one class

end feature_text

-- Class diagram view
--
subset view class_diagram_view
 components
 class_icon, generalisation_glue, cs_or_feature, classifier_glue

 attributes
 name : string

 relationships
 focus : one-to-one class

 updates
 -- Expand
 --
 expand(icon : class_icon,
 kind : string,
 gen : generalisation)
 where
 icon.base = gen.parent
 local
 new_icon : class_icon
 new_glue : generalisation_glue
 is
 add_element(class_icon,new_icon)
 add_view_component(self,new_icon)
 establish(generalisation_glue,icon,new_icon,new_glue)
 add_view_component(self,new_glue)
 end expand

 -- add_icon
 --
 add_icon(kind:string,X:integer,Y:integer)
 where
 kind = “class_icon”
 local
 new_class : class_icon
 is
 add_element(class_icon,new_class)
 new_class.x:=X
 new_class.y:=Y
 add_view_element(self,new_class)
 record_update(new_class,”init_details”,[])
 new_class.map
 end add_icon

 -- add glue

Appendix D An MVSL Specification of IspelM Page D367

 --
 add_glue(kind:string,parent : class_icon,child : class_icon) where
 kind = “generalisation_glue”
 local
 new_gen : generalisation_glue
 is
 establish(generalisation_glue,parent,child,new_gen)
 record_update(new_gen,“init_details”,[])
 new_gen.map
 end add_glue

end class_diagram_view

-- Class text view
--
subset view class_code_view
 components
 class_text, feature_text

 attributes
 name : string

 relationships
 class_focus : one-to-one class_text
 feature_focus : one-to-one feature_text

end class_code_view

Appendix E An MVisual Specification for IspelM Page E369

Appendix E

An MVisual Specification for IspelM

This appendix gives a more complete description of the user interaction aspects of IspelM
using the MVisual notation introduced in Chapter 5.

E.1. IspelM Component Appearance

Fig E.1. shows the MVisual appearance definition for a class_icon. Class icons display the
class_name, feature_names and kind from an MVSL class_icon. The border around a
class icon is dependent on the value of kind and the size of the border must enclose all
feature names and class name for the icon.

ClassName

FeatName1
FeatName2

normal abstract

class_icon : Appearance

class_icon:
class_name

feature_names
kind

fig E.1. Class icon appearance.

Fig E.2. shows the appearance of generalisation and classifier glue. Fig E.3. shows the
appearance of client-supplier glue. Client-supplier glue comes in four basic appearances:

• code-level aggregates (which are the same as class features) which have a
feature (attribute) name

• “local” class references (i.e. method arguments and local variables) which have
a feature (method) name and local variable name

Appendix E An MVisual Specification for IspelM Page E370

• feature calls (method call or attribute fetch) which have an optional client
feature name (caller) and optional supplier feature name (called)

• design-level aggregates and locals with no client feature/name values (but
which are directional class associations).

Name

Name

gen_glue : Appearance
Name

Name

cl_glue : Appearance

fig E.2. Generalisation and classifier glue.

Client

Supplier

AttributeName

cs_glue : Attributes

kind=aggregate and
level=code

FeatureName :
LocalName

cs_glue : Locals
Client

Supplier

ClientFeature :
->SupplierFeature

cs_glue : Feature Calls

kind=call

Client

Supplier

cs_glue : Abstract Aggregate/Locals

(kind=local or
kind=aggregate)
and level=design

and client_feature=''
and client_name =''

Client

Supplier

cs_glue:
client_feature

cs_glue:
client_feature
client_name

kind = local

cs_glue:
client_feature

supplier_feature

fig E.3. Client-supplier glue appearance.

E.2. IspelM Component Interaction and Updates

Fig E.4. shows the appearance of graphical class diagram views and the additon tools
supported by these views. Class diagram views also support tools for arbitrary graphical
manipulation (dragging, selecting, clicking, hiding and creating new component views).
They provide addition tools for icon, glue and feature additions. The affect of applying
these addition tools is to either open dialogs (MVisual views) for the affected graphical
entities the tool is applied to or to send updates to MVSL components.

Appendix E An MVisual Specification for IspelM Page E371

C/S

cla

gen

ViewName

Name
Feat1
Feat2

Name2

Name3

attribute

Class Diagram View : Addition Tools

Feat1
Feat2

add_feature(Name,'')

add_icon(class)

View

gen

rubber_band

C/S

cla

add_glue(cl,
Name3,Name2)

add_glue(gen,Name3,Name2)

add_glue(cs,
Name3,Name2)

click

click

fig. E.4. Appearance of class diagram views and their addition tools.

Existing graphical entities can have their details updated by applying update details tools.
Fig. E.5. shows these tools being applied to existing class diagram view entities.

C/S

cla

gen

ViewName

Name
Feat1
Feat2

Name2

Name3

attribute

Class Diagram View : Detail Tools

click

class_details(Name)

C/S

click

cs_details(attribute)

cl_details(Glue)

click

Feat1
Feat2

add_feature(Name3,Feat1)

click

fig. E.5. Class diagram view update details tools.

Appendix E An MVisual Specification for IspelM Page E372

Subset class diagram views can expand subset components into a graphical class diagram
view. The effect of this expansion is defined in fig. E.6. where different values for an
expand update produce different icons and glue.

C/S

cla

gen

ViewName

Class Diagram Expansion

C/S

cla

gen

ViewName

attribute
caller

->called

expand(Name,gen,Gen)
expand(Name,cs,CS)

expand(Name,cs,Feature)

Feature:
feature_name=attribute

type_name=Name1
CS:

kind=call
client_feature=caller

supplier_type=Name2
supplier_feature=called

Gen:
child=Name3

Name1

Name

Name2

Name3

Name

fig E.7. Class diagram view expansion of icons and glue.

Fig E.8. shows the affect of double-clicking and option-clicking on a class icon. Different
parts of the icon produce different affects (the “click point” notion) which is indicated by
different updates being sent to views or MVSL components.

class_icon : pointer tool double-click points

ClassName

FeatName1
FeatName2

ClassName.
default_text_viewcomponent views

(ClassName)

component views
(FeatName1)

FeatName1.
default_text_view

FeatName2.
default_text_view

class features(ClassName,
ClassName.features,Icon)

dc

component views
(FeatName2)

display

dc

dc

dc dc

dc

dc

dc

display

display

(dc = double-click)

class info
(ClassName,Icon)

oc

class features(ClassName,
ClassName.all_features,Icon)

(oc = option-click)

oc

class_icon : Drag

fig E.8. Double-click/option-click actions for a class_icon.

Appendix E An MVisual Specification for IspelM Page E373

Figs. E.9. (a) and (b) illustrate the affect on a class_icon of dragging the icon and
renaming the icon name or features it contains. Glue connected to the icon must be
redrawn if the icon is moved while the icon must be redrawn to enclose the longest name
it contains.

shift_location shift_location

shift_location

class_icon : View Updates
Name

Name

Name

Name Name

Name

Name

FeatureName

update_attribute(FeatureName,
feature_name,FeatureName,NewFeatureName)

Name
NewFeatureName

Name
FeatureName

update_attribute(Name,
class_name,Name,ALongClassName)

ALongClassName
FeatureName

class_icon : Dragging

fig E.9. (a) and (b) Affect on class_icon glue when icon dragged and on icon when
names are changed.

Fig E.10. illustrates the effect of parsing a textual view (which has a Snart syntax). Parse
updates are sent to appropriate MVSL textual forms in the view which will in turn
determine if they should send updates to the base view.

 Class Text View : Parsing and Updating
%updates_start(Text1)
%updates_end

class(Name1,
 parents([
 P1([rename(a,b)]),
 P2]),
 features([
 Attribute1:Type1,
 Attribute2:Type2,
 Method1,
 Method2(deferred)
])).

%updates_start(Text2)
%updates_end

Class1::Method1(A,B,C) :-
 code.

Predicate(A,B,C) :-
 code.

parse

parse Text1

parsed_gen(
P1,[rename(a,b)])

parsed_attribute(
Attribute1,Type1)

parsed_method(
Method1,method)

parsed_method(
Method2,deferred)

parse

parse

Text2
parsed_method_pred(

Class1,Method1)parse

parsed_pred(
Predicate)

parse

fig E.10. Parsing a textual view with a Snart-like syntax.

Appendix E An MVisual Specification for IspelM Page E374

Fig E.11. illustrates the effect of unparsing stored base element updates for a dialog or
textual view.

Class Text View : Stored Base Update Unparsing

rename_class(Old,New) -> "rename class ",Old," to ",New
change_kind(ClassName,Old,New) -> "change class ",ClassName," kind to ",New
add_feature(FeatureName,TypeName) -> "add feature ",FeatureName,":",TypeName
remove_gen(ParentName) -> "remove generalisation to ",ParentName
...

Fig E.11. Unparsing stored updates for textual views or dialogs.

Fig E.12. shows the affect of applying stored updates to a textual view using a Snart-like
syntax.

 Class Text View : Applying Updates

%updates_start(Text1)
%updates_end

class(Name1,
 parents([
 P1([rename(a,b)]),
 P2]),
 features([
 Attribute1:Type1,
 Attribute2:Type2,
 Method1,
 Method2(deferred)
])).

%updates_start(Text2)
%updates_end

Class1::Method1(A,B,C) :-
 code.

Predicate(A,B,C) :-
 code.

rename_class(Name1,New)

change_kind(
Name1,Old,normal)

"class(New,"
(1)

(2)

(1)
(2)

change_kind(
Name1,Old,abstract)

(3)
(3)

"class(Name1,"

"abstract_class(Name1,"

add_feature(FeatureName,
TypeName)

"FeatureName:TypeName"
(4)

add_feature(FeatureName,'')

(5) "FeatureName"

remove_feature(Method1)

(4)

(5)

(6)
""

Fig E.12. Affect of applying updates to a textual view with a Snart-like syntax.

E.3. MViews and IspelM Dialogs

Fig E.13. shows an MViews dialog for selecting a component view from a list of views the
component appears in. The affect of selecting the view name is to have the appropriate
view sent a display update.

Appendix E An MVisual Specification for IspelM Page E375

component views (Component)

ViewName2

Select Cancel

ViewName1

ViewName3

Component.
find_view(ViewName2) display

Component.
subset_views

click

fig E.13. View selection dialog for MViews.

Fig E.14. shows the features selection dialog for IspelM. Programmers can select a feature
and perform various actions on the feature depending on the dialog button used.

Features:
feature_name

Class Features (Class,Features,ClassIcon)

FeatureName2
FeatureName1

FeatureName3

Expand

Hide Remove

Views Add

CancelText

componment views
(FeatureName2)

click

FeatureName2.
default_text_view

display

click click

add _feature(Class,
nil,nil)

hide

click

FeatureName2

click

remove

click

expand(ClassIcon,feature,
FeatureName2)

ClassIcon.view

fig E.14. The features selection dialog for IspelM.

Appendix E An MVisual Specification for IspelM Page E376

Fig E.15. illustrates the add feature dialog for IspelM. This allows programmers to add
features to a class (or change an existing feature) and specify/change various attributes of
the feature.

 add_feature (ClassIcon,FeatureName)

Feature Name:

Type:

Kind:
attribute
method
deferred
inherited

Cancel

Change

Remap

Show
Hide

Remove

NewFeatureName

NewTypeName

NewFeatureName

click, return
remove

click

click

click

change,
remap

on

off

remove_feature_name(
NewFeatureName)

add_feature_name(
NewFeatureName)

ClassIcon

ClassIcon
remap_feature(
FeatureName,

NewFeatureName,
NewTypeName,

Kind,Show)

change_feature(
FeatureName,

NewFeatureName,
NewTypeName,

Kind,Show)

FeatureName:
feature_name

type_name
kind

remove_feature_name(
NewFeatureName)

fig E.15. The add feature dialog from IspelM.

Fig E.16. shows the generali class information dialog from IspelM. Like the features
selection dialog, this allows programmers to select different class components and
manipulate them or expand them into a view.

Appendix E An MVisual Specification for IspelM Page E377

ExpandRemoveViews Cancel

-----Generalisations----

---Specialisations---

---Client/servers---

---Classifiers---

GenClassName1
GenClassName2

SpecClassName1
SpecClassName2

CSName1
CSName2

ClClassName1
ClClassName2

Class Info (Class,ClassIcon)

{
{
{
{

click, return

componment views
(GenClassName2)

GenClassName2

click

remove

click

expand(ClassIcon,gen,
GenClassName2)

ClassIcon.view

Class:
gens
specs

client_suppliers
classifiers.

classes

fig E.16. The general class information dialog from IspelM.

Fig E.17. shows the client-supplier update details dialog. This is used to initially specify
the attributes for a new client-supplier relationship and to update the details of an existing
client-supplier relationship (or, using Remap, to find another base client-supplier
relationship to represent).

Appendix E An MVisual Specification for IspelM Page E378

CSGlue.
client_feature
client_name

supplier_type
supplier_feature

kind
level

Client Feature:

Client Name:

Supplier Type:

Supplier Feature:

Change

Remap Cancel

aggregate
local
call

design
code
inherited

ClientFeature

ClientName

supplierType

SupplierFeature

Find CS

cs_details(CSGlue)

Kind: Level:

CSGlue

change_cs(ClientFeature,
ClientName,SupplierType,
SupplierFeature,Kind,Lev

el)

remap_cs(ClientFeature,
ClientName,SupplierType,

SupplierFeature,Kind,Level)

find_cs(ClientFeature,
ClientName,ServerType,

SupplierFeature,Kind,Level)

click
click

click

found_cs(ClientFeature,
ClientName,ServerType,

SupplierFeature,Kind,Level)

ClientFeature

ClientName

SupplierType

SupplierFeature

Level

Kind

fig E.17. The client-supplier update details dialog for IspelM.

Fig E.18. shows the classifier update details dialog. Like the client-supplier update details
dialog, this allows programmers to initialise, update and remap classifier glue.

 cl_details(ClGlue)

Classifier Name:

Classifier Class:

ClassifierName

ClassifierClassName

CancelChange Remap

ClGlue.
name

class_name

ClGlue

click
change_cl(ClassifierName,

ClassifierClassName)

remap_cl(ClassifierName,
ClassifierClassName)

click

fig E.18. The classifier update details dialog from IspelM.

Appendix F A Concrete Syntax for MVSL Page F379

Appendix F

A BNF Grammar for MVSL

Program ::=
 program Ide
 DeclList
 Command
 end Ide
 ;

DeclList ::=
 DeclList
 Decl
 | Decl
 | -- empty
 ;

Decl ::=
 BaseViewDecl
 | BaseElDecl
 | BaseRelDecl
 | SubsetViewDecl
 | SubsetElDecl
 | SubsetRelDecl
 | CompDecl
 | GlobalDecl
 ;

BaseViewDecl ::=
 base view Ide
 AttributesDecl
 RelationshipsDecl
 OperationsDecl
 UpdatesDecl
 end Ide
 ;

BaseElDecl ::=
 base element Ide
 AttributesDecl
 RelationshipsDecl
 OperationsDecl
 UpdatesDecl
 end Ide
 ;

BaseRelDecl ::=
 base relationship Ide
 ParentDecl
 ChildDecl
 AttributesDecl
 RelationshipsDecl
 OperationsDecl
 UpdatesDecl
 end Ide
 ;

SubsetViewDecl ::=
 subset view Ide
 ComponentsDecl
 AttributesDecl
 RelationshipsDecl
 OperationsDecl
 UpdatesDecl
 end Ide
 ;

SubsetElDecl ::=
 subset element Ide
 AttributesDecl
 RelationshipsDecl
 OperationsDecl
 UpdatesDecl
 end Ide
 ;

SubsetRelDecl ::=
 susbet relationship Ide
 AttributesDecl
 RelationshipsDecl
 OperationsDecl
 UpdatesDecl
 end Ide
 ;

CompDecl ::=
 component Ide
 AttributesDecl
 RelationshipsDecl
 OperationsDecl
 UpdatesDecl
 end Ide
 ;

GlobalDecl ::=
 Ide ‘:’ Type
 ;

ParentDecl ::=
 parent Ide
 ;

ChildDecl ::=
 child Ide
 ;

ComponentsDecl ::=
 components CompList
 ;

CompList ::=
 CompList
 Ide
 |
 Ide
 |
 -- empty
 ;

AttributeDecl ::=
 attributes AttributeList
 |
 -- empty
 ;

AttributeList ::=
 AttributeList
 Attribute
 | Attribute

Appendix F A BNF Grammar for MVSL Page F380

 | -- empty
 ;

Attribute ::=
 Ide ‘:’ Type
 ;

RelationshipDecl ::=
 relationships RelationshipList
 | -- empty
 ;

RelationshipList ::=
 RelationshipList
 Relationship
 | Relationship
 | -- empty
 ;

Relationship::=
 Ide ‘:’ Type
 ;

OperationDecl ::=
 operations OperationList
 | -- empty
 ;

OperationList ::=
 OperationList
 Operation
 | Operation
 ;

Operation ::=
 Ide OpArgList OpType
 LocalDecl
 is
 Command
 end Ide
 ;

OpArgList :: =
 ‘(‘ OpArgs ‘)’
 | -- empty
 ;

OpArgs ::=
 OpArgs
 OpArg
 | OpArg
 ;

OpArg ::=
 in Ide ‘:’ Type
 | out Ide ‘:’ Type
 ;

LocalDecl ::=
 locals Locals
 | -- empty
 ;

Locals ::=
 Locals
 Local
 | Local
 ;

Local ::=
 Ide ‘:’ Type
 ;

UpdateDecl ::=
 updates UpdateList
 | -- empty
 ;

UpdateList ::=
 UpdateList
 Update

 | Update
 ;

Update ::=
 Ide UpdArgList
 where Exp
 LocalDecl
 is
 Command
 end Ide
 ;

UpdArgList ::=
 ‘(‘ UpdArgs ‘)’
 | -- empty
 ;

UpdArgs ::=
 UpdArgs
 UpdArg
 | UpdArg
 ;

UpdArg ::=
 Ide ‘:’ Type
 ;

Command ::=
 Exp := Exp
 | if Exp then Command else Command end
if
 | while Exp do Command end while
 | forall Exp on Exp do Command end
forall
 | add_element ‘(‘ Ide ‘,’ Exp ‘)’
 | delete_component ‘(‘ Exp ‘)’
 | establish ‘(‘ Ide ‘,’ Exp ‘,’ Exp
‘,’ Exp ‘)’
 | establish ‘(‘ Ide ‘,’ Exp ‘,’ Exp)
 | reestablish (Exp ‘, Exp , Exp)
 | dissolve ‘(‘ Ide ‘,’ Exp ‘,’ Exp ‘)’
 | record ‘(‘ Exp , Ide ‘,’ ExpList ‘)’
 | store ‘(‘ Exp , Ide ‘,’ ExpList ‘)’
 | create_view ‘(‘ Ide ‘,’ Exp ‘)’
 | add_view_component ‘(‘ Exp , Exp)
 | remove_view_component ‘(‘ Exp ‘,’
Exp ‘)’
 | Exp
 | Exp ‘(‘ ExpList ‘)’

Exp ::=
 Integer
 | true
 | false
 | String
 | Ide
 | Exp ‘+’ Exp
 | Exp ‘-’ Exp
 | Exp ‘*’ Exp
 | Exp ‘\’ Exp
 | ‘(‘ Exp ‘)’
 | Exp and Exp
 | Exp or Exp
 | Exp ‘=‘ Exp
 | Exp ‘\==‘ Exp
 | Exp ‘.’ Ide
 | Exp ‘(‘ ExpList ‘)’
 ;

ExpList ::=
 ExpList
 Exp
 | Exp
 ;

Type ::=
 integer
 | boolean
 | string
 | list Type
 | Ide

Appendix F A BNF Grammar for MVSL Page F381

 | Ide ‘.’ Ide
 | ‘one-to-one’ Type

 | ‘one-to-many’ Type
 ;

References Page ccclxxxiii

References
Ambler and Burnett, 89

Ambler, A., Burnett, M.M., Influence of Visual Technology on the Evolution of
Language Environments, In COMPUTER, October, 1989, pp. 9-22.

Amor, 91
Amor, R., ICAtect: Integrating Design Tools for Preliminary Architectural Design, MSc
Thesis, Department of Computer Science, Victoria University of Wellington, 1991.

Amor et al, 91
Amor, R., Groves, L. and Donn, M., Integrating Design Tools: An Object-Oriented
Approach, Building Systems Automation, In Integration ‘91, June 2-8, Madison,
Wisconsin, USA, 1991.

Amor et al, 92
Amor, R.A., Hosking, J.G., Groves, L.J., Donn, M.R., Design tool integration: model
flexibility for the building profession, In Proceedings Building Systems Automation-
Integration 1992 Symposium: Computer Integration of the Building Industry, Dallas,
Texas, 1992.

Apperley and Spence, 88
Apperley, M.D., Spence, R., Lean Cuisine: A Low-Fat Notation for Menus, Information
Engineering Report #88/1, Department of Electrical Engineering, Imperial College of
Science, Technology and Medicine, London, 1988.

Apple, 85
Apple Computer, Inside Macintosh, Volume I, Addison-Wesley, 1985.

Arefi et al, 90
Arefi F., Hughes C.E., and Workman D.A., Automatically Generating Visual Syntax-
Directed Editors, In Communications of the ACM, Vol. 33, No. 3, 1990, pp. 349-360.

Attardi et al, 89
Attardi G., Bonini, C., Boscotrecase M. R., Flagella, T., and Gaspari, M., Metalevel
Programming in CLOS, In Proceedings of ECOOP ‘89 Conference, Cambridge
University Press, 1989, pp. 243-257.

Avrahami et al, 89
Avrahami, G., Brooks, K.P., Brown, M.H., A Two-View Approach to Constructing
User Interfaces, In ACM Computer Graphics, Vol. 23, No. 3, July, 1989, pp. 137-146.

References Page ccclxxxiv

Backlund et al, 90
Backlund, B., Hagsand, O., Pehrson, B., Generation of Visual Language-oriented
Design Environments, In Journal of Visual Languages and Computing 1, 4, 1990, pp.333-
354.

Bailin, 89
Bailin, S.C., An Object-Oriented Requirements Specification Method, In
Communications of the ACM, Vol. 32, No. 5., May 1989, pp. 608-623.

Borras et al 88
Borras, P., Clement, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B., Pascual, V.,
CENTAUR: the system, In Proceedings of ACM SIGSOFT ‘88: Third Symposium on
Software Development Environments, November 1988.

Brooks, 87
Brooks, F.P., No silver bullet: essence and accidents in software engineering, In
COMPUTER, Vol. 20, No. 1, January 1987, pp. 10-19.

Brown et al, 85
Brown, G.P., Carling, R.T., Herot, C.F., Kramlich, D.A., Souza, P., Program
Visualisation: Graphical Support for Software Development, In COMPUTER, August
1985, pp. 27-35.

Brown, 88
Brown, M.H., Exploring algorithms using BALSA-II, In COMPUTER, Vol. 21, No. 5,
May 1988, pp. 14-36.

Brown, 91
Brown, M.H., Zeus: A System for Algorithm Animation and Multi-View Editing, In
1991 IEEE Symposium on Visual Languages, 1991, pp. 4-9.

Chen, 76
Chen, P.P., The Entity-Relationship Model - Toward a Unified View of Data, In ACM
Transactions on Database Systems, Vol. 1, No. 1, March 1976, pp. 9-36.

Chikofsky and Rubenstein, 88
Chikofsky, E.T., Rubenstein, B.L., CASE: Reliability Engineering for Information
Systems, In IEEE Software, March 1988, pp. 11-16.

Coad and Yourdon, 91
Coad, P., Yourdon, E., Object-Oriented Analysis, Second Edition, Yourdon Press, 1991.

References Page ccclxxxv

Consens and Mendelzon, 92
Consens, M., Mendelzon, A., Visulizing and querying software structures, In 14th
International Conference on Software Engineering, 1992, pp. 138-156.

Consens and Mendelzon, 93
Consens, M., Mendelzon, A., Hy+: A Hygraph-based Query and Visualization System,
Technical Report, Computer Systems Research Institute, University of Toronto, 1993.

Cox et al, 89
Cox, P.T., Giles, F.R., Pietrzykowski, T., Prograph: a step towards liberating
programming from textual conditioning, In 1989 IEEE Workshop on Visual Languages,
1989, pp. 150-156.

Czejdo et al, 90
Czejdo, B., Elmasri, R., Rusinkiewicz, M., Embley, D.W., A Graphical Data
Manipulation Language for an Extended Entity-Relationship Model, In COMPUTER,
March 1990, pp. 26-36.

Dannenberg, 91
Dannenberg, R.B. A Structure for Efficient Update, Incremental Redisplay and Undo
in Graphical Editors, In Software-Practice and Experience, Vol. 20, No. 2, February 1991,
109-132.

Dart et al, 87
Dart, S.A., Ellison, R.J., Feiler, P.H., Habermann, A.N., Software Development
Environments, In COMPUTER, November, 1987, pp. 18-27.

Duke et al 91
Duke, R., King, P., Rose, G., Smith, G., The Object-Z Specification Language Version 1,
Technical Report No. 91-1, Software Verification Research Centre, The University of
Queensland, May 1991.

Fenwick, 93
Fenwick, S., Cerno Implementation, Preliminary Development Report, Department of
Computer Science, 1993.

Fenwick and Hosking, 93
Fenwick, S. and Hosking, J.G., Visual Debugging of Object-Oriented Systems,
Departmental Report #65, Department of Computer Science, University of
Auckland, 1993.

References Page ccclxxxvi

Fenwick, 94
Fenwick, S., A Visual Debugger for Object-Oriented Programs, MSc Thesis, Department
of Computer Science, University of Auckland, 1994.

Fichman and Kemerer, 92
Fichman, R.G., and Kemerer, C.F., Object-oriented and Conventional Analysis and
Design Methodologies, In COMPUTER, October 1992, pp. 22-39.

Finlay and Allison, 93
Finlay, A., and Allison, L., A Correction to the Denotational Semantics for the Prolog
of Nicholson and Foo, In ACM Transactions on Programming Languages and Systems,
Vol. 15 , No. 1, January 1993, pp. 206-208.

Fischer, 87
Fischer, G., Cognitive View of Reuse and Redesign, In IEEE Software, July 1987, pp.
60-72.

Garlan, 86
Garlan, D., Views for Tools in Integrated Environments, PhD Thesis, Carnegie-Mellon
University, CMU-CS-87-147, 1987.

Garlan et al, 92
Garlan, D., Kaiser, G.E, Notkin, D., Using Tool Abstraction to Compose Systems, In
COMPUTER, Vol. 25, No. 6, June 1992, pp. 30-38.

Glinert and Tanimoto, 85
Glinert, E.P., and Tanimoto, S.L., PICT: An interactive, graphical programming
environment, In COMPUTER, 17 (11), 1985, pp. 7-25.

Glinert, 89
Glinert, E.P., Towards software metrics for visual programming, In International
Journal of Man-Machine Studies, Vol. 30, 1989, pp. 425-445.

Goldberg, 84
Goldberg, A., Smalltalk-80: The Interactive Programming Environment, Addison-
Wesley, Reading, MA., 1984.

Goldberg and Robson, 84
Goldberg, A., Robson, D., Smalltalk-80: The Language and its Implementation, Addison-
Wesley, Reading, MA., 1984.

Golin and Reiss, 90
Golin, E.J., and Reiss, S.P., Specification of Visual Language Syntax, In Journal of
Visual Languages and Computing, Vol. 1, No. 2., June 1990, pp. 141-157.

References Page ccclxxxvii

Gordon, 79
Gordon, M., The Denotational Description of Programming Languages, An Introduction,
Springer-Verlag, 1979.

Grundy, 91
Grundy, J.C., A Visual Programming Environment for Object-oriented Languages, MSc
Thesis, Department of Computer Science, University of Auckland.

Grundy et al, 91
Grundy, J.C., Hosking, J.G., Hamer, J., A Visual Programming Environment for
Object-oriented Languages, in Proceedings of TOOLS US ‘91, Prentice-Hall, 1991, pp.
129-138.

Grundy and Hosking, 93
Grundy, J.C., and Hosking, J.G., The MViews framework for constructing multi-view
editing environments, In New Zeland Journal of Computing, Vol. 4, No. 2, 1993, pp. 31-
40.

Grundy and Hosking, 93
Grundy, J.C., and Hosking, J.G., The MViews framework for building visual
programming environments, Proceedings of the 1993 IEEE Symposium on Visual
Languages, 1993, pp. 220-224.

Haarslev and Möller, 90
Haarslev, V. and Möller, R., A Framework for Visualizing Object-Oriented Systems,
in Proceedings of ECOOP/OOPSLA ‘90, October, 1990, pp. 237-244.

Hamer, 90
Hamer, J., Expert Systems for Codes of Practice, PhD Thesis, Department of Computer
Science, University of Auckland, 1990.

Hamer et al, 92
Hamer, J., Hosking, J.G., Mugridge, W.B., Static Subclass Constraints and Dynamic
Class Membership Using Classifiers, Departmental Report #62, Department of
Computer Science, University of Auckland, 1992.

Henderson and Notkin, 87
Henderson, P.B., Notkin, D., Integrated Design and Programming Environments, In
COMPUTER, November 1987, pp. 12-16.

Henderson-Sellers and Edwards, 90
Henderson-Sellers, B. and Edwards J.M., The Object-Oriented Systems Life Cycle, In
Communications of the ACM, Vol. 33, No. 9, 1990, pp. 142-159.

References Page ccclxxxviii

Horowtiz and Teitelbaum, 86
Horwitz, S. and Teitelbaum, T., Generating Editing Environments Based on Relations
and Attributes, In ACM TOPLAS, Vol. 8, No. 4, 1986, pp. 577-608 .

Hosking et al, 90
Hosking, J.G., Hamer, J., Mugridge W.B., Integrating functional and object-oriented
programming, In Proceedings of TOOLS Pacific ‘90 Conference, Sydney, August 1990,
Prentice-Hall, pp. 345-355.

Hudson, 91
Hudson, S.E., Incremental Attribute Evaluation: A Flexible Algorithm for Lazy
Update, In ACM Transactions on Programming Languages and Systems, Vol. 13, No. 3,
July 1991, pp. 315-341.

Ingalls et al, 88
Ingalls, D., Wallace, S., Chow, Y.Y., Ludolph, F., Doyle, K., Fabrik: A Visual
Programming Environment, In Proceedings of OOPSLA ‘88, 1988, pp. 176-189.

Interactive, 89
Interactive Software Engineering, Eiffel: The Environment, Technical Report TR-EI-
5/UM (Version 2.2), Interactive Software Engineering Inc., August 1989.

Jones, 92
Jones, M.P., Gofer: An Introduction to Gofer, Technical Report, Programming Research
Group, Oxford University Computing Laboratory, February 1992.

Kaiser, 85
Kaiser, G.E., Semantics for Structure Editing Environments, PhD Thesis, Department of
Computer Science, Carnegie-Mellon University, CMU-CS-85-131, 1985.

Kaiser and Garlan, 87
Kaiser, G.E, Garlan, D., Melding Software Systems from Reusable Blocks, In IEEE
Software, Vol. 4, No. 4, July 1987, pp. 17-24.

Kaiser et al, 87
Kaiser, G.E., Kaplan, S.M., Micallef, J., Multiuser, Distributed Language-Based
Environments, In IEEE Software, November 1987, pp. 58-67.

Keene, 89
Keene, S.E., Object-oriented Programming in Common LISP: A Programmer’s Guide to
CLOS, Addison-Wesley, 1989.

References Page ccclxxxix

Kleyn and Gingrich, 88
Kleyn, M.F., Gingrich, P.C., GraphTrace - Understanding Object-Oriented Systems
Using Concurrently Animated Views, In Proceedings of OOPSLA ‘88, ACM, pp. 191-
205.

Kleyn and Browne, 93
Kleyn, M.F., Browne, J.C., A High Level Language for Specifying Graph Based
Languages and their Programming Environments, In Proceedings of the IEEE
International Conference on Software Engineering, May 1993, IEEE, pp. 324-334.

LaLonde and Pugh, 93
LaLonde W., Pugh, J., Instance-based programming with PARTS, In Journal of Object-
Oriented Programming, March-April 1993, pp. 75-81.

Langerak, 90
Langerak, R., View Updates in Relational Databases with an Independent Scheme, In
ACM Transactions on Database Systems, Vol. 15, No. 1, 1990, pp. 40-66.

Larson, 86
Larson, J.A., A Visual Approach to Browsing in a Database Environment, In
COMPUTER, Vol. 19, No. 6, June 1986, pp. 62-71.

Leidig and Mühlhäuser, 91
Leidig, T., and Mühlhäuser, M., An Object-Oriented Graphical Editor for Distributed
Application Development, Technical Report, Department of Informatics, University of
Kaiserslautern, 1991.

Lieberman, 86
Lieberman, H., Using Prototypical Objects to Implement Shared Behaviour in Object-
Oriented Systems, In Proceedings of OOPSLA ‘86, ACM, pp. 214-223.

Linton et al, 88
Linton, M.A., Vlissides, J.M., Calder, P.R., Composing User Interfaces with
Interviews, In COMPUTER, February 1989, pp. 8-22.

LPA, 92
Logic Programming Associates, LPA Prolog Version 4.5 Reference Manual, Logic
Programming Associates, 1992.

Magnusson et al, 90
Magnusson, B., Bengtsson, M., Dahlin, L., Fries, G., Gustavsson, A., Hedin, G.,
Minör, S., Oscarsson, D., Taube, M., An Overview of the Mjølner/ORM

References Page cccxc

Environment: Incremental Language and Software Development, In Proceedings of
TOOLS ‘90, Prentice-Hall.

Mannucci et al, 89
Mannucci, S., Mojana, B., Navazo, M.C., Romano, V., Terzi, M.C., Torrigiani, P.,
Graspin: A Structured Development Environment for Analysis and Design, In IEEE
Software, November 1989, pp. 35-43.

Malenfant et al, 89
Malenfant, J., Lapalme, G., and Vaucher, J., ObjVProlog: Metaclasses in Logic, In
Proceedings of ECOOP ‘89 Conference, Cambridge University Press, 1989, pp. 257-269.

McIntyre and Glinert, 92
McIntyre, D., Glinert, E., Visual Tools for Generating Iconic Programming
Environments, In Proceedings of the 1992 IEEE Workshop on Visual Languages, IEEE
Press, 1992, pp. 162-168.

Meyer, 87
Meyer, B., Reusability: The Case for Object-Oriented Design, In IEEE Software, March
1987, pp. 50-64.

Meyer, 88
Meyer, B., Object-Oriented Software Construction, Prentice-Hall, 1988.

Meyer, 92
Meyer, B., Applying “Design by Contract”, In COMPUTER, October 1992, pp. 40-52.

Meyers, 91
Meyers, S., Difficulties in Integrating Multiview Editing Environments, In IEEE
Software, Vol. 8, No. 1, January 1991, pp. 49-57.

Minör, 90
Minör, S., On Structure-Oriented Editing, PhD Thesis, Department of Computer
Science, Lund University, 1990.

Monarchi and Puhr, 92
Monarchi, D.E., Puhr, G.I., A Research Typology for Object-Oriented Analysis and
Design, In Communications of the ACM, Vol. 35, No. 9, 1992, pp. 35-47.

Moon, 86
Moon, D.A., Object-oriented Programming with Flavors, In Proceedings of OOPSLA
‘86, ACM, pp. 1-8.

References Page cccxci

Myers et al, 88
Myers, B.A., Chandhok, R., Sereen, A., Automatic Data Visualisation for Novice
Pascal Programmers, In Proceedings of the 1988 IEEE Workshop on Visual Languages,
October 1988, IEEE, pp. 192-198.

Myers, 89
Myers, B.A., User interface tools: introduction and survey, In IEEE Software, Vol. 6,
No. 1, January 1989, pp. 15-23.

Myers, 90
Myers, B.A., Taxonomies of visual programming and program visualization, In
Journal of Visual Languages and Computing, Vol. 1., No. 1, March 1990, pp. 97-123.

Myers, 90
Myers, B.A., Garnet: Comprehensive Support for Graphical, Highly Interactive User
Interfaces, In COMPUTER, Vol. 23, No. 11, 1990, pp. 71-85.

Nascimento and Dollimore, 93
Nascimento, C., and Dollimore, J., A model for co-operative object-oriented
programming, In Software Engineering Journal, Vol. 8, No. 1, January 1993, pp. 41-48.

Newbury, 88
Newbury, F.J., An Interface Description Language for Graph Editors, In Proceedings
of the 1988 IEEE Workshop on Visual Languages, IEEE, pp. 144-149.

Noble and Groves, 92
Noble, R.J., and Groves, L., Tarraingim: A Program Animation Environment, In New
Zealand Journal of Computing, Vol. 4, No. 1, 1992, pp. 29-41.

Notkin 85
Notkin, D., The GANDALF Project, In The Journal of Systems and Software, Vol. 5, No.
2., May 1985.

O’Brien et al, 87
O’Brien, P.D., Halbert, D.C., Kilian, M.F., The Trellis Programming Environment, In
Proceedings of OOPSLA ‘87, ACM, 1987, pp. 91-102.

Olsen and Dempsey, 83
Olsen, D.R, Dempsey, E.P., Syngraph: A Graphical User Interface Generator, In
Proceedings of ACM SIGGRAPH ‘83 Conference, July 1983, pp. 43-50.

Paulisch and Tichy, 90
Paulisch, F.N., Tichy, W.F., EDGE: An Extensible Graph Editor, In Software - Practice
and Experience, Vol. 20, No. S1, June 1990, pp. S1/63-S1/88.

References Page cccxcii

Pountain, 90
Pountain, D., Adding Objects to Prolog, In Byte, August 1990, pp. 64IS-15-64IS20.

Quintus, 91a
Quintus Corporation, Quintus Prolog Reference Manual, Quintus Corporation, Palo
Alto, CA, 1991.

Quintus, 91b
Quintus Corporation, ProTALK Reference Guide, Quintus Corporation, Palo Alto, CA,
1991.

Raeder, 85
Raeder, G., A Survey of Current Graphical Programming Techniques, In
COMPUTER, August 1985, pp. 11-25.

Ratcliff et al, 92
Ratcliff, M., Wang, C., Gautier, R.J., Whittle B.R., Dora - a structure oriented
environment generator, In Software Engineering Journal, Vol. 7, No. 3, 1992, pp. 184-
190.

Reiss, 85
Reiss, S.P., PECAN: Program Development Systems that Support Multiple Views, In
IEEE Transactions on Software Engineering, Vol. 11, No. 3, March 1985, pp. 276-285.

Reiss, 86
Reiss, S.P., GARDEN Tools: Support for Graphical Programming, In Proceedings of
Advanced Programming Environments, Trondheim, Norway, June 1986, Lecture Notes
in Computer Science #244, Springer-Verlag, pp. 59-72.

Reiss, 87
Reiss, S.P., Working in the GARDEN Environment for Conceptual Programming, In
IEEE Software, November 1987, pp. 16-26.

Reiss, 90a
Reiss, S.P., Connecting Tools Using Message Passing in the Field Environment, In
IEEE Software, July 1990, pp.57-66.

Reiss, 90b
Reiss, S.P., Interacting with the FIELD Environment, In Software - Practice and
Experience, Vol. 20, No. S1, June 1990, pp. S1/89-S1/115.

References Page cccxciii

Reps and Teitelbaum, 84
Reps, T., Teitelbaum, T., The Synthesizer Generator, In Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments, 1984, pp. 42-48.

Reps and Teitelbaum, 87
Reps, T., Teitelbaum, T., Language Processing in Program Editors, In COMPUTER,
November, 1987, pp. 29-40.

Rosenblatt et al, 89
Rosenblatt, W.R., Wileden, J.C., Wolf, A.L., OROS: Toward a Type Model for
Software Development Environments, In Proceedings OOPSLA ‘89, ACM, 1989, pp.
297-304.

Rumbaugh et al 91
Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorenson, W, Object-oriented
Modeling and Design, Prentice-Hall, 1991.

Sajeev and Hurst, 92
Sajeev, A.S.M., Hurst, A.J., Programming Persistence in χ, In COMPUTER, Vol. 25,
No. 9, September 1992, pp. 57-66.

Santucci and Sottile, 93
Santucci, G., Sottile, P.A., Query by Diagram: a Visual Environment for Querying
Databases, In Software-Practice and Experience, Vol. 23, No. 3, pp. 317-340.

Shlaer and Mellor, 88
Shlaer, S., and Mellor, S.J., Object-Oriented Analysis: Modeling the World in Data,
Yourdon Press, Englewood Cliffs, N.J., 1988.

Stroustrup, 86
Stroustrup, B., The C++ programming language, Addison-Wesley, 1986.

Stasko, 89
Stasko, J.T., TANGO: A Framework and System for Algorithm Animation, PhD
Dissertation, Department of Computer Science, Brown University, Providence,
Rhode Island, TR CS-89-30, 1989.

Staudt et al, 88
Staudt, B., Krueger, C., Garlan, D., TransformGen: Automating the Maintenance of
Structure-Oriented Environments, Technical Report CMU-CS-88-186, Department of
Computer Science, Carnegie-Mellon University, 1988.

References Page cccxciv

StructSoft, 92
StructSoft Inc, TurboCASE, StructSoft Inc, 5416 156th Ave. S.E. Bellevue, WA 98006,
1992.

Symantec, 90
Symantec Corporation, THINK C Reference Manual, Symantec Corporation, 1990.

Tammassia et al, 88
Tammasia, R., Battista, G. D., Batini, C., Automatic Graph Drawing and Readability
of Diagrams, In IEEE Transactions on Systems, Man, and Cybernetics, Vol. 18, No. 1,
January/February 1988, pp. 61-79.

Tennent, 76
Tennent, R.D., The Denotational Semantics of Programming Languages, In
Communications of the ACM, Vol. 19, No. 8, August 1976, pp. 437-453.

Teorey et al, 86
Teorey, T. J., Yang, D., and Fry, J.P., A logical design methodology for relational
databases using the extended Entity-Relationship model, In ACM Computing Surveys,
Vol. 18, No. 2, June 1986, pp. 197-222.

Teorey et al, 89
Teorey, T.J., Guangping, W., Bolton, D.L., Koenig, J.A., ER Model Clustering as an
Aid for User Communication and Documentation in Database Design, In
Communications of the ACM, Vol. 32, No. 8, August 1989, pp. 975-987.

Ungar et al, 92
Ungar, D., Smith, R.B., Chambers, C., Hölzle, U., Object, Message, and Performance:
How They Coexist in Self, In COMPUTER, October 1992, pp. 53-64.

Vlissides, 90
Vlissides, J.M., Generalized Graphical Object Editing, PhD Thesis, Stanford University,
CSL-TR-90-427, 1990.

Wang et al, 92
Wang, C., Leung, C-C., Ratcliffe, M., and Long, F., Multiple Views of Software
Development, Technical Report, Computer Science Department, University College of
Wales, Aberystwyth, 1992.

Wasserman, 89
Wasserman, A.I., Tool integration in software engineering, In Lecture Notes in
Computer Science, Vol. 467, Springer-Verlag, 1989.

References Page cccxcv

Wasserman and Pircher, 87
Wasserman, A.I., Pircher, P.A., A Graphical, Extensible, Integrated Environment for
Software Development, In SIGPLAN Notices, Vol. 22, No. 1, January, 1987, pp. 131-
142.

Wasserman et al, 90
Wasserman, A.I., Pircher, P.A., Muller, R.J., The Object-oriented Structured Design
Notation for Software Design Representation, In COMPUTER, March 1990, pp. 50-63.

Welsh et al, 91
Welsh, J., Broom, B., Kiong, D., A Design Rationale for a Language-based Editor, In
Software - Practice and Experience, Vol. 21, No. 9, September 1991, pp. 923-948.

Whittle et al 92
Whittle, B.R., Gautier, R.J., Ratcliffe, M., Trends in Structure Oriented Environments,
Technical Report UCW-SEG-601-92, University Colledge of Wales, Abersystwyth,
August 1992.

Wilk, 91
Wilk, M.R., Change Propagation in Object Dependency Graphs, In Proceedings of
TOOLS US ‘91, Prentice-Hall 1991, pp. 233-247.

Wilson, 90
Wilson, D.A., Class Diagrams: A Tool for Design, Documentation and Teaching, In
Journal of Object-Oriented Programming, January/February 1990, pp. 38-44.

Winblad et al, 90
Winblad, A.L., Edwards, S.D., King, D.R., Object-Oriented Software, Addison-Wesley,
1990.

Wirfs-Brock and Wilkerson, 89
Wirfs-Brock, R., Wilkerson, B., Object-Oriented Design: A Responsibility-Driven
Approach, In Proceedings of OOPSLA ‘89, ACM, 1989, pp. 71-75.

Yourdon, 89
Yourdon, E., Modern Structured Analysis, Yourdon Press, Englewood Cliffs, New
Jersey, 1989.

