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Abstract 
 

 

 

Diagram construction can be used to visually analyse and design a complex software 
system using natural, graphical representations describing high-level structure and 
semantics. Textual programming can specify detailed documentation and functionality 
not well expressed at a visual level. Integrating multiple textual and graphical views of 
software development allows programmers to utilise both representations as appropriate. 
Consistency management between these views must be automatically maintained by the 
development environment. 

MViews, a model for such software development environments, has been developed. 
MViews supports integrated textual and graphical views of software development with 
consistency management. MViews provides flexible program and view representation 
using a novel object dependency graph approach. Multiple views of a program may 
contain common information and are stored as graphs with textual or graphical 
renderings and editing. Change propagation between program components and views is 
supported using a novel update record mechanism. Different editing tools are integrated 
as views of a common program repository and new program representations and editors 
can be integrated without affecting existing views. 

A specification language for program and view state and manipulation semantics, and a 
visual specification language for view appearance and editing semantics, have been 
developed. An object-oriented architecture based on MViews abstractions allows 
environment specifications to be translated into a design for implementing environments. 
Environment designs are implemented by specialising a framework of object-oriented 
language classes based on the MViews architecture. A new language is described which 
provides object-oriented extensions to Prolog. An integrated software development 
environment for this language is discussed and the specification, design and 
implementation of this environment using MViews are described. MViews has also been 
reused to produce a graphical entity-relationship/textual relational database schema 
modeller, a dialogue painter with a graphical editing view and textual constraints view, 
and various program visualisation systems.
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Chapter 1 

Introduction 
 

This chapter discusses the main rationale for this research, the integration of textual and 
graphical views of software development. It also discusses the requirements of integrated 
software development environments (ISDEs) and the importance of a common set 
building blocks for these systems. The major goals of this research are outlined and 
include production of a reusable model for ISDEs, development of an ISDE for an object-
oriented language by reusing this model, and reuse of the model for other systems to 
demonstrate its flexibility. The major research contributions of this thesis are summarised 
to illustrate how these goals have been fulfilled. 

1.1. Rationale for Research 

Programming environments (PEs) assist programmers to implement and debug programs 
by providing tools which make the task of program construction easier (Dart et al 87). 
Software development environments (SDEs) subsume programming environments and 
provide tools for various software management tasks such as analysis, design, 
implementation, debugging, maintenance and version control (Dart et al 87, Meyers 91). 
Software development environments can use graphical program representations for 
analysis, design, visual programming, static and dynamic program visualisation and 
debugging, documentation, and maintenance. Textual program representations can be 
used for program implementation and documentation. An ISDE must provide automatic 
consistency management between different program representations that share 
information. It should also allow new or existing tools to be integrated into the 
environment (Meyers 91). 

1.1.1. Textual vs. Graphical Program Construction and Representation 

This thesis was primarily motivated by a desire to integrate multiple textual and graphical 
views of programs. Graphical views of program structure and semantics are used by 
many analysis and design methodologies (Fichman and Kemerer 92, Henderson-Sellers 
and Edwards 90, Shlaer and Mellor 88) and CASE tools provide editors for constructing 
such diagrams (Coad and Yourdon 91, Wasserman and Pircher 87, StructSoft 92). These 
views of program component relationships allow designers and programmers to reason 
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about large software systems at a high level of abstraction. Graphical program component 
representations are also used to support program browsers (O’Brien et al 87, Fischer 87, 
Symantec 90) and static and dynamic program visualisation and documentation (Myers 
90, Kleyn and Gingrich 88, Wilson 90). Visual programming languages use diagrams to 
specify the structure and execution semantics for programs (Myers 90, Ambler and 
Burnett 89, Raeder 85). 

In contrast, textual program representations are usually used to specify low-level detail 
about program structure and semantics. Most traditional programming languages are 
text-based and text is used to specify data structures and functionality. Text can be used to 
specify some higher-level aspects, such as class contracts in Eiffel (Meyer 88 and 92). Text 
is also used to document software systems, in terms of both programmer and end-user 
documentation. 

Some programmers find linear sequences of textual characters do not convey the high-
level structure of programs as well as equivalent graphical representations (Ambler and 
Burnett 89). As high-level program component semantic relationships are almost always 
graph-based, a graphical representation often expresses these relationships well (Reiss 
90b, Myers 90). Conversely, some programmers find graphical program representations 
have poor power of expression for some sequential control structures and expressions 
(Myers 90, Reiss 90b, Vlissides 90). Thus an environment should ideally allow 
programmers to choose the form of program representation and editing they find most 
appropriate for a particular task. 

1.1.2. Integrated Textual and Graphical Programming 

As graphical and textual programming styles suit different programmers’ requirements 
for program construction, a natural approach might be to support both representations 
within a programming environment. A programming environment could have multiple 
views of a program, some being graphical, diagrammatic representations and others being 
textual representations. Programmers could then select the representation desired for 
design and implementation tasks. 

Many programming environments support multiple textual and/or graphical views of 
parts of programs (Reiss 85, Reiss 87, Kaiser and Garlan 87, Backlund et al 90, Ratcliffe et 
al 93). Systems providing integrated graphical and textual views, such as Dora (Ratcliffe et 
al 92) and PECAN (Reiss 85), typically use structure-oriented editing of views. Program 
components affected by editing operations propagate changes to all affected views to keep 
all views consistent. Structure-oriented editing, however, tends to be a rather restrictive 
approach to editing programs and is not very suitable for editing low-level expressions 
and control-statements (Welsh et al 91), nor for graphical diagram construction (Arefi et al 
90). Programmers generally find structure-oriented editing difficult and unnatural for 
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low-level detail and such editors, while well researched in recent years, have yet to gain a 
wide-spread acceptance (Welsh et al 91, Whittle et al 92, Minör 90, Arefi et al 90). 

1.1.3. Integrated Software Development 

Software development environments use graphical and textual representations of 
programs for more than just design and implementation. An integrated software 
development environment supporting multiple textual and graphical views should be 
able to reuse views for different tasks (such as class diagrams for object-oriented analysis 
and design (Coad and Yourdon 91, Fichman and Kemerer 92) and class textual 
descriptions for programming and documentation (Meyer 88)). New program 
representations and their editing tools should be integrated (both data representation and 
user interface) without affecting existing view and tool data storage and behaviour 
(Meyers 91, Reiss 90a, Wang et al 92). 

Different integrated software development environments support these common facilities. 
This suggests a need for a reusable model for ISDEs. ISDE production is time-consuming 
and difficult and, given their common facilities, a reusable model would be of great 
benefit (Backlund et al 90, Meyers 91, Wang et al 92). 

1.2. Goals of Research 

The initial goal of this research was to produce an ISDE supporting integrated textual and 
graphical views of a program with consistency management. This environment would be 
unique, however, in that it would utilise free-edited textual views and interactively edited 
graphical views of programs. These editing styles are the ones most often used by 
programmers for each kind of representation. An object-oriented language would be the 
target language for the environment as object-oriented language structure is very suitable 
for visual programming and representation (Myers 90, Ratcliffe et al 92). 

A second major goal was to develop a set of reusable building blocks to assist in the 
construction of integrated software development environments. This model should 
support flexible program representation (including support for representing graph-based, 
visual languages) (Arefi et al 90, Backlund et al 90), should provide both language-specific 
structure and semantics support (Reps and Teitelbaum 87), and support integrated, 
multiple and textual views of software development (Meyers 91). The model should also 
have abstract support for program data persistency (Minör 90, Wang et al 92) and tool 
integration and extensibility (Meyers 91, Reiss 90a). 

Using this model as a basis, ISDEs should be abstractly specified and an aim was to 
produce a specification language suitable for this task. This language should be able to be 
formally reasoned with to ensure an environment specification correctly uses the 
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abstractions defined by the model. To implement an environment, a formal specification 
could be used to generate an implementation (Reps and Teitelbaum 87, Backlund et al 90, 
Magnusson et al 90) or a reusable collection of classes or abstractions specialised or used 
(Linton et al 88, Vlissides 90, Haarslev and Möller 90). To demonstrate the ISDE model 
developed is realisable, a goal was to implement the representative ISDE described above 
using one of these two approaches. To illustrate that this model is reusable for other 
environments and applications, the final goal was to produce one or more other systems 
by reusing the model and its implementation. 

1.3. Contributions of Research 

This thesis provides a range of contributions to the field of software development 
environment research. These contributions include: 

• MViews, a model for ISDEs, has been developed. MViews represents programs 
and partial views of programs as graphs and program structure and semantics 
are specified and represented in the same graph-based form. Views are 
rendered and manipulated graphically or textually. Change propagation 
between program and view components is supported by a novel update record 
propagation mechanism. This propagates a record of the exact change to a 
component to other components dependent on its state. Tools are interfaced to a 
canonical representation of the program using views. 

• Two specification languages for MViews-based environments allow such 
environments to be defined in an abstract style. A textual specification language 
defines the state of programs and views of a program. It also defines how 
program components may be changed using a basic set of graph manipulation 
operations and how components respond to changes to other components. A 
visual specification language defines the appearance of program views, view 
components and dialogues. Editing operations on these visual entities are 
propagated to the program state defined by the textual specification language 
and vice-versa. This defines the interaction between program state change, view 
component appearance and view component editing. 

• An object-oriented architecture is used to design an implementation for 
MViews-based environments. Currently, environment implementers translate 
environment specifications into this architecture by hand. A framework of 
classes has been developed which implements this architecture. New 
environments are implemented by specialising these framework classes based 
on the environment’s object-oriented design. 

• A simple language has been developed which provides object-oriented 
extensions to Prolog. An ISDE for this language has been produced which 
reuses MViews to support its multiple textual and graphical views. Graphical 
class diagram views are used for analysis, design, browsing and static 
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visualisation of programs, while textual class code views are used for class 
interface specification, method implementation and detailed documentation. 
Class diagram construction supports visual structure programming while 
textual views are free-edited and parsed to modify program detail. Full 
consistency management between views is supported using MViews’ novel 
update record and object dependency mechanisms. 

• Other systems have been developed that reuse MViews. An entity-relationship 
modeller provides graphical entity-relationship diagrams and textual relational 
database schemas. These are kept consistent using MViews’ consistency model. 
A dialogue painter provides a graphical dialogue painter with textual dialogue 
constraints and semantics processing views. Changing one dialogue 
representation propagates changes to other views allowing a dialogue’s 
appearance to be specified graphically while constraints and default values are 
specified using text. Program visualisation systems provide a visual debugger, 
method call tally graph view, and sorting algorithm animation view. 

1.4. Thesis Organisation 

The following chapters are organised thus: 
• Chapter 3 defines a simple language, Snart, an object-oriented extension to 

Prolog. Snart provides an example language to construct an ISDE for and 
provides a language to implement this environment. Object-oriented languages 
are focused on in this research as they are particularly appropriate for graphical 
representation (Wilson 90). 

• Chapter 4 describes a programmer’s perspective of the Snart Programming 
Environment (SPE). SPE is a representative ISDE for analysing, designing, 
implementing and maintaining Snart software. SPE provides graphical, 
interactively edited views for analysis, design, static program visualisation and 
program browsing. Textual views are free-edited and parsed, and support 
detailed software documentation and program implementation. Full 
consistency management between different views is supported using a novel 
update record mechanism. These update records also provide a change 
documentation facility for program components. SPE is described to illustrate 
the kinds of views and facilities useful for ISDEs. It is used in the following 
chapters to illustrate the kind of environments this research aims to facilitate 
modelling and construction of. 

• Chapter 5 discusses some requirements for systems used to construct ISDEs and 
defines the MViews model for ISDEs. MViews introduces a novel technique for 
representing program structure and semantics and views of a program. A novel 
update record mechanism for propagating and documenting change in an ISDE 
is also introduced. MViews provides a model for specifying ISDEs and supports 
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graphical and textual views of information. Tools are interfaced to a common 
program data repository and tools share a common set of user interface 
abstractions. To specify environments that use the MViews model two 
specification languages are developed. A textual language specifies 
environment program and view state and the modification semantics of this 
state. A visual language uses examples and simple visual “programming” to 
specify editing tool appearance and functionality. 

• Chapter 6 describes an object-oriented architecture for designing new 
environments based on the model of Chapter 5. The developer of an 
environment translates a formal specification for the environment into a design 
which reuses this architecture. The architecture provides a class hierarchy with 
classes providing abstractions based on the MViews model of environments. 
This architecture allows an environment implementer to design a new 
environment in a manner consistent with the MViews model. 

• Chapter 7 provides a framework of Snart classes used to implement 
environments modelled and designed using MViews and its architecture. To 
implement an environment, Snart classes are defined which inherit much of 
their data and behaviour from the Snart framework. This illustrates that new 
environments based on the MViews model can be practically realised. 

• Chapter 8 shows how SPE can be designed using the architecture of Chapter 6 
and implemented using the framework of Chapter 7. SPE itself can be 
generalised to IspelM, a generic ISDE for object-oriented languages. This 
chapter demonstrates the advantage of a model, architecture and framework 
which supply most of the data modelling and functionality for developing 
ISDEs supporting multiple textual and graphical views of software 
development. 

• Chapter 9 illustrates that MViews can be used to develop a diverse range of 
environments and systems. Some of the systems developed include an entity-
relationship diagrammer with textual relational database schema, a dialogue 
painter with textual constraint specification, program visualisation views and 
visual debugging views. These and other systems illustrate the flexibility of 
MViews and the usefulness of its architecture and framework. 

• Chapter 10 summarises the contributions of this research and draws conclusions 
about the usefulness of MViews and its derivatives. Aspects of ISDEs which are 
not well supported by MViews are identified and future research proposed to 
satisfy these requirements.
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Chapter 2 

Related Research 
 

This chapter reviews current research on programming environments (PEs) and 
integrated software development environments (ISDEs). We begin by using Unix-style 
textual programming environments as a base example of PEs. Such environments are 
generally not well integrated, not very interactive, and generally text-based. Various 
improvements to text-based environments have been made. These include systems which 
generate integrated, interactive environments from formal grammars, support integration 
and extension of text-based programming tools, and provide distributed, multi-user, text-
based software development environments. 

Graphical (or “visual”) programming environments, CASE tools, and program 
visualisation systems use graphical pictures, rather than textual character sequences, to 
describe programs. CASE tools provide drawing-style editors for constructing diagrams 
for analysis, design and documentation of software. Visual programming environments 
use diagrams to specify the data and functionality of programs and these diagrams can be 
executed to run a program. Program visualisation systems display program data and 
functionality at different levels of abstraction. These include visual debugging systems, 
static and dynamic program structure and functionality visualisation systems, and 
algorithm animation systems. 

Some recent efforts at producing ISDEs have attempted to combine textual and graphical 
modes of software specification and programming. Another general trend for producing 
ISDEs for large-scale software production has been to produce environments which 
provide well-integrated tools (at both the data and user interface levels) with provision for 
environment extensibility (changing tools or integrating new tools into the environment). 
These are usually conflicting aims as good extensibility often makes good integration 
difficult and vice-versa. Different researchers have tended to stress one goal over the 
other, depending on their view of which is the most important. The final sections of this 
chapter briefly outline several important requirements for ISDEs this thesis addresses. An 
overview of the thesis structure is given to illustrate how these requirements are met. 
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2.1. Textual Programming 

2.1.1. Unix-style Environments 

Traditional programming environments are based on an edit-compile-run sequence of 
program development (Dart et al 87). A good example is the traditional approach to C 
programming using Unix systems. A command shell, such as the c-shell (csh) is provided 
by the operating system (Unix) and various programming “tools” are directly invoked 
using a command-line interpreter provided by the shell (Reiss 90a). A tool is typically 
some environment function or program used to perform a specific programming or 
software development task (Dart et al 87). Such tools might be a standard text editor (such 
as vi or emacs) and a standard C compiler (such as cc). Programmers edit their programs, 
compile their programs, then execute their programs (which are compiled to an executable 
invoked from the command line). Additional programming tools, such as a version 
control system (for example, RCS or SCCS), a help system (such as man), and a debugger 
(such as dbx), can be supplied as executable programs or groups of executable programs. 

The main problem with such environments is that they are poorly integrated at both the 
data and user interface levels. All data is typically stored in Unix files and different tools 
may have no access to data used by other tools. Tools may even duplicate data and store it 
in different, incompatible formats. This can easily lead to incompatible program 
representations and lack of data portability between tools. Even if graphical browsing 
tools are supported, programming is almost exclusively text-based with little or no ability 
to visualise complex program structures in diagrammatic forms. 

Unix-style environments might be viewed as the most extensible kind of environment. 
New tools can be added at will but tool integration may only be via the command line 
interpreter (with possibly no, or very rudimentary, data transfer between tools). Even 
when graphical user interfaces are supported by the operating system, these are usually 
restricted to pull-down menus and windows which contain textual command shells and 
editing windows. Some environments, such as Eiffel (Interactive 89), provide tools which 
make use of graphical user interfaces to support program browsing. Generally these 
simply provide a slightly higher-level access to the Unix command-line interpreter with 
tools invoked with menu commands rather than command-line instructions. 

Program development in such environments tends to be rather batch-style with a program 
edited, compiled to detect syntax and semantic errors, and then debugged and re-edited. 
There is generally no direct support for software analysis or design, and maintenance uses 
the same text-based edit-compile-run cycle. Programs are usually re-executed after an edit 
and thus testing can be very time-consuming. Environment tools are usually implemented 
from scratch (using C or command-line scripts) and thus these environments require a 
great effort to develop. 
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2.1.2. Purpose-built, Tightly Integrated Environments 

An improvement over Unix-style environments are purpose-built, tightly-integrated 
environments (Dart et al 87, Reiss 90a). These typically have the editor, compiler and run-
time system integrated with a graphical user interface and common data storage. A typical 
example is THINK C on the Macintosh (Symantec 89). C programs are edited using one or 
more Macintosh window-based text editors and then compiled using a menu option. 
Programs are run in the same environment and a source-level debugger allows C code to 
be viewed as program statements are debugged. Turn-around time between debugging, 
compiling and editing tends to be much quicker as the “tools” are always in memory and 
executing, and tools share a common user interface behaviour. 

While nice to use, from a programmer’s point of view, these environments have major 
disadvantages. The programming effort required to produce them is enormous (Reiss 90a, 
Dart et al 87) and while they are highly integrated, they usually support very limited (or 
no) extensibility. The “tools” comprising the environment are often only one tool (the 
whole environment) which supports every programming task from editing to debugging. 
Thus the program which implements the environment must be changed to support new or 
different tool functions, often a very difficult thing to do. While the environment as a 
whole has good user interface and data integration, other environments and tools can not 
usually access this data directly, nor be invoked by or invoke the environment’s user 
interface. 

2.1.3. Tightly Integrated, Extensible Environments 

Some languages, such as LISP, Smalltalk and Prolog, have language interpreters and 
environments which include either a command-line interpreter for language constructs, or 
are written in the target language itself. Some text editors support editor extensibility by 
providing a language which can be used to extend the editor’s functionality (for example, 
the Unix emacs editor which has a LISP interpreter). To extend the environment’s 
functionality, a new “tool” can be implemented using the target programming language 
and then invoked by the environment in the same manner as other programs. Graphical 
user interfaces for these environments, such as those provided by LPA MacProlog (LPA 
92), Smalltalk (Goldberg 84), and InterLISP (Kleyn and Gingrich 88), provide 
programmers with the same high-level tool interfaces as purpose-built environments. 

While these environments are extensible and integrated, they usually have the same 
problem of data and user interface integration within the language interpreter itself. Thus 
existing tools not implemented in the target language supported by the environment are 
difficult to integrate (but still somewhat easier to integrate than with purpose-built 
environments) (Reiss 90a). While environments like LPA MacProlog and Smalltalk 
provide good programming facilities, such as cross-referencing information and multi-
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window editing, they do not generally provide software development tools for analysis 
and design. If such tools are supported, they are usually rather limited browsing tools or 
very simple “template generators”. An example is the LPA MacProlog MacObject editor 
which generates code for Prolog++, an object-oriented extension to LPA MacProlog. This 
only supports simple object inheritance diagrams and its diagrams are not automatically 
updated when the Prolog++ code it represents is changed. 

2.1.4. Generated Environments 

As the effort of producing a programming environment is a large task, many researchers 
have attempted to provide declarative specification languages for languages and their 
environments. These have usually been based on the abstract syntax of a language, as 
opposed to traditional batch-style compilers, like the Unix C and THINK C compilers, 
which use the concrete syntax of a language. Programs are typically “synthesised” using 
language construct “templates” and “structure-oriented editing”. An early example is the 
Cornell Program Synthesizer (CPS) (Reps and Teitelbaum 87). Program control statements 
and data declarations are defined by successively expanding and filling in templates 
based on an abstract syntax definition of Pascal. In addition, the static semantics for a 
program under construction are checked by an incremental attribute grammar specified 
around the abstract syntax (Reps and Teitelbaum 87). Expressions are free-edited and then 
parsed rather than structure-edited. 

An abstraction of the CPS is the Synthesizer Generator (Reps and Teitelbaum 84). This 
allows environments to be generated from operator-phylum abstract syntax grammars 
and attribute grammars based around these abstract syntax specifications. Editing is via 
structure-editor template commands (for all parts of a program) which ensures a 
syntactically incorrect program can not be derived. Mercury (Kaiser et al 87) uses the 
Synthesizer Generator to provide distributed, multi-user programming environments that 
support automatic propagation of module interface changes among several users. Neither 
of these programming environment generators support any other software development 
tasks than textual, structure-oriented editing with incremental static semantics checking. 

These systems allow language structure and static semantics to be specified very 
abstractly and in a declarative manner. New environments can be quickly defined and 
generated based on a common set of user interface, data storage, and data recomputation 
abstractions. Environments produced in this way are not very extensible, however, and 
use a restrictive editing style. 

The UQ2 editor (Welsh et al 91) attempts to overcome some of these problems by allowing 
users to determine the kind of editing for a given program construct. New editors are 
specified and generated from grammars but provide various extensions to support more 
conventional free-editing styles as well as structure-oriented editing and incremental 
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parsing. These editors do not directly support integration with other tools but do support 
flexible program documentation and textual browsing capabilities. 

2.1.5. Text-based Software Development Environments 

Some generated environment efforts provide support for tool integration and extensibility. 
An early effort was the Gandalf project (Notkin 85). Gandalf supports structure-oriented 
editing using the ALOE editor but also has tools for project management, version control, 
and other software development activities. All these tools are text-based, however, 
although derivatives of the Gandalf Project, such as the GNOME Project, use diagrams to 
illustrate parts of software systems (Myers et al 88). 

Centaur is a generic software development environment which generates environments 
from formal specifications (Borras et al 88). Centaur uses textual editors based on abstract 
syntax grammars and automatically translates these trees between persistent and in-core 
forms as necessary. Centaur also has semantics and concrete syntax specification 
languages and a graphical user interface for editing tools. Tools for project management 
and documentation can be defined as well as program editors. 

MELD (Kaiser and Garlan 87) is a declarative language for specifying tool interfaces 
(“static” views), views of a program (“dynamic” views), structure-oriented text editors, 
and static and dynamic language semantics. The main advantage of MELD is its 
declarative specification (based on language abstract syntax and action equations (Kaiser 
85)) from which tool data storage, tool interfaces, and tool editors are generated. Static tool 
views automatically translate operations on one tool interface to equivalent operations on 
other views of this tool interface. Dynamic views allow partial views of data to be 
specified using a database-like query and these views are automatically updated as the 
data they model changes. MELD does not provide any direct support for graphical 
diagramming tools. 

Mjølner/ORM environments (Magnusson et al 90) use interpreted abstract syntax 
grammars to generate textual structure-oriented editors for programming languages. 
Mjølner/ORM also provides an object-oriented attribute grammar language for specifying 
static and dynamic language semantics in a very abstract form. Mjølner/ORM 
environments provide improved editing facilities and representations over the Synthesizer 
Generator (Minör 90, Whittle et al 92) but have no multiple-view or graphical view 
support. Some graphical tools can be used, such as a pictorial representation of software 
version control, but these are currently hand-coded and then interfaced to the 
environment. Mjølner/ORM environments support tool extensibility via a “back-bone” 
(Magnusson et al 90, Minör 90) which supports dynamic loading of tools and tool data, 
data storage in abstract syntax forms using Unix files, and data integration of new tools 
which use Simula objects. 
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2.2. Graphical Programming and Visualisation 

2.2.1. CASE Tools 

Most software analysis and design methodologies use diagrams to model the high-level 
analysis and detailed design of software systems (Fichman and Kemerer 92). Such 
methodologies include Yourdon Structured Analysis (Yourdon 89), Shlaer and Mellor 
Object-Oriented Analysis (Shlaer and Mellor 88), Object-Oriented Structured Design 
(Wasserman et al 90), and Entity-Relationship Modelling (Chen 76). Software developers 
can use multiple diagrams to show different views of software at different levels of 
abstraction. These diagrams generally illustrate the structural and semantic relationships 
between different high-level aspects of a software system better than textual 
representations.  

CASE tools provide graphical editors supporting the construction of these analysis and 
design diagrams (Chikofsky and Rubenstein 88). They usually provide consistency 
management between different views to ensure a software developer has a consistent 
view of the software system under construction. Software thru Pictures (Wasserman and 
Pircher 87) provides various views which support dataflow analysis, structured analysis 
and detailed object-oriented design. The OOATool (Coad and Yourdon 91) supports Coad 
and Yourdon Object-Oriented Analysis. TurboCASE (StructSoft 92) supports entity-
relationship modelling, structured analysis and design methodologies, and object-oriented 
analysis and design methodologies. 

Most CASE tools do not support program implementation. A common approach to 
assisting implementation is to generate program fragments from a design and allow 
programmers to incorporate these into their own programs. A major drawback of this 
approach is the problem of “CASE-gap”, where modifications to the design and/or 
implementation become inconsistent with one another. Thus CASE tools alone do not 
support evolutionary software development well, as the design, implementation and 
maintenance aspects of software development are poorly integrated. 

CASE tools are often incorporated into software development environments to provide 
analysis and design capabilities (Reiss 90a and 90b). One problem is that their data storage 
and user interfaces are difficult to integrate, especially when CASE tools are developed 
separately from the environment into which they are integrated. A possible solution is to 
use the FIELD selective broadcasting and user interface “wrapper” approach to tool 
integration (Reiss 90a). As Reiss notes, however, complete data and user interface 
integration is usually not possible because of the implicit assumptions CASE tools make 
about these facilities (providing their own user interface and data storage which is often 
incompatible with other tools). 
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2.2.2. Visual Programming 

A different use of diagrams to analysis and design is for specifying the execution 
semantics of a program. This has resulted in the development of “visual” programming 
languages and environments. Programs are specified using one or more diagrammatic 
views and these diagrams can be “run” to execute a program. A major advantage of such 
systems is that they can provide a higher-level, more expressive representation of some 
program aspects which abstracts away from traditional textual details, such as syntax and 
linear textual specification (Myers 90, Raeder 85, Ambler and Burnett 89). Many visual 
programming languages are not entirely pictorial, but use graphical boxes and lines with 
textual annotations (such as box and line names) to differentiate between diagram 
components. 

PICT (Glinert and Tanimoto 85) uses flowcharts to specify program operations with 
flowchart boxes containing coloured icons describing the operations they perform. Fabrik 
(Ingalls et al 88) uses dataflow diagrams to specify user interface behaviour. Dataflow 
boxes represent various user interface components (such as sliders, buttons and windows) 
or computational operations (such as addition and sorting). Data “flows” from one box’s 
pins to another’s and, as Fabrik programs are always executing, programmers can receive 
immediate feedback about user interface appearance and behaviour. Prograph (Cox et al 
89) also uses dataflow diagrams to specify programs and provides an object-oriented 
structure where object methods are implemented as dataflow diagrams. An interface 
builder allows programmers to specify user interface components diagrammatically and 
specify user interface semantics using dataflow diagrams. These systems are implemented 
without language or programming environment generators or abstractions and thus a 
large programming effort is require to define them. 

LOGGIE (Backlund et al 90) uses interpreted abstract syntax grammars with “garlands” to 
provide support for generating graph-based programming languages. It provides attribute 
grammars based on abstract syntax trees with garlands1 to provide static semantics 
checking on directed graphs. Multiple views and graphical representations and editors are 
supported, including abstract syntax grammar definition using graphical tree 
representation. 

                                                 

1A garland is a non-hierarchical link between two abstract syntax tree nodes. This allows graph-based 

language structures to be represented in conjunction with tree-based abstract syntax structures. The garland 

approach is a compromise between purely tree-based, hierarchical abstract syntax structures and graph-

based program structures, as used by (Arefi et al 90), and is claimed to support more efficient attribute 

grammar recalculation based on abstract syntax structure (Backlund et al 90). 
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Deterministic graph transformation systems (Arefi et al 90) use directed graphs to 
represent programs (nodes are program elements while labelled edges relate program 
elements). Programs are synthesised by successively applying graph transformations to a 
program state. Alternative states for the program are defined with generic graph 
representations and, as long as a graph transformation is deterministic, the original 
program graph can be transformed from one form to another to visually construct a 
program. No direct support for language semantics is currently modelled and no multiple 
view support is provided. The editing mechanism for these program graphs is currently 
structure-oriented, but allows programs to be altered through a series of non-syntactically 
correct states alleviating some structure-oriented editor restrictions (Arefi et al 90). 

GARDEN (Reiss 86 and 87) provides an environment for prototyping visual programming 
languages and for conceptual programming with several different languages. All data is 
represented by objects which provide a structural (syntactic) language representation 
scheme. These objects also provide support for both static and dynamic language 
semantics. Views are defined as dependencies between objects moderated by a third 
object. GARDEN uses an object-oriented database for program storage and for uniform 
tool data storage. The internal structure of objects can be edited using text as well as by 
using graphical editors on multiple object representations. New environments are 
implemented by reusing pre-defined GARDEN objects and tools. Reiss notes that 
GARDEN is useful for visual language prototyping but integration with existing tools is 
difficult (Reiss 86 and 90a). 

Vampire (McIntyre and Glinert 92) is a set of tools for visually constructing iconic 
programming environments. Vampire supports the construction of new visual 
programming environments using a form of visual programming. This allows new visual 
environments to be built much more easily than using a textual language with user 
interface libraries or toolkits. There is currently no support in Vampire for building textual 
view editors or multi-view editing environments with graphical/textual view consistency. 

GraphLog (Consens and Mendelzon 92) provides a querying and graph visualisation 
system built using a concept of Hygraphs. GraphLog supports querying and visualisation 
of both database schemas and data instances using Hygraphs. Queries are visually 
constructed and results automatically laid out according to the form of a graphical query. 
Hy+, a successor to GraphLog, provides improved querying facilities and allows textual 
retrieval and update via Hygraph queries (Consens and Mendelzon 93). This text can be 
kept consistent with graph updates in a rudimentary way. 

GLIDE (Kleyn and Browne 93) provides a grammar for specifying the structure and 
semantics of graph-based visual languages. New environments for these languages are 
generated from a grammar specification and the EDGE graph editor (Paulisch and Tichy 
90) is used to implement these environments. GLIDE uses structure-oriented editing of 
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graphs but supports translation of a program graph from one syntactically correct state to 
another via one or more non-syntactically correct states (similar to deterministic graph 
transformation systems (Arefi et al 90)). GLIDE also supports dynamic semantics 
specification, simple dynamic visualisation and multiple views of a program (which can’t 
be directly edited). 

Some programmers find using purely visual representations of a program unwieldy for 
constructing and visualising some control statements and, in particular, expressions 
(Ratcliffe et al 92, Myers 90, Vlissides 90). Some systems try to over-come these problems 
with expression evaluators (where expressions are described using text). A further 
problem is lack of formal definitions for visual language syntax (i.e. what a picture 
actually means) (Golin and Reiss 90), which has made generation of visual language 
environments difficult. 

2.2.3. Program Visualisation 

Program visualisation systems use graphical program representations to describe program 
data and execution states in a high-level manner (Myers 90, Ambler and Burnett 89, 
Brown 88). Such systems can be used to debug programs by showing low-level data and 
execution states, describe how a software system works by showing relationships between 
software components, and animate algorithms by showing changes to data and execution 
flow. Static program visualisation describes the structure (and possibly control-flow) of a 
program specification. Dynamic program visualisation describes the data and execution-
flow of a running program. 

Many visual programming systems use the program construction diagrams to visualise a 
program running. Examples include Fabrik and Prograph which allow programmers to 
visualise executing dataflow programs in a similar form to their dataflow specifications. 
Pins and boxes representing an executing program have data values associated with them 
which programmers can view to determine if a program is executing correctly. This 
provides a more powerful and easier to use debugging interface than conventional text-
based debuggers, such as the THINK C debugger (Symantec 89) and Unix dbx debugger 
(even with a graphical user interface (Reiss 90b)). Programmers can “see” data move 
between dataflow boxes and can move between and use debugging views more easily and 
naturally than textual data and control-flow displays (Myers 90). 

GraphTrace (Kleyn and Gingrich 88) records message dispatches for an object-oriented 
language and uses these to produce an animation of the running program. This aids in the 
understanding of the program’s structure and how the program works. (Haarslev and 
Möller 90) describe  a system for specifying program visualisations using a TEX-like 
description language. CLOS programs can be visualised both statically and dynamically 
using this language extension. 
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BALSA-II (Brown 88) can be used to animate low-level program control-flow and to 
describe high-level algorithm animation. Programs are written in a language defined by 
BALSA-II and a pre-defined set of program visualisation views are provided. The main 
disadvantage of BALSA-II is that new animation views must be written using low-level C 
code and toolkit routines. In addition, BALSA-II is unsuitable for animating programs not 
written using its internal language. 

TANGO (Stasko 89) provides similar animation capabilities to BALSA-II but allows 
animations to be specified much more abstractly and for a wider range of programming 
languages. Animation views can be specified using a textual specification language (which 
generates the C code to perform the animation) or using diagrams which are then 
translated into the textual specification language. Programs are annotated by adding 
procedure calls to the TANGO animation system at appropriate places, or by using an 
“annotating editor” supplied by the FIELD environment (Stasko 89, Reiss 90b). 

Zeus (Brown 91) supports data and code visualisation by adding “event generators” to 
procedure calls for Modula-2 programs. A pre-processor adds event generators to all 
procedure calls and views are constructed which make use of these events. Zeus provides 
facilities for quite sophisticated program visualisation and algorithm animation, including 
the use of sound and colour. Zeus views are implemented in Modula-2 by reusing a set of 
pre-defined procedure calls. 

A general problem with most program visualisation systems is how to abstractly specify 
the visualisation or animation required. For software development environments, 
programmers typically require tools to help statically visualise complex software and to 
assist in debugging complex software (Reiss 90b, Brooks 87). This does not usually require 
complex animations, which are difficult to specify abstractly, as provided by systems such 
as TANGO and BALSA-II. For most static program visualisation, an ability to construct 
new diagrams, possibly from information already defined about a program, is a general 
requirement (Reiss 90b, Kleyn and Gingrich 88). A level of dynamic visualisation suitable 
for debugging programs and visualising data structures is usually sufficient for most 
programming tasks (Haarslev and Möller 90). 

2.3. Integrated Software Development Environments 

As textual and graphical program representations are both useful, integrating the two may 
be a good approach to integrating different phases of software development (Meyers 91, 
Ratcliffe et al 92). This integration should solve the problem of inconsistent design and 
implementation by providing consistency management between different views of 
software development. Another advantage is that diagrams useful for one phase of 
development can be used in another phase. For example, an analysis-level class hierarchy 
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is useful for browsing class interface implementations (Fischer 87) and design diagrams 
are useful for accessing code modules (Wasserman and Pircher 87). 

In addition, other environment tools could be usefully reused to avoid tool redundancy 
(Meyers 91). For example, version control tools are useful for program code version and 
configuration management, but may also be useful for design and analysis diagram 
version control. A design may be evolutionary, particularly for object-oriented software 
development (Henderson-Sellers and Edwards 90). During development and 
maintenance, different aspects of large software systems may need to be re-analysed and 
re-designed, requiring multiple versions of analysis, design and implementation views. 

PECAN (Reiss 85) provides an integrated environment for Pascal programming using 
multiple textual and graphical representations of a common program. PECAN provides a 
program representation and semantics calculation model based on trees. Multiple 
graphical and textual views are supported with graphical views using a structure-edited 
approach while textual views use an incremental parsing algorithm. PECAN does not 
support version control but does have a flexible undo/redo facility which includes macro-
operations. Kaiser observes that the PECAN model would be difficult for most people 
other than its designers to reuse, due to its complexity (Kaiser 85). 

FIELD environments (Reiss 90a and 90b) provide the appearance of an integrated 
programming environment built on top of distinct Unix tools. Program representation is 
usually as text files with each tool supporting its own semantics (with conventional 
compilers and debuggers). Views are not directly supported but tool communication via 
selective broadcasting (Reiss 90a) allows changes in one tool “view” (for example, an 
editor) to be sent to another tool “view” (for example, the debugger or compiler). Free-
edited textual program views are supported (but these text views cannot contain over-
lapping information) while graphical representations are generated from cross-reference 
information. Reiss notes that a lack of user-defined layout and view composition for these 
graphical views is a problem (Reiss 90b). Version control is not currently supported 
(although it is planned). Data storage is via Unix text files and a simple relational database 
(for cross-reference information). Data integration is thus not directly supported but tools 
can implement translators, driven by selective broadcasting, to allow data from one tool to 
be used by another. A common user interface “look and feel” is supported by providing a 
graphical user interface front-end for Unix tools. 

Ispel (Grundy et al 91) provides a generic visual programming environment for object-
oriented languages. Ispel provides multiple diagrams supporting the construction of 
inheritance and aggregation relationships between classes which are edited to specify an 
object-oriented program. Textual views of a class can be generated from these diagrams 
but can not be edited. Ispel is implemented without reusing abstractions for program 
representation or view consistency. 
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Dora (Ratcliffe et al 92) environments support multiple textual and graphical views of 
software development with all editing structure-oriented. Dora uses the Portable 
Common Tool Environment (PCTE) (Wang et al 92) to store program data and uses PCTE 
view schemas to provide selective tool interfaces to these programs. Dora tools are 
specified using an Editor Description Language and are implemented using the Interviews 
(Linton et al 88) user interface toolkit. Dora supports the construction of analysis and 
design views, as well as implementation code views, but assumes these views are updated 
by structure-oriented editing of base program data. It is not clear what the effect on an 
abstract, design-level structure is when a corresponding code-level structure is updated. 

The distributed object-oriented programming environment of (Nascimento and Dollimore 
93) provides a distributed, multi-user programming environment for Smalltalk. Currently, 
only existing Smalltalk tools are supported (mostly text-based) but multiple users can 
work on the same program at one time. Programs are distributed with a shared program 
store representing the definitive state of a program. Programmers can have a different 
version of Smalltalk classes and versions can be merged by the “owner” of a class as 
necessary. Tool data integration is via the distributed object space supported by a 
distributed Smalltalk used to implement the environment. 

2.4. General Requirements 

From the example systems in the previous sections we can discern a general trend in the 
development of ISDEs. These form the basis of a general set of requirements for ISDEs: 

• Both textual and graphical representations of software are useful. Supporting 
both representations provides software developers with a choice of 
representation appropriate to a given development task. Editing style should be 
flexible and appropriate to the kind of representation used. 

• Multiple views of software development must be kept consistent to ensure 
developers do not mis-understand the current state of a system and do not 
make inconsistent modifications. 

• Multiple tools are useful for software development and these tools need to be 
integrated to provide a consistent user interface and share access to the same 
data. An ISDE should be extensible in that new tools can be interfaced to the 
environment (both data and user interface) in a consistent manner without 
affecting the performance of existing tools. 

• Development of ISDEs is a large programming effort and appropriate 
abstractions for constructing such environments are very useful. A model for 
ISDEs should include: flexible program structure and semantics representation; 
support for definition of different views and view representations; view 
consistency management; editor functionality and user interface specification; 
and tool integration mechanisms. A common set of building-blocks should also 



Chapter 2 Related Research Page 37 

be provided, based on this ISDE model, so new environments and tools can be 
constructed which reuse these environment abstractions. 

In the following chapters, these requirements are met by a new model for ISDEs. Chapter 
3 introduces Snart, a simple object-oriented language used as an example language to 
produce an environment for. Chapter 4 describes an ISDE for Snart which fulfils the 
requirements discussed above. Chapter 5 describes the MViews model for ISDEs and two 
languages used to specify MViews-based environments. Chapter 6 provides an object-
oriented architecture for designing MViews-based ISDEs and Chapter 7 describes an 
implementation of this architecture as a framework of Snart classes. Chapter 8 
demonstrates how SPE, and a generalisation of SPE, can be designed and implemented 
using the MViews architecture and Snart framework. Chapter 9 further demonstrates the 
reusability of MViews by developing several other environments.
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Chapter 3 

Object-oriented Programming in Prolog 
with Snart 

 

In this chapter we discuss Snart, a set of object-oriented extensions to Prolog. Snart was 
developed during this research to provide a simple, representative object-oriented 
programming language for illustrating concepts and implementing the systems we have 
designed. Snart provides the basic facilities found in many object-oriented languages, 
together with dynamic classification, a facility previously only provided by Kea (Hamer 
90, Hosking et al 90, Hamer et al 92). 

The rationale for Snart and its facilities are discussed in the context of a simple program 
implemented using the language. Software development in Snart is described, and the 
language compared to other object-oriented Prologs. We briefly comment on the 
language’s performance, classification in Snart and future extensions we envisage. A 
detailed description of Snart, its environment, and its implementation is provided in 
Appendix B. 

3.1. Object-oriented Programming 

We focus on object-oriented languages, their programming environments and software 
engineering techniques and tools for these languages for three main reasons: 

• As software applications get ever larger, better software engineering techniques 
and methodologies must be employed to manage the growing complexity of 
problems (Meyer 88, Henderson-Sellers and Edwards 90, Monarchi and Puhr 
92). Object-oriented analysis, design and implementation can assist these 
management tasks (Meyer 87, Meyer 88, Henderson-Sellers and Edwards 90), 
and thus we expect such languages and techniques to gain a growing following. 

• Programmers require tools that assist them with software construction by 
allowing appropriate use of abstraction, selective views of software 
development, and help manage change to complex software (Dart et al 87, 
Henderson and Notkin 87). Recent developments and experience with Object-
Oriented Analysis (OOA) and Design (OOD), and complementary tools for 
these methodologies, suggest object-oriented modelling techniques and 
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languages can help produce higher quality software than conventional 
techniques (Fichman and Kemerer 92, Monarchi and Puhr 92). 

• Object-oriented languages are, by their object-based focus, appropriate 
candidates for both visual programming and program visualisation. They also 
provide a natural method of describing and implementing the models 
developed in this research. 

The reader is assumed to have a good working knowledge of most object-oriented 
concepts. These include object-oriented analysis and design (Coad and Yourdon 91, 
Henderson-Sellers and Edwards 90), object-oriented languages (Meyer 88, Winblad et al 
90, Stroustrup 86), some implementation issues with object-oriented languages and 
systems (Goldberg and Robson 84), and an appreciation of the differences between 
abstract data types (Meyer 88), meta-classes (Goldberg and Robson 84) and prototypes 
(Lieberman 86, Ungar et al 92). 

3.2. Rationale for Snart 

The Snart language was developed to provide a simple object-oriented language for 
different phases of our research. We required a programming language for implementing 
the systems we developed that provided: 

• The flexibility of Prolog for experimental rapid prototyping. Prolog was used to 
good effect in the development of Ispel (Grundy et al 91) and we wished to 
make further use of the language’s prototyping facilities. Features useful for 
experimental programming include: modification of source code while retaining 
run-time data; a high-level, declarative style that can be easily modified to 
accommodate design changes; and a language structure that isn’t greatly 
affected by design modification (for example, limited type checking). 

• Object-oriented structuring for programs, as opposed to less flexible and 
reusable conventional Prolog, C or Pascal program structure. 

• Integration with existing programs and libraries, including parsing support, 
graphical user interface construction support, and database support. Of 
particular importance was good graphical user interface support, such as that 
provided by the LPA MacProlog system (LPA 89). 

• A language with sufficient run-time speed for interactive applications. Access to 
the compiler and run-time system was required so we could modify and 
experiment with the language, for example to add explicit classification and 
run-time object method tracing. 

• An integrated development environment including fast compilation, editing, 
and browser and debugger support to facilitate fast, experimental 
programming. 
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We also required a representative object-oriented language as an example language to 
develop an environment for. This language should be based on common object-oriented 
principles suitable for software engineering (classes and strong typing versus meta-classes 
or prototypes), similar to popular languages such as C++ or Eiffel. This should allow us to 
apply our environments, models and program design reasonably easily to another 
language, without using less well-supported facilities such as meta-classes, classes-as-
objects and prototypes. 

In addition to Snart, we needed a Prolog system as an implementation platform. We chose 
LPA MacProlog due to its rapid prototyping facilities, including incremental compilation, 
high-level access to the Macintosh graphics and a WIMPS environment that assists the 
rapid development of experimental software. A major advantage of using Snart is access 
to LPA Prolog’s high-level, declarative facilities for building graphical user interfaces. 
LPA provides a declarative Graphics Description Language (GDL) for specifying a wide 
range of graphical pictures (for example, boxes, lines, ovals, text, shading, and composite 
objects). LPA also provides many predicates for manipulating these pictures and for 
building graphic windows (editable windows containing pictures). 

In addition to graphical picture manipulation, LPA provides high-level access to the 
Macintosh windowing system and user interface facilities. Menus, dialogues and 
windows are all specified in a declarative style with one Prolog predicate call often being 
sufficient. Although LPA’s facilities are implemented in Prolog and don’t have an object-
oriented structure, Snart classes can be defined to interface to them and provide a user 
interface framework similar to Interviews (Linton et al 88), the THINK Class Library 
(Symantec 91), and GARNET (Myers 90). Appendix A gives a brief overview of the 
facilities of LPA for building graphical user interfaces. 

Extending the LPA language and environment to provide facilities for Snart programming 
gave us a good development system for implementing the results of our research. It also 
provided a motivation for replacing our simple Snart environment with a visual 
programming environment supporting design, implementation and maintenance phases 
of software development. This environment and its implementation could then be 
compared to development without it. 

3.3. A Snart Example: A Drawing Program 

In this section we describe Snart by example by showing how Snart can be used to 
implement a simple drawing program using the graphical facilities of LPA and the 
Macintosh. Fig. 3.1. shows a screen dump from this program. 
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fig. 3.1. Screen dump from a simple drawing program implemented using Snart. 

3.3.1. Snart Classes and Methods 

The drawing program is composed of classes that implement a drawing window, buttons 
that select a type of figure to be drawn and different figures that can be drawn in the 
window. The figure and button classes form a hierarchy. Fig. 3.2. shows the Snart code 
that implements the figure class of the drawing program. 
 
 
% The figure class. 
% All figures inherit from this class. 
% 
abstract_class(figure, 
 parents([]), 
 features([ 
  window:drawing_window, 
  location:term, 
  visible:boolean, 
  frame:term, 
  create, 
  draw(deferred), 
  hide, 
  resize(deferred), 
  delete, 
  info, 
  pt_in_figure 
 ])). 
 
% Creation method for a figure. 
% 
figure::create(Figure,Window,Loc) :- 
 Figure@window:=Window, 
 Figure@location:=Loc, 
 Figure@visible:=false, 
 Window@add_figure(Figure). 

 
% Delete a figure 
% 
figure::delete(Figure) :- 
 Figure@hide, 
 Figure@window(Window), 
 Window@remove_figure(Figure), 
 Figure@dispose. 
 
% Hide a figure. 
% 
figure::hide(Figure) :- 
 Figure@window(Window), 
 Window@del_pic(Figure), 
 Fig@visible:=false. 
 
% Information on this figure 
% 
figure::info(Figure) :- 
 Figure@location(Location), 
 writeseqnl([‘Location =‘,Location). 
 
% See if given point is in this figure 
% 
figure::pt_in_figure(Figure,X,Y) :- 
 Figure@visible(true), 
 Figure@frame(Frame), 
 pt_in_box((Y,X),Frame). 
 

fig. 3.2. The figure class. 

The abstract_class predicate defines a class called figure, with no parent classes it 
inherits from; attributes window, location, visible, and frame; and methods create, draw, 
hide, resize, delete, info, and pt_in_figure. Method definitions are of the form 
ClassName::MethodName(ObjectID,Argument1,...,Argumentn):-Body, where ObjectID is 
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the object ID the method is invoked for (i.e. the object a “message” is sent to). The method 
implementation is the same form as standard Prolog clause bodies. 

Features of an object are referred to by ObjectID@FeatureName. Methods are invoked by 
ObjectID@MethodName(Argument1,...,Argumentn). Attributes are assigned values by 
ObjectID@FeatureName:=Value, and fetched by ObjectID@AttributeName(Value). Note the 
method invocation and attribute fetch syntax are identical, as in Eiffel (and thus behave as 
“feature calls”). 

Methods with no implementation in figure are deferred for implementation by a sub-
class. These “features” can be implemented by either attributes or methods in subclasses. 
The “types” associated with attributes in a class definition are not used for compile-time 
or run-time type checking. These are used to default values for attributes and form a 
valuable documentation aid. A visual programming environment can use such 
declarations to build its own data structures from Snart code (see Chapter 4). Types can be 
term, atom, integer, string, list, or boolean (i.e. standard Prolog types), or Snart class 
names (thus a class can be an aggregate of other class types). 

Fig. 3.3. shows the Snart code that implements the rectangle class of the drawing program. 
 
 
% The rectangle figure class. 
% 
class(rectangle, 
 parents([ 
   closed_figure( 
    [rename(create,fig_create), 
     rename(info,closed_info)]) 
 ]), 
 features([ 
  height:integer, 
  width:integer, 
  create, 
  draw, 
  resize, 
  area, 
  perimeter, 
  info 
 ])). 
 
% Create a rectangle figure 
% 
rectangle::create(Rect,Window, 
  Location,Width,Height) :- 
 Rect@width:=Width, 
 Rect@height:=Height, 
 Rect@fig_create(Window,Location). 
 
% Information on this rectangle 
% 
rectangle::info(Rect) :- 
 writenl(‘Information for rectangle:’), 
 Rect@closed_info. 
 

 
% Draw a rectangle figure 
% 
rectangle::draw(Rect) :- 
 Rect@window(Window), 
 Rect@location((X,Y)), 
 Rect@width(Width), 
 Rect@height(Height), 
 Window@add_pic(Rect, 
  box(Y,X,Height,Width)), 
 Rect@visible:=true, 
 Rect@frame:=box(Y,X,Height,Width). 
 
% Area for a rectangle 
% 
rectangle::area(Rect,Area) :- 
 Area is Rect@width * Rect@height. 
 
% Perimeter for a rectangle 
% 
rectangle::perimeter(Rect,Perimeter) :- 
 Perimeter is 2 *  
  (Rect@width + Rect@height). 
 
% Resize a rectangle 
% 
rectangle::resize(Rect,NX,NY) :- 
 Rect@width:=NX, 
 Rect@height:=NY, 
 Rect@draw. 
 

fig. 3.3. The rectangle class from the drawing program. 

Concrete class rectangle has closed_figure as a parent, which in turn inherits from 
figure. The create, info, draw, and resize methods have been overridden in rectangle, 
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and the attributes height and width added. The figure::create and closed_figure::info 
methods are still available to rectangle via renaming as fig_create and closed_info 
respectively. Snart provides multiple and repeated inheritance, so rectangle could also 
inherit from another class four_sided_figure, that provides methods and attributes 
specific to four-sided figures. 

Note the interaction between Snart methods and standard Prolog code. rectangle::info 
calls writenl (an LPA Prolog predicate), and the Prolog expression evaluator is can call 
Rect@height and Rect@width to evaluate the area and perimeter of a rectangle. Predicates 
can not call Snart methods directly, but invoke them via object feature calls, as in the later 
example. 

3.3.2. Snart Objects 

Fig. 3.4. shows the drawing_window and rect_button classes from the drawing program. 
When a user clicks the mouse inside the drawing window, and drags a marqui shape2, a 
new figure is added. The current_button attribute of drawing_window determines the 
button object to call to create this new figure. The rect_button::add_figure method adds 
a new rectangle figure by calling Rect::create(rectangle,...). create is a 
“distinguished” method3, which creates a new object of type given by the first argument, 
in an analogous fashion to the Eiffel Create routine. To destroy an object, the 
distinguished method ObjectID@dispose is called (see figure::delete in fig. 3.2.). Further 
distinguished methods exist for various object manipulation tasks. Appendix A describes 
these in detail. 
 

                                                 

2A marqui shape is an outline of some graphical figure which is interactively resized around a fixed point. A 

typical example of marqui use is when selecting a group of icons in a window. Users typically drag a box-

shaped marqui around the icons they wish to select and these icons are the selected when the mouse button 

is released. The drawing editor program uses box and oval marquis to allow users to interactively 

determine the size of a new figure.  

3A distinguished method is one supported by all classes of objects. For example, create, copy and dispose 

are some of distinguished methods supported by Snart (see Appendix B for a full list of these distinguished 

methods). 
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% The drawing_window class 
% 
class(drawing_window, 
 parents([ 
  window([ 
   rename(clicked,window_clicked)]) 
 ]), 
 features([ 
  buttons:list(drawing_button), 
  current_button:drawing_button, 
  figures:list(figure), 
  clicked, 
  shift_clicked, 
  add_figure, 
  remove_figure 
 ])). 
 
% Process click for drawing window 
% 
drawing_window::clicked(Window,X,Y) :- 
 % see if button clicked 
 Window@window_clicked(X,Y). 
drawing_window::clicked(Window,X,Y) :- 
 % draw a figure using a marqui 
 mouse_down, 
 Window@lpa_window(Name), 
 Window@current_button(Button), 
 Button@marqui_shape(Shape), 
 marqui(Name,(Y,X),box(T,L,D,W),Shape), 
 Button@add_figure(T,L,D,W). 
drawing_window::clicked(Window,X,Y). 
 % default - do nothing 
 
% Process shift-click for drawing window 
% (deletion of a figure) 
% 
drawing_window::shift_clicked(Win,X,Y) :- 
 Win@figures(Figures), 
 on(Figure,Figures), 
 Figure@pt_in_figure(X,Y), 
 Figure@delete. 
drawing_window::shift_clicked(Win,X,Y). 
 

 
% Add a figure to the figure list 
% of this window. 
% 
drawing_window::add_figure(Win,Figure) :- 
 Win@figures(Figures), 
 Figure@info, 
 Win@figures:=[Figure|Figures]. 
drawing_window::add_figure(Win,Figure) :- 
 Figure@info, 
 Win@figures:=[Figure]. 
 
% Remove a figure from the figure list 
% of this window. 
% 
drawing_window::remove_figure(Win,Fig) :- 
 Fig@info, 
 Win@figures(Figures), 
 remove(Fig,Figures,NewFigures), 
 Win@figures:=NewFigures. 
 
% The rect_button class 
% 
class(rect_button, 
 parents([drawing_button]), 
 features([ 
  marqui_shape, 
  add_figure 
 ])). 
 
% Marqui shape for rectangle is "box": 
% 
rect_button::marqui_shape(Button,box). 
 
% Add a rectangle figure to window. 
% 
rect_button::add_figure(Button,T,L,D,W) :- 
 Button@window(Window), 
 Rect@create(rectangle,Window,(L,T),W,D), 
 Rect@draw. 
 

fig. 3.4. The drawing_window and rect_button classes. 

3.4. Classification in Snart 

The Kea language developed at the University of Auckland (Hosking et al 90) supports a 
novel, strongly-typed object classification facility (Hamer et al 92). Objects of a general 
type can be created, and then specialised to sub-classes at run-time, as more information 
about the object is obtained. Kea is a lazy, functional language, and this classification 
process takes place lazily as required. 

Snart provides a form of classification in an imperative language setting. Classes can have 
one or more classifier attributes (for example, the shape attribute of figure in fig. 3.5), 
whose types are a list of sub-types a class can be classified to. For example, the 
classifiable_figure class in fig. 6 has one classifier shape which indicates 
classifiable_figure can be dynamically specialised to rectangle, foval or fline. 

To classify a classifiable_figure object at run-time: 
ObjectID@classify(shape,rectangle) 
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will change the object’s class to be rectangle. A classification using classify is valid if: 
• the classifier attribute exists 
• the given class to classify to exists and is on the classifier’s class list 
• the given class is a sub-class of the class of the object. 

An object can be re-classified to another class (a member the classier attribute’s list) and 
any attribute values incompatiable with its new class are removed. 
 
% The figure class (with classifier) 
% 
class(classifiable_figure, 
 parents([figure]), 
 features([ 
  shape([rectangle,foval,fline]), 
  draw, 
  resize 
 ])). 
 
% Create a new abstract figure object 
% 
drawing_window::create_figure(Window, 
  Location,Figure) :- 
 Figure@create(classifiable_figure, 
  Window,Location). 
% Classify figure to a rectangle figure 
% 
drawing_window::figure_rectangle(Window, 
  Figure,Width,Height) :- 
 Figure@classify(shape,rectangle), 
 Figure@width:=Width, 
 Figure@height:=Height, 
 Figure@draw. 
 
% Classify figure to an oval figure 
% 
drawing_window::figure_oval(Window,Figure, 
  Vertical,Horizontal) :- 
 Figure@classify(shape,foval), 
 

 
 Figure@v_radius:=Vertical, 
 Figure@h_radius:=Horizontal, 
 Figure@draw. 
 
% Change oval figure to rectangle figure 
% using classification 
% 
drawing_window::oval_to_rectangle(Window, 
  Oval) :- 
 Oval@v_radius(Height), 
 Oval@h_radius(Width), 
 Oval@classify(shape,rectangle), 
 Oval@height:=Height, 
 Oval@width:=Width, 
 Oval@draw. 
 
% Change rectangle figure to oval figure 
% using classification 
% 
drawing_window::rectangle_to_oval(Window, 
  Rect) :- 
 Rect@height(Vertical), 
 Rect@width(Horizontal), 
 Rect@classify(shape,foval), 
 Rect@v_radius:=Vertical, 
 Rect@h_radius:=Horizontal, 
 Rect@draw. 
 

fig. 3.5. Using classification to specialise and re-classify figures. 

A class may have multiple classifiers. An object may then be classified once using one 
classifier and then again using another classifier. The affect of this is to produce an object 
whose class is a “merging” of the two classes it has been classified to. For example, if 
classifiable_figure had an additional classifier visibility : 

[hidden,foreground,background], then an object of this class could be classified first to 
rectangle and then to hidden. 

Fig. 3.5. shows an example using classification. An abstract figure can be created and 
initialised, and later specialised to a specific figure type. Figures created in this manner 
can also be re-classified to other shapes. Note that no objects are created or destroyed, 
hence all references to the classified objects remain unchanged. 

3.5. Object Tracing and Persistency 

In addition to classifiers, Snart provides two other object management facilities. Object 
spying allows run-time Snart objects to be selectively "spied" to produce events equating 
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to object attribute updates and method entry/exit (which provides an object tracing 
mechanism similar to those of (Noble and Groves 91) and (Brown 91)). Object persistency 
allows objects to be made persistent in a global "object store", in a similar manner to the 
persistent CLOS objects of (Attardi et al 89). 

3.5.1. Object Tracing 

A Snart object can be spied by specifying the features of the object's class that should 
generate events or by simply generating events for all features of an object. For example, 
to indicate an object RectID of class rectangle should produce spy events the following 
predicate calls are used: 

sn_trace_object(RectID)  

 % to spy all figure class features for RectID 

sn_trace_object(RectID,[draw,location,resize]) 

 % to spy draw and resize methods and location attribute 

When an object has spied methods invoked or spied attributes changed, events are 
generated by calling the user-defined predicates sn_entry, sn_exit and sn_set_value. For 
example, if the RectID object has been spied as above, events of the form: 

sn_entry(RectID,draw) 

sn_exit(RectID,resize(20,30),true) 

sn_set_value(RectID,location,(50,75)) 

might be generated when executing the drawing program. Defining appropriate handlers 
for the event methods allows programmers to handle such object events and to take 
appropriate action (for example, creating a list of calls to a method or animating a view of 
the object's state). 

This object spying mechanism is useful for keeping run-time objects consistent with views 
of the object. Chapter 9 illustrates the use of this facility of Snart in a simple dynamic 
program visualisation system. 

3.5.2. Object Persistency 

Snart objects can be made persistent by creating or opening an object store which records 
the state of all persistent objects for a Snart program. A class inheriting from special 
persistent class will have all of its instances made persistent using the currently open 
object store. Reopening an object store extends Snart's object space to incorporate objects 
within the store. For example, the following commands create, open and extend an object 
store. Reopening the store allows access to the persistent objects it contains. In this 
example a prectangle class is used, which is defined as 
class(prectangle,parents([rectangle,persistent]),features([])) (i.e. a persistent 
version of rectangle). Fig. 3.6. shows an example session from Snart using a persistent 
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rectangle class. The rectangle object is created then the object store closed. After reopening 
the object store, the previously created rectangle still exists and can be queried. 
 

?- sn_create_object_store(objects,'...path name...') 
yes 
?- sn_open_object_store(objects,'...path name...') 
yes 
?- Rect@create(prectangle,Window,(10,10),20,30) 
Rect=1 
yes 
?- sn_close_object_store(objects) 
yes 
?- sn_open_object_store(objects,'...path name...') 
yes 
?- 1@info 
Location: 10, 10 
Perimeter: 60 
Area: 200 
yes 

fig. 3.6. Persistent objects in Snart. 

Only updated objects are rewritten to the store when it is closed and objects are not loaded 
into memory until they are required. Persistent objects that have not been updated can be 
automatically purged from memory if required. Currently Snart does not permit more 
than one object store to be used at a time nor does it support merging of object stores. 

3.5.3. Implementation 

Both object spying and object persistency are implemented by “classifying” Snart objects 
to new classes incorporating the spying or persistency maintenance required by the object. 
Default meta-level methods, such as sn_set_value, sn_despatch_method, and 
sn_alloc_id, are defined for all Snart classes. The behaviour of objects can be changed by 
classifying objects to persistent and spy classes which over-ride these meta-level 
methods. spy defines new attribute setting and method calling behaviour to generate 
tracing events. persistent defines new object allocation, manipulation and destruction 
methods to support persistent objects. Appendix B explains this meta-level use of object 
classification mechanism in further detail. 

Object spying is used for visualizing Snart programs in Chapter 9. Object persistency can 
be used to make Snart programs persistent, as described in Chapters 7 and 9. Chapter 10 
discusses an extended form of Snart persistent objects for abstract and natural persistency 
mechanisms for programming environments. 
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3.6. Software Development in Snart 

Snart offers several advantages over developing software using only conventional LPA 
Prolog: 

• Program structuring. Classes are used to structure a program in an object-
oriented manner. Conventional Prolog programs can be called from Snart or can 
make use of Snart programs. This allows more high-level, abstract program 
structuring techniques than those provided by LPA Prolog alone, with both the 
data and functionality of programs encapsulated in classes. 

• Uniform data storage. Data is stored as Snart objects rather than using assert and 
retract or directly using LPA property management. This provides both object-
oriented access and modification of data and there is less impact on a program 
when classes are modified than if asserted terms are modified. Compile-time 
and run-time checking provide improved checks on the integretity of Snart data 
as opposed to database or property data (though not as complete as for strongly 
typed languages such as Kea or Eiffel). 

• Stability under data restructuring. Snart objects can still be accessed after their 
class definitions are modified, whereas Prolog database clauses are often 
inconsistent after predicates using them are modified. Direct access to LPA 
property management can cause difficulties when trying to change property or 
object names or when deleting properties, both of which are handled 
automatically by Snart. Due to this flexibility, Snart supports rapid prototyping 
with a changing design better than raw LPA Prolog. 

• Support for reuse and frameworks. Snart classes can be specialised and their 
behaviour modified, including supporting multiple and repeated inheritance 
with renaming of features. Generics and parameterised classes can be indirectly 
supported as Snart has no concept of types associated with object referencing 
variables. These facilities greatly extend the reusability of standard LPA Prolog 
predicates. 

• Hybrid language programming. Snart is similar to C++ in that it is a hybrid 
language. Snart supports declarative logic programming inside an imperative 
object-oriented programming structure. 

In summary, Snart provides a good rapid prototyping language supporting both the 
object-oriented and declarative programming paradigms. Chapter 7 discusses our 
experience of implementing the major components of our research in Snart.  
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3.7. Other Object-Oriented Prologs 

We briefly compare Snart to other object-oriented Prologs, including Protalk (Quintus 
91b), Prolog++ (Pountain 90) and ObjVProlog (Malenfant et al 89). Snart was developed in 
preference to using an existing object-oriented Prolog as: 

• We required a simple language with representative facilities found in most 
object-oriented languages. Many object-oriented Prologs tend to take an 
approach that is somewhat incompatible with strongly-typed languages such as 
Eiffel and C++. 

• We have complete control over the syntax, semantics and implementation of 
Snart. The language has already been used as part of a program visualisation 
project (Fenwick and Hosking 93) which required the method despatcher to be 
altered to generate events. We anticipated such modifications would be 
required in our research and might be difficult to implement using existing 
object-oriented Prologs. 

• Snart has a very simple, clean syntax that integrates well with conventional 
Prolog predicates in the LPA environment and a small compiler and run-time 
system which are simple to understand and modify. 

• Due to the similarities of Snart to C++ syntax and semantics, we hope to be able 
to port Snart programs to C++ without substantial modification of their design 
and structure. We also hope to apply the results of our research to class-based 
languages such as C++. Most other object-oriented Prologs are founded on a 
different conceptual view of classes and objects which is more difficult to 
compare with languages of interest to us (e.g. Kea, Eiffel and C++). 

Protalk, Prolog++ and ObjVProlog all treat classes as objects. Thus new classes are defined 
by creating instances of a “class” object by calling a new_class method for class. Snart 
treats classes as abstract data types like Eiffel and C++. Classes and methods are defined 
and compiled with LPA Prolog code and class definitions are compiled in a separate 
compilation phase. This results in easier definition and maintenance of classes with the 
LPA Prolog environment than creating class objects as in Protalk and ObjVProlog. 
Prolog++ classes are compiled to objects when LPA windows are compiled, as with Snart. 
The Snart class definition and method syntax are somewhat clearer to read than those of 
Protalk and ObjVProlog. 

ObjVProlog provides meta-classes in a similar manner to CLOS (Attardi et al 89). Classes 
and meta-classes (Goldberg and Robson 84) are both implemented as objects and can be 
specialised to provide new object-based facilities that co-exist with existing ones. For 
example, meta-classes can be defined which implement persistent objects (Attardi et al 89), 
parallel objects and part-whole hierarchies (Malenfant et al 89). As Snart treats classes 
differently from objects, we provide no meta-level support in Snart, and such facilities 
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must be implemented as standard classes and objects with extra features to perform these 
types of specialised processing (which we do for the implementation of MViews as 
described in Chapter 7). 

Protalk, Prolog++ and ObjVProlog all treat attribute access and method calling as distinct 
kinds of object manipulation. Snart treats them as “feature calls” and allows subclasses to 
implement deferred features as attributes or methods. This model equates to the Eiffel 
treatment of classes as implementations of abstract data types (Meyer 88) and is often 
more flexible and natural than distinguishing between attributes and methods. 

Prolog++ defines object (and class) data inside open_object and close_object predicates. 
This means extra Prolog predicates not associated with the object (i.e. ones called by the 
object’s methods but also callable from elsewhere) can only be defined outside the object 
definition. As Prolog++ and Snart are hybrid languages which often make use of 
conventional Prolog code, this restriction can be unwanted. Prolog++ allows such 
auxiliary predicates to be made private, but this is not always what is intended or 
required. Snart follows the C++ approach which allows mixing of object-oriented (Snart) 
and conventional language (Prolog) predicates. 

Prolog++ also provides daemon objects (for event and data-driven programming) and 
information hiding which are currently not supported in Snart. Protalk is implemented in 
Quintus Prolog and uses the Prolog database for object data storage. As Prolog++ and 
Snart use LPA properties, they both run significantly faster than Protalk.  

In summary, Snart provides similar object-oriented facilities to Protalk, Prolog++ and 
ObjVProlog but takes a C++ approach to the treatment of classes and objects. The other 
Prologs variously provide additional facilities including run-time creation of classes, data-
driven programming support using daemons and have compiler optimisations not yet 
provided by Snart. Snart programs are compatible with a wide range of object-oriented 
languages, however, including strongly-typed languages more suitable for software 
engineering (Meyer 87). Thus we have chosen Snart as a representative object-oriented 
language and a more appropriate language for implementation of our research than other 
Prologs. 

3.8. Future Research 

Snart can be extended in many ways. The most useful include: 
• Explicit redefinition and export of features, as used in Eiffel. This would inform 

programmers of class definition errors not currently detected at compile-time 
which can sometimes be quite difficult to determine at run-time. 
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• Information hiding including public, private and protected features as 
supported by C++. Snart currently allows any feature to be accessed externally 
to a class and any attribute to be changed externally. 

• Support for data and event-driven programming by providing either daemon 
support or Smalltalk-like Model-View relationships (Goldberg 84). When 
implementing parts of our research these facilities had to be explicitly 
represented and programmed. Chapters 7 discuss the advantages and 
disadvantages of language support for multiple views on objects. 

• Improved compile-time optimisations of Snart programs. This would include 
direct predicate calling to renamed, inherited features and optimization of 
method despatching.  

• Adding “typed” Prolog variables that reference Snart objects. This would allow 
a number of checks to be performed at compile-time and more compatibility 
with C++ and Eiffel. It would also provide more flexibility as variables could be 
typed (accessing Snart data or built-in Prolog data types), untyped and 
accessing Snart objects (as now), or standard untyped Prolog variables. 

• Lazy, functional evaluation for Snart features similar to that provided by Kea. 
Snart would then integrate object-oriented, declarative logic and functional 
programming. 

• Further extensions to object persistency to provide multiple object stores, 
programmer control of which object store to write information to, and improved 
performance of persistent objects. 

Appendix B discusses these extensions in further detail, including how they could be 
implemented in Snart. 

3.9. Summary 

We have developed Snart, a set of object-oriented extensions to Prolog. Snart supports 
multiple, repeated inheritance, arbitrary renaming and redefining of inherited features, 
typed attributes and untyped method specifications, and integration with standard Prolog 
predicates. Snart also provides an object classification facility similar to that of Kea, but 
within an imperative language setting. A simple environment for Snart has been 
implemented as an extension of the LPA MacProlog programming environment. A much 
more sophisticated environment supporting multiple textual and graphical views of Snart 
programs with consistency management has been developed and is described in Chapter 
4. 

Snart adds object-oriented structuring and data storage capabilities to LPA Prolog which 
enhances the development of experimental software. Snart views classes as 
implementations of abstract data types, in a similar manner to C++, Eiffel and Kea. Porting 
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Snart designs and programs to these languages, and using Snart as a representative of this 
class of object-oriented programming language, becomes easier than with other object-
oriented Prologs that adopt a view of classes as objects.
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Chapter 4 

The Snart Programming Environment 
 

This chapter presents one of the main products of our research, the Snart Programming 
Environment (SPE). SPE provides an integrated software development environment for 
Snart including multiple textual and graphical views of Snart programs with consistency 
management. SPE is introduced here as it illustrates many of the facilities of software 
development environments our research aims to support. SPE is also used in the following 
chapters as an example environment for which different features need to be supported. 

The original environment for Snart described in Chapter 3 and Appendix B is very 
simplistic and this chapter introduces a much more sophisticated environment supporting 
integrated design, implementation, debugging and maintenance of Snart programs. The 
rationale behind the SPE is discussed and a user’s perspective of developing software in 
SPE is given. This includes the design, implementation, testing and maintenance of 
software and facilities for program browsing and managing complexity. We also briefly 
discuss various extensions that could be made to SPE to further facilitate programming in 
Snart and similar languages. 

4.1. Rationale for Snart Programming Environment 

The simplistic environment for Snart described in Chapter 3 provides only a rudimentary 
extension of LPA MacProlog’s programming environment to support the development of 
Snart programs. The only extra facilities include access to the Snart compiler, location of 
Snart class definition and methods in program windows, the location and printing of 
object and class data, and very simple object management and debugging facilities. 

As our discussion of programming environments in Chapter 2 noted, many different 
program construction and visualisation techniques are useful during software 
development. Some techniques are also useful in other phases of software development. 
For example, class diagrams are useful for analysis and design (Coad and Yourdon 91, 
Henderson-Sellers and Edwards 90), during implementation as browsers and for static 
program visualisation (Haarslev and Möller 90, Symantec 90), and during debugging for 
object tracing (Kleyn and Gingrich 88, Myers 90). 
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An integrated environment providing a wide range of program design and construction 
techniques for object oriented software would ideally provide various facilities as 
described below: 

• Object-oriented software design and implementation are often concurrent or 
recursive activities (Henderson-Sellers and Edwards 90) with software 
development being an evolutionary process (Coad and Yourdon 91, Ref). 
Maintenance and/or enhancement of a software system also causes changes to 
impact and flow through a system. Thus an integrated environment can 
propagate changes more easily and automatically than a disjoint system 
incorporating different, distinct tools (Reiss, 91). 

• An essential requirement for environments supporting multiple phases is the 
need to maintain consistency between the phases. Change to a design must be 
reflected in its implementation and vice-versa. Most CASE tools generating code 
or describing an analysis or design, for example Software thru Pictures 
(Wasserman and Pircher 87), TurboCASE (StructSoft 92), and the OOATool 
(Coad and Yourdon 91), get out-of-step under design or implementation 
change. Programmers must manually ensure different aspects of the 
development are updated and made consistent (or re-generated), a tedious, 
error-prone and incomplete process. Automation of this process, or tools to help 
with this automation, as in Ispel (Grundy et al 91), is much more desirable. 

• As representation and interaction techniques are useful in more than one phase 
of development, and at differing levels of abstraction, integrating the phases of 
development in one environment allows the same or similar techniques and 
tools to be reused on the same data. For example, a class diagrammer can be 
used to design a class hierarchy, browse and access class definition code and 
modify the class hierarchy when extending the design and implementations 
(Grundy 91). 

• Multiple views of information are useful, and to some degree necessary 
(Monarchi and Puhr 92, Ratcliffe et al 92, Reiss 85, Wang et al 92), to provide 
programmers with techniques for managing software complexity. Views 
should: 

 • be textual or graphical, as the textual programming paradigm is useful 
for detail and graphical programming for a high-level overview of 
programs 

 • share information which is kept consistent automatically by the 
environment 

 • be at an appropriate level of detail or abstraction for their task 
• have composition and layout programmer-determined 



Chapter 4 The Snart Programming Environment Page 57 

• Reuse of existing tools where possible and extensibility of the environment is 
necessary (Reiss 90b). This includes the ability to add new tools and extend old 
ones. 

Ispel (Grundy et al 91) supports some of these concepts although it requires much more 
versatile program representation and manipulation. We designed and implemented SPE 
based on many of the concepts of our original Ispel environment to improve Snart 
programming. In the following sections we describe software development in SPE and 
illustrate use of the environment with examples designing and implementing the drawing 
program introduced in Chapter 3. 

4.2. Analysis and Design of a Snart Program 

In this section we describe an analysis and design of the drawing program from Chapter 3. 
We assume development from scratch of a drawing program-like software system and 
illustrate its design. 

4.2.1. Requirements for the Drawing Program 

The drawing program from Chapter 3 provides a window with several buttons (see 
Section 3.3.). Clicking on a button sets the current “drawing figure” which will be drawn 
when a marqui is dragged in the window. Dragging a marqui results in the appropriate 
figure being drawn and information about the figure being displayed (its location, height, 
width and so on). Shift-clicking on a figure first displays information about the figure and 
then deletes the figure. Rectangles, ovals and lines are the only three figures initially 
provided, although extensibility should be aimed for. 

4.2.2. Creating a New Program 

The first step when using SPE is to create a new program. A programmer supplies the 
program name, a cluster name and the name of the first class (clusters are used to group 
related classes). Fig. 4.1. shows the root class view created by SPE when the program 
drawing is created with root class window. 
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fig. 4.1. Initial root class view for the drawing program. 

SPE class diagram views have a set of tools for manipulating the program associated with 
their window. Menus control various other aspects of user interaction and are described 
with associated tools in the following sections. 

4.2.3. Analysis 

The first step in the analysis of the drawing program is to determine the class hierarchies 
needed. A special drawing_window class is derived from the window class, and the figure 
and button hierarchies are defined. Figures can be specialised to open_figure and 
closed_figure figures, and buttons to drawing_button, using generalisation relationships. 
Generalisation relationships between classes specify that a class is generalised to one or 
more other classes, and are typically used for object-oriented analysis. Views are 
constructed for each hierarchy by selecting the create view tool ( ) or menu item, 
clicking on the class icon which will own the new view (be its focus), and giving the new 
view a name. Classes and generalisation relationships are added to views using the class 
tool ( ) and generalisation tool ( ) respectively. 
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fig. 4.2. Class hierarchy views for the drawing program. 

Important aggregation and association relationships between classes are added using the 
add client-supplier tool ( ). A dialogue is used to specify information about the 
relationship including its name (if any), its arity and whether it is inherited from an 
ancestor class. An aggregation relationship between two classes indicates that an instance 
of one class is composed of instances of the other class (i.e. a part-of relationship). For 
example, a drawing_window object may be composed of zero or more figure and button 
objects. An association relationship between two classes indicates one class makes use of 
the features of the other class in some way. For example, a figure class may be associated 
with a drawing_window class, indicating the figure class uses the drawing_window class 
interface4 in some manner. Aggregation and association relationships are typically used 
for object-oriented analysis and are refined into client-supplier relationships (Henderson-
Sellers and Edwards 90). Classes can be selected and dragged using the selection tool ( ) 
in a similar manner to figures in a drawing package. 

Fig. 4.2. shows the three views containing each hierarchy. The bold arrowed lines 
represent generalisation relationships while the thin arrowed lines represent aggregation 
and association relationships between classes. 

                                                 

4A class interface is the set of attributes and methods defined by the class and inherited from a class’s 

generalisations. 
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fig. 4.3. Various features of classes and relationships between classes. 

The next step is to define any other major aggregation and association relationships 
between classes and to define the main features of each class. Features5 are added to class 
icons using the add feature name tool ( ). No distinction between methods and 
attributes need be made during analysis. Fig. 4.3. shows the root class view after adding 
aggregation relationships between the drawing_window, figure and button classes 
(represented as thin arrowed lines). The dialogue shown is for entering information about 
an aggregation relationship. Note the type is “design” level which means the relationship 
is not directly related to any particular client-supplier implementation scheme. The other 
views in Fig. 4.3. have been refined from their Fig. 4.2. equivalents to show the names of 
important features which have been added to class icons. These features describe the 
important attributes (data) and methods (behaviour) associated with each class. 

At the analysis stage documentation about the purpose of classes and relationships can be 
added using textual views. A textual view is defined using a menu item or the create view 
tool. Documentation describing the class, its features and its relationships to other classes 
can then be added. Documentation views can also be defined for individual features, as 
shown in fig. 4.4. 

                                                 

5Using the Eiffel terminology for all attributes and methods of a class (Meyer 88). 
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Currently SPE only supports this object-relationship modelling for OOA. Other useful 
techniques such as service charts and dataflow between objects (Fichman and Kemerer 92, 
Monarchi and Puhr 92) are not yet supported. Chapters 8 and 9 discuss extending SPE to 
support additional (and alternative) analysis and design diagrams. 

 

fig. 4.4. Documentation for classes and features. 

4.2.4. Design 

After performing an analysis of the drawing program we can proceed to specify a design 
for its implementation. Extra detail is added to the various associations between classes, 
for example, the names to refer to them by and how they are to be implemented (as 
attributes, local or argument references, or by a feature call). 

Fig. 4.5. shows further enhancement of the drawing program by adding design-level 
information to our analysis. Extra features and relationships between classes are 
introduced to implement various tasks. For example, to draw a figure a picture 
representing the figure’s shape is added to a window and to delete it this picture is 
removed. The window classes must therefore support picture handling as an interface to 
an LPA Prolog graphics window. Note that the analysis-level diagrams and 
documentation can be retained or new views created by copying information and 
extending it. The documentation added at the analysis phase can also be extended here to 
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describe more detailed program structure. The connection points of lines on icons can be 
interactively modified to assist layout, as has been done in the “figure-drawing” view. 

 

fig. 4.5. Extending the analysis of the drawing program to a program design. 

4.3. Implementing a Snart Program 

To implement the design in Snart the design diagrams can be extended to describe the 
actual types of client-supplier connections between classes. For example, the figures 
client-supplier relationship between the drawing_window and figure classes can be 
implemented as an attribute (aggregate) figures of type list(figure). Other client-
supplier connections, for example the draw feature of figure calling add_pic feature of 
add_pic are implemented as a method call of the form Window@add_pic(Picture). 

Class definition textual views are added to describe the complete set of features (including 
attribute types) and rename lists for each class. Textual views are created in a similar 
manner to graphical views, but consist of one or more “text forms”6, rather than icons and 
glue. Textual views are manipulated by typing text in a normal manner. They also have an 

                                                 

6A text form is some text describing one aspect of a program component. A class can have documentation 

and code text forms, a method can have code and documentation forms, and an attribute only a 

documentation form. 
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alternative, high-level structure-oriented style of editing using menus for manipulating 
individual text forms. Methods are implemented in the same way as class definitions and 
can either be added to the same textual view as a class definition or have their own view 
(and window). Fig. 4.6. shows a class definition and methods implemented for the 
drawing program. 

 

fig. 4.6. Textual views implementing the drawing program from its design. 

When a textual form is created, SPE generates a template from its design-level 
information. For example, when the class definition for Snart is created, the features 
add_figure, marqui_shape and window and parent class button are added to the class 
definition. 

SPE textual views are parsed on programmer request. Snart code is generated by calling 
the existing Snart compiler with either a window or terms to compile. The Snart compiler 
regenerates the compiled definition of a class and its look-up tables when necessary. Any 
errors during parsing are reported using dialogues while compilation errors are reported 
by associating error messages with a program component (see Section 4.5). 
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4.4. Debugging a Snart Program 

Once implemented, the program can be executed. Fig. 4.7. shows the drawing program 
running. The drawing program window is shown with some figures added via user 
interaction. Two “intra-object” debugging views are shown which display the state of 
drawing program objects. In addition, two program views show the drawing_window class 
definition and the drawing program hierarchy. 

 

fig. 4.7. The drawing program being debugged. 

The SPE intra-object viewer shows all the attribute values associated with an object. 
Clicking on references to lists or other objects opens further object viewer windows. Errors 
in the drawing program can be fixed by modifying the program code in SPE. The LPA 
MacProlog debugger can be used to trace execution within predicates and methods in the 
normal way. Chapter 9 discusses some extensions to this simple debugging system for 
displaying object references and control-flow graphically. 

4.5. Modifying a Snart Program 

Object-oriented software development tends to be an evolutionary process (Henderson-
Sellers and Edwards 1990; Coad and Yourdon 1991). Hence program design and 
implementation may require change for a variety of reasons: 

 • The requirements for the program change impacting analysis, design, and 
implementation. 
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• A design may be incomplete and requires modification impacting on its 
implementation. 

• Errors are discovered on execution, correction of which may result in design 
changes. 

“Changes” may even be transient in that they inform programmers of tasks to perform or 
errors requiring correction. Many CASE tools and programming environments provide 
facilities for generating code based on a design (Coad and Yourdon 1991; Wasserman and 
Pircher 1987) but few provide consistency management when code or design are changed. 

4.5.1. Graphical Updates 

For graphical views, updates from textual manipulation and parsing or other graphical 
views are reflected by making the change directly to the icons in the view. If an aspect of a 
program has been deleted (for example, a feature moved to a sub-class), any inconsistent 
feature connection is drawn shaded or coloured to indicate the deletion. 

Currently SPE only supports the propagation of updates on the same program component 
between different views. SPE often stores analysis and design relationships as separate 
components even if a design relationship is a more detailed representation of an analysis 
relationship. This is due to less information being provided at the analysis phase so 
relationships may not be uniquely identifiable. For example, Fig. 4.8. shows two views 
from the drawing program, one for analysis and one for design. The aggregation 
relationships in the analysis view are copied in the design view, but there is not always 
sufficient information to determine which analysis relationships correspond to which 
design ones. 

 

Fig. 4.8. Analysis and design relationships. 

An extension for providing analysis-to-design consistency (and vice-versa) where change 
to a generalised relationship affects more detailed versions of the relationship is proposed 
in Chapter 9. This supports the propagation of change between analysis and design 
relationships. It also describes how design views can be copied from analysis views and 
the two views kept consistent under change (i.e. the link between their relationships is 
inferred from the copying process itself). 
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4.5.2. Textual Updates 

In textual views, changes are not immediately made to the rendered view. Rather, 
readable descriptions of any updates which have occured in other views are expanded 
into the view. The user then has an opportunity to accept, provide an implementation for, 
or reject each update. Both of the textual views in Fig. 4.9. include descriptions of updates 
which have been applied to other views. These update descriptions are expanded into any 
textual view, including documentation views. 

 
 

Fig. 4.9. (a) Updates expanded in a textual view, (b) first update applied. 
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The first update description in the drawing_window view indicates that the gfigures 
feature has had its name changed to figures in another view. A programmer can either: 

• accept the  change and have SPE modify the text appropriately (in this case, 
modifying gfigures:list(figure) to figures:list(figure))  

• implement the change manually or 
• reject the change, causing the change to be undone throughout all views. 

In some cases, such as the addition of a client-supplier relationship in a graphical view, it 
is not possible to automatically infer the correct modification to a textual view and user 
assistance is needed. For example, a client-supplier link added between drawing_window 
and figure (indicating that the del_pic feature of the drawing_window is used by the hide 
feature of figure). For this change automatic update of the textual view is not possible as 
SPE cannot infer the appropriate modification to the hide method and the user must 
implement the update. 

Update descriptions may also be used to inform users of semantic or compilation errors 
(syntax errors are flagged interactively) and to document changes. For the latter, 
programmers can add arbitrary “user-defined” updates that describe various changes 
performed or to perform on a program. A compilation error is shown in the 
drawing_window Class Definition window in Fig. 4.9. and a user-defined update is shown 
in the same window in Fig. 4.10. 

4.5.3. Update Histories 

All the updates made to a program component may be viewed via a menu option, 
providing a persistent history of program modification. User-defined updates may also be 
added to document change at a high level of abstraction. Programmers may add extra 
textual documentation against individual updates to explain why the change was made 
and possibly who made it and when. Fig. 4.10. shows an example of viewing the updates 
for drawing_window and adding a user defined update for drawing_window. These updates 
describe each change that has been applied to the drawing_window class and are numbered 
in the sequence they were applied (updates 20, 21, and 22 in the list are visible in the 
update history browser dialogue). Update number 27 is having extra information added to 
more fully document the change in the update editor dialogue. 
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Fig. 4.10. The update history browser and update editor dialogues for drawing_window 
updates. 

4.5.4. Integrated Software Development 

Modifications to a program can be made at any level (analysis, design or implementation) 
and to any view. These modifications will be reflected in other views by direct update in 
graphical views or display of update descriptions in textual views. This produces a very 
integrated environment with little distinction being made between graphical or textual 
program manipulation. In fact, little explicit distinction is made between the different 
phases of software development, unlike other systems with different tools being 
employed for different phases of development (Wasserman and Pircher 1987). For 
example, if the drawing program requirements are extended so that wedge-shaped figures 
and arbitrary polygon figures are supported, these changes are made incrementally at 
each stage. Analysis views are extended to incorporate new figure and button classes, and 
new features are added to classes. Design-level views are extended to support the 
requirements of each new type of figure and implementation-level views are added or 
modified to implement these changes. 

SPE propagates and stores the update descriptions that are displayed in textual views and 
the update history using update records. Update records, their generation, propagation and 
unparsing are described in Chapter 5. 
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4.6. Browsing a Snart Program 

SPE allows an arbitrary number of views to be created for any class or feature. 
Programmers must be able to locate information easily and be able to gain a high-level 
over-view of different program aspects. 

Class icons in graphical views have “click-points” which allow programmers to double-
click on the icon in a certain place and have some pre-determined action carried out 
(similar to Prograph’s dataflow entities (Cox et al 89)). Fig. 4.11. shows the different click-
points for a representative class icon. 

Clicking on a class views point provides a list of views this class is a member of. Similarly, a 
feature views point provides a list of views a feature occurs in. A view can be selected from 
a views list dialogue and it will then become the new current view with its window 
brought to the front. 

Class text points select a default textual view a class occurs in to become the current view. 
If the class does not yet have any text view, one will be created and will become both the 
current view and the default text view for the class. The kind of text form added to the 
view is determined by asking the programmer using a dialogue. Similarly, feature text 
points select or create the default text view for a feature. 

figure 
 
window 
draw 
hide 
pt_in_figure

{ }

Class views Class text

Feature textFeature views

Class features All class features

 

fig. 4.11. Click-points on a class icon to aid navigation. 

Clicking on a class features point provides a list of all features defined for a class. Clicking 
on an all class features point provides a list of all features for the class, including inherited 
features. Any feature may be selected from these lists and its views or default text view 
made the current view. Option-clicking on a class features or all class features point 
provides a list of other class information including generalisation classes, specialisation 
classes, client-supplier relationships and classifiers. Feature names can be shown in or 
hidden from a class icon or a client-supplier relationship to model the feature expanded in 
the view. Other class information can be expanded on programmer request and SPE 
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automatically adds a graphical connection and class icon to represent the relationship(s). 
Fig. 4.12. shows the feature list and class information dialogues for SPE when browsing 
the features of the figure class.  

 

Fig. 4.12. The features selection and class information dialogues from SPE. 

SPE provides menus for textual views that perform similar facilities to click points. Any 
elements whose text is in the selection range for a textual view (text highlighted by 
selecting with the mouse) can provide dialogues with feature lists or be manipulated like 
graphical icons (be hidden or their base component removed, their updates displayed in a 
dialogue, or their updates applied to the textual view). 

SPE provides similar searching and find and replace facilities to LPA Prolog using the 
LPA search menu. A general location dialogue can be used to locate the views or default 
textual view for any class, feature or Prolog predicate. Fig. 4.13. shows an example using 
the general location dialogue. 

 

fig. 4.13. The general location dialogue from SPE. 

Programmers can construct additional views for the sole purpose of program browsing. A 
graphical view can be constructed based on the selected icons in an old view. Already 
defined class information can be expanded into the view and used by programmers to 
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gain a different perspective on a program or just as a mechanism for accessing other 
views. This provides a very flexible static program visualisation mechanism with view 
composition and membership under the complete control of a programmer. 

4.7. Managing a Snart Program’s Complexity 

When class inheritance hierarchies, such as those used in the drawing program, are 
constructed software becomes much more complex. Information that comprises the full 
interface for a class can be stored in many ancestor classes. In addition, client-supplier 
relationships between classes mean control flow travels through many different methods 
associated with different classes. SPE provides various complexity management facilities 
which allow programmers to define extra views to reduce the cognitive complexity of 
programs. Complexity management is a similar yet distinct concept from program 
browsing and can greatly affect the usefulness of any browsing strategies. 

4.7.1. Programmer-defined View and Icon Composition 

Programmers determine which features are represented in class icons. A view might 
contain information focusing on one particular aspect of a class or show only those 
features of a class relevant to other classes in the view. Fig. 4.14. illustrates a view from the 
drawing program showing the relationships between the figure and drawing_window 
classes. Only the relevant features of each class are shown. 

 

Fig. 4.14. A view showing client-supplier relationships between figure and drawing_window. 

Textual views can contain several text forms for different program components which is 
useful for representing strongly related or inter-dependent program aspects together. For 
example, the figure::hide, drawing_window::del_pic and 
drawing_window::remove_figure methods are all related by client-supplier relationships. 
All three methods can be represented in a single textual view and will thus always be 
displayed together when the view is selected. 
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4.7.2. Code Text Forms 

Class text forms can be either canonical, documentation or a “code view”. Canonical class 
definitions show the features defined by a class and all generalisation information used by 
the class (classes it inherits from and features it renames). Canonical forms are given to the 
Snart compiler to regenerate a class’s dispatch tables and class information. Class 
documentation describes any additional user-defined information about a class and there 
may be more than one documentation form for a class (describing different, related 
aspects of the class). 

Code view text forms have a similar syntax to canonical class definitions but can represent 
inherited features and a subset of a class’s features. For example, the three methods for 
hiding figures could be displayed with two code view text forms of the drawing_window 
and figure classes which only represent the relevant class features. Fig. 4.15. shows the 
contents of a textual view containing these five text forms. Note that updates on one text 
form for a class will be propagated to views containing any other text form. 

A class or feature can have several documentation text forms which can be shown 
together or in any combination with code forms. SPE doesn’t directly support a notion of 
responsibilities for classes or feature membership of responsibilities (Wirfs-Brock and 
Wilkerson 89). We can model such a system, however, by using code views of classes with 
only features belonging to one or more responsibilities being shown. 
 
/*updates_start(16). 
updates_end. */ 
 
% Hide a figure by removing its 
representation 
% in an LPA window. 
% 
figure::hide(Fig) :- 
  Fig@window(Window), 
  Window@del_pic(Fig), 
  Fig@visible:=false. 
 
/*updates_start(81). 
updates_end. */ 
 
% Delete a picture from this window 
% 
window::del_pic(Window,Name) :- 
  Window@lpa_window(LPA), 
  Window@make_name(Name,PictureName), 
  del_pic(LPA,PictureName). 
 
/*updates_start(102). 
updates_end. */ 
 
% Remove a figure from the figure list of 
this window. 
% 
drawing_window::remove_figure(Window, 
    Figure) :- 
  Figure@info, 
  Window@figures(Figures), 
  remove(Figure,Figures,NewFigures), 
  Window@figures:=NewFigures. 
 

/*updates_start(10). 
updates_end. */ 
 
class(drawing_window, 
  parents([ 
    
window([rename(clicked,window_clicked)]) 
  ]), 
  features([ 
    remove_figure, 
    inherited del_pic 
  ])). 
 
/*updates_start(308). 
updates_end. */ 
 
abstract_class(figure, 
  parents([]), 
  features([ 
    delete(method), 
    hide(method), 
    window:drawing_window 
   ])). 
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Fig. 4.15. Contents of a textual view showing the complete figure hiding process. 

4.7.3. Inheritance 

Classes inherit much of their information from their ancestors. Allowing provision for 
inherited features and relationships in a view enhances the descriptive power of SPE’s 
class views. SPE allows programmers to expand inherited relationships or designate 
relationships as “inherited”. SPE can also check for changes to inherited relationships and 
class icon feature names and thus update them after change or inform programmers of 
inconsistencies. 

SPE’s browsing capabilities and complexity management mutually complement each 
other. Feature dialogues allow both class-owned and inherited features to be expanded in 
a view. A class or feature can be located by browsing and then added to another textual or 
graphical view. Reducing the number of features and class relationships in a view makes 
browsing and understanding of program sub-components much easier than if complete 
class details are always provided. 

4.8. Saving and Reloading a Snart Program 

Snart programs are saved and loaded as projects which contain all information about a 
program. Snart incrementally saves projects so only updated information is re-written to 
project files. Views and class data are incrementally loaded when required. Only a subset 
of a program’s entire set of views and class data is held in memory at one time. Upon re-
opening a project all views visible when the project was saved are reloaded and 
redisplayed, and the class, feature and predicate sets for a program rebuilt. Any further 
views are reloaded from the project file when a programmer selects them for display.  
Class data is loaded when accessed (when the class is displayed in a view or used in a 
selection dialogue). 

If a reloaded view contains information that is out-of-date (i.e. the program has been 
changed while the view was not in memory to be updated) SPE indicates inconsistent 
information to the programmer. Textual views have updates expanded, and any textual 
forms in the view no longer consistent with the program data (for example, a method that 
has been deleted, renamed or moved to a sub-class) are rendered as “unmapped”. For 
graphical view components with out-of-date information, the icon is rendered in a 
different colour, for example as “needs updating” (green) or “unmapped” (red). 
Programmers can then decide on the appropriate action to take to make the view 
consistent with the new program state: change graphical or textual component data, apply 
updates, or delete the view component. 
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4.9. Discussion and Possible Extensions to SPE 

In this section we evaluate SPE and determine possible future extensions to the 
environment. Chapters 5, 7 and 8 discuss how some of these enhancements could be 
modelled and implemented. 

4.9.1. Adequacy of Program Representation 

The current representative power of SPE is good for describing the state of classes and 
their inter-relationships with other classes. SPE supports analysis, design and 
implementation-level descriptions with successive refinement of detail. Multiple views 
allow class diagrams to contain only information a programmer deems relevant for a 
particular focus. Documentation and code views provide a flexible mechanism for 
allowing users to add detail about different aspects of a program.  

SPE does not provide any specific diagrams for modelling class behaviour (at the analysis 
or design levels). Client-supplier relationships can be used to model feature calls between 
classes but these can not be as specific as Service Charts (Coad and Yourdon 91) or Action-
dataflow diagrams (Fichman and Kemerer 92). Some form of object lifecycle diagram 
and/or dataflow diagram for modelling the detailed interactions between objects would 
be very useful for analysis and design refinement. Chapters 7 and 9 propose examples of 
such diagrams for SPE. 

Abstract class relationships such as aggregation and association (Henderson-Sellers and 
Edwards 90, Coad and Yourdon 91) are currently modelled as “abstract client-supplier” 
relationships which is not always the most convenient or descriptive approach. Dialogues 
should support more context-dependent interaction including referring to client-supplier 
relationships as “aggregation and association” for analysis (Henderson-Sellers and 
Edwards 90), and showing either high-level feature information or feature detail 
depending on whether a view is “design-level” or “code-level”. Class contract views that 
support Eiffel-like pre- and post-conditions and invariants (Meyer 92) and additional 
documentation would provide a more abstract and expressive specification than selective 
views of class code with documentation. 

SPE does not currently support any notion of responsibilities (Wirfs-Brock and Wilkerson 
89). These would be useful for grouping related features so they can be viewed as a group 
with the same responsibility in both graphical and textual views. Filtering mechanisms are 
not currently provided for features with programmers determining which features are 
shown in a class icon, class definition views and feature selection dialogues. Using filters 
in conjunction with responsibilities would allow SPE to support a notion of partial views 
of a class for certain responsibilities (for example, the hiding of figures example from 
Section 4.7). 
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It would be useful if programmers could mark features as “over-rideable”, “must over-
ride”, “must not over-ride” and so on under inheritance. This would allow SPE to check 
whether features have been correctly re-used in sub-classes and would also allow SPE to 
generate more complete templates and views for classes (possibly including the argument 
names and types for over-ridden methods). Documentation of views and program 
elements for reuse extends this concept of SPE-supported reusability even further. 

4.9.2. Program Viewing and Construction Facilities 

SPE provides basic class diagram construction facilities with some flexibility provided via 
programmer-defined view composition and layout (programmers determine which 
classes and features are shown and their positions). Class relationship connections 
(generalisations, client-suppliers and so on) can be attached to different parts of a class to 
allow different diagram layouts and multiple connections to and from one class icon. 

Programmers are not given much control over icon shape and composition, menu options, 
tools, preferences and other SPE facilities. Interaction via menus and dialogues is fixed 
with no ability to define macro editing operations or define commonly used default values 
for dialogues. Allowing more flexible diagram composition, as in TurboCASE (StructSoft 
92), would give programmers a more comprehensive diagramming capability. Icon and 
connector shapes, sizes and layout are currently determined by SPE. Programmers should 
be able to move individual icon components to suit their requirements and be able to 
“bend” lines at appropriate points to aid diagram layout and readability. 

SPE does not support automatic layout of diagram components except when expanding 
relationships and classes from a class icon. Lines can only be direct connections without 
multi-point lines. Features are shown as a group with no ability to move them, connect 
lines directly to them to represent feature-to-feature connections (as supported by some 
CASE tools, such as TurboCASE (StructSoft 92)), or show arguments for method calls. 
Resizing of icons to reflect importance or to change a view layout is not provided. 
Modification of program data is mostly by dialogues when it would sometimes be useful 
to allow direct manipulation of icons or icon components (for example, renaming a feature 
connection by editing its name rather than via a dialogue). A possible inter-feature 
relationship view is shown in fig. 4.16. 
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fig. 4.16. A possible form for SPE inter-feature relationship views. 

The text editor provided by SPE is a standard Macintosh text editor with various menus 
provided to manipulate textual forms and move to other views. While this provides a 
well-integrated editing environment, many improvements could be made to enhance 
productivity. Better separation of textual forms, updates in pop-up menus, hidden textual 
form boundaries, structure-oriented editing of class features, and hyper-text macro 
commands would all be useful. This would require an editor with the structure-
oriented/free-edit capabilities of UQ2 (Welsh et al 91), annotation capabilities similar to 
FIELD (Reiss, 90b), and user-defined unparsing as supported by MELD (Garlan 86) and 
Mjølner (Minör 91). Allowing textual and graphical representations to be integrated 
within one window, similar to Dora (Ratcliffe et al 92), may also be useful. 

Debugging is integrated with conventional Prolog debugging by using the LPA debugger 
and an object browser provided by SPE. The object browser provides much improved 
access to Snart objects than the original Snart environment’s object printer. Higher-level 
debugging facilities would be useful, however, including a graphical representation of 
object references (possibly a subset of an object’s references) similar to class diagram 
views and Cerno’s inter-object views (Fenwick 93). 

4.9.3. Large-scale Program Development 

Update descriptions provide a good way of maintaining consistency between graphical 
and textual views, automatically documenting program changes, reporting compile-time 
and semantic errors, and allowing users to add their own updates or browse the “update 
history” of part of a program. Change propagation between design and implementation is 
supported but not between design and analysis.  Updates could provide a mechanism for 
propagating changes to sub-classes and associated classes when a class is modified. A 
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browsing system for updates is provided but this could be extended to allow “classes with 
errors” and “classes with unseen updates” to be located and modified (i.e. a grass-catcher 
similar to that provided by the Trellis/Owl environment (O’Brien et al 87)). 

SPE does not currently support version control (multiple forms of a program to exist), 
shared libraries (a program made up of one or more shared components), or multi-user 
development (one program being constructed by more than one user on several machines, 
with concurrent access and updates to a program, similar to (Nascimento and Dollimore, 
93)). Extending the environment to allow multiple access (possibly con-current) to a 
program would allow much larger systems to be implemented as a group effort. See 
Chapter 10 for further discussion on extending SPE for multi-user software development. 

4.9.4. Programming Other Languages with SPE 

The facilities provided by SPE are quite general and applicable to a wide range of object-
oriented languages. Generalising the environment and supporting other languages such as 
Kea, Eiffel and C++ in a similar manner to Snart would provide development 
environments of similar capability to SPE. Adding typed variables to Snart (as discussed 
in Section 3.8) would allow both compile-time checking of errors in SPE and detection of 
concrete client-supplier relationships. These could be used to generate call graphs or 
provide checking for abstract relationships defined in SPE itself. Using any strongly-typed 
object-oriented language (such as Eiffel) would also allow compile-time generation of such 
information. 

4.10. Summary 

The simple programming environment for Snart under LPA MacProlog provides only 
basic support for object-oriented programming. No analysis or design tools are provided 
or interfaced to and there is no support for automating program documentation and 
version control. The LPA debugger is used to examine executing predicates with very 
simple facilities to print run-time object data. 

SPE provides a sophisticated development environment for Snart. SPE supports analysis, 
design, implementation and maintenance of Snart programs in one environment. Unlike 
most CASE tools, changes at one level are propagated to other levels and graphical and 
textual representations kept consistent. Snart programs can be run and debugged in the 
same environment and extra views created for browsing and complexity management. A 
novel form of human-readable update descriptions are used for view consistency, 
documentation of change, and semantic and compile-time error reporting. SPE can be 
improved in various ways but provides the basis for a complete, integrated development 
environment for Snart. 
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The basic features of SPE can be factored out into two distinct systems. The concepts of 
multiple view support with consistency management are reusable for other programming 
environments. Chapter 5 presents a model for describing such environments and two 
languages for specifying such systems: one for describing the state of a program and how 
it can be manipulated, the other for describing user interactions for viewing and changing 
a program. Chapter 6 describes an object-oriented architecture for such environments 
based on the model of Chapter 5 and Chapter 7 presents an object-oriented 
implementation based on this architecture. Chapter 8 shows how SPE can be generalised 
into a generic programming environment for object-oriented languages. It also discusses 
how this generic environment can be modelled and implemented using the architecture 
and implementation framework from Chapters 6 and 7 respectively.
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Chapter 5 

Modelling and Specifying Environments 
with MViews 

 

As discussed in Chapter 2, the multiple view aspects of software development 
environments, such as SPE, are common to many different environments. It would greatly 
simplify the construction of such environments if a common set of building blocks was 
available. This should support multiple textual and graphical views, automatic view 
consistency management, a flexible program representation, and provide support for user 
interface construction and program and view persistency. 

MViews abstracts out the common features of environments that support multiple textual 
and graphical views of information. Programs are represented as object dependency 
graphs, subsets of these graphs are constructed to form multiple views of a program, 
views can contain many instances of different program elements, and views can be 
rendered and manipulated in either a graphical or textual form. The rationale for MViews 
is discussed together with the deficiencies with current approaches to providing 
environment construction facilities. A model for MViews-based environments is presented 
and a declarative specification language developed. This language captures the 
fundamental concepts of the environment and provides a mechanism for abstractly 
specifying program and view state and the semantics of manipulating this state. An 
operational semantics specification of this language is presented to show that the language 
is well-defined in terms of the MViews model. A complementary visual specification 
language is introduced for defining the appearance and interaction with MViews 
environments using a graphical style. This visual specification provides the input and 
output mechanism for the state description. 

Chapter 6 further develops the MViews model by providing an object-oriented 
architecture for constructing such environments based on the model and specification 
languages. Classes from this architecture are specialised to define environment-specific 
program and view representations. Chapter 7 describes an object-oriented implementation 
of MViews as a framework of Snart classes based on the architecture of Chapter 6. Chapter 
8 illustrates the use of this architecture and framework by describing an architecture and 
implementation for SPE. 
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5.1. Rationale For MViews 

Section 4.1 discussed some desired features of software development environments. These 
include integrated analysis, design and implementation of software (including using the 
same representations during different phases of software development); graphical and 
textual views of programs; multiple views of software including consistency management 
and recording of change; and tool integration with a common user interface and data 
management strategy. A model for such environments should thus provide several key 
aspects which are discussed below. 

5.1.1. Program Representation 

Program structure needs to be represented in a manner which is both flexible (so many 
different application structures can be represented) and close to the application’s needs 
(i.e. a “natural” representation for the application domain) (Meyers 91, Arefi et al 90). It 
should also be generalised sufficiently so reuse of the model is possible but does not 
involve great effort (i.e. be a sufficiently abstract modelling of program structures) (Minör 
90, Backlund et al 90). A language representation scheme also requires a mechanism for 
describing language-specific semantics and this scheme should be complementary to the 
program structure representation (possibly using structural modifications to drive 
semantic checking) (Reps and Teitelbaum 87, Backlund et al 90, Minör 90). 

5.1.2. Multiple Textual and Graphical Views 

Environments like SPE and Dora require both graphical and textual representations of 
parts of a program (Grundy and Hosking 93, Ratcliffe et al 92). Thus views should support 
a model of a subset of the total program state and also provide either a textual or graphical 
rendering of this “partial program”. The structure of views should be similar or the same 
as the structure of base program data. This allows view data to be manipulated in a 
similar manner to the base program it mirrors and consistent manipulation strategies to be 
employed throughout the environment (Vlissides 90). There should, however, be some 
scope for structuring views differently for efficiency or because a different structure is a 
more appropriate model for the view (Dannenburg 91). 

5.1.3. Program and View Modification 

Program structures must be modified to construct or change program fragments. 
Similarly, modification of a view is equivalent to a programmer changing the part of a 
program displayed in the view (Meyers 91, Vlissides 90). View editing operations should 
thus be translated into appropriate program modifications. Using the operation model for 
a base program for changing a view’s state (as opposed to its rendering) may be 
appropriate to help facilitate this translation process. 
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Programmers generally find free-editing text and interactively editing graphics is a more 
natural and desired approach to programming than comparable structure-editing 
approaches (Welsh et al 91, Arefi et al 90, Minör 90, Whittle et al 92). Environments should 
thus support editing mechanisms that match those desired by programmers and which 
enhance their productivity, rather than using particular editing mechanisms because they 
are the easiest to support with environment generators. An editor which provides free-
editing and incremental parsing for syntax and semantics checking, and can support 
structure-editing in a consistent manner for high-level programming, may be the best 
solution (Welsh et al 92). 

5.1.4. Automatic, Efficient Consistency Management 

When a program component is updated all affected views should also be updated to 
reflect the change (Meyers 91, Reiss 85). The change should also cause any language-
specific semantics to be rechecked to ensure programmers are informed of errors (Reps 
and Teitelbaum 87, Minör 90). This change propagation process should be both efficient 
and as automatic as possible so programmers need not be concerned with inter-
component dependencies (Reiss 86). Lazy application of updates may be appropriate for 
view updates when the view is hidden or not in the front editing window (Dannenburg 
91, Wilk 91). Attribute recalculation for semantic checking (Reps and Teitelbaum 87), 
where affected values need not be recalculated until they are required (Hudson 90). 
Incremental view updating, where only the updated aspects of views are re-rendered 
rather than the whole view for efficiency, should be directly supported (Vlissides 90, 
Dannenburg 91). It would be useful to incrementally update a view given changes to its 
base rather than have to compute the changes (Dannenburg 91, Wilk 91). Views should 
also be visually updated to indicate that a change has occured in the program state that 
may not necessarily be possible for the environment to automatically translate into 
appropriate view modifications. For example, SPE does this when propagating a client-
supplier addition or deletion to a textual class code view. 

5.1.5. Recording Previous Changes 

The modification history of a program component can be useful to inform programmers of 
what changes were made to the component, when they were made (relative to other 
changes), and possibly who made the change and why. Providing on-line access to this 
change history would allow it to be used as a documentation aid.  

5.1.6. Undo and redo of User Manipulations 

Editors on views should support some form of undo/redo facility to allow programmers 
to reverse editing operations that may have had the wrong or unintended effect (Reiss 85, 
Vlissides 90, Dannenburg 91). This undo/redo mechanism should be abstract enough so 
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programmers do not need to be concerned with implementing such a facility directly and 
be efficient enough so the mechanism does not impose unacceptable storage or 
performance demands on the environment (Dannenburg 91).  

5.1.7. Program and View Persistency and Multi-user Access 

Programs and their views need to be stored between invocations of an environment. The 
environment may also need to support multi-user access to a program (possibly with 
distributed copies of the program and multiple versions) (Meyers 91). Ideally, program 
persistency should be efficient in both time and space, require little or no application-
specific programming to support, and be flexible enough for the different requirements of 
different environments. 

5.1.8. Tool Integration and Extensibility 

Environments are typically made up of several tools used for different purposes, for 
example editing, compiling, debugging and version control. Environment integration 
should be at both the user interface level (providing a consistent user interface across all 
tools) and the tool data level (providing uniform data storage or translation mechanisms) 
(Meyers 91, Wang et al 92, Reiss 90a). An environment should also be extensible, allowing 
new tools to be developed or existing tools from other systems to be integrated in a 
consistent manner (Meyers 91, Reiss 90a, Wasserman and Pircher 87). 

5.2. Related Research 

This section discusses related research on viewing mechanisms for programming 
environments and related applications. It illustrates that most existing systems, while 
supporting some of the requirements of Section 5.1., do not provide enough support for all 
of these requirements. 

5.2.1. Smalltalk Model-View-Controller 

The Smalltalk Model-View-Controller (MVC) model (Goldberg and Robson 84) provides a 
general mechanism for representing base programs (a model) as Smalltalk objects but with 
no specific support for programming language structure or semantics representation.  
Views of model objects can be defined which are objects linked to the model objects they 
view. Models are updated by object manipulation while changes to views are translated 
into model changes by window-based editors (controllers). 

Views are notified of changes to their model objects by a simple “update yourself” 
mechanism. View objects are sent an Update message which indicates their model has 
changed in some way and they must reconcile their state to that of their model’s. As 
explicit model changes are not sent to view objects, it is often difficult (or impossible) to 
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determine the exact model change that occurred. Hence a view may be required to do 
more work that strictly necessary to reconcile its state to its model’s state (Wilk 91, 
Dannenburg 91). For example, if a model (base) component has an item added to a list 
attribute, affected views may not be able to determine this exact change and hence may 
need to totally redisplay themselves. MVC does not provide any specific mechanisms for 
incremental view updating, lazy updating, visually indicating model changes that can’t be 
explicitly applied to a view, change history recording, undoing or redoing view edits, or 
program persistency. 

5.2.2. Interviews and Unidraw 

Interviews (Linton et al 89) provides a framework for constructing graphical user 
interfaces. Unidraw (Vlissides 90) provides a framework for constructing domain-specific 
graphical editors. The Unidraw model assumes “programs” are hierarchically structured 
graphical objects with attributes. Changes to attributes can be propagated using a 
dataflow mechanism where changes to state variables are sent to dependent variables. A 
subject-view metaphor (similar to MVC) is used to support multiple views of a base data 
structure and subjects and views use a common structure and command scheme. Unidraw 
assumes a graphical representation and editing mechanism for views  with no direct 
support for textual representations. Data is modified using commands (editing operations) 
and view updates are translated into program updates using an editor (similar to an MVC 
controller) and editor tools. 

The view updating scheme is similar to MVC with a Notify/Update model, but Unidraw 
supplies a “damage” algorithm which automatically reconciles a view’s state to its 
subject’s. The disadvantage with this approach is that Unidraw assumes views have 
exactly the same structure as their subject (though this can apparently be changed via sub-
classing (Vlissides 90)). View to base updates are handled in an application-specific 
fashion by the view’s editing tools and manipulators. 

Commands provide an undo/redo facility for editing operations but no change recording 
mechanism is supported (though it may be possible to build one by recording command 
objects). A simple database-like component persistency model is supported which allows 
subject and view structures to be written to and reloaded from persistent storage in an 
application-specific manner. There is no support for integrating existing tools except for a 
simple data export facility (typically to a textual form, for example Postscript). 

5.2.3. PECAN, GARDEN and FIELD 

PECAN (Reiss 85) provides an integrated environment for Pascal programming using 
multiple textual and graphical representations of a common program. PECAN provides a 
program representation and semantics calculation model based on trees. Multiple 
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graphical and textual views are supported but graphical views use a structure-edited 
approach while textual views use an incremental parsing algorithm with limited editing 
flexibility. View updates are via a MVC-like model and views provide translation 
mechanisms to map editing changes to base program changes. PECAN does not support 
update recording or version control but does have a flexible undo/redo facility which 
includes macro-operations. Programs are stored in files and there is apparently no support 
for incremental program persistency. Kaiser notes that the PECAN model would be 
difficult for most people to reuse due to its complexity (Kaiser 85). 

GARDEN (Reiss 86 and 87) provides an environment for prototyping visual programming 
languages and for conceptual programming with several different languages. All data is 
represented by objects which provide a structural (syntactic) language representation 
scheme and also provide support for both static and dynamic language semantics. Views 
are defined as dependencies between objects moderated by a third object. View updates 
are translated to and from base program updates using this dependency model with 
changes being indicated in a MVC-like manner (i.e. an “update yourself” message is sent 
to the moderator of the dependency which then propagates the change). GARDEN uses an 
object-oriented database for program storage and to implement an undo/redo scheme 
(using transactions). While this is very general, Reiss notes it can have performance 
problems and difficulties in providing for environment evolution and existing tool 
integration (Reiss 86, Reiss 90b) 

FIELD environments (Reiss 90a and 90b) provide the appearance of an integrated 
programming environment built on top of distinct Unix tools. Program representation is 
usually as text files with each tool supporting its own semantics (currently with a 
conventional compiler and debugger). Views are not directly supported but tool 
communication via selective broadcasting (Reiss 90a) allows changes in one tool “view” 
(for example, an editor) to be sent to another tool “view” (for example, the debugger). 
Free-edited textual program views are supported (but these text views cannot contain 
over-lapping information) while graphical representations are generated from cross-
reference information. Reiss notes that a lack of user-defined layout and view composition 
for these graphical views is a problem (Reiss 90b). Version control is not currently 
supported and undo/redo is left to appropriate tools to support. Persistency is via Unix 
text files and a simple relational database (for cross-reference information). New and 
existing tool integration (and hence environment extensibility) is supported by providing 
a user interface (constructed from standard building-blocks) and selective broadcast 
entries for these tools. 

5.2.4. Grammar-based Environment Generators 

Chapter 2 briefly discussed several grammar-based programming environment generators 
including The Synthesizer Generator (Reps and Teitelbaum 87), Mjølner/ORM (Minör 90), 
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LOGGIE (Backlund et al 90), Dora (Ratcliffe et al 92), and MELD (Kaiser and Garlan 88). 
Most generated environments provide very abstract structure and semantics specifications 
(Whittle et al 92). However, most environments generated by these tools use a style of 
editing not yet well accepted by programmers (Minör 90, Welsh et al 91). Attribute 
grammars do not always provide an efficient means of recomputing semantic values as 
values must usually be recomputed entirely no matter what the change in values they use 
(Wilk 91). In addition, they suffer from not being fully-fledged programming languages 
and thus can lack power of expression for various tasks (Kaiser 85). As such systems are 
based on specific models for environments, modelling different interaction mechanisms or 
structures using these tools is not usually possible. Multiple textual and graphical support 
in such environments is often rudimentary or not directly provided, as are undo/redo, 
flexible program persistency and program change documentation. Tool integration 
mechanisms are provided by Dora (via a PCTE database repository (Wang et al 92)), 
MELD (static tool views (Garlan 86)) and Mjølner (using a backbone structure based on 
Unix files (Minör 90)). These use view-based and file system integration, however, which 
usually makes new tool integration and extisting tool extensibility difficult (Meyers 91). 

5.2.5. Dannenburg’s ItemList Structure 

Dannenburg’s ItemList structure (Dannenburg 91) represents data as a list of  Items 
which have multiple, tagged values to support versioning. This representation scheme is 
cumbersome for representing programs (the only data structure directly supportable is the 
list) and provides no language semantics support. The ItemList supports multiple views 
which are themselves ItemLists and are updated by indicating which Items have been 
changed at the base level. A flexible undo/redo facility, incremental view updates, and 
automated base-to-view and view-to-base update propagation is supported.  While the 
ItemList records old updates, these are stored against each Item value with no 
application-level access and hence couldn’t be used to document changes to a program 
component. The ItemList does not directly provide a persistency model or support for 
describing updates that can’t be directly applied to an ItemList view. 

5.2.6. Wilk’s Object Dependency Graphs 

(Wilk 91) describes an object dependency graph (ODG) representation which stores data 
as objects with a dependency relationship network over the objects. ODG provides no 
language semantics scheme and no direct support for multiple views, though both could 
be modelled using object dependency. Updates to an object are propagated using change 
reports which describe the exact change that has occurred to an object and its dependency 
relationships (including changes to the objects’ components via part-of relationships). 
Dependent objects can make exact changes to their state based on the change reports of 
objects their state depends on. Lazy consistency management is supported and transient 
update propagation also provided. This system does not provide undo/redo of changes 
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nor does it provide a program persistency mechanism. While change reports can be used 
to achieve consistency they can not be stored long-term to document program component 
changes. 

5.2.7. Summary 

Table 5.1. summarises the facilities provided by different multiple view and programming 
environment construction systems discussed previously. It also illustrates how the 
MViews model for programming environments described in Section 5.3. satisfies these 
requirements. 
 
 MVC Unidraw GARDE

N 
FIELD LOGGI

E 
Mjølner Dora ItemList ODG MViews

Program/Data 
Representation 

objects objects objects text 
(files) 

abstract 
syntax 
trees with 
garlands 

abstract 
syntax 
trees 

objects ItemLists objects 
with object 
depend-
encies 

object 
depend-
ency 
graphs 

Mutliple Views model-
view 

subject-
view 

object 
dependency 

partially 
via 
selective 
broad-
casting 

model-
view 

not 
supported 

subject-
view 

Item 
dependency 

not 
directly 
supported 

object 
depend-
ency 
graphs 

Program and View 
Modifications 

appl-
specific 

graphics 
interactive 
tools 

text free-
edited, 
graphics 
structure-
edited 

text free-
edited 

graphics 
structure-
edited 

text 
structure-
edited 

text and 
graphics 
structure-
edited 

appl.-
specific 

appl.-
specific 

text free-
edited, 
graphics 
interactive 
tools 

Consistency 
management 

Update 
message 
sent to 
views 

Update 
message 
sent to 
views 

via object 
dependency 

selective 
broad-
casting 
between 
tools 

Update 
messages, 
attribute 
grammar 

attribute 
grammar 

Update 
message 
sent to 
views 

Items 
marked as 
Updated 

change 
reports 

update 
records 

Incremental View 
Updates 

no damage 
algorithm 

not directly no no no damage 
algorithm 

Item 
versions 

no update 
records 

Change Recording no no no version 
control 

no version 
control 

no no no update 
records 

Undo/Redo controller-
specific 

command 
objects 

database 
transactions 

editor-
specific 

editor-
specific 

editor-
specific 

editor-
specific 

Item 
versions 

no update 
records 

Persistency appl.-
specific 

catalogue 
(as text 
files) 

database text files appl.-
specific 

backbone 
(as text 
files) 

PCTE 
database 

appl.-
specific 

appl.-
specific 

appl.-
specific 

Tool  Integration 
and Extensibility 

no no no selective 
broad-
casting 

no backbone PCTE 
database 

no no views and 
update 
records 

table 5.1. Multiple view support of different frameworks, programming environment 
generators, and software development environments. 

From this table some important features required for the MViews model can be identified. 
These include: 

• Program structure and semantic representations which have a comparable 
generality and abstractness to those of LOGGIE and Mjølner abstract syntax 
tree-based environments while retaining the flexibility of GARDEN and 
Unidraw objects. 

• Multiple view representations that use the same structural (and possibly 
semantic) representation as programs, as supported by Unidraw and the 
ItemList. 

• Program and view editing mechanisms appropriate to the kind of view 
rendering being used, as supported by FIELD and GARDEN. 
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• Consistency management for program and view updates supporting efficient 
semantic attribute recalculation, program-to-view and view-to-program update 
propagation, and incremental view updating, as supported by the ItemList and 
ODG. 

• Change recording against program and view components to support 
documentation of program changes. 

• A generic, extensible undo/redo mechanism, as supported by PECAN, 
Unidraw and the ItemList. 

• A program and view persistency mechanism with a level of abstraction 
comparable to GARDEN and Mjølner environments. 

• Tool integration and extensibility mechanisms comparable to that of FIELD 
environments.  

5.3. An Overview of MViews 

We have developed MViews to satisfy most of the requirements of environments 
discussed in Section 5.1. In the development of MViews we have aimed for a 
homogeneous solution to providing these environment facilities which allows different 
requirements to be satisfied in a consistent, reusable manner based on a uniform 
conceptual model of programming environments. 

5.3.1. Program Graphs 

Any program can be represented as a directed graph (Arefi et al 90). An incomplete 
program can be represented as a collection of disjoint directed graphs or a directed graph 
with “unexpanded nodes” (Arefi et al 90), similar to alternate choice or compound 
abstract syntax grammar nodes (Minör 91, Reps and Teitelbaum 87). MViews represents 
programs as a collection of (possibly disjoint) directed graphs, called program graphs. 
Program components are represented as elements (graph nodes) and are connected by 
relationships (labelled graph edges). Fig. 5.1. shows an example of an MViews program 
graph for part of the drawing program from Chapter 4. 
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class 
"drawing_window" 

class 
"figure"

feature 
"figures"

class 
"window" 

generalises-to 
"rename (...)"

class 
"open_figure"

class 
"closed_figure"

class 
"fline"

class 
"foval"

class 
"rectangle"

type-of 
"list"

generalises-to

classifies-to 
"shape"

all_feature 
"figures" 

"list(figure)"

feature-ofall_features

 

fig. 5.1. Part of the program graph for the drawing program. 

Each element and relationship represents a specific kind of program component and can 
have attributes (name/value pairs) associated with it (illustrated as unnamed, quoted text 
in fig. 5.1.). Some relationships are simple in that they just link related elements while 
others contain information about the relationship (for example, renamed features for 
generalisations and classifier name for classifications). 

A program graph is a dependency graph. When a component is modified (added, updated 
or deleted) other related components (connected to the modified component via 
relationships) are notified of the exact change to the updated component. These may in 
turn be modified, depending on the language structure and semantics for the program 
under construction. 

Components, attributes and relationships can be used to represent static language 
semantic values, in addition to structural, syntactic values. For example, the interface for a 
class (i.e. all its feature names and their types) might be represented by a group of 
all_feature elements, as shown in Fig. 5.1. When a feature of the class is updated, or 
features are added and deleted, the class will be notified of this change. The class can then 
respond to this feature change by updating the all_features semantic information 
appropriately (by recomputing it entirely or performing an incremental update). 
Language-specific semantic constraints can be achieved in a similar fashion by responding 
to update notification. For example, features of a class must have unique names and when 
a feature is renamed, the feature’s class will be notified of this change. The class will 
respond to this feature change notification by checking that the new feature name is 
indeed unique (if not, the feature rename can be reversed and an error flagged). 

As program structures are typically made up of nodes and labelled edges (Arefi et al 90) 
representing programs via graphs is very general. It is appropriate for most of the 
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program structures an environment should model including graph-based visual 
languages (Backlund et al 90). The advantages over plain abstract syntax structures is 
support for the modelling of graph-based languages and flexibility of construction 
(program graph components may be built up independently and then combined via 
appropriate relationships). 

5.3.2. Views and View Components 

All program graphs in MViews are grouped by views. MViews defines three types of view: 
• the base view is a canonical representation of a complete program. There is one 

base view per program and all information about a program’s structure and 
semantics held by an environment is stored as program graphs in this base 
view. 

• subset views represent subsets of a base view and may overlap so the same 
information can be accessed and manipulated via different subset views. Users 
determine the composition of a subset view (i.e. the base components it views) 
and add, modify or remove subset components interactively. Examples of 
systems incorporating a similar notion to subset views include: 

• Ispel (Grundy et al 91), where multiple views describe overlapping 
subsets of a base view of an object-oriented program. 

• The dynamic and static views of MELD (Kaiser and Garlan 87) which 
partition programs into respectively overlapping and non-overlapping 
subsets. 

• Database views which filter out unwanted information. Database views 
are usually non-updateable, limiting the consistency management 
problems (although see (Horowitz and Teitelbaum 86, Langerak 90)). 

• display views describe how some part of the program is to be rendered on the 
screen and interacted with. The same program fragment can be rendered in a 
variety of notations, textual and graphical, using different display views. Many 
visual programming systems utilise some form of multiple display views, 
including PICT (Glinert and Tanimoto 85), PECAN (Reiss 85), GARDEN (Reiss 
87), and Ispel (Grundy et al 91). Users interact with display views to modify 
either graphical figures and connectors or textual characters which are 
translated into subset and base view modifications. 

MViews programs (base views) are a collection of program graphs. Subset views of a base 
view may be constructed which are also program graphs. Subset view graphs represent 
sub-graphs of the base view graphs and a subset view may contain one or more disjoint 
graphs. A subset of the components and relationships in the base graph is represented in 
the subset view (i.e. base view elements and relationships have corresponding subset view 
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elements and relationships). The subset view’s components (subset components) are 
subsets of the base view’s components (base components) they represent7. 

Subset components are usually connected to base components via relationships. As a 
subset view is defined as being a partial view of the base view information, modifying a 
subset component is defined by MViews to be the same as modifying the base component 
it is linked to. Similarly, modifying a base component means all the subset components 
linked to this base component are modified in the same way8. For example, if a subset 
class is renamed, the base class the subset class is linked to is renamed. This results in all 
subset classes of the base class being renamed. 

Relationships between base components and subset components (called subset/base 
relationships) allow changes to be propagated bi-directionally between a base component 
and its subset components. To maintain view consistency when it is updated a subset 
component translates updates on itself into appropriate updates on its base component. 
Similarly, when a base component is updated its subset components are notified of this 
change. These subset components interpret the change and modify their own state to be 
consistent with that of their base component. 

Subset components need not always be connected (mapped) to a base component. This 
allows partial, but controlled, inconsistency at the view level. It also provides a 
mechanism for retaining subset view components when their base has been deleted so 
programmers can determine the change to make to a view (remap the subset component 
to another base component, delete the subset component and possibly related 
components, or otherwise change the composition of the subset view). View-specific 
information such as font details can also be represented in this way as unmapped subset 
components. Subset components typically model one base component although they may 

                                                 

7i.e. a subset view component may define a subset of its base view component attributes and relationships. 

8This base->subset and subset->base translation may not always occur, as subset components can hold 

subset view-specific information that is not described in the shared base view. For example, if a subset 

component holds font information, changing this would not affect the subset’s base component. Similarly, 

changing base component information that the subset component does not view (i.e. that the subset 

component is not interested in) will not require any modification to the subset component. For example, if a 

feature’s type is changed but a subset component of the feature does not use this type value, the subset 

component need not be updated. 
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be mapped to more than one base component9. Base components typically have more than 
one subset component in one or more subset views. 

Each subset view is rendered (displayed) either graphically or textually using an 
appropriate display view. A display view component (display component) renders a 
subset component in a textual or graphical form. Display components are re-rendered 
when their subset component changes and updates on a display component are translated 
into subset component updates by editing operations or dialogues. 

Fig. 5.2. shows some typical base, subset and display view components and their 
relationships for an SPE-like environment. 

 
Base View Subset Views Display Views

class 

class 

class 
icon

class 
icon

class 
icon

feature 

feature 

gen 

c/s

gen

class type 

...

...

... 

class 
text

method 
text

subset/base 
focus 

display

 

fig. 5.2. Typical program and view storage in MViews. 

In this example, the base view is composed of classes and their relationships. Two subset 
views are provided which represent sub-graphs of the base program graph. These subset 
views are displayed, one graphically, as class icons and generalisation and client-supplier 
glue, and one textually, as class and method text. Each subset component is linked to its 

                                                 

9This allows composite components to be represented in subset views. For example a “feature icon” for SPE 

might have a class and feature name and be mapped to the base class and base feature at the same time (so it 

can respond to changes in both base components). 
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corresponding base component via a subset/base relationship and each display to its 
subset. Base components can have more than one subset component but display 
components render only one subset component (though a subset component may 
represent more than one base component). Subset views conceptually focus on one base 
component and are thus “owned” by this base component. The owning base component 
for a subset view is designated the focus of the subset view. 

Object dependency graphs are also used to represent subset views. This allows the same 
kinds of structures and the same kinds of manipulations to be performed on subset views 
as those used for base program data. It also allows the relationship between a base 
component and its subset(s) to be expressed in terms of a dependency relationship. An 
advantage of this is that changes to a base component can be sent to its subset components 
and changes to a subset component can be sent to its base components in the same manner 
(avoiding a deficiency of the MVC and Unidraw models). 

5.3.3. Operations and Update Records 

Graph operations are employed to modify program graphs. The semantics of these 
operations could be described as the editing semantics of the programming environment, 
i.e. the effect on the program state of applying an operation. Components can be added 
and deleted, attributes fetched and updated, relationships established and dissolved, and 
views created with display components added to or removed from them. Textual views 
can be typed and parsed to cause base changes while graphical figures can be dragged, 
edited interactively, selected and deselected, and so on. 
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fig. 5.3. Some typical operations affecting MViews program graphs and their views. 

Sections 4.5. and 5.1. discussed the need to manage program changes in environments. 
MViews supports change recording and propagation using update records generated by 
applying graph operations. A component records each change made to itself by an 
operation as an update record, which is, conceptually, a sequence of values of the form: 

<Component,UpdateKind,Value1,...,Valuen>  

where:  
• Component is the updated component 
• UpdateKind describes the kind of update that has been carried out 
• Value1,...,Valuen are additional UpdateKind-specific values describing the 

exact change that took place 

Fig. 5.3. shows some of the updates that can be applied to components of an MViews 
system. Base and subset component operations generate update records, and Table 5.2. 
describes the fundamental program graph operations, the update records these operations 
generate and what the operation/update record means. 
 

Operation Update Record Description 
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update_attribute(Comp,Attribute, 
  New) 

update_attribute(Comp,Attribute, 
  Old,New) 

Update attribute Attribute of component 
Comp and set its value to New (Old = old 
attribute value) 

add_element(Kind,NewEl) add_element(NewEl) Add a new element of type Kind 
establish(Kind,Parent,Child,NewR
el) 

establish(Kind,Parent,Child) Establish a relationship of type Kind 
between components Parent and Child 

dissolve(Kind,Parent,Child) dissolve(Kind,Parent,Child) Dissolve the relationship of type Kind 
between components Parent and Child 

delete_component(Comp) delete_component(Comp) Delete component Comp 
create_view(Kind,NewView) create_view(NewView) Create a new subset view 
add_view_comp(View,Comp) add_view_comp(View,Comp) Add a component Comp to a view View 
remove_view_comp(View,Comp) remove_view_comp(View,Comp) Remove a component Comp from a view 

View 
record_update(Comp,UpdateRecor
d) 

UpdateRecord Record an update record UpdateRecord 
against a component Comp (i.e. propagate 
UpdateRecord to Comp’s dependents) 

store_update(Comp,UpdateRecord
) 

 Store update record UpdateRecord against 
component Comp (doesn’t generate any 
update record) 

Table 5.2. A summary of the fundamental MViews operations and update records. 

To document the changes it has undergone, a component may store update records 
against itself using a list attribute. Update records may be stored in an application-specific 
form for environment designer’s convenience. For example, a base class in SPE may store 
the changes it has undergone since being created to document its modification history. An 
update record of the form update_attribute(Feature, feature_name, OldName, 

NewName) might be stored as rename_feature(OldName, NewName) against the base class. 

Every component has zero or more related components that may be affected by a change 
to itself (called dependent components). For example, an SPE class may be dependent on its 
generalisation class (which it inherits features from) and the features it defines (as these 
determine if the class as a whole has been modified). In addition, a base component’s 
dependents include its subset components and a subset component’s dependents includes 
its base component(s). Components send any update records generated by updates to 
themselves to these dependent components. 

Dependents interpret updates and modify themselves (if necessary), possibly generating 
further update records. Updates can be directly applied to display components to reflect 
changes to their base component. Alternately, update records may be expanded into a 
human readable form and rendered with a display component (for example, unparsing 
update records and displaying them with textual view components in SPE). The second 
approach is useful for subset views where it may not be possible to directly apply the 
update to the view’s components (for example, after the addition or deletion of a client-
supplier relationship in SPE). Update records may also be stored for use when undoing or 
redoing a change. To cause an undo of the last editing operation the update records 
associated with the operation (i.e. all the updates generated by it) can be sent back to the 
components that created the updates for reversal. Similarly, a reversed operation can be 
redone by sending the updates to their creators for reapplying. 
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MViews uses update records to record (document) program changes, propagate change to 
dependent components via relationships, maintain textual and graphical view consistency 
to the base, and define an undo/redo facility. They could also support data-driven and 
lazy semantics calculation (in a similar manner to that of (Wilk 91)) by transitive 
dependencies (one component dependent on another by way of a third component) and 
by temporarily storing updates until required for lazy application. 

Update records provide several advantages over Notify/Update and state transition 
propagation. As an update record documents the exact change a component has 
undergone dependents of the component can update themselves in a very incremental 
manner. For example, a display component can determine the exact change to one of its 
base’s attributes or a change in a related display component. This can be used to 
implement efficient incremental update and redrawing of the display from the base. For 
example, if a feature name is removed from a base attribute list a subset component 
viewing this base component’s list does not need to reconcile its state to the base 
component completely, like Unidraw, and does not need to completely redisplay or 
update itself, which may be required with an MVC model. This mechanism can also 
provide constraints or incremental updates between related subset components. For 
example, if an icon is dragged its sub-icons can move their position or reconfigure 
themselves based on the change to their parent without the whole structure needing to be 
redisplayed, such as may be required with other approaches (Wilk 91). Update records 
can also be stored against components to document component change and provide lazy 
recalculation of attribute values. 

Base and subset component updates can be propagated to each other using this 
mechanism without the need for intervention from a controller/editor component. This 
allows a more modular approach to the propagation of updates. Subset components are 
modified in the same way as base components and detect these updates (by being 
dependent on themselves) and propagate them to their base. As MViews uses 
relationships to determine dependency, update records do not need to store additions and 
deletions of dependents like Wilk’s change reports (as these are recorded by establish 
and dissolve relationship operations as update records). Unlike Dannenburg’s ItemList 
structure, MViews can represent a much richer set of structures using elements and 
relationships and as updates are recorded sequentially, redundant copies of Item 
(attribute) values are not stored, resulting in a simpler undo/redo mechanism. 

5.3.4. Program Editing using Views as Tools 

Software development environments provide tools to modify programs and to perform 
other management tasks  (Meyers 91, Reiss 90b). MViews environments use tools 
associated with a display view to modify subset graphs (and thus, indirectly, base 
program graphs). Base information can also be accessed or modified directly by sending 
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operations to the base view or its components. For example, a subset component can 
access base component information not contained in its subset view or base component 
operations it doesn’t supply. 

Graphical view editors are structure-oriented, providing tools for manipulating specific 
aspects of a program, and utilise a direct manipulation interface to modify renderings of 
subset components (graphical display component structures). These modifications are 
translated into subset component operations by the editing tools supplied by MViews or 
by graphical display components in an application-specific manner. Subset components 
then update base components by interpreting these updates on themselves and applying 
operations to their base components. 

Textual editors consist of an editor, an unparser and a parser. Unparsers convert a shared 
program representation into a textual form and parsers convert an edited piece of code 
into changes to this program representation. Parsers generate a parse tree which is then 
given to each subset component in the view. A textual subset component compares its 
parse tree to the base program state and required changes to the base are computed and 
applied to reflect changes made to the textual view. Individual text elements can also be 
structure-edited using menu commands. Text and graphic editors can be tailor-made for 
an application or specialised from generic MViews tools. 

Users interact with MViews systems either via textual and graphical display views or by 
using menus and dialogues. Dialogues can access subset and base information and update 
this information directly. 

Tool extensibility and integration can be supported by MViews environments using 
display views and dialogues (which give a consistent user interface) and subset views 
(which can provide a tool-specific interface to a cannonical program structure stored in the 
base view). Subset views can provide a data mapping facility for exporting and importing 
external tool data using parsing and unparsing in a similar manner to textual display 
views and the tool mapping facilities of ICAtect (Amor et al 91). Display views and 
dialogues can be used to provide tool user interface integration in a similar manner to 
FIELD (Reiss 90b). Update records could also be used for tool communication as they 
equate to the events used in selective broadcasting (Reiss 90a). 

5.3.5. Program Persistency 

MViews components can be saved and reloaded from persistent storage by converting 
attribute and relationship values into a persistent form and vice-versa. This process is 
usually application-specific with MViews providing save and load operations that write 
and read persistent data respectively. Components need only be saved if they have been 
updated since their previous reloading and could be incrementally reloaded when 
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required (i.e. when accessed their persistent form found and converted into component 
form, then added back into the program graph). 

5.3.6. Summary 

MViews models programs as program graphs and groups these base program graphs 
using a base view. Subset views of a base view are also modelled as program graphs with 
each subset view component being a partial view of one or more base components. 
Program graphs are object dependency graphs with changes to a component being 
propagated to dependent components in the graph. This mechanism provides a uniform 
model for base/subset view modelling, propagating updates between components and 
base/subset components, and allows documentation and undo/redo facilities to be 
provided by storing generated updates. Display views and dialogues provide an 
interaction mechanism for users which allow subset view components to be rendered and 
updated (which in turn may update the base view). Textual view components are 
rendered as text and are parsed to produce base updates. Graphical views are composed 
of figures which are interactively edited with tools and dialogues. 

5.4. MViews Specification Language 

In this section a simple language is developed called MViews Specification Language 
(MVSL). This language captures the important abstractions proposed for the MViews 
model in Section 5.3. It also provides a preliminary analysis tool and documentation tool 
for describing the important aspects of MViews-based programming environments. MVSL 
is illustrated with examples from IspelM, a generalisation of SPE for constructing and 
visualising object-oriented programs using multiple textual and graphical views. 

5.4.1. Rationale for MVSL and MVisual 

Our initial work with Ispel (Grundy et al 91) indicated a need for two distinct specification 
techniques for programming environments that support multiple views: a description of 
the state of a program and the editing semantics for this program state; and a description 
of a user’s perception of the environment in terms of interactions with views of the 
program (Grundy 91). These two specifications can then be used together to perform an 
analysis for new environments, document existing environments, and be used when 
extending environments (to ensure extensions are both consistent and well-defined). 
MVSL attempts to provide an abstract specification language to address the first issue 
based on the MViews model of environments. 

MVSL 

Given the model for MViews in Section 5.3. we require a specification language for 
describing such environments. Component kinds can be classified to a basic set of 
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component types (base views, base elements and relationships, and subset views, 
elements and relationships). Component attributes and relationships between components 
need to be referred to by name and given types. A predefined set of operations on 
program graphs may need to be augmented by sequences of operations for different 
applications. Components must respond to update records generated by other 
components they are dependent on by executing operations to change their state in 
response to these update records. 

Initially we attempted to define MViews using an Object-Z (Duke et al 91) specification. 
MViews environments were specified by specialising a set of Object-Z classes and 
providing additional application-specific class attributes and operations. This approach, 
however, was based on the abstractions of an object-oriented architecture for MViews 
introduced in Chapter 6. The resulting specification still seemed too detailed for abstractly 
defining the basic state and semantics for an MViews environment. In particular, 
relationships and response to updates, two fundamental aspects of MViews, were much 
more obscured than in MVSL definitions. An Object-Z specification would, however, be 
suitable for formally specifying the object-oriented architecture of Chapter 6. In contrast, 
MVSL was developed to provide a specification based directly on the abstractions 
described in Section 5.3. 

MVisual 

In addition to specifying the state and modification semantics of this state with MVSL we 
require a mechanism for specifying the visual appearance and editing semantics of an 
environment. Display views and dialogues are used to interact with MViews 
environments and MVisual is used to specify the appearance and semantics of these visual 
entities. MVisual graphically illustrates the appearance of display views, display view 
components and dialogues using example-based programming and a form of visual 
programming. These techniques specify the effect of interactive manipulations on user 
interface entities and the changes these entities undergo in response to updates from 
MVSL subset views and components or other MVisual entities. 

Update records generated by MVSL are assumed to be sent to MVisual which defines 
responses to susbet component changes graphically. Update records generated by 
MVisual are assumed to be sent to MVSL and are translated into update records sent to 
MVSL components. Thus update records are used to propagate changes between MVisual 
and MVSL as well as between MVSL components and MVisual components. MVisual is 
described in Section 5.6. 
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Formal Specification of MVSL 

To show that the basic concepts of MViews are well-defined, an operational semantics 
specification of MVSL is given in Section 5.5. This uses a state based on the basic 
abstractions of MViews and specifies the effect on this state of applying the basic 
operations defined by MVSL. Application-specific operations and component responses to 
update records are composed of these basic operations and are hence well-defined in 
terms of their effect on the MViews program state. Communication with MVisual is 
assumed to be in a functional manner using streams of update records representing inputs 
(from MVisual) and outputs (from MVSL). 

Implementing MViews Environments 

Neither MVSL or MVisual specifications are sufficient for generating environments. Both 
languages lack sufficient power of expression for detailed descriptions of environments. 
MVSL does not provide sufficient programming language constructs and modularization 
for full environment specification and interfacing to existing tools. MVisual does not 
specify every special case response to user interaction and provides no detail about 
synchronising its interaction with MVSL. Both languages provide abstract specification 
techniques which can be used to analyse an environment in terms of the MViews model 
and document MViews environments. Chapter 6 proposes an object-oriented architecture 
for MViews environments which allows new environments to be constructed by 
specialising classes based on the fundamental abstractions of MViews. Chapter 7 uses this 
architecture as the basis for an implementation of MViews in Snart. 

5.4.2. Overview of IspelM 

IspelM defines an environment for constructing object-oriented software using multiple 
textual and graphical views with view consistency. Fig. 5.4. shows the basic abstractions 
used by IspelM. These abstractions include: 

• Base elements: base clusters, which group related classes; base classes, which 
store information about classes for an object-oriented language; and base 
features, which store information about class attributes, methods, inherited 
features and deferred features. These base elements are connected by various 
relationships: generalisation, which specifies one class is generalised to another; 
client-supplier relationships, which indicate a class is used by another; and class 
and feature ownership, which indicates which cluster a class is owned by and 
which class a feature is owned by respectively. 

• Class diagram subset views contain subset components of base components that 
are to be rendered graphically. Subset components are: class icons, which are 
partial views of base classes (class name and class feature names); generalisation 
glue, which is a view of base generalisation relationships; and client-supplier 
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glue, which views both base features (aggregate client-supplier relationships) 
and base client-supplier associations. Textual code views represent a textual 
rendering of base components. Subset components for textual code views are: 
class text, which represents a class’s interface, part of a class interface or class 
documentation; and method text which represents a method interface and 
implementation or method documentation. 

• A class diagram display view renders class diagram subset views and 
components in a graphical form. Users interact with this rendering using tools 
(direct manipulation) or dialogues (directly update subset view data). Textual 
code display views render textual code subset views as text and users edit this 
text interactively. Updated text is then parsed and the updates sent to textual 
subset components which update base components appropriately. 
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fig. 5.4. Basic abstractions of IspelM. 

SPE can be thought of as a specialisation of IspelM for programming Snart. Chapter 8 
describes an architecture and implementation for IspelM and SPE based on the MViews 
architecture and implementation from Chapters 6 and 7. 
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5.4.3. Basic Abstractions of MViews 

From the discussion of MViews in Section 5.3. the following basic abstractions can be 
made. An MViews program, P, is represented by the 4-tuple: 

P  =def  <C,A,R,V> 

where: 
• C is the set of components that comprise the program, made up of <Component 

,ComponentKind> values, where Component is of type Integer (unique for P) and 
ComponentKind is of type String; 

• A is the set of attribute triples of the form <Component,AttributeName,Value>, 
where AttributeName is of type String and Value’s type is one of Boolean, 
Integer, String, List(Value), or Enumerated, where Enumerated is of the form 
<Value1,...,Valuen> and Valuei is of type String; 

• R is the set of relationships between components, represented as triples of the 
form <Relationship,Parent,Child>, where Relationship, Parent and Child types are 
all of type Component; 

• V is the set of views, as triples of the form <Component,Focus,Elements>, where 
Focus (of type Component) is the owning component of the view and Elements is a 
sequence of (possibly disjoint) Component values represented in the view10. 

For some program, p, C(p) = all the Component values for p; R(p) are all the relationship 
component values for p; and V(p) all the view component values for p. For some 
relationship, r, Parent(r) = the parent Component for r and Child(r) = the child Component 
for r. 

The dependents of a component are all those components related to it, i.e.: 
Dependents(p,c) =def  {r|r�R(p) � (Child(r)=c Δ Parent(r)=c)}≈ 
 {d|∃r:r�R(p)�d=Child(r)�c=Parent(r)}≈ 
 {d|∃r:r�R(p)�d=Parent(r)�c=Child(r)} 

Update records are represented as value lists of the form 
<Component,UpdateKind,V1,...,Vn> where UpdateKind : String. A program, P1, is 
manipulated by successively applying a sequence of operations <O1,...,On> to P1 to form 
Pn+1. Any operation, Oi, applied to a component, Cj, produces a new state, Pi’, and sends 
an update record, Uo, to the dependents of Cj. Further operations may be generated by 
dependent component interpretation of these update records to produce the final state, 

                                                 

10We could describe the Elements and Focus of a view using relationships but this view representation helps 

for purposes of abstraction and reasoning with MViews program graphs. 
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Pi+1. The visual representation of any views, {V1,...,Vm}, containing Cj (or one of it’s 
dependents, if updated by Uo) will be re-rendered to reflect the changed program state. 

5.4.4. Defining Component Kinds with MVSL 

Section 5.4.3. defines a conceptual representation for an instance of a program stored in an 
MViews environment. Each component has a ComponentKind associated with it which 
describes the “type” of the component and component attribute values also have 
associated types. To specify the state of all programs a particular MViews environment 
can represent we can use this notion of component and attribute types to produce a 
component specification for the environment. 

Fig. 5.5. shows an example component specification from IspelM defining two component 
kinds, class and generalisation. Base component types are differentiated into base element 
and base relationship which together comprise the components of a base program graph. 
Base element types define base program graph nodes while base relationship types define 
base program graph edges. Attributes for a component are defined by attributes and 
relationships the component needs to access by relationships. The significance of 
operations and updates is described in the following sections. Appendix F describes the 
complete concrete syntax for MVSL. 
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-- The base element class 
-- 
base element class 
 attributes 
  class_name : string 
  kind : [normal, abstract] 
 relationships 
  cluster : one-to-one cluster 
  generalisations : generalisation.child 
  client_suppliers : client_supplier.parent 
  classifiers : classifier.parent 
  features : one-to-many feature 
  specialisations : one-to-many class 
  all_features : one-to-many component all_feature 
 operations 
  ... 
 updates 
  ... 
end class 
 
-- Base generalisation relationship 
-- 
base relationship generalisation 
 parent class 
 child class 
 relationships 
  renames : one-to-many rename 
 operations 
  ... 
 updates 
  ... 
end generalisation 

fig. 5.5. An example of basic state definitions for MVSL. 

Attributes are declared as AttributeName : AttributeType, with allowable types being 
integer, boolean, string, list(Type), and [enumerated_value1,...,enumerated_valuen]. 
Attributes can also be declared as the same type as an attribute of some other component 
using AttributeName1 : like Component.AttributeName2. For an instance of a component 
kind, the value of one of the component instance’s attributes must be of the same type as 
the attribute is declared as in MVSL. A relationship component declares, in addition to its 
attributes and relationships, distinguished parent and child attributes (as shown for 
generalisation in fig. 5.5.). These are declared with component types which determine 
the component kinds the relationship connects. For example, generalisation declares its 
parent and child to be classes in fig. 5.5. 

All inter-component connections are described in terms of relationships. A component 
declares the relationship components it is interested in accessing as RelationshipName : 
RelComp, where RelComp is a relationship component name. The component declaring the 
relationship must be either the parent or child of the relationship component and this is 
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indicated by appending a .parent or .child qualifier to each relationship component 
name. For example, classifiers for a class in fig. 5.5. are declared as classifiers : 
classifier.parent, which indicates that a class instance is interested in all classifier 
relationships to itself where it is the parent (as classes are also the children for a group of 
classifier relationship instances). 

Relationship names for a component refer to the relationship components connected to an 
instance of the defining component. For example, the value of classifiers for some 
instance of class from fig. 5.5. will be all classifiers connected to the class instance where 
the class instance is the parent of the classifier relationships. 

Relationships may also be declared as simple link relationships, of the form 
RelationshipName : one-to-one CompKind or RelationshipName : one-to-many 

CompKinds, where CompKind is a component kind name. This is a short-hand declaration 
included so simple component linking relationships (which define no attributes or 
relationships of their own) needn’t be defined as relationship components. The value of 
such a relationship name for a component instance is either the connected component 
instance (for one-to-one relationship links) or a list of component instances (for one-to-
many links). For example, the value of features for an instance of class from fig. 5.5. is a 
list of feature instances connected to the class by any class.features link relationships 
where the class instance is the parent for the features relationship. 

A base view component is used to group base elements and relationships. Only one base 
view may be defined per MVSL specification. Fig. 5.6. shows the definition for a base view 
for IspelM. An IspelM base view, as represented in fig. 5.4., maintains relationships to the 
clusters and classes that comprise an object-oriented program. These are defined by 
clusters and classes one-to-many relationships in fig. 5.6. Appendix D gives a complete 
MVSL specification for IspelM. 
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-- Program for IspelM 
-- 
base view program 
 attributes 
  name : string 
 
 relationships 
  clusters : one-to-many cluster 
  classes : one-to-many class 
 
end program 

fig. 5.6. A base view defined by IspelM. 

5.4.5. Subset Views and Components 

Subset components represent subsets of the base view’s components and are grouped by 
subset views. MVSL allows subset elements, subset relationships and subset views to be 
declared, as shown in fig. 5.7. 
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-- Class icons represent class name/kind and arbitrary 
features (as their names) 
-- owned by base class. 
-- 
subset element class_icon 
 attributes 
  class_name : like class.class_name 
  kind : like class.kind 
  feature_names : list like feature.feature_name 
 
 relationships 
  view : one-to-one class_diagram_view 
  base : one-to-one class 
 
end class_icon 
 
-- Generalisation Glue 
-- 
subset relationship generalisation_glue 
 parent class_icon 
 child class_icon 
 attributes 
  name : string 
 
 relationships 
  view : one-to-one class_diagram_view 
  base : one-to-one classifier 
 
end generalisation_glue 
 
-- Class text 
-- 
subset element class_text 
 attributes 
  class_name : like base_class.name 
 
 relationships 
  view : one-to-one class_code_view 
  base : one-to-one class 
 
end class_text 
 



Chapter 5 Modelling and Specifying Environments with MViews Page 110 

 
-- Class diagram view 
-- 
subset view class_diagram_view 
 components 
  class_icon, generalisation_glue, cs_or_feature, 
classifier_glue 
 
 attributes 
  name : string 
 
 relationships 
  focus : one-to-one class 
 
end class_diagram_view 
 

fig. 5.7. Subset views and subset view components from IspelM. 

Subset elements and relationships can define the base components they view and subset 
view they are contained in using relationships. Subset views define the subset components 
they can contain by components Elements. In fig. 5.7., class_icon and 
generalisation_glue define their state to be a subset of their base component state. 
class_icon could also define relationships such as generalisations : 

generalisation_glue and client_suppliers : client_supplier_glue if these are to be 
accessed from class_icon. These relationships correspond to those defined in fig. 5.4. for 
IspelM subset views and components. For example, MVSL defines a class_icon to be 
linked to its base class by relationship base and to its view by relationship view, which 
corresponds to the relationships in fig. 5.4. for class_icon. Similarly generalisation_glue 
is linked to its base generalisation and subset view, and class_diagram_view is linked its 
focus base class. 

Composite subset components can be defined by having a subset component dependent 
on two or more base components using multiple relationships. Client-supplier glue is 
defined in this way so it can view a base feature (if its an aggregate client-supplier 
relationship) or base client-supplier (if its a feature call or argument/local variable 
association). Subset components can also be related to one another to produce subset 
component dependencies. Subset components receive updates from base components and 
can transform these into operations on themselves. Subset components can also transform 
updates on themselves into operations on their base components. 

5.4.6. Operations 

Instances of programs defined using MVSL need to be manipulated, which corresponds to 
a program being constructed and changed. Components need to be added and deleted 
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and component attributes changed. Given the fundamental component kinds used by 
MVSL, a basic set of operations can be defined, as described in table 5.3. 
 

Operation In Arguments Out Arguments Description 
add_element CompKind ComponentID create a new element component 
delete_component ComponentID  deletes any component from the 

MViews program graphs 
get_attribute ComponentID, Attribute Value fetch component’s attribute value 
update_attribute ComponentID, Attribute, 

NewValue 
 update component’s attribute value 

establish CompKind, Parent, Child 
or 
CompKind.RelName, 
Parent, Child 

ComponentID 
 

establish a relationship between two 
components 

dissolve CompKind, Parent, Child 
or 
CompKind.RelName, 
Parent, Child 

 dissolve relationship between two 
components 

create_view CompKind ComponentID create new view component 
add_view_component CompKind, ComponentID  add a component to a view 
remove_view_componen
t 

CompKind, ComponentID  remove a component from a view 

store_update ComponentID, List(Value)  store an update against a component 
record_update ComponentID, List(Value)  record an update against a component 

(propagate to dependents) 

table 5.3. Basic operations for MVSL. 

Elements are added using add_element and components deleted using delete_component. 
Attributes are fetched and updated with get_attribute and update_attribute. An 
alternative syntax for attribute fetch (get_attribute) is Component.Attribute(Value) and 
for attribute update (update_attribute) is ComponentID.Attribute:=Value. Relationships 
are established and dissolved with establish and dissolve and views created with 
create_view. View components are added and removed using add_view_component and 
remove_view_component. Update records can be propagated to dependents using 
record_update and stored against components using store_update11. 

While the set of operations from table 5.3. is sufficient for modifying program graphs, 
additional operations can be defined which use these basic operations. These component-
specific operations allow “macro-operations” to be defined which provide application-
specific operations useful for allowing reuse of common sequences of program graph 
changes. Procedural-style commands are also defined which support conditional execution 
of operations and looping. These are shown in table 5.4. 
 

                                                 

11Update records are stored as lists of values and the distinguished component attribute updates : 

list(list(Value)) is used to hold these stored update records for each component. 
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Command Syntax Description 
if <boolean expression> then 
 <operations if true> 
else 
 <operations if false> 
end if 

if-then-else statement. The else-part is optional. 

while <boolean expression true> do 
 <operations> 
end while 

while statement. Loops through operations while the 
expression remains true. 

forall <variable> on <list> do 
 <operations> 
end forall 

forall statement. Interates through all values in list and 
executes operations with variable set to each list value in 
turn. 

table 5.4. MVSL procedural commands. 

Variables  are used to hold non-component related values. Arguments and local variables 
used in component-specific operations have types similar to component attributes. 
Arguments are defined to pass values to an operation (designated by the prefix in) and/or 
return values produced by an operation (designated by out). Global values can also be 
defined and an initialisation operation is provided to define the initial state for an MViews 
environment (as shown in fig. 5.8). The scoping of MVSL operations is similar to methods 
in most object-oriented programming languages with the attributes, relationships and 
operations defined by a component referred to by name only inside the defining 
component’s operations. Examples of component-specific operations from IspelM are 
shown in fig. 5.8. To apply these operations to a component the syntax 
Component.Operation(Argument1,...,Argumentn) is used. 
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-- The base element class 
-- 
base element class 
 ... 
 operations 
  -- add feature 
  -- 
  add_feature(in name : like feature.feature_name, 
   in kind : like feature.kind, 
   in type : like feature.type_name, 
   out new_feature : feature) is 
   add_element(feature,new_feature) 
   new_feature.init(kind,type) 
   establish(class.features,self,new_feature) 
  end add_feature 
 ...   
  -- Map this class icon to a base class 
  -- 
  map(in do_map : boolean) local 
   base_class : class 
  is 
   base_class := program.find_class(class_name) 
   if base_class \== nil then 
    if do_map then 
    
 establish(subset_relationship,base_class,self) 
    end if 
end class 
 



Chapter 5 Modelling and Specifying Environments with MViews Page 114 

 
-- Class icon. 
-- 
subset element class_icon 
 ... 
 operations 
  -- reselect new class 
  -- 
  reselect_class(in name : like class.class_name) 
  local 
   other_class : class 
  is 
   other_class := program.find_class(name) 
   if other_class \== self then 
    dissolve(subset_relationship,base,self) 
    class_name := name 
    remap 
   end if 
  end reselect_class 
 ... 
end class_icon 
 
-- Global values 
-- 
program : program 
 -- base view reference 
 
-- Initial computation 
-- 
initialise 
 add_element(program,program) 
 program.record_update(init) 
end initial 
 

fig. 5.8. Some component-specific operations from IspelM. 

The value of an expression is defined by MVSL in a similar manner to most programming 
languages. Operators include addition and subtraction for integers and boolean algebra. 
In addition to arguments and local variables, component-specific operations define a 
distinguished local variable self which allows an operation to determine the component it 
is being applied to. Functional operations can be defined for a component which are 
component-specific operations that return a value. A functional operation is declared of 
the form OpName(...Arguments...) : Type is ... end OpName. Functional operations 
refer to their result using a distinguished variable result (in a similar manner to Eiffel 
functions).  

Relationships can be established between a component and a “nil component” value, 
indicated by the value nil, which allows the actual relationship to be created but later 
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reestablished to an actual component12. A nil value can be returned by a function and is 
the default value for all the attributes of a component when it is first created. 

MVSL currently permits a procedural environment specification where variables can be 
assigned a value (in addition to component attributes being assigned a value) and 
operations and commands are assumed to be applied in sequence to a program state. A 
functional specification could be used where variable names define values that can not be 
assigned to. The procedural forall and while commands could be replaced with mapping 
functions and recursive functions respectively. Operations must be sequential as each 
successive operation produces a new program state from the program state produced by 
its prior operation. This could be described by functional composition where, for a 
program state p and two operations f and g,  the final program state is g(f(p)). A concrete 
representation of this might be f ; g where f and g are operations. 

5.4.7. Update Operations 

When a component’s state is changed by an operation (i.e. its attributes or relationships 
modified or it is deleted) it must broadcast this change to any components dependent on 
its state with an appropriate update record. Dependent components then interpret this 
update record and apply further operations to reconcile their state to that of the changed 
component (to maintain a consistent program state). Components define update operations 
to process update records sent to them by other components, as shown in fig. 5.9. 
 

                                                 

12This is useful when only partial information for determining the components to relate is supplied the 

relationship or the components to relate depend on attribute values or other relationship values for the 

relationship. 
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base relationship generalisation 
 ... 
 updates 
  -- When establish/dissolve generalisations, 
  -- maintain specialisations list attribute 
  -- Store updates against owning_class, not 
generalisation. 
  -- 
  establish(rel:relationship, kind : string, 
   parent : class, child : class) where 
   rel = self and kind = “generalisation” 
  is 
   owning_class.store_update([add_gen,child,parent]) 
     parent.specialisations := parent.specialisations 
++ {self} 
  end establish 
  
  dissolve(rel:relationship, kind:string, parent : 
class, child : class) where 
   rel = self and kind = “generalisation” 
  is 
  
 owning_class.store_update([remove_gen,child,parent]) 
     parent.specialisations := parent.specialisations -
- {self} 
  end establish 
 ... 
end generalisation 
 



Chapter 5 Modelling and Specifying Environments with MViews Page 117 

 
subset element class_icon 
 ... 
 updates 
  remap_feature(name, new_name:like 
feature.feature_name, 
   new_type:like feature.type_name, 
   new_kind:like feature.kind, 
   show:boolean) where true local 
   feature : feature 
  is 
   feature := base.find_feature(new_name) 
   if feature = nil then 
   
 base.add_feature(new_name,new_type,new_kind,feature) 
   end if 
   remove_feature_name(name) 
   if show then 
    add_feature_name(new_name) 
   end if 
  end remap_feature 
 
  -- Translate base attribute updates into subset 
changes 
  -- 
  update_attribute(class : class, name : string, 
   old : string, new : string) where 
   class = base and name = “class_name” 
  is 
   class_name := new 
  end update_attribute 
... 
end class_icon 
 

fig. 5.9. Update operations from IspelM. 

Updates are “guarded”, input-only operations. They are only executed if their component 
receives an update record with the same name as the update operation, the same number 
and type of arguments, and if the expression guard for the update operation evaluates to 
true. This provides a simple pattern match algorithm for determining which update to 
apply. Update operations have input-only arguments (outputs do not make sense) and 
hence the in keyword is discarded for them. 

Subset and base component updates are propagated to each other by subset components 
defining update operations to detect updates to their base component and to themselves. 
Subset components detect base component updates and transform them into appropriate 
operations on themselves (if necessary). A subset component also detects updates on itself 
and transforms these into base component updates (if appropriate). 
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We currently assume the implementation language for MViews provides its own 
persistency model (such as an object store or database). Chapters 7 and 10 discuss the 
issue of program persistency in further detail. 

5.5. A Formal Specification of MVSL 

5.5.1. Operational Semantics 

Operational semantics provide a mechanism for specifying programming language static 
and dynamic semantics using validity and meaning functions. Given a program construct, 
validity functions provide a boolean result indicating whether the construct is valid or not. 
Given a program execution “state” and a program construct, meaning functions return a 
new state which is defined to be the effect of “executing” the construct in the old state. 
Reviews of operational and denotational semantics can be found in (Tennent 76, Gordon 
79). MVSL was specified using operational semantics and then, to verify the correctness of 
this specification, we implemented the operational specification using Gofer (Haskell) 
(Jones 92). (Finlay and Allison 93) provides an example of the usefulness in verifying a 
formal specification via an implementation using a functional language. 

An abstract syntax for MVSL is defined which allows us to represent the structure of 
MVSL programs without the additional syntactic sugar used in the MVSL concrete syntax. 
Identifiers defined by MVSL are associated with type values which describe the type of 
attributes, relationships and operations. The state of an MViews program is described by a 
tuple which represents the views and program graphs stored by an environment. The 
basic operations and commands for MVSL are defined as functions which map an initial 
state and operation to a new state, hence defining the effect of executing the operation. 
Two forms of update records are used in this formal specification. One form is used to 
broadcast changes between program components and these components interpret these 
update records with update operations. The other form is used to communicate with 
MVisual and is part of the program state. Whenever an update record is generated by a 
program component a corresponding “output” update record is recorded in the program 
state to inform MVisual of the component change. 

5.5.2. Concrete vs. Abstract Syntax 

MVSL programs, as described in Section 5.4., contain much syntactic sugar that hides the 
actual structure of an MVSL specification. It is convenient to be able to avoid such 
semantically irrelevant details by using an abstract form of syntax that specifies the 
structure of programs and not how they are represented as strings of symbols (Tennent 
76). Fig. 5.10. shows a concrete syntax for an MVSL program and its equivalent abstract 
syntax (using Gofer notation). 
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base element class 
 attributes 
  class_name :  string 
  kind : [normal,abstract] 
 relationships 
  features : one-to-many feature 
  generalisations : generalisation.child 
 operations 
  add_feature(in name : string, in type : string, 
   out new_feature : feature) 
  is 
   add_element(feature,new_feature) 
   new_feature.init(name,type) 
   establish(class.features,self,new_feature) 
   establish(feature.owning_class, 
    new_feature,self) 
  end add_feature 
end class 

BaseElement “class” 
 [Attribute “class_name” StringType, 
  Attribute “kind” Enum [“normal”,”abstract”]] 
 [Relationship “features” OneToMany “feature”, 
  Relationship “generalisations”  
  (CompAttr “generalisation” “child”)] 
 [Operation “add_feature”  
  [InArg “name” StringType, 
   InArg “type” StringType, 
   OutArg “new_feature” CompType “feature”] Void 
  [AddElement “feature” (Ident “new_feature”) :& 
   ApplyOp (FuncOp “new_feature” “init” []) 
   [Ident “name”,Ident “type”] :& 
   EstablishLink (CompAttr “class” “features”) 
   (Ident “self”) (Ident “new_feature”) :& 
   EstablishLink (CompAttr “feature” “owning_class”) 
   (Ident “new_feature”) (Ident “self”) ] ] 
   

Concrete Syntax Abstract Syntax 

fig. 5.10. A concrete MVSL program example and its equivalent abstract syntax form. 

Fig. 5.11. gives an example of an abstract syntax definition for MVSL using Gofer notation 
(abstract syntax productions are defined as user defined data types). Appendix C gives a 
full Gofer implementation for this operational semantics specification for MVSL. This 
abstract syntax definition for MVSL mirrors the basic abstractions made by MVSL for 
defining declarations (base views, elements, etc.), commands (operations and procedural 
control structures), expressions and types. 
 

data Program = Pro [Decl] Command 
 
data Decl = BaseView Ide [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] | 
  BaseElement Ide [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] | 
  BaseRelationship Ide ParentDecl ChildDecl [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] | 
  GraphicView Ide [Ide] [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] | 
  GraphicIcon Ide [Ide] [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] | 
  ... 
 
data AttributeDecl = Attribute Ide Type 
data RelationshipDecl = Relationship Ide Type 
data OperationDecl = Operation Ide [OpArgumentDecl] [LocalDecl] Command | 
  Function Ide [OpArgumentDecl] Type [LocalDecl] Command 
... 
 
data Command = Exp := Exp | 
 Eifthen Exp Command Command | 
 Ewhile Exp Command | 
 AddElement Ide Exp | 
 DeleteComponent Exp | 
 Establish Type Exp Exp Exp | 
  Dissolve Type Exp Exp | 
 Store Exp UpdateValue | 
 ... 
 
data Exp = IntLit Int | 
 StringLit String | 
 True_ | False_ | 
 Ident String | 
 Op Opr Exp Exp | 
 FuncOp Exp Ide [Exp] 
 
data Type = BoolType | 
  StringType | 
  IntType | 
  ListType Type | 
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  ComponentType Ide | 
  CompAttrType Ide Ide | 
 ... 
 

fig. 5.11. Some abstract syntax definitions for MVSL. 

5.5.3. Declaration Types 

Abstract syntax declarations define identifiers that refer to components and variables. 
These identifiers are used to determine the type of variables and structure of components 
when despatching component-specific operations, selecting an update operation to apply, 
and when matching update operation arguments and types. Thus a type map from 
identifiers to their type structure is required. This type map could also be used to 
determine the static validity of declarations, commands and expressions (for example, that 
the same component kind isn’t defined twice, a component-specific operation actually 
exists for a component, and that elements of an expression have compatible types). Fig. 
5.12. illustrates some of the type map definitions for the operational specification of MVSL. 
 

-- Declaration value maps type identifier to type value 
-- 
type DeclValue = Ide -> TypeValue 
 
-- TypeValue 
-- 
data BasicKind = KBaseView | KBaseEl | KBaseRel | 
  KGraphicView | KGraphicIcon | KGraphicGlue | 
  KTextView | KTextElement | 
  KComp | KLinkRel 
 
data TypeValue = TCompData BasicKind [Ide] CompTypes | 
  TString | 
  TInteger | 
  TOneToMany TypeValue | 
 TComp Ide | 
  TCompAttr Ide Ide | 
   ... 
 
-- Component types map component attribute etc. names to CompType values 
-- 
type CompTypes = Ide -> CompType 
 
data CompType = CAttribute TypeValue | 
 CRelationship TypeValue | 
 COperation OpArgs TypeValue OpLocals CommandMeaning | 
 CUpdates [CUpdate] | 
 CNotDefined 
 
-- Command/exp meaning: given some function which maps Commands/Exp to new States/Values, 
-- return a State/Value given a State 
-- 
type CommandMeaning = (State -> Command -> State) -> State -> State 
type ExpMeaning = (State -> Exp -> Value) -> State -> Value 
 
-- Arguments and local variables for operations 
-- 
type OpArgs = [(Ide,InOrOut,TypeValue)] 
data InOrOut = In | Out 
 
type OpLocals = [(Ide,TypeValue)] 
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Fig. 5.12. Type and component declaration values for MVSL. 

DeclValue is defined to be a type whose value is a function mapping identifiers to 
TypeValues. TypeValue is a user defined data type which specifies an identifier’s type is a 
string, integer, one-to-one relationship, component identifier, component attribute, 
component definition, and various other types (as defined in Appendix C). 

A component definition (TCompData) has a basic kind (one of base view, base element, 
subset relationship, etc.) which is defined by BasicKind. Components define a set of 
identifiers whose types are component values (attributes, relationships, operations and 
update operations). The type CompTypes is used to map component definition identifiers to 
component value types. The value of CompTypes is a function which maps component 
identifiers to their component value types (defined by CompType). A component definition 
also includes a list of all the identifiers defined for the component (i.e. the domain of 
CompTypes for the component).  

Operations and update operations define arguments, a type (for functional operations), 
local variables and a command. An operation command does not have a type as such, but 
rather a meaning when the operation is executed. This is defined as the meaning of the 
command given a particular program state (defined as CommandMeaning), i.e. the effect of 
executing the operation command (the type of State is given in Section 5.5.5.). Similarly, 
an update operation guard expression has a meaning which is its value for a particular 
program state (the type of Value is defined in Section 5.5.5). Component-specific 
operations and update operations are despatched for components in a similar manner to 
methods for object-oriented languages. Thus the operational semantics specification for 
MVSL requires these command and expression meanings (and, in fact, the whole 
DeclValue for a program), in addition to a program State, to specify the dynamic 
semantics for an MVSL program. 

5.5.4. Building a Type Map for MVSL Program Declarations 

Given a list of abstract syntax component declarations for a program, a type map must be 
constructed for these declarations. Fig. 5.13. shows part of the definition for 
program_decls, a function which returns a type map (DeclValue) for a list of abstract 
syntax declarations ([Decl]) . 
 

-- Compute the declarations value for a list of program declarations 
-- 
-- Returns DeclValue for program and a list of identifiers  to create locations for (i.e. globals) 
-- 
-- rel_comps computes any link relationships defined by the component 
-- and adds a DeclValue for their name (name = CompKind.RelName) 
-- 
program_decls :: [Decl] -> DeclValue -> [Ide] -> (DeclValue,[Ide]) 
program_decls [] dv gs = (dv,gs) 
program_decls (d:ds) dv gs = (new_dv,new_gs) where 
 (n,tv,rs,globals) = decl_value d 
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 (new_dv,new_gs) = program_decls ds  
  (updateDeclValue (rel_comps dv rs n)  n tv) (gs++globals) 
 
-- Function over-riding for DeclValue 
-- 
updateDeclValue :: DeclValue -> Ide -> TypeValue -> DeclValue 
updateDeclValue dv n tv i = if i==n then tv else dv i 
 
-- Compute the Ide/TypeValue/Link Relationships/Globals for a component/global declaration 
-- 
rel_comps :: DeclValue -> [RelationshipDecl] -> Ide -> DeclValue 
rel_comps dv [] comp_name = dv 
rel_comps dv ((Relationship name (OneToOne _)):rs) comp_name = new_dv where 
 new_dv = rel_comps (updateDeclValue dv (comp_name++"."++name) link_rel) rs comp_name 
rel_comps dv ((Relationship name (OneToMany _)):rs) comp_name = new_dv where 
 new_dv = rel_comps (updateDeclValue dv (comp_name++"."++name) link_rel) rs comp_name 
 
-- Compute the Ide/TypeValue pair for a declaration and any relationships it defines 
-- 
decl_value :: Decl -> (Ide,TypeValue,[RelationshipDecl],[Ide]) 
decl_value (BaseView name as rs os us) = (name,tv,rs,[]) where 
 (names,comp_ts) = default_types KBaseView (update_types (op_types (rel_types (attribute_types  
  ([],emptyCompTypes) as) rs) os) us) 
 tv = (TCompData KBaseView names comp_ts) 
decl_value (BaseElement name as rs os us) = (name,tv,rs,[]) where 
 (names,comp_ts) = default_types KBaseEl (update_types (op_types (rel_types (attribute_types  
  ([],emptyCompTypes) as) rs) os) us) 
 tv = (TCompData KBaseEl names comp_ts) 
decl_value (BaseRelationship name pd cd as rs os us) = (name,tv,rs,[]) where 
 (names,comp_ts) = default_types KBaseRel (update_types (op_types (rel_types (attribute_types  
  (parent_types (child_types ([],emptyCompTypes) cd) pd) as) rs) os) us) 
 tv = (TCompData KBaseRel names comp_ts) 
... 
 
-- Compute attribute types for list of attribute declarations 
-- 
attribute_types :: ([Ide],CompTypes) -> [AttributeDecl] -> ([Ide],CompTypes) 
attribute_types (names,ct) [] = (names,ct) 
attribute_types (names,ct) ((Attribute n t):as) = 
 attribute_types ([n]++names,(updateCompTypes ct n (CAttribute (type_value t)))) as 
 
-- Compute relationship types for list of relationship declarations 
-- 
rel_types :: ([Ide],CompTypes) -> [RelationshipDecl] -> ([Ide],CompTypes) 
... 
 
-- Compute operation types for list of operation declarations 
-- 
op_types :: ([Ide],CompTypes) -> [OperationDecl] -> ([Ide],CompTypes) 
op_types (names,ct) [] = (names,ct) 
op_types (names,ct) ((Operation n arg_decls loc_decls command):os) = 
 op_types ([n]++names,(updateCompTypes ct n (op_value arg_decls loc_decls (op_meaning command)))) os 
op_types (names,ct) ((Function n arg_decls t loc_decls command):os) = 
 op_types ([n]++names,(updateCompTypes ct n (fn_value arg_decls t loc_decls (op_meaning command)))) os 
 
-- Compute update types for list of update declarations 
-- 
-- This produces a list of guarded, input-only operations which are  
-- event-driven by updates on a component. 
-- 
update_types :: ([Ide],CompTypes) -> [UpdateDecl] -> ([Ide],CompTypes) 
   update_types ([n]++names,(updateCompTypes ct n (CUpdates [upd_op]))) us 
... 
 
-- Value of an operation declaration 
op_value :: [OpArgumentDecl] -> [LocalDecl] -> CommandMeaning -> CompType 
op_value as ls command = (COperation (op_arg_types as) TVoid (local_types ls) command) 
 
-- Value of a "functional operation" is same as for operation but with a type 
fn_value :: [OpArgumentDecl] -> Type -> [LocalDecl] -> CommandMeaning -> CompType 
... 
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-- Value of an "update operation" is same for operation but arguments are input-only 
update_value :: [LocalDecl] -> [LocalDecl] -> ExpMeaning -> CommandMeaning -> CUpdate 
... 
 
-- Bind operation arguments to in/out status and type 
-- 
op_arg_types :: [OpArgumentDecl] -> OpArgs 
... 
 
-- Bind local variables to type 
-- 
local_types :: [LocalDecl] -> OpLocals 
... 
 
-- Bind update arguments to type 
-- 
update_arg_types :: [LocalDecl] -> OpArgs 
... 
 
-- Value of an abstract syntax type 
-- 
type_value :: Type -> TypeValue 
type_value (StringType) = (TString) 
type_value (IntType) = (TInteger) 
type_value (OneToMany c) =(TOneToMany c) 
type_value (ComponentType n) = (TComp n) 
... 
 
-- Default attributes and component types for a component given its "BasicKind" 
-- 
data DefaultType = Default Ide CompType 
 
default_types :: BasicKind -> ([Ide],CompTypes) -> ([Ide],CompTypes) 
... 

fig. 5.13. Constructing the DeclValue and CompTypes functions. 

For each component or global abstract syntax declaration (Decl), the function decl_value 
returns the identifier used to refer to the component or variable, its TypeValue, any link 
relationship declarations for the component, and any global variables it defines. All link 
relationships (named as “CompName.RelName”) have simple component definitions and the 
function rel_comps extends DeclValue with these definitions so link relationships can be 
treated in the same way as more complex component relationships. 

Each attribute, relationship, etc. declaration for a component needs an identifier to 
CompType mapping (defined as CompTypes for a component definition TypeValue). The 
functions parent_types, child_types, attribute_types, relationship_types, 
operation_types and update_types return an identifier/CompTypes pair given a list of 
component value declarations. The type of an operation or update operation includes 
identifier to TypeValue mappings for the arguments and local variables defined by the 
operation, and a meaning for the operation command and guard expression. 

5.5.5. State 

MViews represents programs as object dependency graphs with subset views also being 
object dependency graphs. The state of an MViews environment will hence be similar to 
that described in Section 5.4.2. with components, attribute values, relationships and views. 
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Relationships and views can be modelled as components with attribute values 
corresponding to their parent, child and view components values. 

In addition to this program and view state, an MVSL program state needs to map 
identifiers to corresponding values. An environment (Tennent 76) is used to map identifiers 
to denotable values (literals, pointers, and component values) while a store (Tennent 76) is 
used to map locations to expressible values (literal values: integers, strings, and 
component identifiers). This allows operation arguments and local variables to be defined 
as extending an environment (when executing the operation command) and the 
environment to be restored to its former state (after execution of an operation command). 

Fig. 5.14. illustrates the state definitions for the operational specification of MVSL. 
 

-- CompStore 
type CompID = Int 
type CompStore = CompID -> Ide -> CompValue 
data CompValue = NoCValue | CValue Dv 
 
emptyCompStore :: CompStore 
emptyCompStore _ _ = NoCValue 
 
new_comp :: CompStore -> Ide -> (CompStore,CompID) 
new_comp s k = new_comp' 1 where 
 new_comp' i = case s i "class" of  
  NoCValue -> (updateCompStore s i "class" (Rv (Vstring k)),i) ; _ -> new_comp' (i+1) 
 
updateCompStore :: CompStore -> CompID -> Ide -> Dv -> CompStore 
updateCompStore s c a v i j = if i==c && j==a then (CValue v) else s i j 
 
remove_comp :: CompStore -> CompID -> CompStore 
remove_comp s c i j = if i==c then NoCValue else s i j 
 
-- All relationships for a component are stored by "relationships" 
comp_rels :: State -> CompID -> [CompID] 
comp_rels s c = rels where 
 rels = case comps s c "relationships" of 
  (CValue (Rv (Vlist rel_values))) -> values_to_comps rel_values 
  _ -> [] 
 
-- View components for a view are stored in "components" 
view_comps :: State -> CompID -> [CompID] 
view_comps s c = vcomps where 
 (CValue (Rv (Vlist comp_values))) = comps s c "components" 
 vcomps = values_to_comps comp_values 
 
-- Denotable values 
data Dv = Loc Location | Rv Value | CompValue CompID Ide 
 
-- Expressable values 
data Value = Vnum Int | Vbool Bool | Vstring String | Vcomp CompID | Vlist [Value] | Nil 
 
-- Store/Location for state variables 
type Location = Int 
data ValueOrUnused = Used Value | Unused 
type Store = Location->ValueOrUnused 
 
new :: Store -> Location 
updateStore :: Store -> Location -> Value -> Store 
 
-- Environment for state variables 
data ValueOrUnbound = Bound Dv | Unbound 
type Env = Ide -> ValueOrUnbound 
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updateEnv :: Env -> Ide -> Dv -> Env 
 
-- Update records = “term” of form Kind(Value1,Value2,...) 
data UpdateRecord = UpdateRec Ide [Value] 
data Output = OV CompID UpdateRecord 
 
-- The MViews program state is a tuple with component and location stores, an environment  
-- and output list. 
-- State also stores the DeclValue for a program as operations and updates must be  
-- despatched on a per-component basis (could pass this value to all functions using  
-- State, but its easiest to put it here). 
-- 
type State = (CompStore,Env,Store,[Output],DeclValue) 
 
-- Update/query state elements 
update_comps :: State -> CompStore -> State 
update_comps (_,e,s,o,dv) c = (c,e,s,o,dv) 
... 
comps :: State -> CompStore 
comps (c,_,_,_,_) = c 
... 
 

fig. 5.14. A program state for MVSL. 

5.5.6. Commands, Operations and Update Operations 

Expressions 

Expressions are evaluated with respect to a given program state. An expression can be 
evaluated to a denotable value (for assignment and variable parameter arguments) or an 
expressible value (for use in computation). Fig. 5.15. illustrates the meaning functions for 
expressions. 
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-- Get the value (Value) of an expression (i.e. an rvalue) 
-- 
rval :: State -> Dv -> Value 
rval s (Loc l) = r where (Used r) = (store s) l 
rval s (Rv v) = v 
rval s (CompValue c a) = cv where 
 (CValue (Rv (Vstring ct))) = (comps s c "class") 
 (TCompData bk vs comp_types) = (declarations s) ct 
 cv = case (comp_types a) of 
  (CAttribute t) -> av where 
   (CValue (Rv av)) = (comps s) c a 
  (CRelationship t) -> (rel_value c s a t) 
  (COperation [] t [] command) -> fn_result where 
   ... 
 
-- Get the denotable value for an expression (i.e. an lvalue) 
-- 
exp_val :: State -> Exp -> Dv 
exp_val _ (IntLit i) = Rv (Vnum i) 
exp_val _ (StringLit s) = Rv (Vstring s) 
exp_val s (Ident i) = ev where 
 (Bound ev) = (env s) i 
exp_val s (CompVal e a) = (CompValue c a) where 
 (Vcomp c) = exp_rval s e 
exp_val s (FuncOp c_exp arg_exps) = ev where 
 (CompValue c a) = exp_val s c_exp 
 (CValue (Rv (Vstring ct))) = (comps s c "class") 
 (TCompData bk vs comp_types) = (declarations s) ct 
 ev = case (comp_types a) of 
  (COperation args t locs command) -> fn_result where 
   ... 
  _ -> (CompValue c a) 
exp_val s (Op op lexpr rexpr) = opval op lv rv where 
 lv = rval s (exp_val s lexpr) 
 rv = rval s (exp_val s rexpr) 
 opval Plus     (Vnum a) (Vnum b) = (Rv (Vnum (a+b))) 
 opval Minus    (Vnum a) (Vnum b) = (Rv (Vnum (a-b))) 
 ... 

fig. 5.15. Expression meaning (including functional operations) for MVSL. 

rval returns the expressible value given a denotable value. exp_val returns a denotable 
value given an expression. Literals are returned as a denotable form of their expressible 
value, identifiers return their denotable value in the current environment, operators are 
evaluated, and a functional operator returns a value (if an operation) or component value 
(if attribute or relationship). The value of a functional operation is defined in a similar 
manner to component-specific operations but also returns a value. Functional operations 
are currently defined to not alter the state of an MVSL program (as rval and exp_val do 
not return a new State). This restriction could be removed by returning a new State as 
well as a value for expressions (Tennent 76). 

Expression and other meaning functions assume they are not given an invalid expression, 
command or operation for a given program DeclValue and State. Our current Gofer 
implementation returns a function exception if invalid abstract syntax values are given to 
meaning functions. This could be eliminated by performing static type checking for a 
given program (possibly when computing DeclValue) and not asking for the meaning of 
an invalid program. Another approach might use a continuation-style meaning function 
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specification (Tennent 76) which returns an “answer” (including error messages) for the 
whole program an expression or command is executed in. 

Commands 

To specify the dynamic semantics of an MVSL program, meaning functions for 
commands, operations and update operations are defined. The meaning of a command is 
the State returned after executing a command in a given program state. Fig. 5.16. shows 
example meaning functions for assignment and if-statements defined by the operational 
specification for MVSL. 
 

-- Meaning of all commands 
-- 
command_meaning :: State -> Command -> State 
command_meaning s c@(l := r) = assign s c 
command_meaning s c@(Eifthen e c1 c2) = if_then s c 
command_meaning s c@(Ewhile e com) = while s c 
... 
command_meaning s c = operation_command s c 
 
-- lv := rv 
-- 
assign :: State -> Command -> State 
assign s (lexp := rexp) = assign_result s lv rv where 
  lv = exp_val s lexp 
  rv = rval s (exp_val s rexp) 
 
-- assign_result 
-- 
-- if state variable => update store 
-- if component attribute => update component store 
-- 
assign_result :: State -> Dv -> Value -> State 
assign_result s (Loc l) rvalue = update_store s (updateStore (store s) l rvalue) 
assign_result s (CompAttr c a) rvalue = new_s where 
  (CValue (Rv old_v)) = (comps s) c a 
  updated_s = update_dependents s c (UpdateRec "update_attribute" [Vcomp c,Vstring a,old_v,rvalue]) 
  new_s = update_comps updated_s (updateCompStore (comps updated_s) c a (Rv rvalue)) 
 
-- if e then c1 else c2 
-- 
if_then :: State -> Command -> State 
if_then s (Eifthen expr if_command else_command) = new_s where 
  (Vbool ev) = rval s (exp_val s expr) 
  new_s = if ev then command_meaning s if_command 
     else command_meaning s else_command 
 

fig. 5.16. Command, assignment and if-statement meanings for MVSL. 

The effect of assignment is to update the Store (if a variable) or CompStore (if a component 
attribute). Component attribute assignment equates to an update_attribute operation, 
which generates and propagates an update record using update_dependents (see below). 
A conditional statement evaluates its boolean expression and, if this expression evaluates 
to true, returns the State produced by executing its first command, or if false, the State 
produced by executing its second command. 
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Basic Operations 

The meaning functions for operations return a State which is the effect of applying the 
operation to a component given an initial program state. Fig. 5.17. illustrates the meaning 
functions for the add_element and establish basic operations. 
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- Meaning of basic operation "commands" 
-- 
operation_command :: State -> Command -> State 
operation_command s c@(AddElement k e) = add_element s c 
operation_command s c@(DeleteElement e) = delete_element s c 
operation_command s c@(Establish kind p ch v) = establish_rel s c 
... 
 
-- add_element(in Kind,out CompID) 
-- 
add_element :: State -> Command -> State 
add_element s (AddElement kind new_var) = new_s where 
 (comp_s,new_c) = add_component s kind 
 (Loc new_loc) = exp_val comp_s new_var 
 new_s = update_store comp_s (updateStore (store comp_s) new_loc (Vcomp new_c)) 
 
-- Add a new component and set given variable to the new component ID 
-- 
add_component :: State -> Ide -> (State,CompID) 
add_component s kind = (new_s,new_c) where 
 (new_comps,new_c) = new_comp (comps s) kind 
 (TCompData bk vs ct) = declarations s kind 
 alloc_attributes [] cs c ct = cs 
 alloc_attributes (n:ns) cs c ct =  
  case (ct n) of 
   (CAttribute t) -> 
    if n == "class" then alloc_attributes ns cs c ct 
     else updateCompStore (alloc_attributes ns cs c ct) c n (Rv Nil) 
   _ -> alloc_attributes ns cs c ct 
 new_s = update_comps s (alloc_attributes vs new_comps new_c ct) 
 
-- establish_rel(in Kind,in Parent,in Child,out NewRel) 
-- 
establish_rel :: State -> Command -> State 
establish_rel s (Establish kind parent child new_rel) = new_s where 
 rk = rel_kind_type kind 
 (Vcomp p) = rval s (exp_val s parent) 
 (Vcomp c) = rval s (exp_val s child) 
 (comp_s,new_r) = do_establish_rel s rk p c 
 (Loc new_loc) = exp_val comp_s new_rel 
 new_s = update_store comp_s  
  (updateStore (store comp_s) new_loc (Vcomp new_r)) 
 
do_establish_rel :: State -> Ide -> CompID -> CompID -> (State,CompID) 
do_establish_rel s rk p c = (new_s,new_r) where 
 (r_s,new_r) = add_component s rk 
 new_rs = updateCompStore (updateCompStore (comps r_s) new_r "parent" (Rv (Vcomp p))) 
  new_r "child" (Rv (Vcomp c)) 
 new_pcr = updateCompStore new_rs p "relationships"  
  (Rv (Vlist (comps_to_values([new_r]++comp_rels r_s p)))) 
 new_pcc = updateCompStore new_pcr c "relationships"  
  (Rv (Vlist (comps_to_values ([new_r]++comp_rels r_s c)))) 
 updated_s = update_comps r_s new_pcc 
 new_s = update_dependents updated_s c  
  (UpdateRec "establish_rel" [Vstring rk,Vcomp p,Vcomp c]) 
 
 
 

fig. 5.17. The add_element and establish operation meaning functions. 

Component-Specific Operations 

Component-specific operations are applied to a component by allocating component, 
argument and local variables, executing the operation’s command to produce a new 
State, and then deallocating the variables (by returning the initial State environment). 



Chapter 5 Modelling and Specifying Environments with MViews Page 130 

This final State is defined to be the meaning of the component-specific operation. 
Component-specific operations are defined to have a scope like object-oriented language 
methods and can access values defined by the component they are applied to. Fig. 5.18. 
illustrates part of the meaning function for component-specific operation application. 
 

-- CompExp.OpName([ArgExp]) 
-- 
apply_operation :: State -> Command -> State 
apply_operation s (ApplyOp exp arg_exps) = new_s where 
 (CompValue c op) = exp_val s exp 
 (CValue (Rv (Vstring ct))) = (comps s c "class") 
 (TCompData bk vs cts) = (declarations s) ct 
 arg_vals :: [Exp] -> State -> [Value] 
 arg_vals [] s = [] 
 arg_vals (e:es) s = (arg_vals es s)++[(exp_rval s e)] 
 new_s = case (cts op) of 
  (COperation args t locs command) -> op_result where 
   arg_vals = eval_args arg_exps s 
   old_env = env s 
   pre_op_s = alloc_self (alloc_locals (alloc_and_bind_args  
    (alloc_comp_values s vs c) args arg_vals) locs) c 
   post_op_s = dealloc_comp_values (dealloc_args (dealloc_locals  
    (dealloc_self (command command_meaning pre_op_s)) locs) args) vs c 
   op_result = update_env post_op_s old_env 
  (CUpdates updates) -> apply_updates updates s c (arg_vals arg_exps s) vs 
   -- call update operation as an operation 
 
-- Evaluate lvalues for arguments 
eval_args :: [Exp] -> State -> [Dv] 
... 
 
-- Allocate component values 
alloc_comp_values :: State -> [Ide] -> CompID -> State 
alloc_comp_values s [] c = s 
alloc_comp_values s (n:ns) c = alloc_comp_values new_s ns c where 
 new_env = updateEnv (env s) n (CompValue c n) 
 new_s = update_env s new_env 
 
-- Allocate & bind arguments for operation 
-- In arguments have new location which is the Value of actual argument 
--   (i.e. value parameters) 
-- Out arguments have same Dv as actual argument 
--   (i.e. variable parameters) 
-- 
alloc_and_bind_args :: State -> OpArgs -> [Dv] -> State 
alloc_and_bind_args s [] [] = s 
alloc_and_bind_args s ((n,In,_):as) (v:vs) = new_s where 
 rv = rval s v 
 l = new (store s) 
 new_store = updateStore (store s) l rv 
 new_env = updateEnv (env s) n (Loc l) 
 new_s = alloc_and_bind_args (update_store (update_env s new_env) new_store) as vs 
alloc_and_bind_args s ((n,Out,_):as) (v:vs) = new_s where 
 new_env = updateEnv (env s) n v 
 new_s = alloc_and_bind_args (update_env s new_env) as vs 
 
-- Allocate locals for operation 
alloc_locals :: State -> OpLocals -> State 
... 
 
-- Allocate "self" variable for operation 
alloc_self :: State -> CompID -> State 
... 
 
-- Deallocate a list of identifiers from Store 
dealloc :: State -> [Ide] -> State 
... 
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-- Deallocate "self" variable for operation 
-- 
dealloc_self :: State -> State 
... 
 
-- Deallocate arguments for operation 
-- 
dealloc_args :: State -> OpArgs -> State 
... 
 
-- Deallocate locals for operation 
-- 
dealloc_locals :: State -> OpLocals -> State 
... 
 
-- Deallocate component values 
-- 
dealloc_comp_values :: State -> [Ide] -> CompID -> State 
... 

fig. 5.18. The component-specific operation meaning function. 

Update Operations 

When an operation is applied to a component it generates an update record which is 
propagated to the component’s dependents. These dependents test the update record 
against their update operations and execute any update operations which match the 
update record. A match is valid if the update operation has the same kind, number, and 
type of arguments, and its guard expression evaluates to true. Fig. 5.19. illustrates how 
this update propagation process is carried out by providing a meaning function 
update_dependents. 
 

-- Dependents for a component are: 
--  1) itself 
--  2) all relationships it participates in 
--  3) all other components its connected to via its relationships 
-- 
dependents :: State -> CompID -> [CompID] 
dependents s c = deps where 
 rs = comp_rels s c 
 deps = [c]++rs++collect_deps rs s c 
 collect_deps [] s c = [] 
 collect_deps (x:xs) s c = cd where 
  (CValue (Rv (Vcomp parent))) = comps s x "parent" 
  (CValue (Rv (Vcomp child))) = comps s x "child" 
  cd = if parent == c then [child]++collect_deps xs s c 
   else [parent]++collect_deps xs s c 
 
-- Send update record to dependents for a component 
-- 
update_dependents :: State -> CompID -> UpdateRecord -> State 
update_dependents s c u = new_s where 
 update_dependents1 [] s _ = s 
 update_dependents1 (d:ds) s u = 
  update_dependents1 ds (update_from s d u) u 
 output_s = update_output s ((output s)++[(OV c u)]) 
 new_s = update_dependents1 (dependents s c) output_s  u 
 
-- Process update from another component 
-- 
update_from :: State -> CompID -> UpdateRecord -> State 
update_from s d (UpdateRec kind arg_vals) = new_s where 
 (CValue (Rv (Vstring k))) = comps s d "class" 
 (TCompData bk vs ct) = (declarations s) k 
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 new_s = case (ct kind) of 
  (CUpdates updates) -> apply_updates updates s d arg_vals vs 
  _ -> s 
 
-- Apply an update to a component (if it supports the update) 
-- 
-- Update operations are performed by finding a match (correct kind,  
-- number and type of args and guard that evaluates to true) and 
-- applying the operation as for component-specific operations 
-- 
apply_updates :: [CUpdate] -> State -> CompID -> [Value] -> [Ide] -> State 
apply_updates [] s d arg_vals vs = s 
apply_updates ((UpdateOp args locs g command):us) s d arg_vals vs = 
 if same_length_and_type (reverse args) arg_vals s 
  then upd_s else apply_updates us s d arg_vals vs where 
   vals :: [Value] -> [Dv] 
   vals [] = [] 
   vals (v:vs) = (vals vs)++[Rv v] 
   old_env = env s 
   pre_op_s = alloc_self (alloc_locals (alloc_and_bind_args  
    (alloc_comp_values s vs d) args (vals arg_vals)) locs) d 
   upd_s = case (g exp_rval pre_op_s) of 
    (Vbool True) -> op_result where 
     post_op_s = dealloc_comp_values (dealloc_self (dealloc_locals ( 
     dealloc_args (command command_meaning pre_op_s) args) locs)) vs d 
     op_result = update_env post_op_s old_env 
    _ -> apply_updates us s d arg_vals vs 
 
same_length_and_type :: OpArgs -> [Value] -> State -> Bool 
... 

fig. 5.19. Update propagation for MVSL components. 

5.5.7. Program Meaning 

The meaning of an MVSL program is defined to be a sequence of output update records 
the program generates given a set of input updates (assumed to be from MVSL). Fig. 5.20. 
illustrates this meaning function for a program. 
 

 
-- MVSL program meaning 
-- 
data Input = IV Ide [Value] 
 
-- Meaning of a Program is defined by its outputs given a set of inputs and definition 
-- 
program :: Program -> [Input] -> [Output] 
program (Pro decls command) i = out where 
 (dv,gs) = program_decls decls emptyDeclValue [] 
 init_s = alloc_globals (emptyState dv) gs 
 com_s = command_meaning init_s command 
 out = output (run_program i com_s) 
 
-- Need globals for program definition 
-- 
alloc_globals :: State -> [Ide] -> State 
... 
 
-- Program is "run" by interpreting a sequence of "inputs" from MVisual 
-- 
run_program :: [Input] -> State -> State 
run_program [] s = s 
run_program (i:is) s = new_s where 
 new_s = run_program is (apply_input_update i s) 
 
-- Translate input "update" record into operation on a component 
-- 
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-- Conceptually, MVisual generates these updates in respose to user interaction 
-- MVSL's outputs are interpreted by MVisual which then updates view renderings 
-- to indicate program change 
-- 
apply_input_update :: Input -> State -> State 
apply_input_update (IV "update_attribute" [Vcomp c,Vstring name,new]) s = 
 assign_result s (CompValue c name) new 
apply_input_update (IV "add_element" [Vstring kind]) s = new_s where 
 (new_s,_) = add_component s kind 
apply_input_update (IV "delete_component" [Vcomp c]) s = 
 do_delete_component s c 
... 

fig. 5.20. The meaning of an MVSL program. 

5.5.8. MVSL Programs 

Using this Gofer implementation of the operational specification for MVSL, programs can 
be “executed” to produce outputs. Fig. 5.21. shows the concrete syntax for a simple MVSL 
program and Fig. 5.22. a corresponding abstract syntax for the program and the output 
update records produced when this program is “executed”. The write operation, which 
generates an output update record, is introduced to illustrate the order of update 
operation application. 
 

p : program 
new_class : class 
new_icon : new_icon 
 
base view program 
 attribute name : string 
 relationship classes : one-to-many class 
end program 
 
base element class 
 attributes name : string 
 operations 
  print_name is write self.name end print_name 
  add (in lv : integer, rv : integer) : integer local 
   temp : integer is 
   temp := lv + rv 
   result := temp 
  end add 
 updates 
  update_attribute(comp : class, name : string, old : string, new : string) where 
   name = “name” is 
   write new 
  end update_attribute 
end class 
 
subset element class_icon 
 attributes 
  name : string 
  x : integer 
 relationships 
  view : one-to-one class_diagram 
  base :one-to-one class 
 updates 
  update_attribute(class : class, cname : string, old : string, new : string) where 
   cname = “name” is 
   if name \== new then 
    name := new 
   end if 
  end update attribute 
end class icon 
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subset view class_diagram 
 components class_icon 
end class_diagram 
 
initialise is 
 create_view(program,p) 
 add_element(class,new_class) 
 add_element(class_icon,new_icon) 
 establish(class_icon.base,new_class,new_icon) 
end initialise 

fig. 5.21. Concrete syntax for a simple MVSL program. 

This program defines a base view program, a base element class, a subset element 
class_icon, and a subset view class_diagram. The initial state for the environment is one 
which contains a program, class and class_icon (with the class_icon a “subset” of the 
class). When the class.name attribute is updated, class_icon is informed of the change 
and updates its own name attribute to reflect the change to its base class (using an update 
operation for update_attribute). In the example in fig. 22., class.name is updated by an 
input update record which causes class_icon to update its own name attribute value. 
class_icon.x is also updated by an input update record. The operations applied to the 
MVSL program state produce corresponding output update records. 
 

MVSL Program: 
-- 
-- MVSL test program 
-- 
test1 :: [Output] 
test1 = output where 
  output = program (Pro  
    [(Global "p" (ComponentType "program")), 
     (Global "new_class" (ComponentType "class")), 
     (Global "new_icon" (ComponentType "graphic_icon")), 
     (BaseView "program" [Attribute "name" StringType]  
  [Relationship "classes" (OneToMany "class")] [] []), 
     (BaseElement "class" [Attribute "name" StringType] [] 
      [(Operation "print_name" [] [] (EWrite (CompVal (Ident "self") "name"))), 
         (Function "add"  
   [InArg "lv" IntType,InArg "rv" IntType] IntType  
   [Arg "temp" IntType] 
    (((Ident "temp") := (Op Plus (Ident "lv") (Ident "rv")) :& 
     ((Ident "result") := (Ident "temp")))))] 
       [(Update "update_attribute"  
    [Arg "comp" (ComponentType "class"),  
    Arg "name" StringType, 
    Arg "old" StringType, 
    Arg "new" StringType]  
    (Op Eq (Ident "name") (StringLit "name")) 
    [] 
    (EWrite (Ident "new")))]), 
      (SubsetElement "class_icon"  
        [Attribute "name" StringType, 
           Attribute "X" IntType]  
         [Relationship "view" (OneToOne "class_diagram"), 
   Relationship "base" (OneToOne "class")] []  
         [(Update "update_attribute"  
    [Arg "class" (ComponentType "class"),  
    Arg "cname" StringType, 
    Arg "old" StringType,  
    Arg "new" StringType] 
    (Op Eq (Ident "cname") (StringLit "name")) 
    [] 
     ((Eifthen (Op Neq (Ident "name") (Ident "new")) 
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       ((Ident "name") := (Ident "new")) 
       (Eskip))))]), 
      (SubsetView "class_diagram" (Components ["class_icon"]) [] [] [] [])] 
    ((CreateView "program" (Ident "p")) :& 
    (AddElement "class" (Ident "new_class")) :& 
    (AddElement "class_icon" (Ident "new_icon")) :& 
    (EstablishLink (CompAttrType "class_icon" "base") (Ident "new_class") (Ident "new_icon")))) 
 
Inputs to program: 
     [(IV "update_attribute" [Vcomp 2,Vstring "name",Vstring "NewName"]), 
      (IV "update_attribute" [Vcomp 3,Vstring "X",Vnum 10])] 
  
Output of function query “test1”: 
 [OV 3 (UpdateRec "establish_rel" [Vstring "class_icon.base", Vcomp 2, Vcomp 3]), 
  OV 2 (UpdateRec "update_attribute" [Vcomp 2, Vstring "name", Vstring "OldName", Vstring "NewName"]), 
  OV 0 (UpdateRec "write" [Vstring "NewName"]),  
  OV 3 (UpdateRec "update_attribute" [Vcomp 3, Vstring "name", Nil, Vstring "NewName"]), 
  OV 3 (UpdateRec "update_attribute" [Vcomp 3, Vstring "X", Nil, Vnum 10])] 

fig. 5.22. Abstract syntax for MVSL program and its output update records. 

5.6. Specification of Visual Appearance and Semantics 

5.6.1. Rationale for MVisual 

MVSL describes the base and subset level of an MViews system. To describe the display 
and user interaction aspects a graphical specification called MVisual is used. This 
separation of descriptions allows programmers to define an MViews environment in two 
steps: the first describes the state of an MViews environment using MVSL; the second 
describes the user interaction and display views using MVisual. A graphical specification 
for user interaction was chosen as it provides a more natural and expressive 
representation although it uses a somewhat less rigorous notation (including example-
based definitions), similar to the PARTS instance-based programming system (LaLonde 
and Pugh 93). The two formalisms conceptually interact by passing update records. 
Updates generated by MVisual are translated into operations or update operations on 
MVSL components and MVSL updates are sent to MVisual for interpretation. 

5.6.2. MVisual Fundamentals 

Fig 5.23. illustrates the fundamental specification components of MVisual. Each MVisual 
definition is contained in a “View” which has a name and zero or more arguments. MVSL 
components are referred to by name (possibly an argument name for their enclosing 
view). The appearance of icons, glue, views and dialogues (referred to as visual entities) is 
defined graphically. For example, Component Name from fig. 5.23. is an icon made up of 
various graphical figures. 

MVSL components are referred to by their name (possibly an argument name) in an oval, 
other MVisual views are referred to by name in a rectangle, and visual entities by a picture 
relating to their appearance (possibly containing a name for clarity). Additional 
information can be specified by pointer indicators (for example, click-area names, the 
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MVSL component value(s) a visual component value represents, and so on). Click-areas 
on icons are highlighted by a grey rectangle which can also be used to highlight aspects of 
a specification for clarity, naming or preciseness. Alternative visual forms can be specified 
by two or more pointers from the same place. 

 

View Name(...Arguments...)

View 

name MVSL component

Update flowupdate

Pointer Indicator

General:

Constraints
constraint 

expression

Display View/ 
Display Component

Name

Component Name

Component 
Descriptions

Click Area

Alternative 
forms/flows

Highlight

 

fig 5.23. Fundamental visual components of MVisual. 

Updates correspond to events which are either user interactions, MVSL update records or 
MVisual updates. Update flow between visual entities, MVSL components and MVisual 
views is specified by grey arrows annotated with an update name and (possibly) 
argument values. An update may flow to an MVSL component which defines a user 
interaction to be the application of an update operation to the MVSL component. 
Alternately, the update can flow to a view name (which indicates the view is displayed), 
or to another update flow (indicating the user interaction update generates a new update 
which in turn is sent to further components). Constraints can be added against appearance 
components or update flows to indicate conditions that must be satisfied for updates to be 
sent. 

5.6.3. Icons and Glue 

Appearance 

Fig. 5.24. shows an example view defining the visual appearance for MVSL class icons. 
Appendix E contains a full specification of IspelM using MVisual. 
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fig. 5.24. A visual appearance for MVSL class icons. 

The class_icon : Appearance view defines the visual appearance for an MVSL 
class_icon (as defined in Section 5.4.) and a generic class_icon is represented in the oval. 
Some attribute values of class icon  (class_name, feature_names and kind) correspond to 
values in the visual specification for a class icon, shown as it appears in SPE (see Chapter 
4). The ClassName text value for the visual appearance is derived from 
class_icon.class_name (indicated by a pointer from the MVSL class_icon attribute 
value). FeatName1 and FeatName2 represent an example feature_names list from 
class_icon and are grouped to indicate they are derived from the same MVSL attribute. 
The kind of a class_icon determines the border for the visual appearance of a class icon. 
This is specified by an alternative pointer indicating which border appearances are used 
for different values of class_icon.kind. 

Fig. 5.25. shows the appearance of client-supplier glue for MVSL cs_or_feature subset 
relationships. Multiple views are used to avoid clutter and constraints (inside oval-
cornered rectangles) indicate values of MVSL attributes used to determine appearance. 
Class icons are indicated by a short-hand appearance with Client and Supplier names (to 
illustrate the relationship the client-supplier glue represents). 
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fig. 5.25. Visual appearance of MVSL cs_or_feature subsets. 

Interaction 

MVisual continues the MVSL theme of update record propagation between components 
and models user interaction by update propagation between visual entities and MVSL 
components. When a user interaction (described as an update record) is applied to some 
MVisual entity further update records may be generated which define the effect of the 
user interaction. These additional updates are then sent to MVisual entities and/or MVSL 
components (possibly different from the one the original update was applied to). Fig. 5.26. 
shows the effect of double-click updates on class icons. 

A class icon defines “click areas” which determine the action taken if a double-click occurs 
within the click area (shown as shaded boxes inside the class icon in fig. 5.26.). Double-
clicking on the left side of a class icon will open a dialogue for view or feature selection 
(indicated inside a square “view” box with the dialogue name and arguments). Double-
clicking on the right side of a class icon class or feature name will display the 
default_text_view for the class or feature clicked on. MVisual assumes suitable values for 
default_text_view and the display update operation are defined for components and 
textual views (as they are common operations), but for preciseness these could be defined 
in MVSL and MVisual. 



Chapter 5 Modelling and Specifying Environments with MViews Page 139 

 class_icon : pointer tool double-click points

ClassName
FeatName1
FeatName2

ClassName. 
default_text_view component views

(ClassName)

component views
(FeatName1)

FeatName1. 
default_text_view 

FeatName2. 
default_text_view 

class features(ClassName, 
ClassName.features,Icon)

dc

component views
(FeatName2)

display

dc

dc

dc dc

dc

dc

dc

display 

display

(dc = double-click)

class info 
(ClassName,Icon)

oc
class features(ClassName, 

ClassName.all_features,Icon) 

(oc = option-click)

oc

 

fig. 5.26. The effects of double-click/option-click actions on class icons. 

5.6.4. Views 

Fig. 5.27. describes the appearance of class icon views and the effects of addition tools on 
class diagram components. For example, the class icon tool ( ) produces an add_icon 
update when clicked on an empty view position (this update is sent to the view itself). 
add_icon is a parameterised update which includes the kind of icon to add. Click-areas are 
used to restrict the application of some updates (for example, adding a feature to a class 
icon). Rubber-banding from one class icon to another (for example, from class icon Name3 
to Name2 in fig. 5.27.) will add a generalisation, client-supplier or classifier glue 
connection, depending on which relationship tool is currently selected. The event to 
generate depending on the selected relationship tool is determined by an annotation on 
each of the event flow arrows from the rubber_band line ( genfor generalisation, C/Sfor client-
supplier, and clafor classification). For example, if the generalisation tool ( gen) is selected, a 
rubber band between two class icons will generate an add_glue(gen,Name3,Name2) update 
event. 

When specifying an environment using MVisual, some assumptions could be made about 
the graphical user interface and view support. For example, MViews and IspelM assume a 
Macintosh-like tool and graphics window and the provision of generic editing operations, 
tools and updates. For example, the selection tool ( ) and rubber_band editing and 
update behaviour is assumed to be understood (but could be explicitly defined in 
MVisual). 
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fig. 5.27. Class diagram view appearance and addition tool updates. 

MViews textual view appearance and interaction is assumed to be in the form of a text 
window with standard text editing operations. Parsing and unparsing, however, are 
defined for each environment, as is update unparsing. Fig. 5.28. illustrates the application 
of updates to a textual view with a Snart-like syntax. 

 Class Text View : Applying Updates 
%updates_start(Text1) 
%updates_end 

 class(Name1, 
 parents([ 
   P1([rename(a,b)]), 
   P2]), 
 features([ 
   Attribute1:Type1, 
   Attribute2:Type2, 
   Method1, 
   Method2(deferred) 
 ])). 

 %updates_start(Text2) 
%updates_end 

 Class1::Method1(A,B,C) :-
 code. 

 Predicate(A,B,C) :-
  code.

rename_class(Name1,New) 

change_kind( 
Name1,Old,normal) 

"class(New,"
(1) 
(2) 

(1)
(2)

change_kind( 
Name1,Old,abstract) 

(3) 
(3)

"class(Name1," 

"abstract_class(Name1," 

add_feature(FeatureName, 
TypeName) 

"FeatureName:TypeName" 
(4) 

add_feature(FeatureName,'') 
(5) "FeatureName"

remove_feature(Method1) 

(4)

(5)

(6)
""

 

Fig. 5.28. Parsing and update application to a text view with a Snart-like syntax. 

This specification uses a combination of example-based programming and visual 
programming to describe the effects of applying different updates to a text view. An 
example of textual view component renderings provides an illustration of how view 
components are rendered in the textual view (example-based programming).  Update 
flows describe where update records are applied to the view’s text and describe the 
resulting text after applying the update (visual programming). These update flows are 
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annotated with numeric labels to indicate which resulting text corresponds to which input 
update record. For example, a rename_class(Name1,New) update record will update text of 
the form “class(Name1”, and change it to “class(New,”. MVSL does not define the textual 
appearance of base elements and relationships but assumes MVisual will provide an 
example-based specification for rendering subset components in textual views. 

5.6.5. Dialogues 

Dialogues are used for structured user interaction and are specified in a similar manner to 
icons, glue and views. Fig. 5.29. shows the dialogue fundamentals used by MVSL. 
Dialogue components can be highlighted with borders to indicate groupings of values. 
These dialogue components correspond to those used by Macintosh dialogues but could 
be changed to reflect another user interface system’s standard. 

 
Dialogues: Button

Button

Button

Default Button

Value1
Value2
Value3 Menu selection

Name1
Name2 Radio

TextValue

EditValue

Text

Edit Field

Name1
Name2

Check boxes

Dialogue Border

 

fig. 5.29. MVisual dialogue fundamental appearance and interaction components. 

A simple example of MVisual dialogue specification is shown in Fig. 5.30. The effect of 
selecting a view name for a component in the view selection dialogue from MViews is to 
send a display update to the appropriate view. 
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 component views (Component)

ViewName2

Select Cancel

ViewName1

ViewName3

Component. 
find_view(ViewName2) display

Component. 
subset_views 

click

 

fig. 5.30. The view selection dialogue from MViews. 

Fig. 5.31. shows the feature addition dialogue for IspelM. This allows programmers to add 
or update feature names for a class icon and also modify attributes associated with a 
feature. 

 add_feature (ClassIcon,FeatureName)

Feature Name:

Type:

Kind:
attribute 
method
deferred
inherited

Cancel

Change
Remap

Show
Hide

Remove

NewFeatureName

NewTypeName

NewFeatureName 

click, return
remove

click

click

click

change, 
remap

on 
off

remove_feature_name( 
NewFeatureName) 

add_feature_name(
NewFeatureName)

ClassIcon

ClassIcon

remap_feature( 
FeatureName, 

NewFeatureName, 
NewTypeName, 

Kind,Show) 

change_feature( 
FeatureName, 

NewFeatureName, 
NewTypeName, 

Kind,Show) 

FeatureName: 
feature_name 

type_name 
kind

remove_feature_name( 
NewFeatureName) 

 

fig. 5.31. The feature addition dialogue for IspelM. 

The values of FeatureName and Type are supplied by an MVSL base feature (look-up of the 
base feature is assumed to be implicit given a class icon/feature name pair, but could be 
explicitly defined as ClassIcon.base.find_feature(FeatureName)). Change, Remap, Show 
and Hide send updates to the MVSL class icon with appropriate information from the 
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dialogue. The Kind radios relate to the feature kind attribute (possible values attribute, 
method, deferred or inherited) and are grouped by a highlight box. 

5.7. Discussion and Future Research 

5.7.1. Requirements Satisfaction 

Section 5.1. identified several requirements for a system for building programming 
environments that support multiple textual and graphical views. Section 5.2. indicated 
that most existing environment implementation models do not satisfy all of these 
requirements or provide less than ideal approaches. This section illustrates how the 
MViews model of Section 5.3. satisfies these requirements and proposes enhancements to 
MViews that could provide better support for such environments. 

Program Representation 

Environments require abstract and flexible program structure and semantics 
representation schemes. MViews supports a general model of program representation 
using elements, relationships and views. Program components are linked via relationships 
(which can represent both structural and semantic links) and all components can hold 
tagged attribute values. Operations can be associated with each kind of component to 
support component-specific manipulations. 

This program representation scheme is sufficient for both high-level and low-level 
program components using a model of programs as graphs with nodes (elements) and 
labelled edges (relationships) (Arefi et al 90). It also supports graphical (visual) 
programming language representation which often have a graph-based structure, unlike 
standard abstract syntax trees (Backlund et al 90, Golin and Reiss 90). This scheme is more 
suitable for program representation than those of Unidraw, Dannenburg’s ItemList, and 
Wilk’s object dependency graphs, all of which assume components with a less appropriate 
structure (such as item lists, objects with references, or hierarchical graphical diagram 
components). Its level of abstraction can be compared favourably with abstract syntax 
grammars (Reps and Teitelbaum 87), decorated abstract syntax grammars (Backlund et al 
90), and deterministic, directed graphs (Arefi et al 90), in terms of structural representation 
and manipulation (as MViews supports a basic set of graph operations similar to those of 
abstract syntax tree manipulation operations). 

The storage of semantic attributes and relationships using the same scheme as structural 
components is similar to that of GARDEN. The specification of how semantic values are 
calculated, however, does require more effort than attribute grammars (Reps and 
Teitelbaum 87, Magnusson et al 90) and graph-based attribute grammars (Hudson 90, 
Backlund et al 90) as MViews requires recalculation to be explicitly defined using program 
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update detection or extra component-specific operations. For IspelM the current MViews 
approach has not proved too cumbersome. If the low-level static semantics of statements 
were to be defined (as opposed to higher-level constraints and semantics such as class 
interfaces), however, an attribute grammar or action equation-like (Kaiser 85) specification 
would be much more suitable and abstract. Such a semantics model could be used in 
conjunction with the current MViews representation by using program updates to drive 
the recalculation algorithm (as in Mjølner environments (Minör 90)) and by storing 
recalculated semantic values as attributes and relationships. 

Multiple Textual and Graphical Views 

SPE-like environments require support for textual and graphical views, preferably 
utilising models similar to those employed for program representation. In MViews, views 
are represented as graphs in the same manner as the base program graphs they view. This 
has the advantage that the view representation and manipulation strategy is the same as 
the base program and hence simplifies the specification of view structures and operations 
(as these can often mirror those of the base). 

MViews defines subset views to be graphs which are a partial copy of the base program 
graph. Display views render subsets in a textual or graphical form which programmers 
see and interact with. This model supports textual and graphical representations of 
subsets of a base program and these views share the techniques used to model and 
manipulate the base program. Subsets can have the same structure as the base program 
graph or a different structure, depending on the requirements of the display/subset view. 
This approach achieves similar levels of abstraction to that of Unidraw (Vlissides 90) and 
the ItemList structure (Dannenburg 91). 

Program and View Modification 

Changes to program views must be translated to base program updates and views should 
supply editing mechanisms appropriate for their rendering. MViews base and subset 
views and components are both manipulated using graph operations. This facilitates 
translation of updates between the two levels as the structures updated and operations 
applied at one level are often very similar (or the same) as the structures used and 
operations required to reflect the change in the other. MViews provides a subset view and 
base representation scheme of similar abstraction to that of Dannenburg’s ItemList. These 
are generally more efficient at translating subset and base changes than Smalltalk and 
Unidraw-like systems (Wilk 91). 

MViews provides free-editing text views and interactively edited graphical views. Both 
editing mechanisms are translated into structure-editing operations but this process is 
hidden from programmers. In general programmers prefer to free-edit textual expressions 
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and control structures (as their conception of this level of a program is as tokens rather 
than trees and graphs) and structure-edit interfaces and inter-module (and class) 
relationships (Welsh et al 91). As programmers tend to find template and menu-driven 
structure-oriented editors cumbersome and unnatural to use (Minör 90, Welsh et al 91) 
MViews tries to provide the most appropriate representation for programmers given the 
level of program abstraction being manipulated. 

One consequence of this approach is that parsing of textual views requires structures that 
can be compared to base components. Thus textual views can not be used to provide 
multiple views of control structures as these can not usually be uniquely identified. Such 
views are not very useful in general and MViews assumes that either the base components 
for such detailed views are completely regenerated by textual parsing or such detail is 
stored as a stream of text and given to existing compilers (with parsing only updating 
higher level structures such as variable declarations and class and method interfaces). For 
graphical languages or graphical representations of structure or semantics this problem 
does not occur. All icons and glue are linked directly to corresponding base components 
and hence can be multiply viewed and updated. 

Textual structure-oriented editing of class interfaces may, for some programmers, be more 
appropriate than free-editing. MViews could be extended to provide textual structure-
oriented editors like Mjølner or UQ2 (Welsh et al 91) by translating abstract syntax tree 
manipulations into graph operations with graphical views used to display an unparsed 
abstract syntax tree (stored as an MViews subset program graph). Generation of structure-
oriented editors from grammars is usually easier and more abstract than building 
interactive editors and parsers by specialisation of an MViews-like model (Garlan 86, 
Backlund et al 90, Minör 90, Whittle et al 92). This means the construction of MViews-
based environments would require more effort than comparable structure-oriented 
environments like Dora and Mjølner, but MViews environments may be more 
“programmer friendly” (as flexible support for interactive editing is provided). 

Automatic, Efficient Consistency Management 

Changes to base components must be propagated to all views affected by the change. 
Language semantics must be recalculated appropriately and incremental semantic and 
view updates should be made where possible. MViews uses a concept of object 
dependency to propagate update records describing component changes. These update 
records are interpreted by the dependents of a component (including its subset view 
components) which take appropriate action (recalculate semantic values, apply operations 
to update their own state, re-render their display, etc.). This propagation mechanism uses 
relationships and updates are automatically sent to dependents. Lazy application of 
updates could be used for views and semantic recalculation for efficiency (Wilk 91). 
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MViews supports incremental view updates as the exact change is sent to subset view 
components. These can make changes based on the precise change to their base 
component state and display views need only redisplay information based on updated 
subset components. An added advantage of MViews over Smalltalk and Unidraw-like 
models is that subset view components do not have to repeat base component 
information. For example, textual view components can expand the base updates sent to 
them to indicate the change made whereas the other models must repeat the base 
information to be able to determine the kind of change made. If subsets do, in fact, 
duplicate base information, the exact change to subset components can be determined 
from base update records. 

MViews does not directly support the notion of object inferiors, superiors and transitive 
object dependencies, as supported by (Wilk 91). Currently, if an object X is dependent on 
an object Y, X is always informed of changes to Y but only informed of changes to Y’s 
component objects (part-of relationships) if Y decides to broadcast its sub-component 
changes. One approach to enhancing this support might be to introduce explicit part-of 
relationships which would automatically broadcast changes to sub-components of a 
component to the component’s dependents. 

Recording Previous Changes 

Providing a change history for a program component is useful for documenting the 
modification history of program components. MViews supports such a facility by 
allowing update records to be stored against program components for future reference. 
Such a facility is not directly supported by most other models which may not allow such a 
facility to be easily implemented. For example, the Smalltalk MVC model can not always 
determine the exact change made to a model and Dannenburg’s ItemList and Wilk’s object 
dependency graphs do not allow recorded changes to be directly accessed. 

Undo and redo of User Manipulations 

Undo and redo of user manipulations is necessary so programmers can undo (or redo) 
changes they have made which may have had unseen transitive effects (since the updates 
will have been propagated to affected base components). MViews supports a generic 
undo/redo mechanism by recording update records generated by subset view 
components. These can be sent back to the components for reversal or reapplication. Such 
a facility can also provide a transaction mechanism where all program state changes for an 
editing operation have to be reversed if the operation is invalid (i.e. the operation is 
aborted). MViews provides a facility of comparable abstraction to GARDEN and Unidraw 
but it is also compatible with semantic recalculation and view-to-base consistency 
management (undoing an update record generates operations which in turn generate 
further updates etc.). 
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MViews could be extended so that updates could be undone or reapplied out of strict 
sequence order. This would provide a mechanism for arbitrary undo/redo of view 
updates and perhaps “macro operations” where updates are reapplied to different view 
states (similar to PECAN’s macros based on an undo history (Reiss 85)). The main 
problem with such a mechanism is that the operations performing the undo/redo must 
check whether the current program state will support such an action (as updates undone 
out of order may be inconsistent). This is discussed further in Chapters 7 and 10. 

Program and View Persistency 

A program must be persistent over successive invocations of an environment. While the 
MViews model does not assume a specific persistency mechanism, one can be modelled 
using operations to save and load a component’s state. Version control, configuration 
management and multi-user access to programs are not currently supported. These could 
be modelled, however, by grouping updates in versions and by programmer (i.e. by who 
generated the update). Multiple versions could be supported by allowing programmers 
their own distributed workspace, similar to (Nascimento and Dollimore 93), and merging 
of versions by merging update records associated with different versions. Like arbitrary 
undo/redo, this would require testing of updates to ensure undo/redo is consistent given 
a program graph state (as updates may be done out-of-sequence or applied to program 
components that no longer exist in the current version). Chapter 10 discusses these issues 
in more detail. 

Tool Integration and Extensibility 

Environments need to provide consistent user interfaces, a common tool data storage or 
translation mechanism and allow new or exsisting tools to be integrated into the 
environment. MViews supports tool user interface integration via a consistent dialogue 
and display view interface. Tools use the base view for a cannonical data storage 
repository and define subset views which can provide a partial view of the base and even 
different structures to the base. Subsets can also be used to export and import data from 
tools and use subset components to relate external tool data to internal base view data. 
Update records could be used in an analagous manner to FIELD’s selective broadcasting 
system (Reiss 90a) for propagating changes to MViews structures to and from external 
tools via subset views. 

5.7.2. MVSL 

MVSL provides a simple specification language for MViews systems. A basic set of 
“component kinds” is provided to capture the fundamental abstractions of MViews 
environments with a component’s state defined by typed attributes and relationships to 
other components. A basic set of operations is provided for manipulating MViews 
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programs which can be augmented with component-specific operations. Updates are 
interpreted by each component using guarded input-only operations which carry out 
further operations in response to an appropriate update record. 

MVSL is sufficient to abstractly model the basic concepts of component state, operations 
and update responses for MViews systems. Component relationships and response to 
updates are explicitly defined. This approach directly supports the object dependency 
model of MViews to be concisely and clearly expressed, unlike most specification 
languages where such facilities must be modelled with more basic structures.  

MVSL is not a fully-fledged programming language and it is difficult or impossible to 
express some concepts. For example, there is no concept of reusable operations or 
functions and inheritance is not supported between components, making MVSL only 
suitable for abstract environment state analysis and not detailed specification. In addition, 
MVSL assumes all components connected to a component are dependents and propagates 
update records to them (perhaps unnecessarily). The scheduling of update record 
propagation is assumed to be immediately following the application of an operation, 
which does not allow for efficient implementation using lazy application of update 
operations. Since MVSL is strongly typed it is difficult to express the management of 
update records which are lists of values of arbitrary types. 

As MVSL can not be used to completely specify an environment, we have developed an 
object-oriented architecture for MViews systems based on the concepts introduced in this 
chapter. This can be used as the basis for an object-oriented implementation of MViews 
and hence be reused to design  and implement new environments. MVSL can be used as a 
preliminary analysis tool or documentation aid and then the object-oriented architecture 
used to model an environment in more detail using class specialisation. Chapter 6 
describes this architecture while Chapter 7 provides a Snart implementation of this 
architecture. This object-oriented design and implementation allows MViews 
environments to be modelled and efficiently implemented by specialising a reusable 
framework of classes. 

5.7.3. Operational Specification of MVSL 

The operational specification of MVSL illustrates that an MVSL program is well-defined in 
terms of its effect on an MViews program state. An MViews program is stored as a State 
containing component attribute values which represents an instance of the MVSL program 
specification. Meaning functions for expressions, commands, basic operations, 
component-specific operations and update operations are defined which return a new 
State given an MVSL construct. The meaning of an MVSL program is a list of update 
records generated by MVSL when “executing” an environment specification given a list of 
input update records. 
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This specification can be improved by defining the static semantics of an MVSL program. 
Currently an MVSL program is not type-checked before execution and errors are indicated 
by Gofer function exceptions in the output update stream. To support functional 
operations with side-effects (i.e. that can change the program state) the result of exp_val 
should be a new State as well as a denotable value. A continuation-style specification 
could be used to produce error messages when invalid operations are attempted. 

5.7.4. MVisual 

MVisual allows the user interaction aspect of MViews environments to be defined using a 
natural graphical specification “language”. MVisual provides a graphical notation for 
specifying the appearance of MVSL subset views, elements and relationships. It also 
provides a mechanism for specifying how users interact with these visual entities and the 
effects of such user interaction (in terms of update record flow). MVisual uses MVSL 
component values to define where visual entity values are derived from and passes 
updates to MVSL components as a result of visual entity modification. The MVisual 
notation is less rigorous than MVSL with assumptions being made about editing tools and 
dialogue appearance and behaviour and permits partial specification of component 
behaviour. 

MVSL and MVisual interact using update records. MVisual assumes MVSL will interpret 
update records sent to components appropriately and MVSL assumes MVisual will 
interpret the updates it generates. This model assumes each notation will synchronise 
input and output appropriately and the operational specification for MVSL assumes this. 
While MVisual provides a concise, natural mechanism for expressing the appearance of 
views and dialogues, and user interaction with these entities, it is not ideal for all such 
specification. Particular failings are when trying to specify constraints on dialogue 
interaction, complex MVisual to MVSL to MVisual update flow, and explicit requests for 
user input from MVSL. 

For dialogue constraints, the values of different edit fields may depend on values of radios 
and other edit fields. For example, in the client-supplier update details dialogue Client 
Name and Supplier Feature values are only valid for certain values of Kind. Expressing 
these constraints with MVisual notation becomes quite cumbersome, especially when 
error actions or edit field skipping are to be defined (i.e. error message reporting and/or 
specifying that an edit field is not to be used given certain constraints). A textual 
specification of such constraints and error message generation may be more concise than a 
graphical one. 

When a complex flow of control from MVisual to MVSL and back to MVisual occurs, 
MVisual does not clearly indicate that the flow back from MVSL is a result of the original 
user interaction. For example, an expand update sent to a subset view from a dialogue 
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could use an add_view_component update from MVSL to indicate an expansion into the 
display view is required. Currently, such an expansion for IspelM is specified as a 
response to the original MVisual expand update in a different MVisual view with no 
indication that MVSL performs add_element and add_view_component operations. An 
indication of such flow-of-control would be useful for clarity in MVisual. 

Both MVSL and MVisual are currently used by defining an MViews environment using a 
drawing program and text editor. An MViews-like environment supporting multiple 
views of an MVSL/MVisual specification would be make this definition process much 
easier and allow a specification to be browsed. It may also permit limited generation of 
reusable classes from the architecture in Chapter 6 from MVSL/MVisual specifications. 
Chapter 9 briefly discusses the requirements for such a specification environment. 

5.8. Summary 

SPE-like environments require a flexible program representation scheme, support for 
modelling multiple textual and graphical views of programs, and editing operations to 
manipulate these representations and views. They also require efficient, automatic 
detection and propagation of changes to support view consistency and language-specific 
semantic recalculation. View editing should be appropriate for the view’s rendering, a 
generic undo/redo facility should be supplied by the environment, and an abstract 
program saving and reloading mechanism be supported. 

MViews provides a novel set of abstractions for implementing such environments based 
on object dependency graphs. Programs are represented as graphs made up of elements 
and relationships grouped by a base view. This representation is sufficient for storing 
structural and semantic information for both tree-based and graphical languages. Views of 
this program graph are represented in the same manner by subset view graphs and these 
subset views are manipulated using the same graph operations as the base program 
graph. Subset views can be displayed and edited as either text or graphics. Update records 
are generated to document component changes and these are propagated to dependent 
components. Update records can be used to translate changes between subset and base 
view components (and vice-versa), be recorded to document changes to components, used 
to implement a generic undo/redo facility, provide incremental, efficient subset/display 
view updates, and drive semantic recalculation. 

MVSL is an abstract specification language used to describe the state of base and subset 
graphs, and the editing semantics of these graphs, for an MViews environment. An 
operational specification for MVSL illustrates that the basic concepts of MViews can be 
captured using an object dependency graph state and basic graph manipulation 
operations on this state. MVisual provides a mechanism for specifying the display view 
and user interaction component of an MViews environment. MVisual utilises example-
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based and visual programming-based specification techniques to describe the appearance, 
effects of user interaction and effect of MVSL operations on the user interface for an 
environment. MVisual and MVSL interact using update records to pass changes between 
the subset and display levels of MViews. 

Neither MVSL nor MVisual can currently be used to specify enough information for an 
environment implementation. Chapter 6 demonstrates how the basic abstractions of 
MViews can be used as the basis for an object-oriented architecture for designing an 
implementation of an environment. This architecture is comprised of classes which are 
specialised to describe environments like IspelM. Chapter 7 shows how a Snart 
implementation for MViews can be derived from this architecture. Chapter 8 uses the 
architecture of Chapter 6 to produce a model for IspelM and uses the Snart framework of 
Chapter 7 to implement this model. This implementation of IspelM is then further 
specialised to produce an implementation for SPE.
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Chapter 6 

An Object-Oriented Architecture for 
MViews 

 

Chapter 5 describes the MViews model for interactive software development 
environments. MVSL is used to abstractly specify the state and editing semantics for base 
and subset views of an environment using a textual language. MVisual is used to 
abstractly specify the display views and user interface for an environment using a 
graphical notation. Neither of these specification languages, however, are sufficient for 
deriving an implementation of an MViews environment. 

This chapter describes a language-independent, object-oriented architecture for MViews. 
Component kinds are described by classes, component attributes by attribute classes, and 
operations by class methods and an MViews environment program is stored as objects 
(instances of these classes). A new environment is constructed by specialising this 
framework of classes appropriately. This object-oriented design for MViews is much more 
suitable for implementing an environment as it provides more detail than MSVL and 
MVisual and is much closer to an (object-oriented) implementation language. Since this 
architecture is derived from the fundamentals of Chapter 5 it can be used to translate 
MVSL and MVisual specifications for an environment into an object-oriented design. This 
design can then form the basis for an implementation of the environment.  

The rationale for an object-oriented architecture for MViews is discussed and an overview 
of the fundamental classes for the architecture is given. Each group of related classes is 
then described in more detail with the purposes of their major attributes, methods and 
interactions with other classes explained. Chapter 7 uses this object-oriented architecture 
for MViews as the basis of an object-oriented implementation of MViews as a framework 
of Snart classes. Chapter 8 uses this architecture and the Snart framework of Chapter 7 to 
model and implement IspelM and SPE. 

6.1. An Object-Oriented Architecture for MViews 

As discussed in Chapter 2, several approaches to implementing programming 
environments are possible. To produce a reusable MViews system either a programming 
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environment (PE) generator with its own specification language (similar to MVSL) could 
be implemented, or a specialisable framework of classes used. The Synthesizer Generator 
(Reps and Teitelbaum 87), MELD (Kaiser and Garlan 87), and Mjølner/ORM (Magnusson 
et al 90) provide specification languages based on abstract syntax and attribute grammars 
which are translated into an implementation. Unidraw (Vlissides 90), (Haarslev and 
Möller 90), and Interviews (Linton et al 88) provide object-oriented frameworks for 
implementing drawing editors, visualising object-oriented systems, and constructing 
graphical user interfaces respectively. We chose the second approach for several reasons: 

• Many aspects of a good, interactive PE, such as editor functionality and 
interfaces, require specialisation and fine-tuning on a scale difficult to provide 
with a specialised PE generator (Vlissides 90, Ratcliffe et al 92). A reusable, 
object-oriented framework allows more flexible extensions to be implemented 
and reuse of existing code libraries and tools. It provides the full power of a 
general-purpose programming language but within a conceptual model (the 
reusable framework) for the environment. 

• Generated PEs often provide poor or inappropriate user interfaces and can lack 
adequate response-time performance (Minör 90). The most common approach 
to generated environments involves producing structure-oriented editors from 
abstract syntax descriptions (Reps and Teitelbaum 87, Minör 90, Ratcliffe et al 
92). Structure-oriented editing of both text and graphics is a common feature of 
such languages (Whittle et al 92) but this approach has yet to gain wide-spread 
favour with programmers (Minör 90, Whittle et al 92, Welsh et al 91). Reusable 
frameworks can provide a more tailorable, interactive model of user interaction 
(Vlissides 90). 

• Generated environments provide a high-level of abstraction in both the 
specification of their program structures and semantics and their editing 
operations (Minör 90, Reps and Teitelbaum 87). Disadvantages with this level of 
abstraction, however, are the implicit constraints put on environment 
implementers with respect to adding flexible language semantics (Kaiser 85, 
Hudson 90) and lack of general-purpose programming power for implementing 
unusual or extended facilities (Kaiser and Garlan 87, Vlissides 90). An object-
oriented framework can achieve a reasonably abstract representation of a 
conceptual model via good use of appropriate abstractions (Vlissides 90) while 
still incorporating flexible, general-purpose programming facilities. 

• As we wanted to experiment with parts of the MViews model during 
development to determine appropriate approaches, we did not initially know 
what a PE generator language for MViews should support. An extensible object-
oriented framework supported a more flexible, experimental development 
platform for modelling MViews environments. 
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A partially-generated MViews environment may provide a good compromise between the 
desire for a concise, abstract specification of an environment and the requirement of a 
flexible, efficient implementation to provide a useable end-product. Chapters 9 and 10 
briefly discuss using MVSL and MVisual to generate classes specialised from classes in the 
MViews architecture. These classes could then be further specialised to implement 
efficient or unusual language structures, semantics and editing tools. 

6.2. Overview of the MViews Architecture 

6.2.1. Components as Classes 

The MViews architecture defines classes based on the abstractions described in Chapter 5. 
Extra abstractions are introduced to allow more precise modelling of different 
environment facilities and to make the architecture more reusable (by providing extra 
reusable components and additional functionality). Fig. 6.1. shows the hierarchy of classes 
for MViews. MVSL basic component kinds are modelled as classes (for example, base 
views as base_view and graphical icons as graphic_icon). MVSL component attributes are 
represented by objects associated with a component and relationships are defined as 
attributes which refer to relationship component objects. 

Environment-specific component kinds are defined by specialising classes appropriately. 
For example, a class_icon for IspelM can be defined by specialising graphic_icon from 
the MViews framework and defining appropriate extra attributes (such as class_name and 
feature_names) and methods (update_attribute for class_name and add_feature_name for 
feature_names). 
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fig. 6.1. An object-oriented hierarchy of MViews components. 

Table 6.1. illustrates how the MVSL and MVisual components are mapped onto MViews 
architecture classes. An MVSL component is implemented by a class specialised from one 
or more MViews architecture classes. An MVisual component is implemented with its 
corresponding MVSL component as a class specialised from one or more MViews 
architecture classes. Additional, abstract classes are introduced by the MViews 
architecture to factor out common data and behaviour from different MViews 
components. For example, component, view and relationship classes do not have direct 
MVSL equivalents but are used to capture common component, view and relationship 
behaviour. New environments do not use these abstract classes directly but specialise new 
classes from those shown in table 6.1. The following sections briefly describe how MVSL 
and MVisual components are implemented by these architecture classes and what extra 
information these classes provide. 
 

MVSL/MVisual Components MViews Architecture Class(es) 
base view base_view 

base element One of: 
 base_comp 
 viewable_base_comp 
 text_base_comp 
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base relationship One of: 
 base_comp 
 viewable_base_comp 
 text_base_comp 
One of: 
 one_to_one 
 one_to_many 
 many_to_many 

subset view 
display view 

One of: 
 graphic_disp_view 
 text_disp_view 

subset element and 
graphical display icon 

graphic_icon 

subset relationship and 
graphical display glue 

graphic_glue 

subset component and 
textual display component 

text_disp_comp 

subset to base component 
relationships 

subset_rel 

Table 6.1. Mapping of MVSL and MVisual components onto MViews architecture classes. 

6.2.2. Base Components 

A base view in MVSL groups base components and base views are implemented by 
specialising the base_view class. base_view supplies features for locating components 
using unique identifiers and look-up tables, managing subset views, and mapping 
between components and their kinds. All components are created by calling methods 
supplied by base_view13. 

Base elements from MVSL are implemented as classes specialised from base_comp. 
Additional classes are introduced for modelling base components that can have subset 
components (i.e. can be viewed), as viewable_base_comp, and base components which can 
have textual forms, as text_base_comp. viewable_base_comp provides features for 
managing subset view components, including view management and navigation facilities. 
text_base_comp provides additional features for managing text forms associated with base 
components, and base components with textual view renderings are specialised from this 
class. Base relationships specialise base_comp, viewable_base_comp and text_base_comp, 
but also specialise one relationship class (one_to_one, one_to_many or many_to_many). 
These relationship classes provide features for representing and managing component 
relationships and may use different kinds of collection classes to group the components of 
the relationship (usually lists). 

Implementing MVSL base components as classes specialised from a variety of MViews 
architecture classes allows environment implementers to specify more detailed base 

                                                 

13 This can be used to assist in supporting environment evolution, as described in Section 6.7. 
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component functionality. The main advantage of the architecture classes is the additional 
data and behaviour they provide for managing views and view components, managing 
text forms, and managing component relationships. MVSL specifications ignore the detail 
of these tasks and are thus further refined when they are modelled by specialising classes 
from the MViews architecture. 

6.2.3. Subset and Display Views and Components 

MVSL describes subset components while MVisual gives the display component 
rendering for these subset components. While this separation is useful for the purposes of 
abstract specification, it is not usually useful to implement subset components and display 
components independently, as they are closely interdependent. A display needs partial 
views of base component values to render and update (i.e. a subset component state and 
operations) while a subset component requires a rendering which it must inform of 
changes to itself so it can be re-rendered (i.e. a display component). Subset views and their 
corresponding display views are modelled by specialising graphic_disp_view and 
text_disp_view. These display view classes contain the subset view management features 
and tools for rendering and editing graphical or textual view components. 

Subset elements rendered as graphical icons are specialised from graphic_icon. 
graphic_icon includes features for managing a subset element and features for rendering 
and manipulating a graphical icon. Subset relationships rendered as graphical glue are 
specialised from graphic_glue. Subset components rendered as text forms are specialised 
from text_disp_comp. text_disp_comp provides features for manipulating text forms 
including unparsing and inserting readable update record descriptions, applying selected 
update records, and determining the text associated with a textual display component. 

MVSL and MVisual subset and display views and components are modelled by classes 
specialised from these MViews architecture classes. The use of one MViews architecture 
class for each MVSL/MVisual subset and display component pair provides a concrete link 
between a view’s program graph-based state and its rendering and manipulation. The 
MViews architecture classes also provide additional features which support view 
navigation, graphical and textual component manipulation, graphical and textual editing 
tools and an undo/redo mechanism. These allow new views and their editors to be 
quickly defined based on an MVSL view state specification and MVisual 
appearance/interaction specification for an environment. 

6.2.4. Subset/base Relationships 

MVSL subset components specify the base components they are mapped to by 
relationships. These subset/base relationships are implemented by specialising 
subset_rel (itself a many-to-many relationship). subset_rel defines a general view 
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consistency mechanism whereby subset to base component attribute mappings are 
supplied and subset_rel keeps these attributes consistent under change. Any additional 
view consistency functionality is expressed by specialising subset_rel (for example, 
automatically expanding components into a view when new base relationships are 
established). subset_rel also provides additional features for lazy view consistency 
management. This subset_rel relationship class allows new environments to quickly 
specify base and subset component attribute consistency. viewable_base_comp also uses 
subset_rel relationships to maintain base component to subset view relationships (used 
to support view navigation). 

6.2.5. Additional Abstract Classes 

The MViews architecture defines several additional abstract classes which are briefly 
described here. These abstract classes are not specialised by new environments but are 
used to abstract out common functionality from other MViews architecture classes. 

The component class generalises data and behaviour common to all MViews components. 
These include modelling the basic operations of MVSL as methods. For example an 
update_attribute(Comp,Name,NewValue) operation is done by a method call of the form 
Comp.update_attribute(Name,NewValue)14. Basic operations could now be thought of as 
being applied to components in the same manner as component-specific operations in 
MVSL. All kinds of MViews components generalise to component. 

MViews views group program graphs and the view class provides methods for managing 
view components. This includes add_view_component and remove_view_component 
methods (for the corresponding MVSL operations) but also additional methods for 
iterating through these view components and deleting the components when the view is 
deleted. 

Relationships are modelled by the relationship class which provides methods for 
establishing, reestablishing and dissolving relationships. Relationship arity can be one-to-
one (i.e. relates a parent and child), which is modelled by one_to_one, one-to-many 
(relates one parent to many children), modelled by one_to_many, or many-to-many (relates 
many parents to many children), modelled by many_to_many. 

subset_view models the subset view state and operations for MViews. display_view is a 
specialisation of subset_view and models display view-related concepts such as tools, 
menus and interactive editing of display view components. A display view can render a 

                                                 

14We use an Eiffel-like syntax for describing method calls and attribute access as “feature calls”. This syntax 

is the same as that used by MVSL for attribute and relationship access and operation application. 
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subset view either textually or graphically and hence graphic_disp_view and 
textual_disp_view specialisations of display_view are introduced. These provide extra 
state and operations specific to each kind of rendering and view editing mechanism. 

The MViews architecture defines subset_comp to describe subset component state and 
operation semantics. The display component rendering and editing semantics is defined 
by display_comp, a specialisation of subset_comp. Thus the MViews architecture captures 
the rendering and editing semantics for a display component in display_comp, which also 
includes subset component structure and semantics inherited from subset_comp. 
display_comp and its specialisations provide additional methods for display component 
rendering and manipulation. 

6.2.6. User Interface and Persistency 

MViews assumes a language-specific user interface which provides menus and dialogues 
for display views and display components. Component persistency is assumed to be a 
language-specific issue which may be implemented by explicit save and load component 
methods or an invisible object persistency or object-oriented database mechanism. 
Chapter 7 describes a user interface and persistency mechanism for the Snart framework 
implemented by Snart methods and LPA MacProlog. 

6.2.7. Summary 

This overview illustrates how MVSL and MVisual specifications can be modelled using 
classes which are specialised from MViews architecture classes. Attributes and 
relationships are modelled as class attributes and class attributes with relationship 
components respectively. Fundamental MVSL operations, component-specific operations 
and update operations are modelled as class methods. The MViews architecture classes 
provide many more data and behavioural abstractions than MVSL and MVisual 
specifications. These extra abstractions allow MVSL and MVisual specifications to be 
further refined to include view management for base components, rendering and editing 
for display components, a concrete link between a view’s state (subset view) and 
rendering/interaction (display view), and many more facilities. In the following sections 
the MViews architecture class structures and methods are explained in more detail. 

6.3. Components 

Fig. 6.2. shows the basic structure and methods provided by the component class using the 
class diagram notation from SPE. 
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6.3.1. Component State 

component defines the state of all MViews components and provides methods for 
manipulating this state. Attributes are stored as a one-to-many relationship attributes to 
attribute. Each attribute has a value (which is one of str_value (strings), int_value 
(integers), etc. as appropriate). Attributes are accessed via get_attribute and modified via 
update_attribute. These attribute manipulation methods could be augmented for 
specialised kinds of attributes, for example, handling list attributes. In addition, while 
some attributes may hold values, others can compute values (for example, all ancestor 
classes for a class in IspelM). MViews supports data-driven programming by extending 
these operations or changing the behaviour of record_update and update_from (see 
Chapter 7 for a more thorough discussion of this). 

component

store_update

comp_kind

dissolve_rel

establish_rel

update_from

update_dependents

update_attribute

updated

set_updated

remove_dependent

record_update

get_attribute

delete

base_deleted

add_dependent

component
dependents

record_update 
->update_from

attribute

name

attributes

value

value

str_value int_value list_value comp_value

update_record

values

kind

component

update_records

 

fig. 6.2. Basic structure and methods for component. 

Relationships may be established and dissolved by establish_rel and dissolve_rel. As 
operations are applied to components via method calls, an MVSL operation 
establish(Kind, Parent, Child, NewRel) equates to either of the method calls 
Parent.establish_rel(Kind, Parent, Child, NewRel) or Child.establish_rel(Kind, 
Parent, Child, NewRel) (depending on whether the relationship is to be established by 
the parent or child component). 

The component kind for a specialisation of component can be determined by the method 
call comp_kind, which returns a string equating to an equivalent MVSL component kind 



Chapter 6 An Object-Oriented Architecture for MViews Page 162 

(i.e. the call ClassIcon.comp_kind(Value) for some class_icon instance will return Value 
= “class_icon”). 

6.3.2. Update Records 

Update records are generated by operations modifying a component state. For example, 
the method call Parent@establish_rel(Kind, Parent, Child, NewRel) will generate the 
an update record with kind = establish and values NewRel, Parent, Child15. A short-
hand notation used in this chapter for update records is establish(NewRel, Parent, 
Child). This is a “term” with functor the kind of the update record, first argument the 
component the update record was generated by and remaining arguments the values held 
by the update record. 

Update records are propagated for a component by calling 
record_update(UpdateRecord,UpdateName). update_dependents returns a list of dependent 
component objects for a component and record_update sends updates to these 
dependents by calling update_from(UpdateRecord,UpdatedComponent). Dependents 
implement an update_from method which decodes updates and takes appropriate action 
(for example, applying further updates to the dependent by calling methods). 
store_update(UpdateRecord) is used to store an update record against a component (i.e. to 
document the changes the component has undergone) and stored update records are 
maintained by a one-to-many relationship update_records to update_record. 

Various operations are employed to maintain a list of a component’s dependents 
(add_dependent and remove_dependent) and update_dependents can be over-ridden in sub-
classes of component to define certain relationships to always relate dependents to a 
component. When a component generates an update record by calling record_update, 
set_updated is called which indicates a component’s state has been changed (by setting 
the updated flag to true). This can be used for persistency management and for 
determining that attribute recalculation should take place for the component. 

6.3.3. Persistency 

Components are assumed to be made persistent and reloaded from persistent storage in 
an implementation-language dependent manner. A component can be deleted, however, 
which means its persistent form (and those of any of its sub-components via part-of 
relationships) would be removed. Thus the delete method equates to the MVSL 
delete_component operation. 

                                                 

15The “Kind” value does not need to be stored in the update record as this can be determined from the 

component kind of NewRel. 
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6.4. Base Program Components 

Base components are used to represent the canonical form of a program. They equate to 
the dictionary information of CASE tools such as the OOATool (Coad and Yourdon 91) 
and TurboCASE (StructSoft 92) and database representations of Dora (Ratcliffe et al 92) 
and FIELD (Reiss 90b). Base components can store update records to document changes to 
they have undergone. Fig. 6.3. shows the structure and methods for each kind of base 
component and associated classes. 

6.4.1. View Components 

The view_comp class defines view to be the view a component can be contained in (a base 
view or subset view). MVSL assumes components define this as a relationship but our 
architecture allows an object attribute to be used for this purpose. View components 
define a name they are referred to by their owning view and view_name returns this as a 
string (for example, an IspelM base class might return “Base Class ClassName” where 
ClassName is equivalent to the MVSL value for class.class_name). View components also 
define a user name (as a string returned by user_name) which corresponds to the 
component kind (comp_kind) for a component but in a printable form (for example the 
user name for class_icon might be “Class Icon”). 
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fig. 6.3. Base components structure and methods. 

6.4.2. Base Components 

Base components are marked for removal using remove, rather than directly calling their 
delete method. This allows such operations to be reversed with unremove, and also allows 
MViews to “garbage-collect” all removed components together, limiting the effect on 
interactive performance. 
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IspelM defines base_cluster as a specialisation of base_comp (see Chapter 8 for further 
details). 

6.4.3. Viewable Base Components 

Some base components can be rendered in views (for example, IspelM generalisations and 
classifiers), some can have text forms of themselves (classes and features), while some can 
not be viewed at all (clusters). viewable_base_comp provides attributes and methods for 
maintaining views of a base component. 

Subset component references can be added to and removed from a base component (using 
add_subset_display and remove_subset_display) and this establishes a subset/base 
relationship (subset_rel) between a base component and its subset components. The 
views a base component’s subset components are contained in are stored against the base 
component in subset_views (as a reference to the view, possibly a unique id). This allows 
a base component to provide a view selection dialogue for navigating through its views 
(by calling view_selection). Views that a base component owns (i.e. is the focus of) are 
stored in subset_owned as these views must be deleted if the base component is deleted. 
Views a base component owns need to be renamed if base component attributes used to 
construct the view name are updated. rename_views propagates this rename to all owned 
views of the base component . 

Base components can be created and initialised by a subset component (when the subset 
component is added to a view). download_attributes(AttributeList,SubsetComp) allows 
a new base component to copy this subset component’s data. The dependents of a base 
component include all of its subset components (related by subset_rel) and hence 
update_dependents is redefined for viewable base components. 

IspelM defines base generalisation, client-supplier and classifier relationships as base_gen, 
base_cs and base_cl respectively. These are all defined as specialisations of 
viewable_base_comp. 

6.4.4. Textual Base Components 

Some base components have subset components which are rendered in textual display 
views. MVSL assumed MVisual supplied the text for a subset component with a textual 
display view component rendering. The MViews architecture, however, needs some 
mechanism for storing this text and for storing different textual renderings of the same 
base component. Base components which can have textual display view renderings are 
described by text_base_comp. 

text_base_comp stores textual renderings of base components as text forms. Conceptually, 
a text form is a program graph stored as a single base component in the form of a 
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sequence of textual characters (i.e. a coarse-grained component storage). The data in this 
“graph” can be recovered by parsing the text and generating or updating other 
overlapping program graph information. Text forms and program graph information may 
be disjoint or overlap. For example, class definitions can be stored as text or as a program 
graph in IspelM, but method implementations are only stored as text forms and their 
structure recovered by parsing. Fig. 6.4. shows a text form and program graph from 
IspelM. 

 

class(figure, 
  features([ 
    draw, 
    hide, 
    visible : boolean, 
    window : window 
 ])). 

class 
"figure"

feature 
"draw"feature 

"hide"

feature 
"visible"

feature 
"window" 

Text Forms

  
figure::hide(Figure) :-
  Figure@window(Window), 
  Window@remove_figure(Figure), 
  Figure@visible := false.

Program Graph

 

fig. 6.4. Class and method text forms and a program graph from IspelM. 

The MViews architecture places no constraint on using text forms or program graph 
representations for different tasks. The Dora data representation scheme (Wang et al 92) 
assumes a fine-grained PCTE storage scheme (i.e. all program components are stored as 
“program graphs”). MViews allows efficient, compact representation as text forms (which 
are edited using textual display views), program graph components (which are a finer-
grained representation but usually less efficient in terms of memory and persistent 
storage), or a combination of both (possibly over-lapping). 

text_base_comp provides methods to add, remove, find and update text forms 
(add_text_form, remove_text_form, find_text_form and update_text_form). In addition, 
text_base_comp provides methods for managing text forms when they are displayed in 
textual display views. These include creating new text forms in a view 
(create_text_view_form), displaying a text form in a view (display_text), and saving a text 
form’s text to persistent storage (save_text). Textual display views can be associated with 
text_base_comps and methods for managing these views include storing a default textual 
view reference for the base component (default_text_view), displaying the default text 
view when selected (text_selected) and unparsing updates from the base component 
into the text form in a textual display view (update_text). 
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IspelM defines base classes and features as base_class and base_feature, both of which 
are specialised from text_base_comp. 

6.5. Subset and Display Components 

Fig. 6.5. shows the structure and methods defined for subset and display components. 
Subset components are implemented by subset_comp (i.e. are components of a subset 
view) while display components are implemented by display_comp (i.e. are components of 
a display view). 
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fig. 6.5. Subset and display component structure and methods. 

6.5.1. Subset Components 

MVSL assumes a subset component will implement its own mapping operations to 
establish relationships to base components. As this is a common operation for all kinds of 
subset components, however, and since extra operations like remapping are required16, 
subset_comp implements various mapping methods. These include mapping a subset 

                                                 

16Remapping is used when a programmer wants to change the details of a subset component and have it 

mapped to a different base component (i.e. not update the base component the subset component is already 

mapped to). 
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component to a base component (map), a deferred subset component-specific method that 
actually does the mapping (map_component), and remapping of subset components 
(prepare_to_remap and remap). 

Subset components are usually created without being attached to a base component and 
then try to map themselves to an appropriate base component using map. Subset 
components may also not be mapped to base components if the base component they 
were mapped to has been deleted. Systems such as Dora (Ratcliffe et al 92), Unidraw 
(Vlissides 90) and the Object Design Editor (ODE) (Leidig and Mühlhäuser 91) require a 
view component to always be attached to a model component (and thus must 
automatically update view composition when models are deleted or no longer exist). This 
automatic update may or may not be what a programmer desires and may result in 
confusing or inappropriate view layouts and composition. MViews environments allow 
programmers to determine changes to subset views rather than automatically trying to 
update a view after an update. 

Subset components implement a record_update method which sends their updates to 
their enclosing subset view. The subset component’s view records the updates on itself 
and its components (much as a base component records its updates) and uses them to 
reverse or redo operations. Undo and redo of interactive manipulation is supported by 
sending a subset component or view update records it generated to undo or redo.  Update 
records are discarded by subset views when they are no longer required for undo/redo 
and this process can delete subset components no longer required (i.e. that have been 
disconnected). This undo/redo mechanism is very generic (all basic operations are 
handled automatically) and extensible (new operations simply record update records or 
are built from a sequence of basic operations). 

Subset components send update records to their display components by calling a subset 
component method update_display(UpdateRecord). This method is implemented by 
display components, which are specialisations of subset components (see below). Display 
components and dialogues update subset components directly by sending them 
operations. Thus the MVSL subset component to MVisual display component update 
propagation mechanism is handled by update_display. The MVisual display component 
to MVSL subset component update propagation is handled by display components (and 
possibly dialogues) applying operations to subset components. 

6.5.2. Display Components 

Display components render a subset component in a graphical or textual form. As 
discussed in Section 6.2., the MViews architecture defines display components as 
specialisations of subset components. Thus a display component object actually includes 
all of the data and methods for the subset component it renders. This mechanism explicitly 
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defines the relationship between a subset component and its display component rendering 
(implicitly defined by MVSL and MVisual) as an inheritance relationship between 
display_comp and subset_comp. 

A display component renders its subset component state using draw_component and 
removes this rendering using undraw_component. Display components can initialise and 
update their subset component state using init_details and update_details which 
typically use dialogues to modify subset component attribute values. hide_component 
deletes the subset component for a display component from its view while 
remove_base_component marks the base component for a display’s subset component as 
removed. 

A display component is drawn, undrawn or updated when its subset component sends it 
update records. The display component decides on an appropriate action to take by 
redefining the update_display method inherited from its subset component. A graphical 
display component can have one or more “sub-components” related to it which comprise 
part of its visual appearance. Sub-components are related to the display component using 
relationships and can thus be sent update records when the display component changes 
(they are dependent components). This allows a constraint system to be implemented to 
control related display components, similar to systems provided by LOGGIE (Backlund et 
al 90) and Unidraw (Vlissides 90). 

6.5.3. Textual Display Components 

Textual display components are a rendering of a text_base_comp text form. 
text_disp_comp records the id for the text_base_comp text form they render as base_text. 
text_disp_comp provides methods to change this base text form (change_text_form), 
expand updates into the text form’s text from its base component (update_text) and apply 
updates expanded from the base component (apply_update). 

Textual display components have a “range” in their view determined by an updates_start 
comment and the updates_start of their following component (or the end of the display 
view’s window). Fig. 6.6. illustrates the text owned by text display component text forms. 
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/*updates_start(73). 
update(1).% rename create to init 
<...new updates expanded here...> 
updates_end. */ 

  
class(window, 
 parents([]), 
 features([ 
  lpa_window(atom), 
  buttons(list(button)), 
  current_button(button), 
  create, 
  add_pic, 
  chg_pic, 
  del_pic, 
  make_name, 
  add_button, 
  clicked, 
  shift_clicked, 
  make_current])). 

class 
"window"

class 
"figure"

Display View

Update 
Expansion

"Selected" Components 
from (start/end of 
 cursor selection)

Display 
Components 

Owning 
Text

Range of 
textual display 
component 
text forms 

/*updates_start(57) 
updates_end.*/ 

  
class(figure, 
 parents([]), 
 features([ 
  hide, 
  draw, 
  create, 
  resize])).

 

fig. 6.6. Associating window text with textual display components, inserting updates, and 
selecting textual display components. 

The updates_start comment is also used to expand updates into a text view to inform 
programmers of changes to base information (possibly) not yet reflected in the text view. 
When a textual display component is updated, the update record is unparsed into a form 
readable by programmers and inserted after the last update in its updates_start 
comment. For example, the update record update_attribute(Feature, feature_name, 

OldName, NewName) might be unparsed into the form % rename feature OldName to 

NewName. The selected display components for a textual display view are those which have 
some of their text (including their updates_start comment and update records) within the 
cursor selection range of the text window. Fig. 6.6. illustrates how a text form is associated 
with display components, how updates are expanded into a text form after the 
updates_start comment, and how the selection range is determined. 

Programmers usually treat textual program definitions as a series of tokens rather than 
structures at a low level of detail (e.g. expressions and to some degree control structures), 
suggesting a free-edited model of interaction rather than structure-edited as in the Mjølner 
(Minör 90) and Dora (Ratcliffe et al 92) environments. MViews assumes textual display 
components are “modified” by having their text changed by interactive text editing. 
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Textual display components can also be modified by selecting part of their text and 
applying menu-driven operations (see textual display views below). 

Sometimes updates need to be “forgotten” and not expanded after parsing a textual 
display view, as a programmer is not interested in the change (as they are aware of it17). 
When MViews actually applies an update to a view to update the text for a component18, 
MViews uses incremental token parsing and substitution to perform the update (see 
Chapter 7 for more details of this process). 

IspelM defines class and method textual display components as class_text and 
feature_text, both specialisations of text_disp_comp. These render base program text 
forms for classes and features. Documentation text forms are provided for base classes and 
features and more than one documentation form per component is supported (by 
allowing multiple documentation text forms to be defined for a base component). 

6.5.4. Graphical Display Components 

MViews treats graphical display views as graph renderings made up of icons (nodes) and 
connector glue (edges). Both of these graphical display components can have sub-
components representing part of a graphical display component. This representation 
scheme suffices for most MViews environments which treat diagrams as “boxes and 
glue”. Further extensions could be made to provide similar capabilities to Unidraw, which 
supports arbitrary graphics, connectors and scalable glue (Vlissides 90). 

graphic_disp_comp provides methods for selecting (select) and  deselecting (deselect) 
graphical display component renderings and methods to interpret click (double_clicked) 
and drag (shift_location) editing operations on a display component. It also provides a 
list of “click regions” (as click_regions) which can be used to determine where inside the 
component rendering’s border a click occured. The manner in which a graphical display 
component generates a rendering is assumed by the MViews architecture to be language 
and user interface toolkit-specific. 

Graphical programming of object-oriented systems usually manipulates actual program 
structures (Ratcliffe et al 92) suggesting an interactive structure-oriented editing mode 

                                                 

17Usually this occurs when the change is made to this textual view and hence the programmer made the 

change and doesn’t wish to be needlessly informed of it by an update record. This facility can be turned off, 

however, so programmers are always informed of any change thus ensuring no “unintentional” changes 

slip through. 

18This “apply update” operation is typically done after programmer request but can be automatic. 
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rather than parsed as with GREEN (Golin and Reiss 90). MViews graphical display views 
provide tools which are used to interactively edit graphical display components and their 
subset component data. 

6.5.5. Icons 

Icons are connected by graphical glue which is attached at connection points on the icon 
border or inside its rendering. graphic_icon defines methods allow icons to be connected 
by glue (connect_icons), new icon and glue to be added (add_icon_and_glue), glue 
connection points to be determined (connection_point) and glue validity to be 
determined (get_valid_glue and valid_glue). 

IspelM defines one graphical icon class_icon as a specialisation of graphic_icon. 
class_icon defines MVSL subset class_icon data and methods (such as class_name and 
kind) and provides methods which implement the MVisual interaction for class icons.  

6.5.6. Glue 

graphic_glue is used to connect icons and, in addition to being a graphic_disp_comp, is 
also a specialisation of the one_to_one relationship class (see below). Glue implements 
methods for determining icon connection points (get_connection_points, parent_point 
and child_point), arrow methods (parent_arrow, child_arrow, and point_arrow) and 
establish and dissolve methods for connecting class icons. Connector points on icons 
(such as Prograph dataflow entity pins (Cox et al 89) and Unidraw slots and pads 
(Vlissides 90)) can be implemented as sub-components, or icons being connected by glue 
can supply connection points for the glue using the connection_point method. 

IspelM defines generalisation, client-supplier and classifier glue as gen_glue, cs_glue and 
cl_glue, all specialisations of graphic_glue. 

6.6. Relationships 

6.6.1. Relationships 

MViews component relationships are modelled in the MViews architecture by the 
relationship class. This is specialised into relationships of different arities. Fig. 6.7. shows 
the relationship classes defined by MViews. 
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fig. 6.7. MViews relationship class structure and methods. 

relationship defines methods that equate to MVSL establish, reestablish and dissolve 
operations. Link relationships are modelled by the architecture as relationship 
components with no additional attributes, relationships or methods of their own. 

6.6.2. One-to-one 

One-to-one relationships relate a parent component to a child component. one_to_one 
implements establish, dissolve and reestablish for a single inter-component 
relationship. These methods produce update records of the form 
establish(RelComp,Parent,Child). The dependents of a one-to-one  relationship are its 
parent and child components plus any defined by dependents (inherited from component). 

6.6.3. One-to-many 

One-to-many relationships relate a parent component to one or more children 
components. one_to_many implements establish, dissolve and reestablish for single-
parented multiple inter-component relationships. The dependents of a one-to-many  
relationship are its parent and children components plus any defined by dependents. 

6.6.4. Many-to-many 

Many-to-many relationships relate one or more parent components to one or more 
children components. many_to_many implements establish, dissolve and reestablish for 
a multi-parented multiple inter-component relationships. The dependents of a many-to-
many  relationship are its parents and children components plus any defined by 
dependents. 
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6.6.5. Subset/Base Relationships 

MViews base components can have zero or more subset components. MVSL assumes 
these subset components provide update operations which translate base component 
updates to subset component updates and vice-versa. The MViews architecture, however, 
abstracts out this base component to subset component “update mapping” into 
subset/base relationships. A subset/base relationship implements both the base 
component to subset component update translation and the subset component to base 
component update translation. Subset/base relationships are many-to-many relationships 
thus allowing a subset component to be a composite “subset” of two or more base 
components. 

Subset/base relationships act as an interface between a base component and its subset 
components and are dependents of both their base components and subset components. 
Subset/base relationships receive updates from their base components and update their 
subset components, if these subset components are interested in the base update, so the 
subset components are consistent with their base components. Fig. 6.8. shows some 
subset/base relationships for an MViews program and its views. 

...

Base View 
and Base Components

Subset Views and 
Subset Components

Subset 
Relationships

Display Views 
(rendered in windows)

 

fig. 6.8. Some subset/base relationships connecting base components and subset components. 

All subset components of the same kind for a base component are linked to a single 
subset/base relationship object for the base component. For example, three class icons for 
a base class in IspelM are linked to the same class icon subset/base relationship. This 
allows for efficient update processing for each kind of subset component as only one 
subset/base relationship processes a base update record for all subset components of the 
same kind. Lazy propagation of base updates to subset components can also be supported 
by recording base updates against subset components for later processing. This is useful 
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for subset views that are hidden and hence there is no point in immediately updating their 
subset components and thus having the display components re-rendered (usually an 
expensive operation as graphical user interfaces consume much processing power 
(Dannenburg 91, Vlissides 90, Backlund et al 90, Minör 90)). 

Subsets relationships are created by subset components and maintain relationships 
between all their base components and subset components. Fig. 6.9. shows the 
subset/base relationship structure and methods. 
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fig. 6.9. Subset/base relationship structure and methods. 

The parent components of a subset_rel are viewable_base_comp objects (denoted by the 
parents aggregation relationship in fig. 6.9.) and the child components are subset_comp 
objects (denoted by the children aggregation relationship in fig. 6.9.). subset_rel 
redefines establish and dissolve which create and remove relationships between base 
components and subset components. subset_rel receives update records from its base 
components and subset components. It calls update_from_base and update_from_subset 
appropriately to map an update into a corresponding change in the related components. 

The separation of subset components and base components by subset/base relationships 
allows the same subset component to be connected to different (or the same) base 
components using different subset/base relationships which transform base and subset 
update records differently. For example, a bar graph display component illustrating the 
run-time performance for part of a program could model any kind of base collection 
component (hashtable, list, graph) using a different subset/base relationship to interpret 
the base component data and update records (see Chapter 9 for further details). This bar 
graph display component could also be used to animate a sorting algorithm using a 
different subset/base relationship which transforms sorting algorithm update records into 
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bar graph operations (see Chapter 9). A subset/base relationship performs a similar task 
to “watcher” objects in Tarraingim (Noble and Groves 93). 

IspelM defines subset/base relationships for classes, features, generalisations, classifiers 
and client-supplier relationships. Features are modelled as a special case of client-supplier 
glue (a named and typed aggregate connection at the code (implementation) level) and a 
client-supplier subset/base relationship translates between base features and base client-
suppliers to client-supplier glue. 

6.7. Views 

6.7.1. Views 

MViews uses views to group base program graph components (base views), group subset 
graph components of these base components (subset views) and to group renderings of 
subset components as display components (display views). Fig. 6.10. shows the structure 
and methods supported by different specialisations of views. 
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fig. 6.10. View structure and methods for MViews. 
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Views maintain a one-to-many relationship to the components they enclose (components) 
and provide methods to add and remove these components (add_component and 
remove_component). Both views and their components support undoing, redoing and 
discarding of update records by undo_op(UpdateRecord), redo_op(UpdateRecord) and 
discard_op(DoneOrUndone, UpdateRecord).  

6.7.2. Base Views 

A base_view corresponds to an MVSL base view declaration. base_view maintains a one-
to-many relationship to all subset view objects held in memory with subset_views. A 
current view (typically the subset view whose display view window is the front window) is 
maintained in current_view and changed with set_current_view(SubsetView). Base 
views allocate unique component id values for views and their components using 
alloc_unique_id (so all component ids are unique for a given base view). A base view also 
supports look up of component objects using this id with find_component_id. 

base_view maintains a list of “history” operations used to implement undo/redo in 
operations. An operation stores a list of update records generated by components for 
each interactive editing operation (which may generate several update records) performed 
on display views. Subset views and their components record the update records they 
generate by sending them to their base view (using record_update). The base view can 
then undo or redo these interactive operations on programmer request by sending the 
update records generated by the operation to the creating component’s undo_op or redo_op 
method as appropriate. discard_op is used when operations are no longer required 
(typically a limited number are kept by the base view, as with Unidraw commands 
(Vlissides 90)). 

IspelM defines one base view to store object-oriented program data (which IspelM calls a 
program). This class extends base_view to support component kind-specific look-up tables 
to locate classes, features and predicates by name. 

6.7.3. Subset Views 

A subset_view contains several subset_comps which comprise a subset program graph, 
and hence subset_view corresponds to an MVSL subset view declaration.  

A subset view has a focus (the base component that “owns” the view), referred to by 
focus, and a subset component that is linked to this focus component, referred to by 
subset_focus. The subset_focus component can not be removed from the subset view 
unless another subset component is designated the focus for the view (by set_focus). A 
subset view can be made the current view by calling make_current_view which indicates 
that editing operations are to be applied to this subset view’s display view. 
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6.7.4. Display Views 

A display_view renders a subset_view in a textual or graphical form and hence is 
equivalent to the MVisual notion of a display view. Display view components render 
subset components and the display view is assumed to group these renderings in a 
window (assumed to be provided by the implementation language/user interface toolkit 
for MViews). 

display_view is a specialisation of subset_view and hence behaves as a subset view 
component as well as a display view component. A display_view may be shown or 
hidden (i.e. its window shown or hidden) by display and hide and this display status is 
indicated by visible. 

A display_view provides methods for manipulating the display components it encloses. 
These methods include cut, copy and paste of selected display components, adding 
display components (add_component), hiding the subset components for selected display 
components (hide_component) and removing these subset component’s base components 
(remove_base_component), expanding selected display component information from the 
base view (expand_info), updating a component’s details (update_details), and adding a 
new view for a display component (add_component_view). 

6.7.5. Textual Display Views 

text_disp_view is a specialisation of display_view and is used to render textual display 
components for a subset view’s components. A text_disp_view thus corresponds to an 
MVisual textual display view. Textual display views are parsed to update the base 
component information of their subset components using parse_view. A textual view is 
composed of a linear sequence of text forms distinguished by updates_start comments. A 
textual display component can be located given a cursor position in this text by 
locate_component. 

Textual display component text forms are manipulated by modifying their text using free-
editing operations. Menu-driven commands are used to modify the display components 
and their subset components (such as add_component, hide_component, etc.). When a 
textual display view’s subset view becomes the current view the textual display view 
unparses any updates on its display components (i.e. inserts a human-readable form of 
new base component update records into the text form text of its display components). 
These updates can be applied to the text forms by apply_update. 

IspelM defines one textual display view class_text_view which is a specialisation of 
text_disp_view. This view is used to render class and method code and for viewing base 
component documentation. 
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6.7.6. Graphical Display Views 

graphic_disp_view is a specialisation of display_view and is used to render graphical 
display components for a subset view’s components. A graphic_disp_view thus 
corresponds to an MVisual graphical display view. 

Graphical display views maintain a one-to-many relationship to graphical display 
components (either icons or glue). New icons and glue are added to the display view with 
add_icon or add_glue. Graphical display view components are manipulated via direct 
manipulation using tools (which call hide_component, expand_info, etc.) or by dialogues. 

IspelM defines one graphical display view class_diagram_view which is a specialisation of 
graphic_disp_view. A class diagram view is used to represent and manipulate class 
diagrams made up of class icons and generalisation, client-supplier and classifier glue. 

6.7.7. View Composition and Layout 

The composition of subset views is controlled by programmers adding and deleting 
components to and from the subset view (via display view manipulations). Automatic 
expansion of data from base components can be supported by subset components 
interpreting base component update records or expanding base component information 
when requested by programmers. For example, an IspelM class icon could expand all the 
feature names of its base class by adding new feature names when its base class is 
updated. 

The layout of display views is controlled by programmers rather than automatic graph 
layout algorithms, although these could be implemented by display views. ODE supports 
automatic graph layout and expansion into views (Leidig and Mühlhäuser 91), as does 
Graspin (Mannucci et al 89). EDGE (Newbury 88) also supports automatic layout with 
users being able to modify graphs to suit their requirements using constraints. 

MViews allows programmers to determine both the layout and composition of views and 
informs them of changes to view data (by expanding update records or changing icon and 
glue graphical appearance). It does not attempt to modify or correct subset view 
inconsistencies nor graphical view layouts. MViews allows programmers to make 
appropriate modifications in response to indications of the updates affecting subset view 
components. 

Automatic layout often produces unsuitable layouts when applied to frequently changing 
graph-based diagrams (Paulisch and Tichy 90). MViews subset and display views are 
typically used for applications which have a long life-span (for example class diagrams 
and code) and automatic view layout for these applications would generally produce 
large-scale re-layout which may confuse or hinder programmers (Paulisch and Tichy 90). 
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For this reason graphical display views do not currently support an automatic layout 
algorithm. There is no reason why one should not be implemented for them, however, as 
most algorithms use graph topology and icon and glue sizes, both of which can be 
determined from MViews graphical display components and their renderings. Such 
layout algorithms would be of great assistance for display views which are generated 
frequently, such as for call graphs (Reiss 90b) and object debugging traces (Kleyn and 
Gingrich 88). 

6.7.8. Application Framework 

Each MViews system may have one or more separate base views under construction. 
Subset and display view components from one program may be copied to another using 
display view cut and paste operations. Base component copying must be implemented in 
an application-specific manner, as base components can have very complex inter-
component relationships, whereas inter-component relationships for subset and display 
components are generally restricted to their enclosing view components and base 
components. Each running MViews system has one application component which keeps 
track of all base views. The application creates new programs or reloads old programs 
from persistent storage. 

6.8. Operations and Update Records 

6.8.1. Operations and Update Operations 

As discussed in Section 6.2., MVSL operations and MVisual updates are implemented by 
class methods in the MViews architecture. Basic operations are implemented by methods 
defined by the MViews architecture classes. For example, component defines 
update_attribute( AttributeName, NewValue) to implement the update attribute 
(Comp.AttributeName:=NewValue) operation from MVSL. display_view defines the method 
display to implement the MVisual display update on “view” graphical entities. 

Component-specific operations are defined by implementing new methods for the 
specialisations of MViews architecture classes which use the basic operation methods 
defined for MViews. For example, an add_feature(NewName,NewKind,NewType) operation 
for base classes in MVSL could be implemented by the method 
add_feature(NewName,NewKind,NewType) for base_class (where base_class is specialised 
from base_text_comp). This add_feature method would create a new base_feature object, 
establish a class.features relationship to the feature’s owning class and initialise the new 
feature by calling an init(NewName, NewKind, NewType) method for base_feature (which 
uses update_attribute to initialise feature_name, kind and type_name for base_feature). 
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The MViews architecture assumes an update_from method is implemented by components 
to determine a component’s response to an update record. This update_from method 
equates to update operations in MVSL and, given an update record, will apply operations 
to a component which defines its response to an update record. This method might be 
implemented by a case-statement on an update record’s kind and values (to determine a 
sequence of methods to call to implement the update operation). The Snart 
implementation of the MViews architecture uses a Prolog-style pattern matching on 
update records, which are represented as terms (see Chapter 7). 

6.8.2. Update Record Generation and Storage 

After applying an operation to MViews components, the method implementing the 
operation will generate an update record and call 
record_update(UpdateRecord,UpdateName) to propagate (and possibly store) the change 
this operation has caused to the component. 

Fig. 6.11. shows uses the update_attribute operation to illustrate how an operation 
generates an update record, how this update record is propagated to dependents of the 
generating component by record_update, and how it is stored against the component 
using store_update. This example uses base features and classes from IspelM to also show 
how updates can be passed from a generating component to another component for 
storage and propagation. 

1.  The update_attribute method is called for a base feature. update_attribute 
changes feature_name to “calcValue”. 

2.  update_attribute generates an update record to describe the change done to the 
base feature and calls record_update with this update record to indicate a change 
has taken place. 

3.  record_update broadcasts this update record to dependents of the base feature (in 
this case its owning class and feature subset/base relationships). 

4.  Upon receiving an update record from one of its sub-components (in this case a base 
feature), update_from for a base class uses store_update to store the update record 
received to document the change its sub-component (and hence itself) has undergone. 

5.  update_from for the base class also propagates the sub-component update record to 
its dependents (in this case a class subset/base relationship). 

6.  The class subset/base relationship receives the update record from its base component 
and sends it to its subset (in this case a class display component for a text view). 
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7.  The class text display component unparses the update from its base component into 
its text form’s text. For some updates, such as renaming of the class, this may also 
generate operations (to change the display component’s class_name to that of its 
updated base class name). This may generate further update propagation in a similar 
manner to step 1. 
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fig. 6.11. Generation, propagation and storage of update records by update_attribute. 

6.8.3. Composite Update Records 

Update records are generated by basic operations in MVSL and the corresponding 
MViews architecture methods generate similar update records. For example, 
CompID.delete generates update records of the form delete_component(CompID), 
CompID.establish_rel(Kind, CompID, Child) generates establish(NewRel, CompID, 

Child) and so on. 

Methods defined for specialisations of MViews architecture classes can also generate their 
own “composite” update records, if required. For example, the method call 
Icon@shift_location(NewX, NewY) for a graphic_icon object generates a 
shift_location(CompID, DX, DY) update record when an icon is dragged interactively. 
This corresponds to generating two update_attribute records update_attribute(CompID, 
X, OldX, NewX) and update_attribute(CompID, Y, OldY, NewY). These two basic update 
records are still produced for any dependents who only want to be informed of the change 
in state of one of an icon’s location attributes. The composite update, however, is generally 
more useful for sub-icons and glue which only want to know the change in an icon’s 
location and hence need only provide update response processing for a shift_location 
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update record. Chapter 10 discusses extending this composite update record system to 
provide automatic composite update record generation from basic update records. 

6.8.4. Update Record Propagation 

Update records generated by MViews methods are propagated to all dependents of the 
generating component. These dependent components may invoke further methods in 
reponse to these update records which in turn may generate further update records for 
propagation. Fig. 6.12. illustrates how an operation method sent to a display component is 
propagated to change the MViews program state. The steps in the propagation are: 

1. a. Textual view is updated by typing, and parsing gives parse tree to subset/base 
relationship (located via display/subset component associated with text form) and 
subset/base relationship updates base component. 

 b. Graphical or textual view component is updated by direct manipulation, menu or 
dialogue. 

2.  Method call for display component translated into method(s) call for subset 
component (if necessary) by display component. 

3.  Method call for subset component generates update records which are sent to its 
dependents (subset/base relationships) which interpret these update records with 
update_from (which calls update_from_subset). 

4.  Subset/base relationship’s update_from_subset method translates subset component 
update records into base component method calls if the base components are affected 
by these subset component updates. 

5.  Base component stores the update record (if required) using store_update. 

6.  Dependent components of base component sent update records generated by base 
component’s methods (these dependent components include subset/base relationships 
of the base component, if any). 

7.  Subset/base relationships interpret base update records and determine if their subset 
components need updating. update_from_base calls subset component methods if 
necessary. 

8.  Subset component’s methods record their update records and record_update sends 
these update records to display components by calling update_display for the 
display components. 
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9.  Display components either re-render themselves in response to the update records 
sent to update_display or expand these update records into a human-readable form 
to indicate changes affecting them (using update_text). 
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fig. 6.12. Flow of change after a display operation is performed. 

After applying an operation to a subset (or display) component, the component’s 
enclosing view records the update record generated to implement undo/redo. This 
undo/redo mechanism is currently sequential and global i.e. updates must be undone in 
reverse order to how they were applied and must be undone across all views (thus 
MViews supports undo as a history of operations, similar to Unidraw). A useful extension 
would be to allow updates to be undone and redone in an arbitrary order, and “generic” 
updates to be applied as a group to a view, as in PECAN (see Chapters 7 and 10 for more 
discussion of such facilities). 



Chapter 6 An Object-Oriented Architecture for MViews Page 184 

6.8.5. Constraints, Semantic Attribute Recalculation and Lazy Updates 

When a component is modified by a method call (operation), constraints can be checked to 
ensure the operation is valid. These can be defined by over-riding the operation method in 
a sub-class or by over-riding record_update in a sub-class. The MViews architecture 
supports a facility to abort partially applied operations if constraint checking fails. Any 
update records stored by an operation object are then deleted and their effects reversed (in 
the same way as undo). For example, if an IspelM base class is renamed to the same name 
as some other class, an error message can be displayed and the rename (update attribute) 
operation aborted. 

As all dependent components are notified of a component update, any dependent part of 
their state can be recomputed to reflect the change (attributes recomputed, constraints 
checked or the component marked for deletion). This provides a data-driven/event-
driven mechanism similar to attribute grammars (Reps and Teitelbaum 87) and Garlan’s 
dynamic view updates (Garlan 87) and Wilk’s lazy consistency management (Wilk 91). 
Update records sent to a component could also be stored for lazy interpretation when a 
value affected by the change is required, or this update record interpretation could be 
deferred until a programmer requires computation to be performed (i.e. demand-driven 
evaluation). 

A component receiving an attribute update record can use update_from to update its own 
attributes which depend on the updated attribute (in the other component or even itself). 
This provides a data-driven scheme where object dependency subsumes attribute-
dependency in a similar manner to attribute grammars. An extension to this approach 
could provide a table which maintains a list of <Attribute,<Object,Attribute> list> 
pairs for all of attributes which depend on other <Object,Attribute> values. This would 
support data-driven attribute recalculation in a similar manner to (Reps and Teitelbaum 
87), possibly with an incremental recalculation algorithm (Hudson 90). 

The MViews architecture allows update records received by a component to be stored. 
The component can then be marked as “has updates needing actioning”. Combined with 
the above approach of attribute dependency, this allows lazy and demand-driven attribute 
updating and object dependency propagation schemes to be implemented. Accessing an 
object attribute would cause any unactioned updates to be processed, possibly computing 
a new value for the required attribute. Alternatively, updates can be processed when 
received, but mark dependent attributes (and, transitively, any of these attribute’s 
dependents) as “need recomputation”. Accessing a “needs recomputation” attribute 
would cause it to be recomputed before being returned (i.e. it is lazily re-evaluated). 

Cyclic dependencies are permitted but no automatic detection of this is currently 
assumed. Unidraw uses a similar model for a dataflow state variable propagation 
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mechanism (Vlissides 90) but checks for cycles by storing a list of all visited components 
resulting from an initial attribute update. Such a model could be employed by MViews 
when an attribute is changed to detect cyclic dependencies and either stop the change 
propagation or flag an error. 

6.9. Discussion and Future Research 

In this section we evaluate the MViews architecture with respect to program 
representation and manipulation, view and view component representation and 
manipulation, and operation and update record support. Possible future extensions to this 
architecture are also discussed. 

6.9.1. Components 

This component class captures the basic notion of an MVSL component. This representation 
works well for defining basic operations, component attributes and for representing 
update records. It also provides a flexible scheme for composing component-specific 
operations which make use of basic operations (and other component-specific operations) 
via method calls. This scheme does loose some of the abstractness (though not 
expressiveness) of MVSL when describing relationships and update operations. 
Relationships must be represented as a combination of attribute value (with a relationship 
component type) and specialisations of (or parameterised) relationship classes. 

For example, class.features must be represented as an attribute of type one_to_many 
relationship component. The value of class.features is thus a one-to-many relationship 
to feature and class.features.children gives the list of features owned by a class. 
Establishing and dissolving such a relationship requires establish_rel and dissolve_rel 
for a component to be over-ridden to call establish and dissolve for one_to_many for 
class.features. The MVSL description of class.features from Appendix D allows such 
a relationship to be expressed and manipulated more succinctly. 

Similarly, to implement update operations, the MViews architecture must over-ride 
update_from and implement a case-based selection on update record kinds and values. 
This is less abstract than describing update record responses with MVSL but once again 
does not actually lose any power of expression (all update responses from MVSL can still 
be described using the MViews architecture). 

6.9.2. Base Components 

The MViews architecture describes MVSL base elements and relationships by 
specialisations of base_comp. These specialisations define extra attributes and methods for 
supporting text form management, subset/base relationship, component and view 
management, and delayed base component removal. MVSL components are thus not only 
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described as specialisations of base_comp but also as specialisations of base components 
with extra characteristics as appropriate. 

One disadvantage of this approach is that an MVSL base component must be described by 
an MViews architecture class specialisation which “knows” about its viewing mechanism. 
For example, MVSL does not require a base class to know whether it has text forms or any 
subset components at all but assumes MVSL subset views and MVisual display views and 
components define these notions. A further disadvantage is that the MViews architecture 
currently assumes components which have text forms (which may or may not have textual 
view renderings) can also have graphical view forms. A better structure for the base 
component classes to solve these problems might be to specialise base_comp to 
graphic_view_base_comp, text_form_base_comp, and text_view_base_comp. MVSL base 
components could then be modelled as specialisations of one or more of these classes (i.e. 
multiple inheritance) as appropriate or even all three (if no assumptions about the kind of 
base component viewing are made). 

6.9.3. Subset and Display Components 

The MViews architecture describes MVSL subset components as specialisations of 
subset_comp and MVisual display components as specialisations of display_comp (which 
are themselves specialisations of subset_comp). This scheme works well for most 
applications and provides a concrete, implementable relationship between a subset 
component and its display component using specialisation. For environments where a 
subset component can have several different display components this scheme is not as 
abstract as MVSL and MVisual. A specialisation of subset_comp can be defined with 
multiple specialisations from itself and display_comp to represent this situation. This 
requires more effort than an equivalent MVSL/MVisual specification as methods may be 
over-ridden by both the subset_comp specialisation and display_comp specialisations (and 
thus require some form of reconciliation under multiple inheritance). 

6.9.4. Views 

MVSL views are defined by the MViews architecture as specialisations of view with 
display_view defined as a specialisation of subset_view. As with subset and display 
components, this subset and display view representation scheme works well for 
modelling most environments described with MVSL and MVisual. Specialising 
display_view into text_disp_view and graphic_disp_view provides a natural way of 
expressing the kind of rendering the view supports. The architecture must provide 
appropriate methods for display view interaction, however, which define MVisual 
component manipulation assumptions (for example, display component addition and 
details updating). 
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6.9.5. Relationships 

relationship models MVSL relationships and is specialised to relationships of one-to-one, 
one-to-many and many-to-many arities. Subset/base relationships abstract out the base to 
subset and subset to base translation of update records into component operations 
(method calls). Partial automation of this update propagation can be provided by a 
mapping of base component attributes and relationships to subset component attributes 
and relationships and vice versa. 

Extending this relationship representation scheme to explicitly define part-of relationships 
would assist in implementing automatic update record propagation via transient 
dependencies (Wilk 91). The MViews architecture assumes an object-oriented 
implementation language will support multiple inheritance (so the relationship classes 
can be reused in conjunction with other component specialisations). This could be modelled 
by a relationship component attribute in such specialisations (i.e. relationship objects 
whose methods are called by the component specialisations they are created for) but this 
would not be as natural as the architecture’s approach. 

6.9.6. Operations and Update Records 

MVSL basic, component-specific and update operations are modelled as record_update 
and update_from methods. This update record propagation mechanism is very flexible 
and provides an efficient method of implementing view updating and attribute 
dependencies. Storage of update records allows components to document their changes 
and supports a generic undo/redo mechanism. 

6.10. Summary 

The MViews architecture has been developed to abstract out the common features of 
environments which support multiple textual and graphical views of a program with 
consistency management. This architecture provides a set of reusable components based 
on the concepts of Chapter 5 which allows MVSL and MVisual environment specifications 
to be modelled as specialisations of appropriate MViews architecture classes. IspelM can 
be defined in terms of this MViews architecture by specialising classes to describe 
program representation as graphs (base components and view), views of these program 
graphs (subset and display components and views), and operations and update responses 
for each kind of component (using methods and method over-riding). The MViews 
architecture provides additional classes and class attributes and methods for supporting 
concepts of MViews environments. These include base component classes with methods 
to manage views and text forms, display components for textual display components 
(including update unparsing and application) and graphic display components (including 
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icon and glue support), and display views (including textual and graphical renderings of 
program fragments).  

Novel aspects of the MViews architecture include its use of the component class to model 
generalised object dependency graphs. These graphs are used for representing program 
structural and semantic information in the same manner. Subset graphs are represented in 
the same way as base program graphs and display views and components are defined as 
specialisations of subset views and components. MViews solves the textual view 
consistency problem in a novel manner by unparsing update records stored against base 
components and can automatically apply some of these updates to text forms on 
programmer request. Components can determine their response to update records sent via 
the object dependency mechanism and this can be used for general object dependency 
(attribute recalculation etc.), constraint maintenance, and efficient subset and display view 
updating. Storage of update records supports a generic undo/redo facility and 
documentation of program component changes. 

This object-oriented architecture for MViews can be used to create an object-oriented 
design for environments specified with MVSL and MVisual. Such a design requires an 
implementation to produce an environment and thus an implementation for the MViews 
architecture is necessary. Chapter 7 discusses an implementation of the MViews 
architecture in Snart which produces an object-oriented framework for MViews. Chapter 8 
uses this architecture to produce a design for IspelM and uses the Snart framework to 
produce an implementation of this design for IspelM and SPE.
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Chapter 7 

An Object-Oriented Implementation of 
MViews 

 

Chapter 6 described an object-oriented architecture for MViews systems based on the 
model and specification languages in Chapter 5. To construct executable environments 
this architecture must be implemented using a programming language. In this chapter an 
implementation of MViews as an object-oriented framework in Snart is described. This 
framework provides a set of classes that support the component structures and operation 
methods described in Chapter 6. New environments specialise these Snart classes to 
implement their own program representation, subset and display views and components, 
user interface, persistency management, and interfaces to existing compilers and run-time 
systems and/or the static and dynamic semantics of a language. 

The reasons for implementing MViews as a Snart framework and advantages of choosing 
this implementation language over comparable approaches are discussed. The 
implementation of each type of component from Chapter 6 is described with particular 
attention to Snart-specific implementation decisions. The framework is evaluated with 
future extensions and alternative implementation approaches for MViews briefly 
discussed. Chapter 8 reuses the object-oriented architecture of Chapter 6 to model IspelM 
and reuses the Snart framework to implement this IspelM model and to specialise IspelM 
to produce SPE. 

7.1. A Snart Framework 

Development of the MViews architecture commenced with a denotational semantics 
specification of the graph representation of program state and the operations performed 
on that state (defined in Chapter 5). From this specification MViews class hierarchies were 
derived for the object-oriented architecture of Chapter 6. Class responsibilities and 
services were determined from MVSL and MVisual operations and updates and the 
MViews and IspelM architectures implemented. 

These design and implementation processes were concurrent with feedback between each. 
This evolutionary software development implied a need for a language supporting 
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experimental programming. Some aspects of both MViews and IspelM were not easy to 
determine without a prototype implementation (particularly user interaction through 
display views and persistency management for programs). The architecture used to model 
MViews in Chapter 6 is object-oriented, assuming multiple inheritance, encapsulation of 
data and behaviour, and polymorphism. It is thus more natural and easier to implement 
this architecture in a language supporting such concepts, rather than non-object-oriented 
languages, such as C or Pascal. 

Prototype implementations of MViews and IspelM were initially attempted using Quintus 
Prolog’s ProTALK on a DECstation 2100 (see Chapter 3 and (Quintus 91)) and THINK C (a 
C++-like language on the Macintosh (Symantec 91)). The object-oriented facilities of 
ProTALK were not at all satisfactory and difficult to use and its environment very 
rudimentary. THINK C provided only simplistic object extensions to C and was difficult 
for prototyping due to its strongly typed nature (forcing many long compilations when 
class hierarchies were changed). Both languages provided little high-level support for 
prototyping or constructing user interfaces. Quintus Prolog’s X-windows interface 
facilities were very low-level while THINK C provided the THINK Class Library (TCL) 
framework for accessing the Macintosh Toolbox facilities. Both required major effort to 
build even simple user interfaces compared with LPA MacProlog and these interfaces 
proved much less flexible or extensible. 

As discussed in Chapter 3, Snart was designed to be a simple language combining 
Prolog’s untyped, logic programming facilities inside an imperative object-oriented 
structure. Snart was designed to be fast in execution time, have efficient object storage, 
and have an extended environment for object-oriented programming. Its simplicity 
compared with other available prototyping languages (Smalltalk (Goldberg and Robson 
84), CLOS (Keene 89) and ProTALK) is an advantage together with complete control over 
Snart’s implementation. For some aspects of our work Snart itself evolved to support a 
dynamic object tracing facility for dynamic program visualisation and visual debugging 
(see Chapter 9), and object persistency management to experiment with transparent 
MViews program persistency. 

Although Snart is essentially untyped, Snart program structures could be ported to 
strongly-typed languages such as Eiffel, C++ or Kea. The high-level support for building 
graphical user interfaces in LPA MacProlog and incremental compilation inside the LPA 
environment help make Snart an excellent rapid-prototyping language. While MViews 
could be implemented in other object-oriented languages, such as Protalk, C++ 
(Stroustrup 86), Smalltalk or CLOS, we determined that Snart would be a suitable 
implementation language for an experimental prototype. 
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7.2. MViews Framework Complexity 

Table 7.1. shows the breakdown of code in MViews. In addition to implementing the 
MViews architecture classes from Chapter 6 the Snart implementation of MViews 
provides groups of Prolog predicates which implement: 

• basic persistency management (for reading and writing terms and objects to 
files) 

• LPA MacProlog menus and dialogues and support predicates 
• unparsing predicates and classes for data structure support 
• class interfaces to LPA MacProlog window processing predicates 

 
MViews Components Lines 

component 
 view_comp 

370 
280 

relationships 
 subset_rel 

231 
212 

base_comp 
 viewable_base_comp 
  text_base_comp 

120 
328 
338 

subset_comp 397 
display_comp 
 text_disp_comp 
 graphic_disp_comp 
  graphic_icon 
  graphic_glue 

101 
390 
169 
196 
381 

view 
 base_view 
 subset_view 
 display_view 
  text_disp_view 
  graphic_disp_view 

172 
388 
570 
267 
532 
985 

application 275 
dialogues and menus 581 
persistency support 456 
undo/redo support 550 
misc. (unparsing, data structures) 454 

Total: 8743 

table 7.1. Complexity of the MViews implementation. 
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7.3. Components 

7.3.1. Component State 

All component classes from the MViews architecture are implemented as Snart classes. A 
Snart class interface defines generalisation classes, attributes, and methods (operations) for 
each kind of component. Snart allows attribute and method names to be Prolog variables 
which are bound at run-time. For example, a call of the form Comp@Attribute:=Value is 
valid if Comp and Attribute are bound to appropriate values at run-time. The Snart 
framework implements component attributes as object attributes, rather than a one-to-
many relationship to attribute objects, as defined by the architecture in Chapter 6. This 
attribute representation is both space and execution time efficient as a component object 
needs no extra objects to represent its attribute values. Operation methods are 
implemented as Snart methods with method arguments supplying information used by 
the operation. Relationship component objects are accessed via object attributes with 
establish_rel and dissolve_rel methods supplied to manipulate component 
relationships. One-to-one relationships can also be implemented by Snart object attributes 
directly referencing other component objects. 

The Snart framework currently assumes component objects are referenced by their Snart 
object id or an application-specific unique component identifier. Component classes can 
define a unique_id method which is used by the base_view to look-up components for a 
program. When a component is reloaded from persistent storage a new Snart object is 
created for it. unique_id provides a component reference which exists across different 
reloads of a component as different Snart objects, and thus can be used by relationships 
and attributes representing relationships to refer to components. 

7.3.2. Update Records 

Update records are represented as Prolog terms of the form UpdateKind(Component, 
Value1, ..., Valuen). Terms are used rather than objects for efficiency and because all 
update record processing is provided by components rather than the update record itself. 
Thus update records need not be represented with an object-oriented structure (i.e. we 
need only store data and not data and behaviour). 

Fig. 7.1. shows some Snart code from the MViews component class implementation. The 
component class name is prefixed by “mv_” to distinguish it from classes belonging to 
specialisations of MViews. 
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abstract_class(mv_component, 
 parents([]), 
 features([ 
  dependents:list(mv_component), 
  updated:boolean, 
  id:integer, 
  ... 
  get_attribute, 
  update_attribute, 
  ... 
  record_update, 
  update_dependents, 
  update_from, 
   set_updated, 
  ... 
 ])). 
 
% Get an attribute value 
% 
mv_component::get_attribute(Component,Attribute,Value) :- 
 Component@Attribute(Value). 
 
% Update attribute 
% 
mv_component::update_attribute(Component,Attribute,NewValu
e) :- 
 default_value(Component,Attribute,nil,OldValue), 
 Component@Attribute:=NewValue, 
 Component@record_update( 
 
 update_attribute(Component,Attribute,OldValue,NewValue)
,'Update Attribute'), !. 
 
% Record update against component 
% 
mv_component::record_update(Component,Update,Name) :- 
 Component@set_updated, 
 Component@update_dependents(Dependents), 
 mv_broadcast(Dependents,Update,Component). 
 
mv_broadcast([],_,_) :- !. 
mv_broadcast([Dependent|Dependents],Update,Component) :- 
 Dependent@update_from(Update,Component), 
 mv_broadcast(Dependents,Update,Component). 
 
% Return all components dependent on changes to this 
component 
% 
mv_component::update_dependents(Component,Dependents) :- 
 default_value(Component,dependents,[],Dependents). 
 
% Component has been updated 
% 
mv_component::set_updated(Component) :- 
 Component@updated:=true. 
 



Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 196 

% Process Update/AppUpdate from another component 
% 
mv_component::update_from(Component,Update,FromComponent). 

fig. 7.1. Part of the component class implementation in Snart. 

Attributes are updated by calling Comp@update_attribute(Attribute, NewValue) for some 
component Comp. Update records are generated by calling record_update(UpdateRecord, 
UpdateName) with a Prolog term representing the update. Update records are broadcast to 
all dependents of a component (returned by Comp@update_dependents(DependentsList)) 
and these dependents interpret the update record with 
update_from(UpdateRecord,FromComponent). The Snart framework provides more 
flexibility than MVSL for designating dependent components. Some relationships can be 
designated to relate dependents to a component (via over-riding of update_dependents) 
and some components can be made dependents dynamically (by calling 
add_dependent(Component) and remove_dependent(Component)). 

Snart methods are executed in the same manner as Prolog predicates and several method 
implementations can be defined for the same method name. This supports an abstract 
implementation of update_from by defining an update_from method implementation for 
each kind of update record (and update record values) a component should respond to. 
This supports MVSL update operation selection (dependent on update record kind and 
number and type of values) via declarative Prolog “pattern-matching” using multiple 
method implementations for update_from. Fig. 7.2. shows an example component 
update_from method that responds to different update record kinds and values. The last 
update_from method implementation passes the update record to the update_from method 
for the parent class of comp for processing. 
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comp::update_from(Comp,update_attribute(Comp,name,OldName,
NewName),Comp) :- 
 % i.e. update_attribute of name on Comp itself 
 ... 
comp::update_from(Comp,update_attribute(SubComp,name,Old,N
ew),SubComp) :- 
 % i.e. update_attribute of name on a sub-component of 
Comp, SubComp 
 SubComp@comp_kind(comp2), 
 ... 
comp::update_from(Comp,delete_comp(SubComp),SubComp) :- 
 % sub-component of Comp deleted 
 ... 
comp::update_from(Comp,establish(Rel,Parent,Comp),Rel) :- 
 % relationship Rel established between Parent and Comp 
 Rel@comp_kind(rel_comp), 
 ... 
comp::update_from(Comp,UpdateRecord,FromComponent) :- 
 Comp@parent_update_from(UpdateRecord,FromComponent). 

fig. 7.2. Update operation implementation in the Snart framework. 

store_update stores update records as terms but uses an additional method 
app_update(UpdateRecord, AppUpdateRecord) to convert an update record into an 
“application-specific” form. Any update records stored for a component must use the 
component’s unique_id, rather than the component’s Snart object reference. A unique_id 
must be used as stored update records are saved and reloaded and thus must not directly 
refer to Snart object ids which may change when components are reloaded. A declarative 
get_update_text method implemented for each component returns a list of atoms which 
are printed to describe the human-readable form of an update record. This is used for 
update record browsing and as the unparsed form of an update record in a textual display 
view. 

In addition to the methods defined by the MViews architecture, component implements 
methods for list attribute management. List attributes are implemented as Prolog lists and 
can be used instead of one-to-many relationship components for very efficient one-to-
many relationship implementation. A component must over-ride establish_rel and 
dissolve_rel, however, to manage such “list” relationships. 

7.4. Base Program Components 

7.4.1. View and Base Components 

view_comp is implemented as a Snart class which inherits from component. base_comp 
inherits from view_comp and specialisations of base_comp (i.e. base components which are 
not viewable) are implemented by inheriting base_comp. 
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7.4.2. Viewable Base Components 

viewable_base_comp uses a list attribute subset_rels for its subset/base relationships as 
object references. References to the subset views a base component owns are stored as a 
list of Prolog terms of the form ViewName(Location) where ViewName is the name of the 
view and Location is used to locate the view’s persistent form. Subset views a base 
component is viewed in are stored as a list of subset view unique_id values. A dialogue 
allows programmers to browse and select the views a base component is represented in. 
These representations were used rather than relationship components to support very 
efficient subset view and relationship management. 

7.4.3. Textual Base Components 

Text form data for text_base_comp is stored as Prolog terms in a component_text list 
attribute. As with update records, storing text forms as objects is not necessary, as text 
forms only store data and are manipulated entirely by their owning base component19. A 
persistent storage location describes how to find the text associated with a text form and 
this text is displayed as the rendering of the base component in a textual display view. 

7.5. Subset and Display Components 

Fig. 7.3. shows the extended subset and display component hierarchies and methods. 

                                                 

19Hence using an object-oriented representation for text forms is not required. This flexibility of using Snart 

objects or Prolog terms to store data proved very useful for both MViews and IspelM. Typically, objects are 

used for MViews component data and terms for “structured” data associated with components (i.e. 

“complex” attribute values). 
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display_comp

update_display

undraw_component

draw_component

text_disp_comp

delete_tokens

add_tokens

replace_tokens

change_tokens

next_token

find_tokens

update_text

apply_update

undraw_component

draw_component

graphic_disp_comp

undraw_component

draw_component

is_icon

is_glue

shift_location

select

get_picture

deselect graphic_icon

graphic_glue

view_comp

subset_comp

reconnect_component

disconnect_component

create_subset_rel

find_subset_rel

relink_subset

discard_op

redo_op

undo_op

calc_view_name

base_deleted

base_update_attribute

term

picture

term

frame

 

fig. 7.3. Extended subset and display component classes for the Snart framework. 

7.5.1. Subset Components 

subset_comp defines remap_on_reload to remap a reloaded subset component to a base 
component possibly using the base component’s stored update records to update its own 
state. The Snart framework permits in-core subset components only to be updated 
immediately when base component changes are made (for efficiency). remap_on_reload 
can be used to reconcile a reloaded subset component’s state to the base. 

base_deleted implements an efficient deletion method for subset components when their 
base view has been deleted (i.e. the current program closed by a programmer). undo_op, 
redo_op and discard_op implement declarative methods similar to update_from which 
determine how to reverse, reapply or discard an update record. relink_subset is used 
when a subset component is reloaded from persistent storage or copied using copy or cut 
to relink subset component relationships as new Snart objects are generated. 
find_subset_rel and create_subset_rel locate and create subset/base relationships for a 
subset component by their Snart class name. disconnect_component and 
reconnect_component remove and add a subset component to its enclosing subset view. 

7.5.2. Display Components 

display_comp uses a declarative form of update_display to determine if a display 
component should be re-rendered or not. Specialisations of display_comp can take further 
action on update records, for example only re-rendering part of their display (incremental 
updates) or unparsing an update record to indicate a change. 
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7.5.3. Graphical Display Components 

Graphical display components are rendered as GDL pictures of arbitrary complexity. One 
display can be composed of several sub-display components which render different parts 
of a base and hence can be interacted with separately. These sub-displays are created and 
deleted by their “parent” and are dependents of their parent (hence they are notified of 
any changes their parent undergoes via update_from and can update their own state 
accordingly). The default action of update_display is to always re-draw the display 
component entirely (i.e. undraw_component and then draw_component). All 
graphic_disp_comp operations are implemented using GDL predicates with data stored in 
the graphic_disp_comp object. 

When interactively selecting display component MViews needs to know if a mouse click 
or marqui selection has covered a component’s picture. LPA’s picture location predicate 
uses only the front picture item in a composite picture and this proved very 
unsatisfactory. MViews implements a selection mechanism using a frame defined by each 
class of graphical display component and determines whether the click-point is inside this 
frame or selection encloses the frame. Click-points within the frame can be defined using a 
list of terms of the form Name(Top,Left,Height,Width) stored in click_regions. 

7.5.4. Textual Display Components 

draw_component for text_disp_comp inserts the text of a base text form into a textual 
view’s text window and undraw_component removes this text. This text processing uses 
LPA text window manipulation predicates. update_display called by the 
text_disp_comp’s subset component indicates base component update records are 
available for unparsing into the text. update_text is called to perform this unparsing 
(which uses the base component’s declarative get_update_text method) and writes the 
token list returned into the text window. 

Token processing for incremental application of updates is performed with LPA text 
window manipulation predicates and Prolog pattern-matching. These token manipulation 
methods include find_tokens, add_tokens, replace_tokens and delete_tokens. 
find_tokens incrementally parses each Prolog token in the view at a time and returns a 
match based on a given regular expression (or fails if a match can’t be found). The 
matched tokens are returned as a list of terms of the form 
(TokenStart,TokenEnd,TokenValue) where TokenStart and TokenEnd delimit the token’s 
range in the window and TokenValue is a Prolog atom describing the token’s value. The 
returned token list can be used by other token manipulation functions to change the text in 
the view which thus applies the update record to the view. Fig. 7.4. shows an example 
find_tokens method call for a textual display view where a class definition start is being 
searched for (which may be text of the form “abstract_class(Name” or “class(Name”). 
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TextDisplayComp@find_tokens( 
  [[abstract_class,’(‘, Name], 
   [class,’(‘,Name]], 
  [NameToken])

/* updates_start(78). 
update(5). % rename window to gwindow 
updates_end. */ 
 
class(window, 
 parents([]), 
 features([ 
  name:string, 
  ... 
 ])). 

Name = window
NameToken=(78,83,window)

Method Call:

Prolog variables returned:Textual view contents:

 
fig. 7.4. An example of find_tokens for a textual display view. 

 

7.6. Views 

Fig. 7.5. shows extra methods and structure for views. The Snart framework view class 
provides methods to manage view component creation 
(create_component(Kind,Component)) and to translate a component’s object reference to 
and from various forms (used for persistency management, schema evolution and 
framework specialisation). component_to_kind(Component,Kind) and 
kind_to_component(Kind,Component) translate a view component’s Snart object id into its 
comp_kind value and vice-versa. If this kind has been renamed (i.e. an implementer of an 
MViews environment changes this value) these methods can be over-ridden to translate 
an old kind into an appropriate new comp_kind value. 

Abstracting this component creation facility into view classes supports framework 
specialisation (for example, SPE specialised from IspelM) where specialised classes must 
create and manipulate classes from the same framework level as themselves. For example, 
SPE might define an spe_program, a specialisation of program from IspelM, which needs to 
manipulate spe_base_class, not base_class from IspelM (as spe_base_class extends 
base_class for Snart programming). spe_program can over-ride kind_to_component so any 
unspecialised IspelM classes used by SPE create the correct spe_base_class object. 

Additional methods are provided to translate component objects to references (i.e. returns 
the Snart object id and its comp_kind which can be used to recreate and relink components 
with a list of terms of the form OldRef(NewRef)) and vice-versa using 
component_to_ref(Component, Kind(Ref)) and ref_to_component(Kind(Ref), 

OldRefList, NewRefList, Component). Similarly, component_to_unique(Component, 

Kind(UniqueID)) returns a component’s unique_id/comp_kind pair while 



Chapter 7 An Object-Oriented Implementation of MViews in Snart Page 202 

unique_to_component(Kind(UniqueID), Component) creates a component object given its 
unique_id and comp_kind. 

subset view

display_view

rename_view

set_focus

base view

kind_to_view

view_to_kind

find_component_id

reload_subset_view

current_view

alloc_unique_id

subset view

display view

make_current_view

menus

lpa_window

location

font

create_window

text disp vie

forget latest updates

process_term

done_parse

init_parse

parse_view

graphic disp vie

shift_pictures

redraw_components

view

process_menu_item

create_component

unique_to_component

ref_to_component

kind_to_component

component_to_ref

component_to_kind

component_to_unique

operation

undo

redo

discard

abort

update_records

operations

 

fig. 7.5. Extra view methods and structure for the Snart framework. 

7.6.1. Base View 

The base view records the current_view as an attribute and all subset view components 
currently in memory as a list attribute subset_views (for efficiency). Components can be 
located by their unique_id and loaded from persistent storage (for example, by calling 
reload_subset_view) when accessed, by find_component_id. The base view allocates 
values for unique_id methods with alloc_unique_id. 

A base view stores a list of editing operations (as operation objects) using operations and 
these are used to provide a global undo/redo facility. An editing operation is composed of 
a list of update records that are sent back in sequence to their generating components for 
undo/redo. A base view also stores a list of subset views using subset_views. This allows 
all in-core subset views to be accessed from the base view. 

7.6.2. Subset Views 

A renamed subset view must inform its display view of this change by calling 
rename_view so it can rename its LPA window. When the focus of a subset view is 
changed by set_focus the subset view may need to be deleted from one place on 
persistent storage and saved to another (depending on how subset views are stored). 
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When a subset view or one of its components is updated, any update records generated 
are recorded as a list of update record terms in an operation object, which the base view 
stores as a list attribute operations. After an Undo menu item is selected, the previous 
editing operation is reversed by reversing each of its component update records by calling 
undo for operation. Each update record is sent to its generating component for reversal (by 
calling methods which reverse the update record’s change). A component may pass an 
update record to its parent class for reversal. 

7.6.3. Display Views 

Subset views are specialised to display views. All display views have an associated LPA 
window referred to by name using a string attribute lpa_window. Display views also 
provide additional support for window manipulation using create_window, font and 
location.  

7.6.4. Textual Display Views 

Textual display views use an LPA text window to display the text associated with base 
component text forms and LPA text window predicates are used for manipulating this 
text. 

Parsing Support 

parse_view is called to parse an updated textual display view. MViews assumes a Prolog 
syntax for text views and uses LPA window processing predicates to read terms and 
identify text forms. Each term read in is given to process_term which uses the textual 
display component that “owns” the term to compute changes in a base component. 
Methods are called for the base component to change its state to be consistent with the 
parsed text. Programmers are usually aware of the changes made to the text view and 
hence don’t need to be informed of them via update records. Thus these base updates 
caused by parsing can be “forgotten” by a text component by calling 
forget_latest_updates.  

The main complication with parsing involves identifying the text form which “owns” the 
term (i.e. the text form which encloses the term read in). Textual display views provide a 
locate_component method which, given the end position of the read-in term, locates the 
display component whose text form encloses the term. Originally the framework had 
updates_start as a term itself and the parser identified the “owning” display component 
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from its ID stored as updates_start(ID)20. This approach, however, means any existing 
language compiler (for example, the Snart compiler) can not read and compile the text 
window, as extra terms are present it doesn’t understand. The current approach just adds 
updates as comments which are ignored by the standard Prolog term parser but are used 
by MViews textual display views and components. 

Unparsing 

Base information is unparsed into a text view when: a new textual display component is 
added to the view; a text form is generated when first displayed; or update records are 
applied on components in the view. Textual display components store the base text form 
id they render and this text form is generated by base components when required. A 
simple unparser provides predicates to write information based on a “template” into a 
given text window. This uses base component information to generate text and lays it out 
in an application-specific way. Garlan’s flexible unparsing scheme (Garlan 86) and the 
unparsing grammars of the Mjølner environment (Minör 90) provide similar facilities 
based on unparsing languages for abstract syntax grammars. 

Applying Updates 

To have MViews apply an update to a view a programmer: selects the update records to 
apply using mouse selection; or asks for all updates records for the selected display 
components to be applied. MViews determines the update records to apply by reading 
their update(Number) part and then applies each update record in sequence to the view. If 
an update record can not be applied (either the textual display component does not 
implement an application for the update kind, or the view’s text has been changed by the 
programmer so the update is no longer able to be applied21) its update record is left. If the 
update was applied successfully (i.e. the text changed), then its update record is removed 
from the view. 

                                                 

20In fact, the ID was originally unparsed as an application-specific name, for example “window” or 

“window::create”. This approach means only one text form per base element can be displayed in a text view 

at one time. Thus a documentation text form could not be displayed with a code text form (hence the use of 

a textual display component ID now). 

21IspelM can automatically apply such updates as renaming classes and features, adding or removing 

features from a class or deleting a class or feature from a view. Adding client-supplier relationships to a 

class can not be automatically applied (as they are implemented as feature calls) nor an update applied if the 

view’s text has been altered (for example, a class or feature already renamed by the programmer and a 

rename update record is applied using its old name). 
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7.6.5. Graphical Display Views 

Graphical display components may receive several update records from their subsets that 
result from one editing operation. For example, if a client-supplier glue component has 
two or more attributes changed via a dialogue, it will receive an update_attribute update 
record for each attribute change. These graphical display components need only be re-
rendered once, however, for efficiency. 

Graphical display views store a list of their components which require redrawing using a  
redraw_components list attribute. Graphical display components are entered in this list by 
add_redraw_component(Component) and are then marked as “being redrawn” by setting a 
boolean flag redraw for the component. A graphical object may be entered in the 
redraw_components list several times before is actually redrawn. 

Graphic display views provide tools for manipulating display components. Each tool is 
implemented as an LPA graphics window tool which calls a graphic view method when 
selected, deselected, or there is a click in the window. MViews uses LPA predicates to 
implement mouse processing, dragging of pictures, marqui selection, rubber-banding and 
text editing and graphical display views provide these facilities as methods. 

Copying and pasting graphical objects is more complex than copying text. Selected 
display components are duplicated and references updated to the copied objects (using 
component_to_ref from the display view). When pasting objects, the copied components 
must again be duplicated and then added to the new view, their references updated, and 
then be redrawn. The MViews framework does not currently support the copying of base 
data in this manner, but calls remap on the pasted components to relink them to the base or 
to recreate base data. 

7.7. Relationships 

7.7.1. Relationship Classes 

Relationship components are modelled by relationship and its specialisations. They can 
also be modelled by component or component list attributes, if desired. The advantage 
with modelling relationships as component classes is that they support component 
methods, and can hence be referred to directly, made dependents of other components, 
and be dynamically purged and reloaded from persistent storage. Multiple inheritance 
between Snart classes is used to define base and subset components as base and 
subset/base relationships. 
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7.7.2. Subset/base relationships 

The subset_rel class translates subset component update records into operations on their 
base component(s) if the base components are affected by the subset component updates. 
It also translates base component update records into subset component operations if the 
subset components are affected by the base updates. Updating a component attribute, 
establishing or dissolving component relationships, and creation and deletion of a 
component are all operations that may need to be propagated between a base component 
and its subset components. 

As a base component may have several subset components in several views. As updating 
a subset component and re-rendering its display component is often costly, only subset 
components in the current (front) view need be immediately updated. If a subset/base 
relationship receives update records from a base component and one or more of its subset 
components are not in the current view, the update records received are stored against the 
subset components’ views until they become the current view. Then any components with 
updates are modified in the normal way22. Subset views record a list of update records 
and affected subset components to implement this process. 

Currently the default subset_rel class propagates updates to in-core subset components. 
Reloaded subset components are reconciled to their base component state using 
remap_on_reload. This is used so MViews systems can support many subset components 
for one base component with little impact on interactive performance when updating 
these subset components. Sub-classing subset_rel can over-ride this default behaviour if 
necessary. 

subset_rel supports semi-automatic propagation of base and subset component attribute 
updates using a base_to_subset method. base_to_subset can be redefined in 
specialisations of subset_rel to define base component to subset component attribute 
mappings. base_to_subset returns a list of terms of the form 
BaseAttribute(SubsetAttribute) which is assumed to map base component attributes to 
their subset component equivalent. For example, base_class from IspelM might define 
class_name and kind and so might class_icon, hence a class_icon_subset_rel mapping 
of [class_name(class_name), kind(kind)]. The default behaviour of subset_rel is to 

                                                 

22The updates could be processed in the background using idle time, similar to the incremental attribute 

recalculation schemes of [Reps and Teitelbaum 87] and [Hudson 91]. LPA currently does not provide such 

idle time processing facilities so MViews processes these delayed updates “on-demand” (when an updated 

view is made the current view). 
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translate between these base and subset component attribute updates automatically, but 
this can be over-ridden in sub-classes to support different attribute mappings. 

7.8. Operations and Updates 

7.8.1. Update Record Generation and Storage 

The record_update(UpdateRecord,UpdateName) method is given update records as Prolog 
terms and a human-readable name describing the update as an atom. 
store_update(UpdateRecord) numbers each stored update record sequentially and stores 
these update records as terms. store_and_record_update stores an update record and also 
propagates it to the storing component’s dependents. This is useful for sub-components 
that do not store update records themselves. 

7.8.2. Update Record Propagation 

Subset views implement undo and redo by recording a sequence of update records in an 
operation object  and the base view maintains a list of these operations which forms an 
“editing history”. An editing history browser dialogue is provided by MViews which 
allows several updates to be undone or redone at one time. This is implemented by 
displaying a menu of operation names and allowing a programmer to select an update 
record to undo or redo up to. 

Update records are unparsed and printed in textual display views and an update record 
browser dialogue as required. User-defined update records of the form 
user_update(Tokens) can be added arbitrarily to document changes at a user-defined 
level of abstraction. Extra comments can be associated with update records via the 
updates browser and these are stored as a list of atoms. Update records are deleted by the 
update record browser on user request or by MViews components (for example, when 
semantic errors corrected or a new class compilation in IspelM performed). Update 
records can also be moved to a component’s “update history”. These history update 
records are not shown unless a programmer specifically asks to view them23. This 
improves efficiency when a base component stores many update records and allows 
programmers to view only recent update records they are currently interested in. 

                                                 

23Which leads to a concept of “active” update records associated with an element and “history” update 

records documenting old changes to the component. 
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7.8.3. Constraints and Semantic Calculation via Operations 

Sub-classing allows constraints and semantic calculation to be associated with operation 
methods. In IspelM, a feature sub-class of an MViews base class can implement operations 
for renaming the feature, attaching the feature to a class and changing the feature’s type. 
The methods for these operations can include Snart code which ensure, for example, 
features of a class have a unique name and the type for a feature is valid (either one of the 
pre-defined Snart types or a class name). 

7.8.4. Lazy Application of Update Records 

The Snart framework provides support for lazily processing update records. On receipt of 
an update record a component can record it in a list of update records stored in 
lazy_updates. These update records can be processed together at a later date by calling 
apply_lazy_updates for the component. This is useful for generating composite update 
records which reflect more than one basic operation on a component and for determining 
update record responses which depend on more than one update record. 

For example, one approach to generating a shift_location(DX,DY) update record for 
graphical display components might be to store update_attribute update records for the 
x and y attributes of the component. After the editing operation on the graphical display 
view has finished MViews can call apply_lazy_updates for any updated graphical display 
components. If update records of the form update_attribute(Comp,x,OldX,NewX) and 
update_attribute(Comp,y,OldY,NewY) are in the lazy_updates list for the component, a 
new update record shift_location(DX,DY) (where DX=OldX-NewX and DY=OldY-NewY) can 
be generated and propagated and the two update_attribute records discarded. 

Care needs to be taken when using lazy update application and propagation that mutually 
dependent components receive update records at appropriate times (otherwise their states 
may be incompatible until all lazy update records have been processed). Chapter 10 
discusses enhancements to MViews which would provide improved support for lazy 
update processing. 

7.9. User Interaction 

Users interact with MViews programs via display views, with each display view having 
its information rendered inside an LPA window. The front LPA window denotes the 
current view and all editing operations are applied to this view. 

In addition to display views, programmers interact with MViews through menus and 
dialogues. Menus provide a structured mechanism to apply operations to display, subset 
or base views. Display views interpret LPA menu selection events sent to them using a 
declarative process_menu_item(MenuName,ItemName) method. process_menu_item method 
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decodes the menu selection and calls appropriate methods for the display view or selected 
display view components. If the display view does not handle the selection, 
process_menu_item calls process_menu_item method for its subset view (renamed by 
Snart), which in turn may call process_menu_item for its base view or application. This 
menu selection propagation allows menu processing to be handled by the most 
appropriate view. LPA menus for different kinds of display views can be enabled and 
disabled by calling menus, called when the display view’s subset view becomes the current 
view (see Appendix A). 

An LPA dialogue is comprised of interactors including text fields, editable text fields, 
radios and check boxes, menu selections, and buttons. Dialogues are defined using LPA 
dialogue manipulation predicates (see Appendix A). Dialogues either return entered 
information, display information they are given, or update component objects directly 
using method calls. 

7.10. Persistent Program Storage 

Programs must exist from one invocation of an MViews environment to another. The 
MViews architecture assumes no special method of storing program data but the Snart 
framework provides three approaches of differing levels of abstraction. 

7.10.1. Term Data Files 

The lowest level of persistency management uses “term data files” which provide a basic 
mechanism for saving and loading Prolog terms to Macintosh resource files. Various 
predicates are provided which create, open and close term data files and read, write and 
delete terms in data files using resource ids. 

LPA does not provide any Prolog term read and write facilities for resource files but 
provides atom read and write facilities (i.e. text sequences up to 255 characters). MViews 
extends this facility so terms can be read and written to resource files by: 

• writing a term to an LPA text window 
• saving the window as a sequence of atom resources 
• reading a sequence of atom resources into a text window 
• reading a term from the text window 

Resource files are used rather than reading and writing of Prolog terms to text files for 
efficiency and so random access using a resource id can be used. This allows many terms 
to be saved in the same file and hence increases efficiency (less files need to be opened) 
and terms can be read, written and deleted in any order. The Macintosh resource manager 
maintains the resources and handles garbage-collection and resource file compaction. 
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7.10.2. Component Persistency Methods 

Direct use of term files is not very abstract so MViews augments the component hierarchy 
with extra methods to save and reload components. Components provide a save_data 
method which returns all their data that needs to be made persistent as Prolog terms and a 
load_data method that rebuilds the component from its persistent data on reload. save 
and load are called to write and read a component (and possibly its sub-components) to 
and from persistent storage. Semantic attribute values can be saved in the same manner as 
program structure (as they are stored in the same form) or can be recalculated when a 
component is reloaded. Relationships are saved as components or as attributes (if 
represented as Snart object attributes or list attributes). save and load use the term data 
file predicates and a resource id to save and reload component data. 

If Snart object references are used to relate components these must be saved in some 
persistent form and object references re-established on reload. The component_to_ref and 
component_to_unique methods associated with views and the base view’s unique id look-
up tables support this relinking process. A unique id typically stores the component’s type 
and a unique id number allocated by the base view for every component. It can also 
contain the unique id for any parent component needed to locate the component. For 
example, the unique id for a feature in IspelM is of the form feature(ClassID,FeatureID). 

An MViews program need only be partially in memory at one time. Only some related 
components need be in-core and components can be purged (written to persistent store if 
updated and then deleted from memory). This allows some of a program’s views to be 
cached and some of the program to be loaded. An MViews environment must ensure 
appropriate view and program information is reloaded when required and this is 
currently assumed to be managed in an application-specific manner (either by reloading a 
component when accessed or reloading groups of sub-components for a component). 

Some MViews components can be partially in-core (i.e. have only some of their attributes 
and relationships in-core) and have only updated information saved. This incremental 
saving and loading of component data is supported by augmenting the base component 
operations with group management operations. Groups are identified by name and can be 
saved and load independently. 

MViews allows for schema evolution when an environment’s program storage is modified 
or extended as new tools or facilities are added. The save and load methods can use a 
version number to identify the format of reloaded data and take different restore actions 
for different versions of a component’s structure. 
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7.10.3. Snart Object Persistency 

A third method of storing component data uses the Snart object persistency mechanism 
described in Chapter 3. This is very language-specific as it assumes the implementation 
language is a “persistent language” with objects saved and reloaded when required. This 
is the most abstract approach to program persistency but the limitations of the current 
Snart object persistency mechanism mean only one program can be open at a time (as 
multiple object stores are not currently supported). 

7.11. Discussion and Future Research 

7.11.1. Component Class Implementation 

As the MViews architectural model is object-oriented it translates well into a framework of 
Snart classes. Storing component attributes as Snart object attributes works well and has 
proved an efficient way to implement the component attributes used by the MViews 
architecture. Relationships as object references and lists of object references also provide 
an efficient way to implement one-to-one and one-to-many relationships. The main 
disadvantage with using attributes to model relationships is that establish_rel and 
dissolve_rel methods must be implemented to manage them and generate appropriate 
update records. One solution to this problem might be to define extra methods for 
relationship attribute and list attribute processing which generate establish and dissolve 
update records. 

Environment program representations are implemented by sub-classing Snart component 
classes and defining appropriate attributes, relationships and methods to store data, relate 
components, and provide specialised component operations. This works well for defining 
the structure and some semantic relationships between components of a program. More 
complex semantics, in particular the behaviour of programs as opposed to static 
constraints, are not so easy to implement in this framework. Combining MViews program 
structure storage with an attribute grammar or similar semantics specification approach 
may alleviate these problems. This is the approach taken by the SByS structure-oriented 
editor (Minör 90) and the approach assumed by Kaiser’s attribute grammars (Kaiser 85). 

While it is reasonably easy to specialise the Snart framework to implement an 
environment, a declarative specification language like MVSL may still be useful. Such a 
language could be used to generate MViews framework classes which could then be 
further specialised to express operations and data in ways not easily done by MVSL or for 
reasons of efficiency.  
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7.11.2. Operations and Update Records 

Implementing the MViews architecture class methods as Snart methods was a natural 
approach to providing basic operation methods and component-specific operation 
methods. The use of a declarative update_from method achieves a level of abstraction close 
to that of MVSL’s update operations for defining a component’s response to update 
records. 

Implementing update records as Prolog terms proved an efficient and flexible approach. 
Originally these were implemented as objects, but this proved slow and cumbersome. 
Classes had to be defined for each kind of update record (thus forming a hierarchy), 
objects created and initialised for every update record then propagated by calling 
record_update, and matching an update record object could not use as abstract a form of 
update_form. This process caused a large performance over-head. As we used update 
records we determined that associating functionality with them (i.e. an object-oriented 
approach to storing update records) was not particularly useful. Most often functionality 
was dependent on the kind of component using the update record, not the update record 
kind. Thus components now implement update record creation (by calling 
record_update), reversal (undo_op), redoing (redo_op), and discarding (discard_op). Sub-
classing allows the behaviour of update record treatment to be modified for 
specialisations of a component class. 

MViews assumes environments treat undo as a history of reversible (and redoable) update 
records. If undo is to be treated as an editing operation itself (i.e. an undo is undone by 
another Undo operation), sub-classing the base view can provide this. Allowing updates to 
be undone and redone in an arbitrary order, and allowing a group of updates to be 
applied to a generic component to implement macros, would be useful. To implement 
such facilities, each component’s update record undo_op and redo_op methods would need 
to ensure such an operation is valid before performing it. Such a system would need to 
provide some mechanism of informing programmers of “invalid” updates, i.e. updates 
that couldn’t be undone/redone as they no longer make sense (due to undo/redo of 
previous or subsequent updates). Chapter 10 discusses this further in the context of 
version control using update records. 

7.11.3. User Interaction 

Dialogues and Menus 

Interaction with MViews environments is via display views or menus and dialogues. 
Using LPA dialogue and menu predicates directly works well but is a problem when 
dialogues and menus need to be specialised. Specification using absolute screen co-
ordinates is also not as abstract as an interface builder supporting interactive dialogue 
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construction (see Chapter 9). Provision for defaulting field values and checking entries 
after editing dialogue fields would be very useful. A better correlation between display 
views and dialogues may also be useful (i.e. treating dialogues as display views with 
dialogue-style interactors). 

Textual Display Views 

Textual display views provide a novel method of integrating free-edited textual program 
detail with interactively-edited, high-level program data. Textual views are assumed to 
have a Prolog-readable format and hence parsing uses a Prolog-supplied read predicate 
on text windows. Unparsing is done either by generating a text form (when creating a new 
text form) or incrementally on a text form when updates are applied to a view. This 
parsing/unparsing support is sufficient for systems using a Prolog-based textual view 
syntax but needs substantial enhancement to support more general parsing (possibly 
using Definite Clause Grammars (LPA 89a) or a yacc-like parser generator front-end). 

As noted in Chapter 4, textual interaction is simplistic with textual displays providing 
basic text editing operations and menus supporting access to subset and display 
information. A text editor incorporating both structure-oriented and free-editing modes, 
similar to the UQ2 editor (Welsh et al 91), would allow a more natural and useful editing 
of high-level program structure. Currently unparsing and parsing are disjoint activities, as 
are generating a new text form on creation (for example, a class definition’s text) and 
automatically applying updates to a text view (by modifying its text). A closer relationship 
between these two forms of unparsing and parsing would make specification of textual 
views easier and more extensible (for example, all based on a grammar). Extending textual 
display views to support hyper-text links for fast navigation and structure-oriented 
editing may be useful but would necessitate a much more sophisticated treatment of text 
windows. Fine-grained textual forms are supported in a limited way but improved textual 
annotation capabilities would enhance this support24. 

Using an existing text editor rather than the built-in LPA text editor would provide a more 
extensible environment with users being able to select their preferred editor. This 
approach, however, would not allow users to expand other text forms into a view or 
selectively apply updates as easily. A similar facility could be built using editors such as vi 
or emacs by writing interface code between the editor and MViews to perform the changes 

                                                 

24Fine-grained textual support means allowing parts of a term to be linked to different base components (i.e. 

more than one “updates_start” link for each term). This would be useful for filtering out more term 

information and also for multiple views of parts of a term (for example, for supporting views of pre- and 

post-conditions, similar to Eiffel [Meyer 88, 92]). 
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on the views’ text (for example, using shell-scripts or C code). The user interface provided, 
however, would not be as seamless as that of the current environment. 

Graphical Display Views 

Graphical displays could be extended to support a Unidraw-like diagram editor model 
whose generic facilities would allow a wider range of graphical editors to be constructed 
more abstractly than at present. Automatic layout of graphs (Tammassia et al 88, Paulisch 
and Tichy 90, Mannucci et al 89), scalable glue and connector pins, and “parsing” of 
graphical representations (Golin and Reiss, 90) would all enhance the power of MViews 
graphical display views. 

Browsing and Complexity Management 

One aspect of the MViews framework that requires further enhancement is its support for 
browsing and complexity management. This can be built out of dialogues and display 
views, as has been done for IspelM, but little support is given directly at the MViews level. 
Implementing such capabilities have proved very important to the useability of SPE and 
hence more appropriate building blocks should be provided at the MViews level. This 
could include generic classes or predicates that implement menu dialogues for component 
browsing, support for partial base component viewing at the subset and display 
component levels, and filtering mechanisms (active constraints) based on component 
attribute values (useful for class responsibilities for IspelM). 

7.11.4. Persistent Program Storage 

One problem with the Snart framework is its handling of program persistency. Experience 
with developing IspelM has shown that using save and load methods associated with 
component classes is a less than ideal mechanism for storing programs. The disadvantages 
of this approach include: 

• Difficulty in implementing specialised component save/load operations. 
Ensuring that all required data is in-core for a component is often quite difficult 
as is relinking Snart object references using unique id values. For example, 
when mapping a subset view-level feature to a class IspelM must ensure the 
class is in-core and the required feature is in-core. No facilities are currently 
provided by the framework to automatically reload components when accessed. 

• Coarse-grained saving is used where data is converted from Snart object form to 
savable data (using save_data). While this allows for a declarative reload 
predicate, thus supporting schema evolution, extending an environment to 
support new tools using the same base data is complicated. The base 
components must reload the saved data in the same form as stored, thus a tool 
not requiring some data still must reload it all. 
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• Look-up tables and relationships must be converted to and from persistent 
forms. This process should be automatic but if Snart object references are used 
these must be converted to and from a persistent form. 

• Shared program data and version control are not supported and only one 
MViews environment can work on a program at a time. This makes multi-user 
development impossible and limits the size of systems that can be built. 

Programs developed using Dora are stored in memory as C++ objects and are saved in a 
PCTE object store using database commands (Wang et al 92). GARDEN uses an object-
oriented database management system which also supports transaction processing (Reiss 
86). GARDEN objects are migrated to persistent storage as database objects and reloaded 
as in-core objects for efficiency. Unidraw writes internal diagram components (stored as 
C++ objects) to text files in a catalogue. EDGE (Newbury and Tircher 90) and 
Dannenburg’s list system (Dannenburg 90) assume a text file representation scheme which 
is parsed to reload data. Persistent languages treat run-time entities as persistent objects 
which survive beyond one execution of a program with completely transparent saving 
and reloading of data (Sajeev and Hurst, 92). A combination of these approaches may be 
useful for MViews program persistency (see Chapter 10). 

The Snart framework does not currently support different versions of the same program, 
as do the Mjølner environments (Magnusson et al 90, Minör 90), nor does it provide 
selective base program views for different tools as do MELD (Kaiser and Garlan 87) and 
Dora (Wang et al 92). Version control, configuration management and multi-user program 
updates are not supported. Chapter 10 discusses extending the Snart framework to 
provide version control using update records, configuration management, and distributed 
multi-user programming. 

7.11.5. Implementation Language 

Snart proved to be a good implementation language for MViews. Object-oriented support 
including very flexible multiple inheritance was almost essential for developing the 
framework. Integration with LPA predicates provided a large amount of ready-built 
support, particularly for graphics and user interface building, which greatly enhanced the 
development process. Declarative predicates for update operation processing 
(update_from), undo and redo of update records (undo_op etc.), converting update records 
to different forms (app_update and get_update_text), and applying update records 
(apply_update) greatly simplified the implementation of MViews and its derivatives. 
Backtracking via predicate failure proved useful for operation abortion and some 
constraints checking. As some implementation of the MViews and IspelM frameworks 
was experimental programming, with changes to classes and the model being frequent, 
the choice of Snart for implementation proved worthwhile. 
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MViews could be implemented using a different Prolog (for example, Quintus with 
ProTALK (Quintus 91b) or LPA with Prolog++ (Pountain 90)) or similar experimental 
programming language such as CLOS or Smalltalk (Goldberg and Robson 84). It could 
also be implemented in a strongly-typed object-oriented language such as Eiffel or C++. 
Attributes would need to be stored as objects and their value types checked at run-time, as 
done with an earlier version of MViews implemented in THINK C. This would allow 
attribute names to be determined at run-time for methods like update_attribute. 

The main disadvantage with strongly-typed languages is that support for the declarative 
aspects of MViews is not directly provided. It is also much more difficult to modify the 
hierarchy or method arguments (as many classes must be recompiled) in an experimental 
way. As the MViews and IspelM models and frameworks have reached a point of some 
stability, however, it is unlikely such major changes as occurred during their development 
are as likely if implementation in another language is performed. The improved 
performance from a strongly-typed language would be of great benefit for developing 
larger software systems. 

Update records can be implemented in other languages as either objects, record-style 
structures, or “terms” stored as lists of values. While most other languages do not provide 
Prolog’s unification-style pattern-matching, a similar processing of update records can be 
done using case statements or by implementing a unify function. 

7.12. Summary 

MViews has been implemented as a framework of Snart classes. This object-oriented 
implementation supports the MViews architecture’s abstractions and allows new 
environments to be developed by appropriate specialisation of this framework. Basic class 
groups include base components for program representation, subset and display 
components for viewing and rendering part of a base program component, and views for 
grouping program graphs and interactively modifying program renderings. Component 
attributes and some relationships are stored as Snart object attributes and operations 
implemented by methods. Update records are stored as Prolog terms and are interpreted 
by declarative methods. Additional support includes saving and loading of data to 
Macintosh resource files, declaratively specified dialogues and menus using LPA, parsing 
and unparsing of text as Prolog terms, and generic textual and graphical program 
manipulation methods. 

Novel aspects of this implementation include the treatment of update records as Prolog 
terms generated and processed in a declarative style. Update record terms are used to 
document change (stored as application-specific terms), ensure view consistency and 
provide object dependency propagation, describe textual form updates in a human-
readable form (update records are used to generate a Prolog atom list which is printed), 
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and support a generic undo/redo facility (by recording a list of component object update 
record terms). MViews’ object dependency scheme also provides a mechanism for 
supporting data-driven and lazy attribute recalculation. 

Many extensions to the Snart framework are possible. These include more abstract 
component persistency with shared access to programs, improved textual and graphical 
editor construction facilities, and extended support for update records and language 
semantic calculation. This framework is sufficient to demonstrate that the MViews 
architecture is realisable by an implementation, and that MViews abstractions can be 
reused to implement environments supporting multiple textual and graphical views with 
consistency management. Chapter 8 describes a model for IspelM using the MViews 
architecture and an implementation of IspelM and SPE using the Snart framework. 
Chapter 9 illustrates how both the MViews architecture and its implementation can be 
reused to extend IspelM and SPE and to construct other environments which support 
integrated textual and graphical views of information.
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Chapter 8 

Architecture and Implementation of IspelM 
and SPE 

  

Chapter 4 described the user’s perspective of the Snart Programming Environment. 
Chapter 5 discussed how the common aspects of multiple textual and graphical views 
with consistency could be factored out of SPE and similar environments to produce the 
MViews model. Chapter 6 used this model as the basis for an object-oriented architecture 
for designing such environments by reusing the MViews model. Chapter 7 presented a 
Snart framework implementing the architecture of Chapter 6 and thus demonstrated that 
MViews is realisable by an implementation. 

In this Chapter we demonstrate that the major aspects of SPE can be factored out into 
IspelM to produce a generic environment for programming object-oriented languages. An 
object-oriented architecture for IspelM is developed by specialising classes from the 
MViews architecture. This model describes how object-oriented programs are stored, the 
different views of a program provided, support for browsing and complexity 
management, and incremental saving and loading of programs. An implementation of 
IspelM using the Snart framework from Chapter 7 is briefly discussed. The IspelM 
implementation is further specialised to support Snart programming including integration 
with the existing Snart compiler and run-time system (described in Chapter 3). The IspelM 
architecture, its implementation, and the SPE implementation are evaluated and future 
extensions proposed. 

8.1. IspelM Architecture 

Chapter 5 introduced IspelM, a generic software development environment for object-
oriented languages supporting multiple textual and graphical views of an object-oriented 
program. The MVSL specification for IspelM defined base class and feature elements and 
base generalisation and client-supplier relationship components. Subset views and 
components included class diagram and class code views, class icon and feature text 
elements, and generalisation and client-supplier glue relationships. MVisual defined the 
display view renderings and interaction mechanisms used by IspelM. 
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As Chapter 5 noted, there is not sufficient information in the MVSL and MVisual 
specifications to automatically generate an implementation for IspelM. To design an 
implementation for IspelM the object-oriented architecture described in Chapter 6 can be 
reused. This design is based on the MVSL and MVisual specifications in Chapter 5 and 
Appendices D and E. 

8.1.1. Overview of the IspelM Architecture 

IspelM’s components can be described as specialisations of different classes from the 
MViews architecture. Fig. 8.1. illustrates the basic specialisations used to describe IspelM. 
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fig. 8.1. The basic component classes for IspelM. 

In fig 8.1., the MViews classes are the abstract classes defined by the MViews architecture. 
The IspelM classes are shown on the far right as specialisations of different MViews 
classes. As the MViews architecture is used to model MVSL and MVisual components as 
classes, appropriate specialisation of these classes allows IspelM to model its components 
as classes. Also defined by IspelM, but not shown in fig. 8.1., are various subset/base 
relationship components, which are specialised from subset_rel. The IspelM classes are 
described in the following sections. 
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8.1.2. Base Clusters 

Clusters are used to group classes according to a common purpose and are introduced by 
the IspelM architecture. For example, if IspelM were to store an SPE implementation, 
cluster groups may include “MViews classes”, “IspelM classes”, “SPE classes”, and “Misc. 
classes”. Clusters are not currently viewable in IspelM and thus base_cluster is described 
as a specialisation of base_comp. Fig. 8.2. shows the basic cluster structure and operations. 

base cluste

remove_class

do_compile

cluster_name

add_class

program base comp

base classclasses

components

 

fig. 8.2. Base cluster class structure and methods. 

8.1.3. Base Classes 

Base Class Components 

IspelM defines base class elements to store information about each class of object for an 
object-oriented system. IspelM models MVSL base class elements as a base component 
class base_class. Base classes can have subset components in subset views and can have 
textual forms. Thus base_class is defined to be a specialisation of text_base_comp from 
the MViews architecture. text_base_comp supplies structure and methods to support 
subset views, subset components and text forms for base_class. 

 Fig 8.3. shows the structure of base_class and the methods supplied for manipulating 
class data, components, interface compilation, and views. This diagram groups related 
attributes, relationships, and methods in generalisation “classes” for base_class to reduce 
the cognitive complexity of the diagram. 
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fig. 8.3. Base class structure and operations. 

Base Class State 

Base class attributes and relationships defined by MVSL are modelled as class attributes 
and relationship components in the IspelM architecture. Structural class information 
includes a one-to-many relationship to the features owned by the class as features, which 
corresponds to the MVSL declaration features : one-to-may feature from Chapter 5. 
Other relationships and attributes include: generalisation relationships to parents of the 
class as gens to base_gen component relationships (i.e. gens : generalisation.child); the 
class name (class_name) and its kind (kind) as attributes; a one-to-many relationship to 
specialisation classes as specs (i.e. specs : one-to-many class); client-supplier 
relationships to associated classes as client_suppliers to base_cs relationships (i.e. 
client_suppliers : client_supplier.parent), and the complete class interface (i.e. all 
inherited and owned features for the class) as all_features to all_feature components 
(i.e. all_features : one-to-many all_feature). An additional kind of class-to-class 
relationship is the classifier, used to define how a class can be classified to its sub-classes. 
This can be used to model classification for languages such as Kea (Hosking et al 90) and 
Snart (see Chapter 3)) or used for analysis in such systems as OMT (Rumbaugh et al 91). 
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Base Class Component-Specific Operations 

Structure management operations defined by MVSL are modelled as methods for 
base_class. These methods support initialising new components and relationships and 
establishing relationships to them by over-riding establish_rel and defining 
add_feature, add_cs, etc. These methods correspond to the add_cs and add_feature 
operations from the MSVL specification for base class elements which use basic 
component and relationship operations. The IspelM architecture methods reuse methods 
defined by classes from the MViews architecture. For example, 
Comp@update_attribute(Attribute, New) is used for the MVSL operation Comp.Attribute 
:= New and Parent@establish_rel(Kind, Parent, Child, NewRel) for establish(Kind, 
Parent, Child, NewRel). 

Additional base class structure methods include removing relationships (dissolve_rel) 
and locating  class components (find_feature, find_cs, etc.). Class components can be 
located by name (features and classifiers), information about the component 
(generalisations and client-suppliers), or by their unique_id value. Classes also provide 
methods for generating class interface information (i.e. compiling a class) as do_compile. 
Compilation errors are stored as update records against the class and are deleted at the 
start of a class compilation. 

Base Class Update Operations 

MVSL defines an update operation for base classes to ensure the class name is unique for a 
program. This can be implemented in two ways for the IspelM architecture. update_from 
can be redefined for base_class to check update records of the form 
update_attribute(Class, class_name, OldName, NewName) and generate semantic error 
update records if a class rename is invalid. Alternately, a constraint can be defined by 
over-riding update_attribute inherited from text_base_comp (and defined by component) 
to check for this problem. 

8.1.4. Class Components 

MVSL defines base elements and relationships for class sub-elements and relationships. 
The IspelM architecture models these as components and relationship components by 
defining component classes to model these MVSL definitions. Fig. 8.4. shows the structure 
and methods of class components and relationship components and the MViews classes 
they inherit from. 

Features 

The MVSL base feature element is implemented by the IspelM base_feature class which is 
a specialisation of the MViews text_base_comp class. Features can have subset 
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components and text forms and are thus specialised from text_base_comp as are base 
classes. 

base_feature uses attributes to store information about its owning class as owning_class; 
its name, which is unique to its owning class, as feature_name; its type as type_name; and 
its kind (attribute, method, deferred, or inherited) as kind. update_attribute is redefined 
to ensure feature renames are valid and view_name computes a name for subset views of a 
feature. Base features record updates by sending them to their base class and may then 
store the update themselves. This is accomplished by redefining record_update. 
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fig. 8.4. Class component structures and methods. 

Generalisations 

MVSL generalisations are base relationships and are modelled as relationship components 
by the IspelM architecture. base_gen is a specialisation of both one_to_one (i.e. represents 
a one-to-one relationship component) and viewable_base_comp (as generalisations are 
viewable but do not have text forms). The parent and child attributes inherited from 
one_to_one are over-ridden to be of type base_class (i.e. base_gen relates one class (the 
parent of the generalisation) to another (the child, or sub-class)). This equates to the MVSL 
parent and child relationship component declarations for base generalisation 
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relationships. Generalisations pass updates on themselves to their child (owning) class 
and don’t currently store them against themselves. 

Client-suppliers 

Client-suppliers are relationship components relating classes by abstract or inherited 
aggregation, feature calls, or local argument references. A client-supplier may be abstract 
(design-level), inherited (defined by an ancestor of its owning class) or code-level (i.e. its 
owning class is a direct client of its supplier class). Client-suppliers define attributes to 
represent their parent (owning) base class, supplier (child) base class, a level (design, code, 
or inherited), and a kind (aggregate (i.e. attribute), feature call, or local reference). 
Aggregates have a client feature name, locals a client feature name/variable name, and 
calls have client and supplier feature names. All have a supplier type string used to 
determine the supplier base class (which may include parameterised classes, such as 
list(ClassName)). Fig. 8.5. shows examples different kinds of client-supplier relationship 
information. 
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fig. 8.5. Different kinds of client-supplier relationships and their information. 

MVSL client-supplier base relationship components are modelled by the base_cs class 
which, like base_gen, is a specialisation of both one_to_one and viewable_base_comp (for 
the same reasons base_gen is). Client-suppliers pass their update records to their owning 
class and do not store the records themselves. 

Classifiers 

MVSL defines classifiers as base relationships and IspelM models these by base_cl, a 
specialisation of one_to_many and viewable_base_comp from the MViews architecture. One 
classifier component thus relates its parent (base class) to zero or more children (classifier 
base classes). base_cl provides methods to add and remove classes from the classification 
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relationships they represent using establish and dissolve inherited from one_to_many. 
Classifiers pass all updates to their owning class by redefining record_update. 

8.1.5. Programs 

The MVSL specification for IspelM defines a base view called program to group base 
program graph information. The IspelM architecture uses a program class which is a 
specialisation of base_view. program has a name string attribute and one-to-many 
relationships to the base clusters and base classes it groups (for look-up). program defines 
methods which provide support for adding, removing, locating, and renaming clusters 
and classes and supports global look-up tables for these components. Base program 
components can be located given their unique_id (using find_component_id) or by using a 
component-specific look-up operation (such as find_class). Fig. 8.6. illustrates the 
program class structure and methods for IspelM. 
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fig. 8.6. IspelM program structure and methods. 

8.1.6. Subset and Display Views and Components 

MVSL defines subset views, subset elements, and subset relationships. MVisual defines 
renderings and interaction mechanisms for the display views and components of these 
MVSL subset components. The MViews architecture defines display views and 
components to be specialisations of subset views and components. We can thus define 
these IspelM subset and display view as specialisations of MViews display view classes. 
Similarly, we define subset and display view components as specialisations of MViews 
display component classes.  
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Class Diagram View 

The MVSL specification for IspelM defines a class diagram view as a subset view. It also 
defines subset components including class icons (subset elements) and generalisation, 
classifier, and client-supplier glue (subset relationships). MVisual supplies a rendering 
and interaction specification for class diagram views and for these class diagram view 
components. The IspelM architecture defines class_diagram_view as a specialisation of 
graphic_disp_view and class_icon as a specialisation of graphic_icon. gen_glue, cs_glue 
and cl_glue are all specialisations of graphic_glue. Fig. 8.7. shows the structure and 
methods for these classes. 

class_icon defines a relationship (feature_names) and methods to support feature name 
storage manipulation. It also defines class_name and kind attributes which mirror those of 
base_class. map_component either finds a base class to map a class icon to or creates a new 
base class from the class icon attribute and relationship information. 

cs_glue mirrors the attributes of base features and client-supplier relationships. cs_glue is 
used to render features of base classes which equate to code-level client-supplier 
aggregates. cs_glue, cl_glue and gen_glue define map_component methods which find or 
create appropriate base components to map to. map_component is used rather than defining 
establish_rel for class icons to do this mapping as cl_glue and cs_glue require extra 
relationship component information to be initialised to identify the appropriate base 
component to map to. 
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fig. 8.7. Class diagram view and element structures and operations. 

Class Text View 

The IspelM architecture defines class_text_view to represent class text view subset and 
display views defined by MVSL and MVisual respectively. class_text_view is a 
specialisation of textual_disp_view from the MViews architecture. Class and feature text 
view components are defined as class_text and feature_text classes, both 
specialisations of textual_disp_comp. class_text defines a class name attribute used to 
map class textual display components to a base class. feature_text defines class name 
and feature name attributes used to map feature textual display components to a base 
feature. 

8.1.7. Subset/base relationships 

The IspelM architecture defines subset/base relationship classes for each kind of subset 
component class. These subset/base relationships translate update records generated by 
subset components into base component operations and vice-versa. All subset/base 
relationship classes are specialisations of subset_rel from the MViews architecture. All 
IspelM subset/base relationships except client-supplier glue subset/base relationships use 
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the default action of subset_rel when translating subset component attribute updates into 
base component attribute updates. 

Client-supplier subset/base relationships are somewhat more complex in that they allow 
client-supplier glue to map to either a base client-supplier relationship or base feature 
component (this is because a code-level, aggregate client-supplier is the same as an 
attribute (feature) for a class). The client-supplier subset/base relationship defines base_cs 
and base_feature attributes which it maintains and uses to determine whether it is 
connected to a base feature or base client-supplier. Update records are translated into 
appropriate base component and display component operations using these attributes to 
determine the kind of base component a display component is modelling. 

8.2. IspelM Implementation 
 

IspelM Components Lines 
base_class 
 data 
 components 
 compilation 
 files 
 views 

16 
159 
432 
511 
525 
431 

base_feature 
base_gen 
base_cl 
base_cs 
base_cluster 

446 
212 
216 
209 
215 

class_icon (incl. subset_class) 
gen_glue (incl. subset_gen) 
cl_glue (incl. subset_cl) 
cs_glue (incl. subset_cs) 

864 
106 
214 
504 

class_text (incl. subset_class) 
feature_text (incl. subset_feature) 

205 
163 

class_diagram_view 160 
class_text_view 488 
program 1011 
dialogues 785 
application 119 
misc. (menus, initialisation, etc.) 124 

Total: 8115 

table 8.1. Complexity of the IspelM Snart implementation. 
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8.2.1. Snart Implementation of IspelM 

The IspelM architecture described in the previous section illustrates how an 
MVSL/MVisual specification for IspelM can be translated into a design for implementing 
IspelM using the MViews architecture of Chapter 6. To implement IspelM the Snart 
framework of Chapter 7 can be reused. This produces a framework of Snart classes with 
IspelM architecture classes implemented as Snart classes specialised from MViews 
framework classes. This framework is itself reusable to produce language-specific 
software development environments, such as SPE. Table 8.1. illustrates the complexity of 
the Snart implementation of IspelM by showing a breakdown of code for each Snart class 
implemented for IspelM. 

8.2.2. Base Classes 

Snart Base Class 

base_class defined by the IspelM architecture is implemented as a Snart class base_class. 
base_class is the most complex of IspelM’s classes and is implemented as five classes 
implementing different parts of a class’s data and behaviour and a sixth class base_class 
which inherits from all of these classes. Originally we implemented base_class as one 
Snart class inheriting from text_base_comp but it became so large that modification and 
recompilation was very time-consuming25. Fig. 8.8. shows the extra structure and methods 
defined by the Snart implementation of base_class. 

                                                 

25This problem suggested a “multiple class view” system may be useful for Snart. This might provide 

multiple class interfaces for different requirements (typically different class responsibilities) and allow 

definition of a class over several LPA program windows. 
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fig. 8.8. Extra structure and methods for base classes. 

Class Data 

class_data implements the IspelM architecture base class’s class_name and kind 
attributes as Snart class attributes. class_data also implements additional methods for 
handling class purging, deletion and base view deletion. When a base class is deleted or 
purged (removed from memory but not from persistent storage) its components (features, 
generalisations, and so on) must also be deleted. Rather than use record_update to pass a 
component_deleted(Class) update record to each component and let it interpret the 
update, class_data calls the purge or delete methods of each component directly. This is 
much faster than record_update (as a class may have many component objects) but 
achieves the same result26. A special class_purge operation is used to keep only the 
minimum amount of class information in memory. 

Class Components 

class_components stores each kind of class relationship as a list attribute of Snart object 
references to class component objects (base_feature, base_gen, etc.) for efficiency. 
base_gen, base_cs and base_cl relationship component classes are implemented as 
viewable_base_comp specialisations. base_feature is implemented as a text_base_comp 
specialisation. Look-up of base features a class owns is via unique_id or feature_name and 

                                                 

26record_update still generates a component_deleted(Class) update record but the base class’s 

components are already deleted by this stage. The Snart framework’s support of this application-specific 

propagation of change, together with the more general record_update/update_from form, allows 

programmers to make a trade-off between abstraction and efficiency as they require. 
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is implemented as a sequential search of the features component object list. This could be 
implemented more efficiently using a binary search or hashtable but use of IspelM (as 
SPE) has indicated this simple approach is sufficient for most applications. Base 
generalisation location is via its parent.class_name value and classifier look-up by name. 
Client-suppliers are located by either unique_id or kind, level, supplier_feature, 
supplier_name, client_type, and client_feature values. Only the appropriate values are 
used in the look-up each kind of client-supplier relationship. 

The entire interface for a class is stored as a list of terms of the form Name(OwningClass, 
OwnerName, Kind, Type) in all_features. As with update records, using a Snart object to 
store each inherited feature information is unnecessary (and when used proved very 
inefficient) as all processing of this data is performed by base_class. Look-up of a feature 
is done by feature_name and then OwnerName used to find the appropriate feature object 
reference with find_feature for OwningClass. When a base class is recompiled, 
all_features is regenerated if the class or one of its ancestor’s interfaces have been 
changed. 

Class Compilation 

Computation of all_features is done in a similar manner to the Snart compiler’s 
determination of a class interface (see Appendix A). Any base classes or components of 
base classes marked “removed” are sent delete messages during this process (thus IspelM 
uses class compilation to garbage-collect any removed base components). If the interface 
for a class has changed, a language-specific compiler must be employed to regenerate the 
dispatch table for the class (and possibly recompile any specialisations and clients of this 
class). This compilation process is similar for most object-oriented languages but if 
necessary sub-classing of class_compile can over-ride do_compile. 

Class Views 

Class view management extends text_base_comp to include creation of class subset views 
and subset components using create_view and create_view_component. These methods 
use the base view create_component method to create Snart objects. These objects 
represent subset views and components for the appropriate kind of subset view a base 
class owns. Text form creation and validation methods are defined and a declarative 
get_update_text method unparses base class updates records into a human-readable 
form. A declarative app_update method converts update records generated by MViews 
classes into savable update record terms which don’t use Snart object ids (which change 
when components are reloaded from persistent storage). 
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Class Files 

Base class file management manages saving, loading and purging of class data. When a 
class is saved it uses group management functions to determine whether various related 
class components or attributes need saving. Class groups are saved to resources by 
MViews framework save and load methods. class_files implements declarative 
get_group_data and set_group_data methods to translate between in-core and persistent 
group data terms. For example, when a class’s features attribute is required and the class’s 
features are not in-core, get_attribute calls load_groups([features]). load_groups loads 
the feature data (as resource ids) from a class term data file and gives this data to 
set_group_data. set_group_data then creates a new base_feature object for each resource 
id and initialises it with the resource data (by calling load_data for the base_feature). 

8.2.3. Class Components 

base_feature is implemented as a specialisation of text_base_comp from the Snart 
framework for MViews. base_feature attributes are implemented as Snart attributes and 
record_update sends base feature update records to a feature’s owning class. Base features 
are saved to their owning class’s term data file as a term and reloaded by save and load 
methods implemented by base_feature. 

base_gen, base_cs and base_cl are implemented as Snart classes which inherit from 
viewable_base_comp and one_to_one (one_to_many for base_cl) using multiple inheritance. 
These relationship component classes use Snart object ids to refer to the base classes they 
relate. Their attributes are implemented as Snart attributes and they are saved and reload 
to and from their owning class term data files as single Prolog terms. Restoration of their 
Snart object references on reloading is done by using the base view look-up tables and 
unique base class ids. 

8.2.4. Programs 

program is implemented as a Snart class which inherits from base_view. program uses 
hashtables for locating classes (for efficiency) and these look-up tables are regenerated as 
part of the reloading of clusters and classes when a program is re-opened. Compilation 
and parsing support for IspelM is implemented by calling parse_view for updated textual 
views and do_compile for clusters (and thus classes). When a program is saved or 
compiled IspelM calls a class_purge method for base classes to ensure only necessary 
information is held in-core. 

program implements a “grass-catcher” similar to that provided by the Trellis/Owl 
environment (O’Brien et al 87) for locating base classes with semantic or compile errors. 
Compile-time and semantic errors are of the form semantic_error(Kind,Data) and 
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compile_error(Kind,Data) and are generated by the base_class do_compile method and 
semantic calculation methods driven by update_attribute for base_class. 

8.2.5. Subset and Display Views and Components 

Class Diagram Views 

class_diagram_view is implemented as a Snart class which inherits from 
graphic_disp_view. class_diagram_view defines tools and methods which implement 
these tool. Graphical display view tools are implemented by defining LPA MacProlog 
GDL (Graphic Description Language) pictures27 to represent the tool and implementing 
methods for tool functionality. The graphic_disp_view class provides generic add_icon 
and add_glue methods as well as “manipulators” (of a similar nature to those of (Linton et 
al 88)) for implementing line connection, icon dragging and double-clicking, marqui 
selection, cut/copy/paste functions and component hiding and removal. Fig. 8.9. shows 
the extra class diagram view and component structure and methods used by the Snart 
implementation of IspelM. 

class_icon is implemented as a Snart class inheriting from graphic_icon. get_picture for 
class_icon returns a GDL description for a class icon. This picture is composed by using 
data held in a class_icon object to produce GDL picture for the class icon. draw_component 
inherited from graphic_icon uses LPA MacProlog predicates to draw and manipulate this 
picture. 

Class icons implement their feature names attribute as a list attribute of Prolog atom 
values (i.e. strings). Originally, this was implemented by using sub-icons for each feature 
name. This approach, however, proved to be slow in response time (due to many Snart 
objects needing to be created) and more complex then necessary. class_icon implements 
methods to add, remove and change feature names. Double-clicking on a class icon 
performs the actions described in Chapter 4. Click-points are defined for browsing a 
class’s views, selecting a class’s default text view, selecting feature views, and selecting 
from a class’s features (either those owned by the class or from its full interface). 
Connection processing creates new glue between class icons to represent generalisations, 
client-suppliers (including features) and classifiers. 

                                                 

27See Appendix A for examples of such GDL pictures. 
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fig. 8.9. Extra class diagram view and component structure and methods. 

Client-supplier glue (implemented by a cs_glue class which inherits from graphic_glue) 
provides an update_details method which allows the supplier_type value for a client-
supplier relationship to be modified. If this value is changed the class icon acting as the 
supplier must be remapped to a different base class. This is achieved by having the client-
supplier subset/base relationship call change_type for its subset component(s) and the 
subset client-supplier glue calls reselect_class for affected class icon subset components. 
reselect_class is implemented by unmapping a class icon from its old class and 
remapping it to a new base class. All class icon feature names and connector glue is re-
validated by this process by checking feature names against the new base class’s 
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all_features list and re-mapping glue to base components. Any inconsistent feature 
name values and glue components are deleted or left unmapped (and re-rendered to 
indicate this) respectively. Client-supplier, generalisation and classifier glue classes 
implement get_picture methods which return GDL pictures to act as renderings of these 
graphical display relationship components. 

Class Text Views 

class_text_view is implemented as a Snart class which inherits from textual_disp_view. 
Class text views implement language-specific parsers which produce Prolog terms by 
parsing text associated with class and method text forms in the view. These terms are 
given to a process_term method which computes changes in the base class/method 
information from the parsed data. Changes are determined by first generating terms 
equating to the current class/method state (class interface information for classes and 
method name and interface information for methods). These terms are compared with the 
parsed data terms and changes computed. For example, if a class feature does not appear 
in the parsed term list but does in the current class features relationship then the feature 
has been removed and its corresponding base feature must be removed. These changes are 
applied directly to affected base components by calling methods for their objects. 

Class text views allow new text forms to be expanded into the view and base data to be 
expanded into a text form (such as class feature names and types). These facilities are 
implemented by providing selection dialogues for the information to expand and then 
either unparsing the information (for data expansion) or adding text forms to the view. 

8.2.6. Subset/base relationships 

Class, feature, generalisation and classifier subset/base relationship classes implement a 
base component to subset component attribute correspondence method base_to_subset as 
lists of terms of the form [BaseAttribute-SubsetAttribute,...]. 

Client-supplier subset/base relationship class cs_subset_rel redefines 
process_update_from_base and process_update_from_display methods inherited from 
subset_rel. cs_subset_rel  determines the kind of base component it is connected to 
(feature or client-supplier) before translating updates. This is done in a declarative manner 
using update records sent to the subset/base relationship and values of base_cs and 
base_feature attributes (updated when the relationship is established by its subset 
component). For example, an update_attribute(Glue, client_feature, NewName) update 
record from a client-supplier glue object must be converted into an 
update_attribute(Feature, feature_name, NewName) operation on a base feature object 
(and vice-versa). 
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8.2.7. Update Records 

IspelM operations make use of the fundamental operations supplied by the MViews 
framework and these MViews operations generate the set of update records described in 
Section 5.3.3. IspelM components generate, propagate and respond to these fundamental 
update records using behaviour they inherit from the MViews framework classes. IspelM 
components store these update records in an application-specific form, however, so 
IspelM components can be made persistent without using object IDs which may change 
from one invocation of the environment to the next. IspelM also uses these stored update 
records to form the update history for components and for unparsing into textual display 
views. Table 8.2. shows how MViews’ fundamental update records are stored by IspelM 
and the form these IspelM update records are unparsed into a textual display view or 
update history dialogue. 
 

MViews Update 

Record 

IspelM Update 

Record 

Textual view/update history 

form 

Description 

update_attribute(Class, 
  class_name,Old,New) 

rename_class(Old,New) % rename Old to New Rename Class from Old to New 

update_attribute(Class, 
  kind,Old,New) 

change_kind(ClassNam
e, 
  Old,New) 

% change class kind to New Change Class kind from abstract 
to normal or vice-versa 

update_attribute(Featu
re, 
  
feature_name,Old,New
) 

rename_feature(Old,Ne
w) 

% rename feature Old to New Rename Feature from Old to 
New 

update_attribute(Featu
re, 
  type_name,Old,New) 

change_type( 
FeatureName,Old,New) 

% change type of FeatureName 
to  
  New 

Change Feature type from Old to 
New 

update_attribute(Featu
re, 
  kind,Old,New) 

change_kind( 
  
FeatureName,Old,New) 

% change kind of FeatureName 
to 
  New 

Change Feature kind to attribute, 
method, deferred, or inherited 

update_attribute(CS, 
 Attribute,Old,New) 

change_cs(CSName, 
  Attribute,Old,New) 

% change CSName Attribute to 
New 

Change a client-supplier 
relationship Attribute to New 

update_attribute(Cl, 
  name,Old,New) 

rename_classifier(Cl, 
 Old,New) 

% rename classifier Old to New Rename a classifier 

establish(classes, 
  Cluster,Class) 

add_class(ClusterName, 
  ClassName) 

% add class ClassName 
 

Adda class ClassName to a 
cluster ClusterName 

establish(features, 
  Class, Feature) 

add_feature(ClassName
, 
  FeatureName) 

% add feature FeatureName Add feature FeatureNamem to 
class ClassName 

establish(gens, 
  Class, Gen) 

add_gen(ClassName, 
  ParentName) 

% add generalisation to  
  ParentName 

Add generalisation from class 
ClassName to parent class 
ParentName 

establish(css,Class,  
CS) 

add_cs(Classname, 
  CSName) 

% add client-server CSName Add client-server CSName to 
class ClassName 

establish(cls,Class,  
Cl) 

add_cl(Classname, 
  ClName) 

% add classifier ClName Add classifier ClName to class 
ClassName 

establish(rename,Gen, 
  Rename) 
dissolve(rename,Gen, 
  Rename) 

add_rename(ParentNa
me, 
  Rename) 
remove_rename( 
  ParentName,Rename) 

% add rename from ParentName   
  Rename 
% remove rename from 
ParentName 
  Rename 

Add/remove rename of a 
ParentName class feature 
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establish(classifier, 
  Cl,Class) 
dissolve(classifier, 
  Cl,Class) 

add_classify(ClName, 
  ClassName) 
remove_rename(ClNam
e, 
  ClassName) 

% add classify to ClassName 
using 
  ClName 
% remove classify to ClassName  
  using ClName 

Add/remove classification to 
class ClassName using classifier 
ClName 
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remove(Class) 
unremove(Class) 

remove_class( 
  ClassName) 
unremove_class( 
  ClassName) 

% remove class ClassName 
% unremove class ClassName 

Mark/unmark  a base class as 
“removed” 

remove(Feature) 
unremove(Feature) 

remove_feature( 
  FeatureName) 
unremove_feature( 
  FeatureName) 

% remove feature FeatureName 
% unremove feature 
FeatureName 

Mark/unmark  a base feature as 
“removed” 

remove(Gen) 
unremove(Gen) 

remove_gen( 
  ParentName) 
unremove_gen( 
  ParentName) 

% remove generalisation to  
  ParentName 
% unremove generalisation to 
  ParentName 

Mark/unmark  a generalisation 
to parent class ParentName as 
“removed” 

remove(CS) 
unremove(CS) 

remove_cs(CSName) 
unremove_cs(CSName) 

% remove client-supplier 
CSName 
% unremove client-supplier  
  CSName 

Mark/unmark  a base client-
supplier relationship as 
“removed” 

remove(Cl) 
unremove(Cl) 

remove_cs(ClName) 
unremove_cs(ClName) 

% remove classifier ClName 
% unremove classifier ClName 

Mark/unmark  a base classifier 
as “removed” 

table 8.2. IspelM update records. 

8.2.8. User Interaction 

Menus 

The Snart implementation of IspelM uses LPA Prolog predicates to define extra menus for 
textual and graphical display views. These call Prolog predicates which in turn call 
display view process_menu_item methods. 

Dialogues 

The IspelM implementation uses LPA Prolog to implement dialogues which support 
object-oriented program browsing and manipulation. Examples of the feature selection 
and feature definition dialogues for class icons are shown in fig. 8.10. (see Chapter 4 for 
the purpose of these dialogues). 

 

fig. 8.10. The feature selection and feature definition dialogues for class icons. 
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Dialogue opening methods and predicates supply information to LPA dialogue predicates 
and receive information back in Prolog variables. A method or predicate which opens a 
dialogue can call component object methods to access component attribute and 
relationship values and update component attributes. 

8.2.9. Program Persistency and Execution 

The program class implements process_menu_item methods to support save and load 
program operations. program saves its components (clusters), clusters save their classes 
and classes save their components. All IspelM program component data is stored in term 
data files. Subset and display view data is assumed to be saved in term data files 
associated with the focus component for the views. The program component, base 
clusters, and base class instances each have a term data file. Class components are saved to 
the term data file associated with their owning base class. 

The IspelM framework assumes an interface to a language-specific compiler is 
implemented. This allows base classes to either be generated from class information 
supplied by IspelM or to compile textual code views to regenerate their executable 
program data. Executing a program is assumed to be via a Prolog predicate call and 
program implements methods to execute a program and delete objects created by a 
program. 

8.3. The Snart Programming Environment 

To provide a software development environment for Snart programming, the IspelM 
framework must be extended by specialisation to produce SPE. IspelM does not directly 
support any form of language parsing, dynamic language semantics, or interface to an 
object-oriented language compiler or run-time system. SPE extends IspelM to produce an 
environment suitable for Snart programming by sub-classing from the IspelM framework. 
Fig. 8.14. shows the extra classes defined for SPE. 



Chapter 8 Architecture and Implementation of IspelM and SPE Page 241 

program

spe program

intra_object_view

kind_to_component

create_component

find_pred

add_pred

delete_pred

run_pred

run_program

hashtable

predicates

spe class text vie

parse_view

base cluster

components

base class

classes

class text view

spe class

assert_terms

terms

load

save

generate_text

do_compile

update_attribute
base feature

features

spe feature

terms

generate_text

text disp comp

components

feature text class text

spe feature tex

apply_update

spe class text

apply_update

->parse view

object data view

object icon

 

fig. 8.14. Extra classes defined to implement SPE. 

8.3.1. Parsing and Unparsing of Snart Programs 

Parsing class definitions and method predicates generates lists of terms representing the 
parsed information. A class definition produces generalisations (with renamed features) 
and features (feature name/type pairs). These lists are compared against the base class 
information by IspelM and base updates performed as necessary. spe_class_text_view 
specialises class_text_view to provide this parsing and updating support for SPE. Update 
application is done by incremental token parsing and substitution based on Snart syntax 
and spe_class_text and spe_feature_text specialise class_text and feature_text to 
provide Snart-specific update application. 

When generating text forms for class text views SPE must unparse base class and method 
data into Snart class and method predicate syntax. A class and method template is used to 
layout the new text form and class and method interface data unparsed into the 
appropriate place in this template. spe_class and spe_feature redefine generate_text to 
support Snart-specific text form generation for class definitions and methods. 

8.3.2. Validation, Compilation and Saving of Snart Programs 

Snart classes can not have the same name as any Prolog predicate (as Snart generates a 
term using the class name to store compiled class information). SPE ensures classes are not 
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named as or renamed to existing predicate values adding a predicate look-up table to 
spe_program, a specialisation of program. spe_class and spe_feature also maintain lists of 
terms defined by their text forms. 

spe_program defines new kind_to_component and create_component methods so SPE-level 
objects are created by IspelM and SPE classes. For example, rather than map_component for 
a class_icon creating a base_class if one does not exist, it creates an spe_base_class by 
calling spe_program’s create_component method. 

SPE can assert Prolog terms (for example, Snart method implementations) and call the 
existing Snart compiler to regenerate its data structures based on these new terms. 
Alternatively, the Snart compiler can re-compile textual display view text windows and 
thus generate updated class information. The first approach involves more work for an 
implementer of environments as compilers may not directly allow such incremental 
updates of a program data. It is more efficient than the second, however, which requires 
both the environment and the language compiler to parse a textual view and update their 
data structures and compiled code independently. SPE currently uses the first approach 
and calls Snart compiler predicates to regenerate Snart class dispatch tables. 

save for spe_class checks if predicates or Snart class information needs to be saved for a 
Snart program. load reloads compiled Prolog terms from a term data file so Snart 
programs developed in SPE can be executed from within the environment. 

8.3.3. Running and Debugging Snart Programs 

spe_program provides program execution facilities by implementing a “run predicate” to 
execute a Snart program and a “delete predicate” to clean up objects created by a Snart 
program. As SPE uses Snart objects to store its data, the object space of a running program 
and SPE must be distinguished by the Snart run-time system. The run predicate creates 
and initialises an object space for the program and deletion predicate deletes all Snart 
objects associated with the program (as well as any windows created by the program). 

SPE programs are debugged visually and textually. An object data view allows Snart 
objects to be displayed and navigated between using graphic display views (showing the 
state of a single Snart object) and the Prolog debugger is used to trace method and 
predicate execution. Objects can be displayed by selecting their object id from the 
debugger window and using a menu option, entering an object id, or double-clicking on 
an object reference in an object data view. Object data views obtain object attribute values 
via the Snart run-time system which provides a dynamic access function of the form 
default_value(ObjectID, AttributeValue, DefaultValue, Value). object_data_view is 
a specialisation of graphic_disp_view while object_icon is a specialisation of 
graphic_icon. 
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8.4. Discussion and Future Research 

8.4.1. IspelM Model 

Program Representation 

IspelM reuses the MViews architecture to model the structure and some high-level static 
semantics for object-oriented programs. The MVSL definition of IspelM translates into 
component and relationship component classes specialised from MViews architecture 
classes. These IspelM classes define extra attributes, relationships and methods for object-
oriented program structures and structure manipulation. For program structure the 
IspelM model works well and it can represent most important, high-level aspects of class-
based object-oriented languages as specialisations of MViews component classes. 
Documentation and method implementation detail can be represented as text forms, as 
can additional class interface information. 

This model can be extended quite naturally to incorporate language-specific features such 
as class contracts for Eiffel (Meyer 92), information hiding for Kea (Hosking et al 90), C++ 
(Stroustrup 86) and Eiffel, classifiers (Kea), and attribute typing for all strongly-typed 
object-oriented languages. These additional features would necessitate defining new 
component classes as specialisations from MViews classes with appropriate attributes, 
relationships and methods. Some features which would be required for most other class-
based languages and are not currently modelled include generic classes28, method 
arguments, and typing (and type checking) for method arguments and feature calls. 

IspelM can model languages such as Smalltalk (Goldberg and Robson 84) and CLOS 
(Keene 89) which use class-as-object representations by creating class objects based on its 
internal representations (similar to how SPE creates Snart class definition predicates for 
the Snart compiler to use). It is not clear, however, how suitable IspelM’s program 
representation is for non-class-based object-oriented languages, such as SELF (Ungar et al 
92), which use prototypes and traits objects to model object behaviour. 

Some semantic calculation (such as inherited class interfaces) and constraints (such as 
unique feature names per class) are captured well by IspelM. Other values, such as the 
dynamic semantics of object-oriented programs, are more difficult to specify using 
MViews’ object and attribute dependency mechanisms. Comparable approaches, such as 
Kaiser’s action equations (Kaiser 85) or Hudson’s (Hudson 91) and Reps’ (Reps and 

                                                 

28IspelM does support simplistic, single parameter generics, such as list(ListType), for collection classes. 

This should be extended so any parameterised class can be modelled including multiple parameter type 

values. 
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Teitelbaum 87) attribute recalculation schemes, would offer more abstract and declarative 
ways of specifying such language behaviour. The Mjølner environments (Magnusson et al 
90) use a structure editor for representing and manipulating program structure (Minör 90) 
and attribute grammars which are sent structure editing operations to model static and 
dynamic semantics. A similar approach with MViews update records being used to drive 
an attribute recalculation scheme is discussed in Chapter 10. 

Views and View Components 

The MVSL and MVisual specifications of IspelM defined basic program views for 
visualising and constructing object-oriented programs. These include views for class 
structure and basic control flow (class diagrams), adding class and method detail, 
documentation, and possibly design information (textual views) and provide very basic 
object data visualisation and navigation (object data views). The IspelM architecture 
defines classes specialised from MViews architecture classes to model these views and 
view components. 

As discussed in Chapter 4, SPE (and IspelM) provide only a limited number of program 
visualisation and construction views. Additional views might include inter-feature 
relationships (including call sequencing and argument data), class contract views, and 
improved program visualisation. These extra views could be defined using MVSL and 
MVisual and translated into IspelM architecture classes in the same manner as class 
diagram and class text views. 

Abstraction 

Some aspects of IspelM architecture classes could be better represented as part of (or 
specialisations of) MViews classes. Program navigation is partly abstracted out as MViews 
class methods which support click-points and menu dialogues for view navigation. 
Expansion of class details (such as feature names or client-supplier relationships) is mostly 
implemented by IspelM classes whereas ideally MViews classes should provide expansion 
and menu selection methods reusable by IspelM and other environments. 

8.4.2. IspelM Implementation 

The IspelM architecture is implemented as a Snart framework of classes which reuse the 
MViews Snart framework described in Chapter 7. This produces a framework of classes 
suitable for constructing language-specific object-oriented programming environments, 
such as SPE. Reusing the MViews Snart framework for IspelM greatly simplified 
implementation of the environment. MViews’ base component classes were easily reused 
to represent object-oriented program structures. Methods for manipulating these 
structures were incorporated into IspelM classes and reused methods from MViews 
classes. Display view classes and components defined by the IspelM architecture were 
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implemented as specialisations of MViews Snart classes. The MViews classes provided 
much of the user interface and persistency functionality for IspelM classes. 

The main areas of effort in developing IspelM were concerned with appropriate 
interaction and representation schemes (particularly for graphical class diagram views), 
program complexity management and navigation, program compilation and constraint 
semantics, and program persistency management. Graphical views required some effort to 
determine both the rendering of program components and how best to interact with these 
graphical forms. Translating dialogue interactions into base component and subset view 
component method calls also required some work. In particular, while LPA provides good 
dialogue specification predicates, specifying dialogue layout and behaviour are still left 
entirely to the implementer of IspelM. An interface builder and constraint system may be 
useful extensions to MViews to simplify dialogue and graphical view construction 
(discussed further in Chapter 9). 

As MViews does not currently abstract out much complexity management or navigation 
IspelM must implement these itself. Such techniques are probably useful in other systems 
(see Chapter 9) and thus extra support at the MViews level should be provided. A 
problem with this kind of abstraction, and view navigation and creation currently 
supported by MViews, is tailoring dialogues and interaction to specific environments. For 
example, specialisations of IspelM currently must redefine dialogues for display view 
creation to conform to the application’s use of display views. 

A similar problem arises with IspelM-level dialogues for feature specification and 
expansion. IspelM treats all class features the same for representation in class icons but 
distinguishes between “methods”, “attributes”, “deferred”, and “inherited” features in 
some dialogues. SPE also requires additional constraints to be added to dialogue text 
fields so valid Prolog atom values are used. Some languages, such as Kea (Hosking et al 
90), do not make a distinction between class features, and some modelling techniques, 
such as MOSES (Henderson-Sellers and Edwards 90), do distinguish between feature 
name kinds in class icons at the analysis or design levels. More research is required to 
determine suitable ways of allowing dialogues to be “configured” in sub-classes to 
support application-specific dialogue tailoring without having to completely re-
implement dialogue layout and behaviour. 

Language constraints and semantics are not implemented particularly abstractly using 
MViews’ attribute and component dependencies. A more declarative style would be more 
easily understood and extended than over-riding MViews methods and writing the code 
in Prolog. 

This MViews framework persistency mechanisms provide great flexibility and efficient 
use of memory (as program data can be incrementally loaded, saved and purged). 
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Experience with implementing IspelM and SPE using the MViews framework has 
indicated a need for a more abstract approach to MViews component persistency. The 
main disadvantages with the current approach include: specialisation classes must 
implement their own group management methods; classes must implement methods to 
relink reloaded components; and specialisation classes must synchronise saving, loading 
and purging of program data. An improvement might use an object-oriented database for 
storing MViews data with in-core and persistent objects managed automatically by 
MViews or the database (see Chapter 10 for further discussion of extending MViews 
persistency management). 

8.4.3. The Snart Programming Environment 

Most of the effort in specialising IspelM to SPE involved adding language-specific parsing 
and unparsing, interfaces to the Snart compiler and run-time system, and extra support 
for saving and reloading Snart executable code. Most IspelM dialogues are suitable for 
SPE and thus did not require modification for Snart programming29. 

As noted in Chapter 7, a closer relationship between parsing and unparsing (both 
incrementally and for generating text forms) would simplify tailoring IspelM for different 
languages. In particular, for languages such as C++ or Eiffel a lot of effort would be 
needed to write parsers to produce the Prolog structures used by IspelM for updating base 
information. Additional support at the MViews level would also be needed to support 
fine-grained text forms (for example, for class contract information). 

Adding types to Snart, as suggested in Chapter 3, would allow more compile-time checks 
and optimisations to be made and provide valuable information for SPE to generate client-
supplier relationships (for call-graphs and other view expansion/navigation facilities). 
This would require intra-term parsing of Snart code to determine appropriate types and 
strip out the type information (as it is not required for actually executing Snart programs). 
This would require IspelM to be extended to cope with language types but, as a side-
benefit, this would make IspelM more applicable for programming strongly-typed object-
oriented languages. 

8.5. Summary 

An object-oriented architecture for IspelM has been defined using the MVSL and MVisual 
specifications for IspelM from Chapter 5 and by reusing the object-oriented architecture of 

                                                 

29As noted previously, for other languages and object-oriented modelling techniques some modification of 

IspelM’s views and dialogs would be required to suit the particular application language and CASE 

methodology. 
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Chapter 6. IspelM reuses MViews architecture classes to produce a design for a novel, 
integrated software development environment for object-oriented languages supporting 
multiple textual and graphical views with consistency. IspelM allows an object-oriented 
program to represented as an object dependency graph, be viewed and manipulated in 
graphical and textual forms, be incrementally saved and loaded, and supports flexible 
program visualisation, navigation and complexity management.   

An implementation of IspelM as a framework of Snart classes is produced by reusing the 
Snart framework form MViews described in Chapter 7. IspelM program and view 
component classes are implemented by sub-classing appropriate MViews framework 
classes. User interaction is provided by display views and components which implement 
specialised display view, icon, glue and text component  classes. These are manipulated 
by tools for graphical views, typing and parsing text  for textual views, and by using 
dialogues and menus built using LPA predicates. IspelM is specialised to SPE by defining 
new Snart classes which inherit from IspelM framework classes. These specialised classes 
implement parsers and unparsers for Snart syntax, an interface to the Snart compiler and 
run-time system, and compiled Snart code saving and loading support. 

Development of IspelM and SPE architectures and implementations indicated that the 
MViews architecture and frameworks of Chapters 6 and 7 significantly enhance 
construction of software development environments. Providing a set of reusable classes 
based on the MViews model of Chapter 5 allows new environments to be defined using 
MVSL and MVisual and then an implementation designed by reusing the MViews 
architecture. To implement an environment the Snart framework for MViews is reused. 
This architecture and framework provide classes which abstract out the data storage, 
multiple view support, change propagation, and some persistency management aspects of 
software development environments based on the MViews model. 

IspelM is suitable for specialisation to produce an environment for other class-based 
object-oriented languages and SPE could be extended to support “typed” Snart programs. 
The MViews architecture and implementation could be extended to better capture 
program browsing and complexity management and provide enhanced support for 
dialogue interaction. MViews should also provide more abstract component persistency 
management for environments. This should support tools for version control and multi-
user, shared access to programs.
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Chapter 9 

Further Applications of MViews 
 

Chapter 8 illustrated use of the MViews architecture and framework for modelling and 
implementing IspelM and SPE. This chapter demonstrates that the MViews model for 
integrated software development environments can be reused for several other diverse 
applications. The concept of multiple textual and graphical views of information with 
automated consistency management is useful in many different applications. These 
include, but are not limited to, entity-relationship modelling, dialogue painting, program 
visualisation, debugging and animation, dataflow diagrams and programs, and more 
detailed object-oriented analysis and design. Such applications can reuse MViews’ novel 
aspects of flexible information storage (using base view components and relationships), 
multiple textual and graphical view abstractions, and propagation and documentation of 
change (using update records) in quite different ways. 

This chapter describes several applications developed using MViews. Some have been 
implemented using the Snart framework from Chapter 7 while others are abstract designs 
illustrating how a system can be modelled using MViews abstractions. Some systems have 
been designed and implemented by the author while others are being developed by other 
researchers using MViews. An entity-relationship modeller provides graphical entity-
relationship diagrams and corresponding textual relational database schema for entities 
and relationships. A dialogue painter provides a graphical dialogue painting view and 
one or more textual views which define dialogue semantics and constraints. Program 
visualisation using Snart and MViews is illustrated with a tally graph view of object 
method calls, sorting algorithm animation, and a visual debugger for SPE. Extended 
object-oriented analysis and design in SPE includes graphical method calling views and 
textual class contract views. Dataflow diagrammers support dataflow modelling for 
analysis and dataflow method implementations for SPE.  Other systems include a 
common building model represented and manipulated using derivatives of SPE and its 
visual debugger and tool abstraction using MViews component specialisations. 
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9.1. Entity-Relationship Modelling 

9.1.1. Entity-Relationship and Relational Database Modelling 

Entity-relationship (ER) modelling (Chen 76) is typically used to model database systems 
by decomposing data into entities and relationships between entities. Entities and 
relationships may have associated attributes and relationships can specify a cardinality 
between related entities. An ER model can be successively refined to form the basis for a 
relational database schema (RDS) (Teorey et al 86), typically composed of tables and table 
fields. 

ER models can be constructed and queried by graphical techniques (Czejdo et al 90, 
Teorey et al 86), as can RDSs (Larson, 86). A typical approach, however, is to translate 
high-level graphical ER (or extended ER) models into low-level textual RDS definitions 
(Czejdo et al 90). One disadvantage with this approach is that extra information defined 
by RDSs (such as keys, default values, constraints on table field values, and so on) must be 
specified externally or added in some way to the ER model.  

9.1.2. MViewsER 

One solution to integrating ER and RDS specification is to provide graphical ER modelling 
views and complementary textual RDS views, with consistency management between the 
two. Fig. 9.1. shows an example of MViewsER, which takes this approach to database 
model specification. 
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fig. 9.1. MViewsER graphical ER views and textual RDS views. 

MViewsER supports graphical ER diagram views with diagrams constructed using tools, 
dialogues and menus. Textual RDS views contain a table definition including table fields, 
field types, and zero or more field values used to specify various attributes for fields. RDS 
views are parsed to update table information. The graphical ER views provide a high-level 
specification system with details about RDS requirements ignored. Textual RDS views can 
be generated from ER data and provide extra information about field types, defaults, 
ranges and so on. 

Consistency management is employed between ER diagrams and RDS tables. Currently 
MViewsER assumes entity and relationship names and attribute names map to 
corresponding RDS table names and field names. ER diagram views are updated directly 
by changes to RDS table views and an update history is kept for entities and relationships 
(and their corresponding RDS tables). RDS views are updated by unparsing update 
records (as shown in fig. 9.1.), and some update records can be automatically applied by 
MViewsER to reflect changes to entities and relationships. Other update records serve as 
documentation to inform programmers of ER model changes that may or may not impact 
on the RDS tables. 
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9.1.3. Specification 

MViewsER was initially specified using the MVSL and MVisual notations from Chapter 5. 
The first task was to determine the base view and subset view components required by 
MViewsER. An ER model is composed of entities and relationship elements which are 
related by connection relationships (which hold the cardinality from the entity to the 
relationship and possibly a name used by the relationship to refer to the entity). Entities 
and relationships can hold attribute values which have a name, type and list of values. 
This analysis results in MVSL base component specifications, some of which are shown in 
fig. 9.2. 

Two kinds of subset views are defined by MViewsER. ER diagram views contain entity, 
relationship and attribute icons and connection and attribute glue. RDS views contain 
table text forms. Fig. 9.3. illustrates some MVSL definitions for these view components. 
 
base element entity 
 attributes 
  entity_name : string 
 relationships 
  relationships : connection.parent 
  attributes : one-to-many attribute 
 ... 
end entity 
 
base element relationship 
 attributes 
  rel_name : string 
 relationships 
  % note that a relationship may relate > 2 entities i.e. not necessarily binary 
  entities : connection.child 
  attributes : one-to-many attribute 
 ... 
end relationship 
 
base relationship connection 
 parent entity 
 child relationship 
 attributes 
  order_entity : integer 
  order_rel : integer 
  name : string 
 ... 
end connection 
 
base element attribute 
 attributes 
  attr_name : string 
  attr_type : string 
  attr_values : one-to-many attr_value 
 ... 
end attribute 

fig. 9.2. Base component MVSL specification for MViewsER. 
 
subset element entity_icon 
 attributes 
  entity_name : like entity.entity_name 
 relationships 
  base_entity : one-to-one entity 
 ... 
end entity_icon 
 
subset element attr_icon 
 attributes 
  attr_name : like attribute.attr_name 
 relationships 
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  base_attr : one-to-one attribute 
 ... 
end attr_icon 
 
subset relationship con_glue 
 attributes 
  order_entity : like connection.order_entity 
  order_rel : like connection.order_rel 
 relationships 
  base_con : one-to-one connection 
end attr_glue 
 
subset element table_text 
 relationships 
  % mutually exclusive 
  base_entity : one-to-one entity 
  base_rel : one-to-one relationship 
 ... 
end table_text 

fig. 9.3. Example subset view component specifications for MViewsER. 
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fig. 9.4. Example display view component and dialogue specifications for MViewsER. 

Using the MVSL subset view definitions as a basis, an MVisual specification for display 
views and dialogues was developed for MViewsER. Fig. 9.4. illustrates some MVisual 
views defining view component and dialogue appearance and behaviour. 

9.1.4. Design 

From the MVSL and MVisual specifications for MViewsER an object-oriented design for 
the environment can be developed by reusing the architecture from Chapter 6. MVSL 
definitions translate into base and subset component class specialisations while MVisual 
specifications define the appearance and editing semantics for display views. Fig. 9.5. 
shows a class hierarchy for MViewsER using the SPE class diagram notation. The MViews 
architecture classes are abstract (shaded boxes) and the MViewsER classes are on the 
right-hand side. 
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fig. 9.5. A class hierarchy for MViewsER. 

In addition to the classes shown, MViewsER defines subset/base relationships for icon, 
glue and text form classes and specialises the one_to_many relationship class to represent 
base component relationships. For example, a base_entity_rels class is defined to relate a 
base entity to all of its base connections (which each relate the entity to a relationship). 
These relationship class specialisations implement additional methods to manage the 
location, compilation, and deletion of components they relate. This approach to modelling 
MVSL component relationships proved to be much easier to manage and extend than the 
IspelM approach of using list attributes. 

9.1.5. Implementation 

MViewsER is implemented by specialising the Snart framework of Chapter 7. The classes 
defined by the MViewsER design are implemented as Snart classes which inherit from 
MViews framework classes. MViewsER uses the Snart framework’s persistency methods 
to save and load ER programs. Currently MViewsER loads all base program components 
when a program is re-opened and saves updated components. This could be extended to 
provide incremental base component loading, in a similar manner to IspelM. 

MViewsER uses lazy update record application to implement a “stay with parent icon” 
behaviour for attribute icons. When a relationship or entity icon is dragged, its attributes 
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automatically shift their locations to conform to their parents new location. When an 
attribute icon is dragged, however, its parent is not affected. The apply_lazy_updates 
method for attr_icon examines any shift_location update records sent to attr_icon and 
determines whether to move the icon or not. 

MViewsER does not currently have a relational database interface. It could be extended to 
support generation of actual relational schema, however, or even to support graphical 
querying in a similar manner to (Santucci and Sottile 93, Czejdo et al 90). 

9.2. Dialogue Painting 

9.2.1. User Interface Specification 

User interface specification in most programming languages is via a pre-defined set of 
procedure calls (Apple 85, LPA 92), reusable object-oriented toolkits supporting graphical 
user interface components (Linton et al 88), or extending the language with constructs for 
graphical user interface specification (Haarslev and Möller 90). User interface 
management systems (UIMSs) provide languages specific to graphical user interface 
specification (Olsen and Dempsey 85) or interactive user interface specification using 
graphical editing commands (Myers 89, Avrahami et al 89, Brown 91). 

As noted by (Linton et al 88) and (Myers 90), both textual specification (via reuse of 
toolkits or specialised programming languages) and interactive graphical specification of 
graphical user interface components have advantages and disadvantages. Textual 
specification allows other programs to make use of these user interface components 
(including passing them data to output and being given input data) and provides a precise 
method of specifying constraints and semantics. Interactive specification allows the 
appearance of user interface components to be specified in a natural manner by placing 
and sizing components as required. 

A combination of these two approaches has been attempted in systems such as FormsVBT 
(Avrahami et al 89) and Zeus (Brown 91) where textual dialogue specifications are used in 
one view and a graphical form in another. These approaches provide consistency between 
each view representation using a common parse-tree and event generation when the parse 
tree is updated. (Haarslev and Möller 90) note that in this approach the graphical views 
tend to constrain the textual representation as both must contain the same data. Other 
UIMS approaches generate code from interactive descriptions which can be extended by 
programmers to specify behaviour not easily captured in a graphical representation. A 
major problem occurs when a graphical representation is changed as previously generated 
code is over-written by new code. This produces a similar consistency problem to CASE 
tools that generate code when the generated code or CASE diagrams are modified (see 
Chapter 4). 
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9.2.2. MViewsDP 

MViewsDP is a dialogue painter for specifying Macintosh-style dialogues using LPA 
MacProlog built-in dialogue predicates. MViewsDP provides a graphical view which 
allows dialogue components to be interactively added, deleted and modified. This view 
shows the form a dialogue will have when actually opened and used by LPA MacProlog. 
One or more textual views are provided to specify additional information about the 
dialogue. These contain a Prolog predicate defining the dialogue’s sub-components and 
predicates used to set up initial values for dialogue fields, check the validity of entered 
data, and carry out any processing of entered data for passing back to Prolog predicates 
which invoke the dialogue. Fig. 9.6. shows an example of MViewsDP views and an 
executing dialogue defined by MViewsDP. 

 

fig. 9.6. An example of MViewsDP views and an LPA dialogue. 

The graphical view has been interactively edited to describe the appearance of the 
dialogue. The textual view describes the dialogue predicate’s Prolog variables (vars), its 
initialisation predicate (initialise), its sub-components (components), checking predicate 
(check) and final processing predicate (final). Dialogue sub-components are named in the 
textual view by a prefix (unlike LPA dialogue specifications) which helps programmers to 
determine which dialogue component has been updated. MViewsDP generates a 
predicate to open the dialogue (an example of an open dialogue is also shown in fig. 9.6.) 
and asserts other Prolog predicates defined in textual views. Graphical and textual views 
are kept consistent with update records and an update history is kept. Graphical view 
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components are redisplayed after receiving updates while textual views unparse updates 
(as shown in fig. 9.6.). 

A difference between MViewsDP and both IspelM and MViewsER is that graphical 
dialogue sub-components must be enclosed by their owning dialogue’s border and are 
displayed relative to their owning dialogue’s location. Sub-component icons are also 
shifted are resized when their owning dialogue’s border is shifted or resized. These 
dialogue sub-component icons must thus be sub-icons dependent on updates on their 
owning dialogue. Adding dialogue sub-components to a textual dialogue specification 
must always result in corresponding graphical sub-component icons in the graphical view 
(as the graphical dialogue view must contain all dialogue sub-components). 

9.2.3. Specification 

MViewsDP is specified using MVSL and MVisual in a similar manner to MViewsER. A 
complication is that a dialogue can contain several sub-components, all of which share 
common characteristics (location, size and name). A natural way of describing this 
relationship is to define dialogue sub-components as specialisations of a common MVSL 
component. To support this MVSL is extended to support generalisation of one 
component to another. The semantics of this are the same as for object-oriented languages 
and extended entity-relationship generalisations (Teorey et al 89). A component 
generalised to another supports all attributes, relationships and operations of its 
generalisation and can be used whenever its generalisation may be used. Fig. 9.7. 
illustrates some MVSL declarations for MViewsDP. 
 
base element dialogue 
 attributes 
  name : string 
  top : integer 
  left : integer 
  depth : integer 
  width : integer 
 relationships 
  components : one-to-many dialogue_comp 
 ... 
end dialogue 
 
base element dialogue_comp 
 attributes 
  name : string 
  top : integer 
  left : integer 
  depth : integer 
  width : integer 
 relationships 
  dialogue : one-to-one dialogue 
 ... 
end dialogue_comp 
 
base element text_field 
 generalisation dialogue_comp 
 attributes 
  text : string 
 ... 
end text_field 
 
base element edit_field 
 generalisation dialogue_comp 
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 attributes 
  initial : string 
  final : string 
 ... 
end edit_field 
 
subset element dialogue_comp_icon 
 attributes 
  name : like dialogue_comp.name 
  top : like dialogue_comp.top 
  left : like dialogue_comp.left 
  depth : like dialogue_comp.depth 
  width : like dialogue_comp.width 
 ... 
end dialogue_comp_icon 
 
subset element dialogue_icon 
 attributes 
  ... 
 relationships 
  components : one-to-many dialogue_comp_icon 
 ... 
end dialogue_icon  
 
subset element text_icon 
 generalisation dialogue_comp_icon 
 ... 
end text_icon 

  fig. 9.7. Some MVSL declarations for MViewsDP base components. 

An MVisual specification for MViewsDP is used to define the appearance and editing 
semantics for display views and dialogues. Fig. 9.8. illustrates some parts of an MVisual 
specification for MViewsDP. Dragging a dialogue icon results in all of its sub-component 
icons being shifted by the same amount. Sub-component icon details are updated by 
dialogues which send events to their MVSL counter-parts. 
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fig. 9.8. Some parts of an MVisual specification for MViewsDP. 

9.2.4. Design 

The MVSL and MVisual specifications for MViewsDP are translated into a design by 
reusing the MViews architecture, in a similar manner to IspelM and MViewsER. Fig. 9.9. 
shows the inheritance hierarchy for MViewsDP. The MViewsDP classes are shown on the 
right. comp_icon and comp_icon are two abstract classes defined by MViewsDP to abstract 
out common information and behaviour for dialogue sub-components. 

dialog_icon and base_dialog both have a one-to-many relationship to comp_icon and 
dialog_comp  respectively. These dialogue sub-components are dependents of the dialogue 
and its icon and hence are sent update records from the dialogue. Dialogue sub-
component icons are displayed relative to their owning dialogue icon’s position. Hence 
they must shift their location when the dialogue icon is moved or resized and must ensure 
they do not overlap the dialogue icon’s border. 

9.2.5. Implementation 

MViewsDP is implemented by specialising the Snart framework and basing the new Snart 
classes on those defined in the design for MViewsDP. As with MViewsER entities and 
relationships, base_dialog and dialog_icon use relationship components to manage their 
relationships to instances of comp_icon  and dialog_comp specialisations. 
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MViewsDP uses the Snart persistency mechanism to save dialogue program states. This 
proved to be a much more abstract way of handling incremental program saving and 
loading than the MViews framework save and load methods. The MViewsDP classes are 
persistent classes and do not have to provide any other facilities to save and reload their 
states. This contrasts dramatically to the programming effort involved in supporting 
incremental saving and loading in IspelM and simple program saving and loading in 
MViewsER. For MViewsER, a significant portion of its development time was spent 
defining what information for each component class needed to be saved and how to 
restore it. Effort must also be expended to specify how this persistent information is 
deleted when the component is deleted (for example, deleting an appropriate resource 
from a save file). The MViewsDP approach using Snart object persistency proved to be a 
much better way of handling program persistency. Chapter 10 draws on this experience to 
develop an improved model for component persistency which also supports version 
control and multi-user distributed programming. 
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fig. 9.9. Class hierarchy for MViewsDP. 

Lazy update record processing was used to support comp_icon  and dialog_comp update 
record processing. comp_icon needs to determine whether shift_location(Dialog, DX, 
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DY), update_attribute(Dialog, depth, NewDepth) and update_attribute(Dialog, 

width, NewWidth) have been sent to a dialogue sub-component icon from its owning 
dialogue. The dialogue sub-component icon can then reconfigure its state to conform to 
that of its owning dialogue (if necessary). 

Another interesting use of lazy update record processing is by dialog_comp. Changing the 
position and size of dialogue sub-components is a common task which generates many 
update records (typically four if the top, left, depth and width attributes of dialog_comp 
are all updated by the one editing operation). dialog_comp uses lazy update record 
processing to merge these updates into one update record of the form 
change_comp(SubComp, OldTop, OldLeft, OldDepth, OldWidth,  NewTop, NewLeft, 

NewDepth, NewWidth). If only size or location is updated, update records of the form 
change_size(SubComp, OldTop, OldLeft, NewTop, NewLeft) and change_size(SubComp, 
OldDepth, OldWidth,  NewDepth, NewWidth) are generated. This helps to reduce the 
number of update records generated and hence assists programmers by reducing the 
number of update records stored and expanded in textual views. Chapter 10 discusses 
ways MViews can be extended to better facilitate and automate this kind of update record 
composition. 

9.3. Program Visualisation 

Program visualisation systems allow programmers to see parts of their programs in an 
abstract (possibly graphical) manner to help facilitate understanding and/or debugging of 
programs (Meyer 90). In this section three dynamic30 program visualisation systems 
developed using MViews are discussed. The first two are simple examples illustrating 
some of the diverse applications MViews can be used for. The third is a visual debugger 
for SPE being developed at the University of Auckland by Stephen Fenwick, based on a 
prototype system that did not use MViews (Fenwick and Hosking 93). 

All of these systems use the Snart object spying mechanism (described in Chapter 3 and 
Appendix B) to generate low-level tracing events on objects. MViews converts these 
events into update records which are propagated to subset and display view components 
to drive animations and maintain subset and display view consistency with an executing 
program. 

                                                 

30Dynamic program visualisation displays views of the execution state of a program. SPE supports static 

program visualisation by allowing programmers to construct class diagram views illustrating the structure 

of programs. 
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9.3.1. Tally Graph of Method Calls 

A tally graph of method calls to an object illustrates the amount of usage of individual 
methods (Noble and Groves 92). Fig. 9.10. shows such a tally graph for a drawing_window 
object from the drawing program described in Chapter 4. This bar graph view shows a 
count of the method calls to the drawing_window object for an instance of the drawing 
program. As the drawing_window object’s methods are called this tally graph is updated 
dynamically. 

 

fig. 9.10. An object method call tally graph for the drawing program. 

The tally graph view is implemented as an extension to SPE. A user-specified object’s 
entire interface is spied by a Snart predicate call of the form sn_trace_object(Object). The 
spe_program object sends sn_entry(Object, Method(ArgumentList)) events generated by 
the spied object to a hashtable base component as update records. This base hashtable 
converts these update records into insert_item(Method,1) or 
update_item(Method,NumCalls+1) method calls on itself. The hashtable is an “active” data 
structure in that it inherits from component and generates update records when it is 
changed. 

The hashtable has a bar graph subset component which is specialised to a bar graph 
display icon (which draws the axes shown in fig. 9.10.). The bar graph subset component 
is connected to the base hashtable by a subset/base relationship. This subset/base 
relationship translates hashtable update records into bar graph subset component method 
calls by over-riding the subset_rel::update_from_base method. The bar graph display is 
redrawn when it receives update_display calls from its subset component. Each bar graph 
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bar is a sub-icon of the bar graph display icon and renders bar graph label and bar 
pictures. A bar graph display view is used to enclose the bar graph display component in 
a window. Fig. 9.11. shows the translation of object events into update records and bar 
graph updates. 

The base hashtable used by the tally graph view could have more than one subset view 
with different kinds of display views. For example, a textual view might print out a 
method call trace with the argument values for each method call (if the base hashtable 
propagates the sn_entry events sent to it as update records). The base hashtable might 
also store update records against itself to document all method calls sent to the Snart 
object. 

Spied 
Snart 

Object

spe_program 
Object

hashtable 
Object

subset 
relationship 

Object

bar graph 
subst/display 

Object

bar graph 
subset/display view 

Object

bar graph 
iterm Object

bar graph 
iterm Object

...

sn_entry(...)
sn_entry(...) insert(...)/ 

update(...)

update_bar(...)

update_display(...)

 

fig. 9.11. Spied object events and update record propagation for the method call tally view.  

9.3.2. Sorting Algorithm Animation 

Algorithm animation systems attempt to illustrate how an algorithm works by visually 
demonstrating interesting events and corresponding data and control flow modifications 
that occur during the algorithm’s execution (Brown 88, Stasko 89, Myers 90). Sorting 
algorithms are a common example used. A graphical view illustrates how and when data 
is compared and moved during execution of the sorting algorithm. Some animations also 
show the commands being executed at each step of the algorithm. Such animations are 
useful both for teaching how sorting algorithms work and for testing algorithms for 
correctness (an error will result in an in-correctly sorted data structure) and efficiency (an 
in-efficient or erroneous algorithm may produce an unduly long or incorrectly sequenced 
animation). 

A simple sorting algorithm animator has been implemented as an extension to SPE. Fig. 
9.12. shows an example of the sorting animation view during execution. As the sorting 
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algorithm compares two values, their bars are highlighted, and when two item’s values 
are swapped, the bars are exchanged. This example shows the progression of a bubble-
sort algorithm sorting elements in a list. 

To implement the sorting animation view, a sorting algorithm object’s compare(Item1, 
Item2) and swap(Item1, Item2) methods, or a data structure’s set_item(Item, Value) 
method, are spyed to generate “interesting events” (Brown 88) which drive the animation. 
sn_entry events are sent to the spe_program object which then propagates the events (as 
update records) to a subset/base relationship (with no actual base component - the spied 
object is assumed to be the “base” component). This subset/base relationship uses exactly 
the same bar graph subset and display components and views as used for the tally graph 
view to display an animation of the sorting algorithm. The subset/base relationship 
converts sn_entry(Object, compare(...)), sn_entry(Object, swap(...)) and 
sn_entry(Object, set_item(...)) update records into appropriate bar graph subset 
manipulation methods. 

 

fig. 9.12. An example of a sorting animation view. 

9.3.3. Visual Debugging 

Visual debugging allows executing programs to be debugged using graphical diagrams 
describing object data, relationships and control flow (Fenwick and Hosking 93). Cerno, a 
visual debugging system for SPE, is under development at the University of Auckland 
and reuses MViews to build graphical debugging views for Snart programs (Fenwick 94). 
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fig. 9.13. An example of Cerno multi-object views. 

Cerno defines views and view components to describe the state of an executing Snart 
program. Viewed Snart objects have their methods and attributes spied so debugging 
views can be updated when the objects change. This ensures view consistency with the 
executing Snart program (i.e. the “base” view). A multi-object view shows one or more 
Snart objects and references to other Snart objects. Programmers can specify which 
attributes of an object are shown for each object view component. References are 
expanded by programmers and object attribute values can be updated. Fig. 9.13. shows an 
example of Cerno multi-object views. 

Cerno is implemented by specialising the MViews Snart framework from Chapter 7. 
Subset component classes are defined to represent Snart objects, list attribute values and 
term attribute values. Corresponding subset/base relationships are sent update records by 
the base view when the objects they view are updated by Snart. These update records are 
translated into changes to subset components which are then re-rendered to reflect the 
changes to the Snart objects. 

Updates on Prolog lists and terms need to be handled by different subset components as 
Snart does not store them as objects. A list attribute subset component is a dependent of 
an object subset component. It is sent update records received by the object subset 
component from a spied Snart object. Any update records describing changes to the list 
attribute are converted into changes to the list attribute subset component and it redraws 
its display to reflect this change. Terms are viewed as lists of a fixed length by converting 
a Prolog term to a list using the =.. operator. 

Object subset components can be rendered in a variety of ways, as shown in fig. 9.13. This 
allows an object to display information about its attribute types (as a large object display 
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component) or as a small form showing user-specified attributes and object references. 
Snart classification is used to dynamically select between different types of display 
components (for example, bar graphs or lists) depending on a programmer’s preference 
for how an object’s data should be displayed. Further details about Cerno and its 
implementation can be found in (Fenwick 94). 

9.4. Other Applications of MViews 

This section briefly discusses further applications of MViews currently under 
development or planned for development. These systems are quite diverse in nature and 
illustrate how the MViews notions of object dependency, update records, and multiple 
textual and graphical views with consistency management can be usefully reused in 
different systems. 

9.4.1. Facets and Object Persistency for ICAtect 

The ICAtect system (Amor et al 91) defines a Common Building Model for modelling 
building designs. This model specifies classes of building components, attributes for these 
components and relationships between these components. Instances of this model can be 
constructed which define a particular building design. Existing CAD and engineering 
tools can be interfaced to ICAtect and can thus use the Common Building Model for data 
interchange. An initial prototype of ICAtect was implemented in Prolog and provided a 
mainly textual interface (Amor 91). 

A new version of ICAtect is being developed at the University of Auckland by Robert 
Amor. This reuses SPE to model and construct a Common Building Model using SPE’s 
class diagrams and the model is stored as Snart classes. Instances of the model are 
constructed by using a derivative of Cerno to view and manipulate building designs. The 
Snart persistency mechanism allows these instances to be automatically made persistent 
by Snart. 

Snart has been extended to incorporate facets. A facet is a named value associated with a 
class attribute and is used to specify additional information about the attribute, such as 
default values, a description, and type and constraint information31. For example, an 
attribute might be declared as: 

shape(facets([ 

 relationship(values), 

 type(shape), 

                                                 

31A facet could be compared to a relational database table field value which specifies similar kinds of 

information for table fields. 
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 constraints(instanceof([shape])), 

 description('The shape of this particular object, defined in the hybrid 

edge data structure, see Y. E. Kalay in Computer Aided Design, Vol 21, 

No. 3, April 1989') 

 ])), 

SPE and Cerno have been extended to incorporate this notion allowing facets to be 
visually represented and manipulated. This provides a programmer-level visualisation 
and visual programming interface for ICAtect with most facilities implemented by SPE 
and Cerno. Snart objects produce a much faster performing building design database than 
the original Prolog database terms used to define the Common Building Model and its 
instances. SPE and Snart object persistency allow the Common Building Model and its 
instances to be automatically and incrementally saved and reloaded. 

9.4.2. Support for More OOA/OOD Notations 

Extending SPE to incorporate more extensive design and analysis views would provide an 
improved environment for such high-level software development tasks. Of particular 
interest are graphical views which allow control and data flow between class features to 
be specified (similar to those described in (Fichman and Kemerer 92)), textual class 
interface contracts to be defined (for defining class contracts as used by (Meyer 92)), and 
analysis to design (and vice-versa) consistency management. 

Fig. 9.14. shows what examples of such views might look like. The top view is a feature 
control and data flow view illustrating some feature calls between the figure and 
drawing_window classes. This view also shows some of the arguments passed between 
features including argument names, types, and input and output arguments. Some calls 
are sequenced to show the order they occur from a method (for example, 
drawing_window::clicked calls figure::pt_in_figure and then figure::select). This 
kind of design-level view is useful for specifying detailed control and data flow between 
individual class features (Fichman and Kemerer 92). The existing SPE class diagrams can 
not capture this level of detail. Other facilities of this type of view might include 
hypertext-like browsing capabilities which display method code views when a connection 
is double-clicked on. 

The class contract textual view defines high-level pre- and post-conditions associated with 
methods (of a similar style to those of Eiffel (Meyer 92) but using Prolog clauses to specify 
validity conditions). It also defines the arguments supported by methods (and could 
define argument types as well). 

Both the feature control and data flow view and class contract view must be kept 
consistent with changes to other SPE views. Changes to these views must also be 
propagated to other graphical and textual views which share information displayed in 
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these views. Analysis and design views can be kept consistent with each other (for 
example an abstract class diagram view and a feature control flow view) by update 
records propagated between base components. For example, a change to an abstract client-
supplier relationship might affect a related feature control flow relationship. The feature 
control flow can be made a dependent of the client-supplier and be sent update records. 
These records can be used to update the control flow relationship’s state or be stored so 
programmers are informed that it has been affected by a change to the client-supplier. 

To extend SPE to support these (and other) analysis and design views, the MViews model, 
architecture and framework can again be reused. Base classes and features would be 
extended to support relationships to new base components representing method call 
relationships, method arguments, and method pre- and post-conditions (possibly stored 
as textual base components). 

For feature control flow views class_icon could be specialised to a new class icon which 
supports feature sub-icons. Dragging a class icon would shift its feature sub-icons while 
shifting feature sub-icons would alter their position in relation to the owning class icon 
(implemented in the same way as MViewsDP dialogue icons and dialogue sub-component 
icons). Feature control and data flow connections would be graphic_glue specialisations 
with sub-icons representing arguments and an attribute indicating feature call sequencing. 

For class contract views class_text could be specialised so parsing a pre- or post-
condition updates the appropriate base component’s text form. MViews supports copying 
text form data from part of a textual display view and, as the key-words before and after 
are used to distinguish contracts (see fig 9.14.), these could also be used to locate the text 
defined by pre- and post-conditions. Class contract text forms could be extended to 
support partial class interface displays with inherited features and conditions, similar to 
SPE’s class code text forms (see Chapter 4). 
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fig. 9.14. Examples of feature control flow and class contract views for SPE. 

9.4.3. Dataflow Analysis Diagrams and Method Implementations 

Dataflow diagrams (DFDs) are useful for systems analysis where they show high-level 
dataflow between entities or classes and objects. DFDs can also be used for visual 
programming. Low-level dataflow is specified between “boxes” along “wires”, and boxes 
can either represent fundamental operations or be composed of other boxes and wires. 
Methodologies using DFDs for analysis include Bailin Object-Oriented Requirements 
Specification (Bailin 89) and Shlaer and Mellor Object-Oriented Analysis (Shlaer and 
Mellor 88). Visual programming systems using DFDs include Fabrik (Ingalls et al 88) and 
Prograph (Cox et al 89). 

SPE could be extended to provide DFDs for both analysis and visual programming. Fig. 
9.15. shows an analysis-level DFD view and a method DFD view. Analysis-level DFDs 



Chapter 9 Further Applications of MViews Page 270 

describe classes and methods (rather than disembodied processes, as used by conventional 
DFDs for structured analysis (Fichman and Kemerer 92)), and show dataflow connections 
(possibly named and including an indication of the data passed) between classes and 
methods. Method DFDs show operations in boxes (which may be other class methods, 
Prolog predicates or other DFDs) and connections (possibly named) between operation 
boxes. Shaded wires indicate synchronisation of operations. This style of DFD program is 
based on that used by Prograph (Cox et al 89), with additional support for boxes that 
interface to textually implemented methods and Prolog predicates. 
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fig. 9.15. Examples of analysis-level DFD views and method DFD views for SPE. 

To implement DFD views in SPE, base class and feature components must be extended to 
incorporate dataflow relationships (for analysis DFDs) and dataflow box definitions (for 
method DFDs). Analysis dataflow relationships require names and base components for 
representing data passed via the dataflow connection. Method DFDs require base 
component boxes and pins to represent the external structure of a box. They also require a 
method of specifying the internal structure of boxes using other box interfaces (boxes and 
pins) and wires between box pins. This internal structure could be specified in the base 
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view or, as box definitions are hierarchical, the structure of a display view could be used 
to define both the appearance and internal structure of a box. 

Analysis DFD views can specialise the existing class_icon class and support dataflow 
connection glue (with optional names and data values represented). Method DFD views 
require box icons and pin sub-icons and wire glue. Analysis DFD diagrams can use 
update records to keep them consistent with other views and can provide hypertext-like 
capabilities for moving to other SPE views. Method DFD base component boxes must be 
kept consistent under change. This includes updating a box’s internal specification using 
update records (whether its specification is a DFD, Prolog predicate or textual method 
definition) when its external interface is changed. DFD internal specifications are 
hierarchical and thus can be updated automatically (by adding, moving or deleting a box’s 
pins shown when the box is used in other method DFD views). Textual predicates or 
methods used as boxes in method DFD views must be updated by expanding update 
records into their textual display views. For example, if a DFD view renames wires or 
adds pins to a box representing a Prolog predicate, the predicate’s textual definition, 
currently defined in a class or feature text form, must have update records expanded in 
the text form to reflect the change. Examples of such unparsed update records are shown 
in fig. 9.16. 
 

/* updates_start(7). 
update(1). % rename pin (argument) Picture to LPAPicture 
update(2). % add unnamed input pin 
update(3). % remove output pin 1 
updates_end. */ 
 
drawing_window::add_pic(Window,Picture,Drawn) :- 
 ... 
 

fig. 9.16. Unparsing update records from modified boxes into a textual method 
implementation. 

Fabrik and Prograph allow executing DFD programs to be displayed using the views 
defined to construct the program (Fabrik’s diagrams are viewed as always executing, even 
for partially constructed programs). SPE method DFDs could support such a facility if 
MViews component classes are defined to hold the run-time execution state of boxes. Such 
run-time base components could duplicate the composition and layout of method DFD 
views to allow programmers to view the state of executing box pins. An alternative might 
be to use Snart objects to store the state of an executing DFD box and spy these objects so 
an SPE method DFD view can be used to browse the executing program’s state. 
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9.4.4. Tool-based Abstraction 

Garlan et al propose using tool abstraction to support the evolution of large-scale software 
systems (Garlan et al 92). They compare and contrast using abstract data structures and 
tool abstraction as the basic modelling technique for such systems. Tool abstraction 
involves composing a system from reusable “tools” which supply data processing. Tools 
share a set of abstract data structures which they update and data can “flow” between 
tools for different processing. Garlan et al claim that while data abstraction eases design 
changes for data representation, tool abstraction does the same for system functionality. 

Two requirements for tool abstraction are: some method of determining whether data 
structures have changed; and on data structure change, tools dependent on the data 
structure state must be triggered so they can process data and maintain a consistent 
system state (Garlan et al 92). One approach to driving this tool invocation process is by 
utilising “active” data structures. Some object-oriented systems providing such facilities 
include Smalltalk (Goldberg and Robson 84), Flavors (Moon 86) and many object-oriented 
databases (Garlan et al 92). A problem with most approaches is similar to that for view 
consistency discussed in Chapter 5: only an indication of some change or an indication of 
some object attribute change is given to dependent objects (tools), rather than the actual 
change that occured. 

The MViews framework can be reused to support tool abstraction by using “active” data 
structures which generate update records documenting the exact change a data structure 
has undergone. Tools can also be implemented as component classes which are dependent 
on various active data structures. Tools may even communicate via generation of update 
records in contrast to explicit method invocation and thus may be dependents of one 
another. 

Fig. 9.17. shows an example (based on one from (Garlan et al 92)) of tool abstraction using 
specialisations of MViews component class. In this example: an input tool reads lines from 
a file and inserts them into a shared line buffer (an active list); a circular shifter tool 
appends the first word from each line to the end of the line and stores them in a shifted 
line active list; an alphabetiser tool orders this shifted line list; and an output tool writes 
the sorted, shifted lines to a file. Fig. 9.17. shows the update records generated by each 
data structure, which are used to drive this line shifting process, and the method calls on 
data structures by tools. Tool classes can be specialised and new tools added by changing 
the dependencies in the system (for example, to include an omit tool for removing blank 
lines from the shifted line buffer before output (Garlan et al 92)). 
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fig. 9.17. Active data structures and tools supporting tool abstraction. 

The MViews model alleviates some of the problems of tool abstraction discussed in 
(Garlan et al 92). These include: explicit tool invocation (tools are invoked as required by 
MViews’ object dependency mechanism); inefficient response to data changes (tools are 
sent an update record describing exact data structure change and thus can provide 
specialised, efficient processing, in the same manner as subset view updating (see Chapter 
5)); lazy vs. eager data processing (tools can schedule processing of update records lazily 
using MViews’ lazy update record processing); and tool scheduling (tools can be 
dependent on one another and thus a tool can wait until another tool has processed data 
before it processes data). 

9.5. Discussion and Future Research 

9.5.1. MViewsER 

MViewsER provides graphical ER diagram views with corresponding RDS textual views. 
Update records are used to propagate changes between these interactively edited ER 
diagrams and free-edited and parsed textual RDSs. Unlike most ER diagram/RDS 
systems, MViewsER propagates all changes affecting entities and relationships to RDS 
views so programmers can determine whether they affect the RDS definitions. For 
example, changing the cardinality of a relationship connection may affect field values 
(such as defaults, descriptions and ranges) for both the connected entity and relationship 
RDSs. Consistency management is employed to always keep renamed, added or deleted 
entities, relationships and their attributes, and their corresponding RDS tables and fields, 
consistent. 
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MViewsER can be extended to allow programmers to explicitly define normalisation of 
entities and relationships (Teorey et al 86). Entities and relationships can be implemented 
as relational database tables or can be implicitly defined by table fields. For example, an 
account-of relationship between customer and account entities might be zero-to-many 
from customer to account and one-to-one from account to customer. A relational database 
might store such relationships as a customer_id field in the account table, rather than have 
a separate customer-of table with customer_id and account_id fields. A relational 
database query can find all accounts for a given customer_id value, ID, by a simple query 
of the form: 

select account_id from account 

 where account.customer_id = ID 

Extended entity-relationship (EER) modelling, as used by (Teorey et al 89, Czejdo et al 90) 
allows generalisation relationships to be defined between entities. For example, a 
business_customer entity might be a specialisation of customer. MViewsER could support 
such relationships, and mutual inclusively and mutual exclusivity constraints between 
specialisation entities, by providing base generalisation relationships and graphic 
generalisation glue. 

(Teorey et al 89), (Czejdo et al 90) and (Santucci and Sottile 93) describe systems which 
support graphical construction of ER queries. MViewsER includes relational database 
definitions as well as ER diagrams and thus could, in theory, support more explicit and 
efficient relational database graphical queries if MViewsER supported programmer-
defined normalisation of entities and relationships, as discussed above. A graphical ER 
query on the customer entity requesting all accounts for a customer id could use the RDS 
for customer and account to determine the database select query shown above. This 
contrasts with some systems which apparently assume an ER model with both entities and 
relationships implemented as relational database tables, such as (Czejdo et al 90) and 
(Santucci and Sottile 93). 

9.5.2. MViewsDP 

MViewsDP provides a graphical dialogue painter view and one or more textual dialogue 
and dialogue predicate views. This allows the appearance and layout of dialogues to be 
interactively specified while dialogue constraints, input and output variables, and 
defaulting and data conversion to be managed textually. Textual dialogue predicates are 
asserted directly as LPA predicates while textual dialogue specifications are translated 
into a predicate which implements dialogue data initialisation, dialogue opening, data 
validation and final data conversion and return. In contrast to most interface building 
systems, MViewsER allows different levels of detail to be supported naturally in each 
view, keeps most aspects of graphical and textual dialogue specifications consistent, and 
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indicates to programmers changes that can not be automatically applied to a dialogue 
view. 

MViewsDP currently provides button, text field and edit field dialogue sub-components. 
This simple dialogue model could be extended to include radios, check-boxes, menu 
selections and pop-up menu items (perhaps using the Lean Cuisine notation of (Apperley 
and Spence 88)) so a more complete range of dialogues can be specified. MViewsDP could 
also inform programmers of invalid dialogue formats by visual displays. For example, a 
dialogue item whose border overlaps that of its owning dialogue could be rendered in red 
to illustrate an error. Similarly, LPA MacProlog requires dialogue edit fields to have valid 
input and output values (inputs must be non-variables and outputs can specify various 
“reading mode” terms, such as gread(Variable) and tokens(TokenList)). MViewsDP 
should ensure all dialogue sub-component definitions are correct before attempting to 
generate LPA dialogue predicates. Errors could be reported using update records, as used 
by SPE for compilation and semantic errors. 

A generalised form of MViewsDP could be used to visually and textually specify more 
general graphical user interfaces. MVisual demonstrated that visually specifying the 
appearance and editing functionality of MViews views and view components is a natural 
and expressive approach. An extended MViewsDP could be used to generate icon, glue 
and view appearances (and possibly some functionality) using similar graphical and 
textual views to dialogue specification views. 

9.5.3. Program Visualisation 

Program visualisation systems can be built using MViews and Snart’s object spying 
mechanism. A tally graph view indicates a count of method calls to individual object 
methods. A sorting algorithm animator displays each compare and swap step for sorting 
algorithms. A visual debugger provides graphical multi-object views showing the state of 
objects and their relationship to other objects. 

While there are no plans to extend program animation views for SPE, the visual debugger 
is currently being extended to provide control flow visualisation between object methods 
and to support generation of multi-object views from SPE class diagrams and vice-versa. 
Control flow between objects can be visualised by spying all methods of objects viewed in 
a multi-object view. When a spied object calls another spied object’s method, the called 
object generates events which can be used to graphically illustrate the current method call 
(and method call sequencing). Arguments to method calls could be displayed when 
requested by programmers or by default in a multi-object view. 

Generating multi-object views from class diagrams (and vice-versa) will allow a “schema” 
for multi-object views to be reused and saved with an SPE program. Update records will 
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be used to keep schema and object views consistent under change. Spied object events can 
be stored as update records against object icons to provide a history of attribute updates 
and method calls on an object. This would allow programmers to review the “update 
history” for objects and thus assist in locating incorrect attribute value assignments and 
incorrect method calling sequences.  

9.5.4. MViews 

Development of IspelM and the systems described in this chapter have indicated good 
and bad aspects of the MViews model, its specification languages, architecture and 
framework. MViews greatly reduced the time taken, in comparison to using raw LPA 
MacProlog, to model, design and implement the systems described in this chapter. For 
example, MViewsER and MViewsDP took less than a person week each to develop from 
initial specification with MVSL and MVisual to final implementation using the Snart 
framework. The method tally view and sorting animation views took less than a day each 
to design and implement. Use of MViews for the development of Cerno has lead to a 
much faster development time, less errors during implementation and much improved 
functionality and extensibility than with the original Cerno prototype which did not use 
MViews (Fenwick 93 and 94). Similarly, development of IspelM and SPE has been greatly 
enhanced, in terms of development time, extensibility and useful functionality, compared 
with the original Ispel system (Grundy et al 91, Grundy and Hosking 93). 

Of particular benefit when developing these environments has been: 
• MViews’ model and specialisable component class hierarchy for defining base 

view components and subset views and components for different systems. As 
this is graph-based and stores both language structure and semantics it has 
proved flexible for many diverse applications. Abstractions such as viewable 
base components, graphical icons and glue, and graphical and textual display 
views allows specialised components to be defined which inherit a large 
amount of useful functionality (which is also consistent with other specialised 
component state and behaviour). 

• MViews’ object dependency model using update records is useful for 
propagating changes between dependent components, maintaining view 
consistency, indicating changes affecting detailed textual views, and 
documenting component changes. A generic undo/redo facility and lazy 
update record processing has supported quite diverse use of update records 
including maintaining visual layouts and constraints and maintaining 
component state consistency. The homogenous nature of MViews, with all these 
facilities based on object dependency graphs using relationship components and 
update record propagation, has made reuse of MViews very straightforward. 
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• MVSL and MVisual for initial environment specification using the MViews 
model. MVSL proved useful in the design of MViewsER and MViewsDP for 
defining important component structures, operations and update responses. 
These basic environment abstractions could be reasoned with at an abstract 
level using their MVSL specifications. MVisual allowed the appearance and 
basic functionality of display views for these environments to be defined for 
MVSL subset views. MVSL and MVisual specifications do not capture all of the 
information needed to define a new environment, but proved very useful for 
initial design of an environment and for determining how subset and display 
views interact. 

• The MViews architecture and framework allowed an MVSL/MVisual 
specification for an environment to be translated into an implementable design 
and then a specialised framework of classes. Environment design refined MVSL 
attributes and relationships to describe how they will be implemented, defined 
subset/base relationships to translate between base and subset component 
updates, and described MVSL subset views and components and MVSL display 
views and components using one class of object. The framework refined this 
design to describe exactly how components respond to update records using 
declarative methods, implemented relationships and attributes using Snart class 
attributes, and provided a persistency mechanism and user interface for the 
environment. The added abstractions introduced by the architecture and 
framework thus allowed new environments with good user interfaces to be 
efficiently implemented. 

Reuse of MViews has also indicated several areas which require more work to make 
software development environment construction easier and more general: 

• MViewsDP’s persistency management using Snart persistent objects proved to 
be much better than that of IspelM and MViewsER. A large amount of effort 
was expended in the development of IspelM and MViewsER just to define 
component data to be saved and restored, let alone defining incremental 
component saving and reloading. The Snart object persistency mechanism is a 
much more preferable approach with saving and reloading of component 
objects being almost transparent from MViewsDP (only calls to 
sn_open_object_store, sn_close_object_store and sn_write_objects needed 
to be added to the application class for MViewsDP). The Snart persistency 
mechanism, however, needs significant enhancement to support facilities such 
as version control and distributed, multi-user programming environments. 

• MVSL and MVisual are useful for analysing environments and form a good 
basis for a design using the MViews architecture. MVSL should support 
component generalisation, however, and should allow subset components to 
explicitly state the base component attributes and relationships they view and 
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define automatic updating of these (where appropriate). It can be a tedious 
process replicating base component data in subset components and specifying 
update operations to maintain base and subset component consistency when the 
semantics of this process are usually well defined (updating a subset component 
attribute updates the base component attribute it views and vice-versa). 
Specifying how an update record is stored should also be more easily defined. 
MVisual should support calling MVSL operations as well as update operations 
(i.e. MVisual should be able to receive values back from MVSL by sending an 
event (update operation) to an MVSL component). Partial generation of MViews 
framework classes, parsers and unparsers from MVSL and MVisual descriptions 
would also greatly enhance environment development. 

• Lazy update record processing proved to be very useful for composing update 
records into more abstract records (for example, translating update_attribute 
records for dialogue sub-components into resize and move records). It was also 
useful for determining whether to reconfigure a sub-icon to its parent’s location 
(as the sub-icon has to determine whether it was sent a shift_location from 
itself and/or its parent). This lazy update record processing is quite low-level 
and only supported by the Snart framework. More powerful methods of 
specifying update record composition and lazy processing are required, 
particularly support for these at the modelling and architecture levels. 
Dependent component attribute recalculation could similarly do with more 
abstract specification and better framework support. 

Based on the aspects of MViews which require more work, Chapter 10 discusses future 
research options which will help to improve MViews and the environments produced 
using MViews. 

9.6. Summary 

MViews has been reused to produce several novel environments and systems. All have a 
common underlying theme of canonical program representation based on object 
dependency graphs, multiple textual and graphical views of this program, and 
consistency management using update records. MViewsER provides graphical ER 
diagrams and textual RDS views. These views share some information and are kept 
consistent by update record unparsing and application and automatic component 
updating. MViewsDP provides a graphical dialogue view and textual dialogue 
specification and predicate views. All views share some information and are kept 
consistent via update records. MViewsDP also uses update records to maintain graphical 
icon positioning and composes abstract update records from fundamental update records 
to reduce the number of records stored, losing no information in the process. Cerno 
provides multi-object views of spied Snart objects and the views are kept consistent as 
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objects change. Classification of MViews component classes is used to achieve dynamic re-
selection of object icon displays. Multiple, dependent subset components are used to view 
Snart lists and terms and keep these displays consistent with object data. Sorting 
animation and method tally graph views illustrate how MViews and Snart can be used to 
produce more abstract visualisations of object-oriented programs. 

MViews has several other applications and MViews environments can be extended in 
various ways. ICAtect extends Snart, SPE and Cerno to support named facets for object 
attributes. Analysis and design diagrams for SPE could use update records to maintain 
analysis and design view consistency and allow programmers to specify more design 
detail. DFDs support analysis-level, abstract dataflow between classes and methods. 
Method DFDs provide a complementary visual programming technique for implementing 
methods. Tool abstraction allows systems to be decomposed into co-operating tools which 
are event-driven by tool and data structure changes. All of these systems reuse MViews’ 
update records, object dependency graph representations and textual and graphical view 
abstractions. 

Development of IspelM and the systems described in this chapter has indicated MViews 
provides a very useful set of building blocks for integrated software development 
environments. Of particular value are the novel MViews aspects of flexible object 
dependency graph representation, homogeneous use of update records for change 
propagation and documentation, and various abstractions for graphical and textual view 
and view components. Facilities that require further work include more flexible and 
concise MVSL and MVisual specifications, architecture and framework support for 
attribute recalculation and lazy update record processing, and more transparent and 
powerful component persistency management. Chapter 10 discusses some of the more 
important aspects of MViews that require further research and summarises the research 
contributions of MViews and MViews environments.
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Chapter 10 

Conclusions and Future Research 
 

This chapter summarises the main contributions of this research to the field of software 
development environments. Using the discussions from the previous chapters, 
conclusions are drawn about the suitability of MViews for modelling and constructing 
ISDEs. The usefulness of IspelM, SPE and other systems developed using MViews (from 
Chapter 9) is also briefly discussed. 

While MViews greatly enhanced the development of these environments, their 
development has indicated a need for a number of enhancements to MViews itself. These 
enhancements include: the need for more abstract attribute recalculation specification, 
lazy update record processing, and automatic support for update record composition; 
more abstract component persistency, similar to Snart object persistency; reusable version 
control and configuration management tools, and support for multi-user, collaborative 
software development; and partial generation of environments from MVSL and MVisual 
specifications, including unparser and parser generation. Important future research with 
SPE and IspelM includes: support for “typed” languages, where many inter-class 
relationships are automatically generated; reusing IspelM to produce environments for 
other object-oriented languages; and formal user evaluation of MViews environments, to 
determine how the provision of multiple textual and graphical views of software 
development with automatic consistency management assists, or hinders, software 
developers. 

10.1. Research Contributions and Conclusions 

10.1.1. Program and View Representation in MViews 

MViews uses a novel object dependency graph mechanism for representing program 
structure and semantics as a canonical form in a shared data repository. Programs are 
represented as base program graphs which are comprised of elements (graph nodes) and 
relationships (graph edges). Subset views of this base program graph are constructed and 
are themselves program graphs comprised of subset element and relationship 
components. Subset view components are connected to base components with 
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relationship components. Program graphs are modified by a small set of graph editing 
operations. 

This representation scheme is very general and flexible and can model both tree-based 
languages and graph-based languages. Language semantics can be modelled and stored 
as component attributes and subset views may represent and modify both structural and 
semantic information, as appropriate. Relationships between components determine inter-
component dependencies and thus provide a structure for propagating component change 
without the need for a separate object dependency network. 

Experience with MViews has indicated a need for an abstract component persistency 
mechanism. The MViews model and architectures can ignore the problem of program 
persistency if object persistency is supported by the implementation language for MViews 
systems. Providing architecture support for component persistency (via save and load 
methods) is a language-independent model but language-based object persistency has 
proved a much more abstract and easier to use approach. 

10.1.2. Update Records for Change Propagation 

MViews introduces the novel mechanism of update records for propagating a notification 
of the exact change to a program graph component. An update record is generated by a 
graph editing operation and propagated to all dependents of the updated component. 
These dependents are determined using the relationships the updated component 
participates in. Dependent components interpret update records they receive and may 
perform operations to reconcile their own state to that of the updated component they 
depend on. Update records provide a homogeneous solution to support different kinds of 
change propagation in ISDEs. 

Update records are used by MViews environments to support a novel approach to 
graphical and textual view consistency. Update records may be unparsed in textual views 
to document a change to components represented in the textual view. An environment 
may also support automatic application of some update records to update the view’s text 
forms, using incremental parsing and token substitution. This view consistency 
mechanism allows high-level graphical software representations and low-level textual 
program representations to be kept consistent automatically by an environment, no matter 
which view has been changed. 

Update records are also used by MViews environments to support change propagation 
between base and subset components. This mechanism can support flexible, efficient 
attribute recalculation and lazy update record processing. As subset components are 
treated as dependents of their base components, update records provide a mechanism for 
keeping multiple views of shared program components consistent. The MViews 
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architecture supports a novel concept of subset/base relationships which can 
automatically translate between base and subset view attribute update records and 
corresponding operations. These subset/base relationships also support efficient view 
updating using lazy, demand-driven update record processing and their behaviour can be 
redefined to support very general viewing of base program components. 

MViews environments support a novel “component self-documentation” scheme. Update 
records can be stored by a component to document changes the component has 
undergone. Using a similar principle, update records can be stored by subset views to 
implement a generic undo/redo facility for reversing and reapplying display and subset 
view editing operations. This mechanism is similar to database transactions, except a 
“transaction” is comprised of a sequence of update records, which are accessible to 
components and are used for several complementary purposes. 

Update records allow a wide range of systems to be modelled including those utilising 
tool abstraction, multi-view editing, and general program dependency relationships. The 
most important, novel uses of update records have been supporting free-edited textual 
view consistency, dependent component state modification, and automatic component 
change documentation. The diverse uses of update records, and their good performance 
when implemented using Snart, suggests they are a very useful approach to handling 
general change propagation in ISDEs. 

10.1.3. View Editing and Tool Interfacing 

Subset views are rendered in either graphical or textual forms using display views. These 
display views also provide the editing tools for an environment with display view updates 
translated into subset view updates and vice-versa. MViews thus provides a novel tool 
integration mechanism via subset views whose rendering also supplies an editing tool for 
the environment. Display views are constructed from a common set of graphical user 
interface building blocks and may communicate (i.e. one view open another) via the 
subset and base views. This provides tight user interface integration with all editing tools 
having a common user interface. MViews supports the novel concept of interactively 
edited graphical display views and free-edited and parsed textual display views, with full 
view integration and consistency management via a canonical base program 
representation. 

Subset and display views may also be used to integrate other tools into an environment. A 
subset view may simply provide access to the base view and translate data and editing 
operations to and from an external tool format. For example, a version control tool might 
be interfaced via a subset view and have a graphical user interface provided by a display 
view. Subset view components could also be used to relate external tool information 
(represented in a different format to MViews data) to base components. Subset views can 
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also propagate editing operations on base and subset components to external tools and 
translate external tool editing operations into subset and base component updates. 

The provision of graphical and textual program views, with appropriate editing styles to 
the kind of view representation, has made MViews environments both easy and natural to 
use. Subset view consistency via unparsed update records or subset component 
modification in response to update records distinguishes the user interface of MViews 
environment views from other environments. While subset views have not yet been used 
for more general tool interfacing in MViews environments, they form a similar mechanism 
to that of ICAtect’s external tool integration mechanism (Amor et al 91). This has been 
used successfully to integrate design tools with different data representations. Update 
record propagation between subset views and the base view provides a change 
propagation mechanism between tools of similar capability to that of FIELD environment 
selective broadcasting (Reiss 90a). Thus update records may prove useful for both data 
change propagation and editing operation propagation between external tools and 
MViews environments. 

10.1.4. MVSL and MVisual 

MVSL provides a specification language for defining the base and subset view states of an 
environment. MVSL component specifications can be augmented with extra graph editing 
operations built from a small set of fundamental operations. Update operations provide a 
mechanism for interpreting update records generated by components a component is 
dependent on. 

MVisual provides a novel graphical specification notation for defining the user interface 
aspects of MViews environments. Display view and display component appearances are 
defined by example, as are dialogue and text form representations. A form of visual 
programming specifies the update record flow between MVisual graphical entities. This 
allows environment designers to define display view editing operations, the effect of 
display view editing operations on subset views, and the effect of subset view change on 
graphical entities. 

Update records represent event flow between graphical entities and subset views and 
components and graphical entities and dialogue sub-component values can be specified in 
terms of subset view data defined in MVSL. MVSL and MVisual are currently assumed to 
communicate via update records passed between graphical MVisual entities and MVSL 
base and subset components. This loosely equates to the MViews architecture notion of 
display views and components being specialisations of subset views and components with 
communication by update records and method calls. 
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MVSL and MVisual are both useful for initial environment specification (as used for 
MViewsER and MViewsDP in Chapter 9) and environment documentation (as used for 
IspelM in Chapter 5 and Appendices D and E). MVSL proved useful for defining 
important component structures, operations and update responses. These specifications 
ignored considerations of exactly how attributes and relationships might be implemented 
and stored, implementation-level detail of component generation, propagation, storage 
and response to update records, and how base and subset view data is made persistent. 
MVisual allowed the appearance and basic functionality of display views for these 
environments to be defined for MVSL subset views. MVisual ignores implementation-
level consideration of how subset and display views synchronise their updates and how 
display view editors are built. MVSL and MVisual specifications proved useful for the 
initial design of environments as they ignore detailed consideration of subset and display 
view communication, data storage, user interface functionality and efficiency, which have 
to be considered at the MViews architecture and framework levels. 

Experience with these environments suggests partial generation of Snart framework 
classes from these specifications would enhance environment development. A crucial 
issue with this generation is how flexible the generated framework classes remain (i.e. 
how well they can be specialised to support activities not well expressed in MVSL and 
MVisual) and how consistency management can be employed between environment 
specification and implementation. MVSL should support more abstract language 
semantics specification, perhaps using a form of graph-based attribute grammars 
(Backlund et al 90, Hudson 91), and subset component specification in terms of base 
components. Improved communication between MVSL and MVisual would make both 
notations more expressive and useful. 

10.1.5. MViews Architecture and Framework 

Design and implementation of MViews environments uses an object-oriented architecture 
and framework of classes, rather than most approaches of generating environments from 
formal descriptions. The MViews approach is less abstract but more flexible than 
environment generation. It has resulted in environments which have user interfaces 
closely corresponding to those software developers prefer (such as interactively edited 
graphical software representations and free-edited and parsed textual representations). 

The MViews architecture and framework provides a large range of useful component data 
and functionality. This allows environment developers to quickly design and implement 
environments based on MVSL and MVisual specifications using extra abstractions 
provided by the MViews architecture. This has resulted in very quick development of 
environments which have a lot of useful functionality. Other researchers have used 
reusable architectures to support programming environment and tool implementation 
(Nascimento and Dollimore 93, Newbury 88, Ratcliffe et al 92, Reiss 86). The MViews 
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architecture and framework, however, provide a novel set of reusable abstractions for 
both canonical program representation and integrated multiple textual and graphical view 
support. Use of these reusable build blocks has greatly reduced the time and effort taken 
to develop the environments described in this thesis than if MViews was not provided. 

10.1.6. SPE and IspelM 

SPE provides a novel, ISDE for analysing, designing, implementing and maintaining Snart 
software. SPE provides a concrete example of an environment based on the MViews 
model. Multiple textual and graphical views of software development are supported and 
these include abstract analysis and design class diagrams, textual analysis and design 
documentation views, textual program implementation views, and graphical debugging 
views using Cerno. Software construction views are kept consistent using update records 
and a canonical program representation. 

SPE differs from comparable environments for object-oriented software construction by: 
its integration of graphical analysis and design views with textual program 
implementation views; its use of update records to maintain textual view consistency; and 
its automatic change documentation facility for program components. SPE also reuses an 
existing language compiler and run-time system, rather than re-specifying all static and 
dynamic language semantics within the environment. Use of SPE has indicated a need for 
more comprehensive analysis and design views of software development, version control 
facilities, and support for multi-user, collaborative software development. Determining 
the actual usefulness of SPE, via controlled user testing and evaluation, would provide a 
concrete demonstration of the worth of MViews environments. 

IspelM reuses the MViews architecture and framework to provide a generic environment 
for object-oriented software development. IspelM demonstrates that MViews can be 
reused to model, design and implement such environments using abstract specification 
and object-oriented framework reuse. Reuse of the IspelM framework may indicate the 
need for further generalisation of the facilities provided by IspelM. IspelM framework 
reuse for Snart indicated language support for framework reuse may enhance the 
development of new environments. 

10.1.7. Reuse of MViews 

The environments developed using MViews in Chapter 9 help to demonstrate the 
flexibility of the MViews model and its wide range of applications. MViewsER provides a 
multiple view entity-relationship (ER) diagrammer with complementary textual relational 
database schema (RDS) views. MViewsER provides a novel mechanism for keeping these 
ER diagrams and RDS views bi-directionally consistent using MViews’ update records. 
An advantage over comparable systems is that changes to ER diagrams not directly 



Chapter 10 Conclusions and Future Research Page 287 

affecting RDS views are unparsed for programmers to be made aware of. ER and RDS 
base component changes are automatically documented using update records providing a 
modification history similar to that of SPE. 

MViewsDP provides a graphical dialogue painter view with textual views for specifying 
dialogue constraints, field defaults and return values. Use of MViews’ update records to 
maintain graphical and textual view consistency, with automatic update record 
application to textual and graphical views, maintains full view consistency. This produces 
a novel environment where different views provide the most appropriate representation 
for different aspects of dialogue specification. 

Method tally and sorting animation views illustrate that MViews can be used for various 
dynamic program visualisation applications. Cerno also illustrates this use of MViews but 
in addition demonstrates that the MViews architecture and framework can be usefully 
reused by other researchers. MViews and its derivatives are useful for constructing other 
software development environment tools and applications. These include more analysis 
and design views for SPE, dataflow method implementations for SPE, tool abstraction, 
and building model construction. 

10.1.8. Snart 

Snart provides a small contribution to object-oriented language development. Snart 
classifiers provide an imperative setting for dynamic classification, a language feature 
previously only supported by Kea (Hosking et al 90). Snart uses classifiers to support 
dynamic object class membership change, object feature spying for dynamic program 
visualisation, and object persistency. 

Various improvements to Snart can be made including multiple object stores for object 
persistency, improved compilation optimisations, and better debugging facilities (such as 
those provided by Cerno). Adding typed object variables to Snart would allow SPE and 
IspelM to be expanded to cope with method arguments, automatic detection of inter-class 
relationships, and proper compile-time type checking. Strong typing also has interesting 
implications for the provision of imperative classification. 

10.2. Future Research 

Most of the previous chapters have contained brief discussions about possible future work 
on MViews environments. We confine the discussion in this section to the “hard” future 
research issues and leave discussion of cosmetic and performance improvements to the 
previous chapters. 
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10.2.1. Abstract, Flexible Component Persistency 

Experience with MViews has indicated that component persistency should not be part of 
an environment’s abstract specification or architecture. It has also shown that persistent 
objects may provide a mechanism of suitable abstraction and flexibility. Snart object 
persistency, however, needs to be enhanced to accommodate both flexible and efficient 
component object storage. MViewsDP uses Snart object persistency to store programs but 
only supports one object store being open at one time (due to the restriction imposed by 
Snart). This prevents the use of shared libraries and copying of components between 
programs which are not contained in a single object store database. In addition, Snart 
currently stores and loads objects individually to and from persistent storage. This can 
prove inefficient for components which are part of other components or usually require 
other components to be in-core (such as subset view components which are always 
reloaded with their owning subset view component by the MViews architecture). 

Snart can be extended to handle multiple object stores in a similar way to how multiple 
object spaces are supported (used by SPE to separate SPE component objects and 
application objects). One or more object spaces could be defined which have a 
corresponding object store. Multiple object spaces used at one time require dereferencing 
of object identifiers according to which store they belong to. Copying of objects between 
stores could be supported by duplicating object data and copying it from one object store 
to another. Coarse-grained object storage could be supported by writing multiple objects 
to a single storage location and always reloading all these objects when one is accessed. 
The MViews architecture supports a form of this where multiple object save_data terms 
can be written to one text data file resource. This has indicated a much improved 
performance when loading closely inter-dependent objects over loading each object 
individually. Fig. 10.1. illustrates the format of a group of such object spaces and their 
object stores. 
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fig. 10.1. A group of shared Snart object stores and object spaces. 

Some open research issues include how to abstractly specify the storage format of objects, 
how to update an object store when a class’s interface is changed (i.e. object data is added 
or removed), and how to support a “deep copy” of objects from one store to another. For 
example, copying a class from one object store (say, a class library) to another (say, a 
program using the library class) may result in other classes used by the copied class 
needing to be copied and many component object references to be updated. The MViews 
architecture allows such component relinking to be hand-coded at present, but this is not a 
very abstract way of supporting such component duplication. The Snart object stores 
currently save their old class interfaces so objects with new class interfaces can be 
converted to their new forms. This is flexible but inefficient for large object databases. 

10.2.2. Tool Integration Issues 

MViews base views, subset views and update records provide a novel combination of 
view-based tool integration, canonical form program representation, and program 
dependency graph change propagation (see (Meyers 91) for a detailed discussion of these 
and other kinds of multi-view editing environment integration mechanisms). MViews 
supports the construction of editing tools by providing display views which render and 
manipulate subset view components. At present MViews does not provide any additional 
support for integrating external tools, as provided by FIELD (Reiss 90a) and Dora (Wang 
et al 92) environments. 
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fig. 10.2. Examples of translator views for improved tool integration abstractions. 

A possible approach to improving external tool integration would be to supply 
“translation” views for subset views, rather than display views. These translation views 
would have knowledge about the format of external tool data and may use subset view 
components to map external data entities to base program components. Editing operations 
from external tools may be converted into subset and base component operations. Update 
records generated by base and subset components translated into external tool editing 
operations or data modifications (if possible to do so). Translator views may need to parse 
data stored by external tools and unparse MViews component data in a similar manner to 
textual display views and components. A uniform approach to data parsing and 
unparsing may provide useful to facilitate both kinds of views. Translator tools may also 
require user interfaces (possibly display views) which provide a consistent user interface 
to external tools. Fig. 10.2. illustrates how translator views might interface between 
MViews and external tools. 

10.2.3. Version Control and Configuration Management Tools 

SPE currently does not support version control nor configuration management for 
software. As these facilities are common to most software development environments 
(Reiss 90a) reusable MViews tools to support these facilities would be useful. MViews 
environments can store update records to document the changes components have 
undergone. These stored records can form the basis of a flexible version control system. 

Undoing and redoing the effect of a stored update records is straightforward. If stored 
update records are allowed to be undone and redone out of strict sequence, however, 
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MViews must check it is valid to carry out the operation. For example, undoing an 
attribute update if a component has been deleted does not make much sense unless the 
deletion is first undone. Two versions of a component could be merged by applying the 
update records of the second version to the component state described by the first version. 
Some update records may be invalid, however, and should be stored and reported to the 
programmer. Heuristics to automatically re-order update records so they can be applied 
could be supported (for example, undoing a deletion and then undoing an attribute 
update, as above). Added complications to this versioning process involve language 
semantics recalculation. Merging, reversing or reapplying version update records will 
require various language semantics to be rechecked to ensure a software system is still 
valid. A version control tool may need to be specialised for a given environment to 
support additional update records defined by components of the environment but not 
used by MViews. 

A related issue to version control is configuration management where multiple versions of 
program components are held and a given program is configured from one version of 
each of its components. This has implications on the way MViews components are stored 
and a configuration management tool would need to ensure an object store has one 
version of each object at any one time. This may require multiple object stores for one 
group of program components or the configuration management tool may swap object 
versions to reconfigure the program version. Some open research issues include: how 
update records representing different versions are accessed by programmers from a 
current version of a program (probably via the configuration management tool); how to 
abstractly define configuration of components composed of other components (for 
example, a base class component has many feature components in SPE, and a different 
version of the class may have different versions of these features); the management of 
versions of subset and display views (different view versions require different base 
component versions and vice-versa); and storage of updated text form versions (where the 
“update record” contains the whole text form data). 

10.2.4. Multi-user, Distributed Software Development 

SPE currently supports only single user software development. Supporting multi-user 
software development could be achieved by providing each programmer a workspace 
made up of object stores for particular versions of a software system. Changes to these 
software versions could be exported to a shared program representation on-demand and 
versions from different programmers merged as appropriate. A programmer could also 
import updated versions from the shared representation and update their own versions. 
Fig. 10.3. illustrates such a multi-user, distributed software development environment for 
SPE. 
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fig. 10.3. A multi-user, distributed software development environment. 

Some research problems for supporting such an architecture include: abstract specification 
and efficient implementation of import and export tools; shared object store databases so 
multiple programmers can read update records and version information (object databases 
could be locked during version merging and an old object store database left readable); 
and support for collaborative software development. A disadvantage with this system is 
that programmers may spend a long time working on components which have been 
updated in new versions by other programmers. Update records could be broadcast to 
other environment invocations, similar to recalculated attribute values in Mercury (Kaiser 
et al 87), to inform other programmers of recent component updates they may need to be 
made aware of. Collaboration between programmers for software analysis and design 
may require views for these phases of development being kept consistent automatically by 
this update record broadcasting between environments. 

10.2.5. Lazy Update Processing and Attribute Recalculation 

MVSL does not currently provide any abstract mechanism for specifying language 
semantics using attribute grammars or any other formalism. MVSL also does not support 
the definition of update record composition and lazy update record processing. The Snart 
framework for MViews provides low-level support for these mechanisms based on update 
record storing and interpretation. Both specification and implementation of MViews-
based environments would be easier if these facilities were more powerful. 
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An approach to providing these mechanisms at a higher level of abstraction is to extend 
MVSL so graph-based attribute grammars can be specified, at a similar level of abstraction 
to that of LOGGIE (Backlund et al 90). Implementation of these grammars could use the 
get_attribute method for component classes to recalculate attribute values (when 
required) and return them. get_attribute would need to be modified to register a 
component’s dependencies on other component attributes. For example, fig. 10.4. shows 
an example attribute grammar based around MVSL components and a possible Snart 
framework implementation. The 4-argument form of get_attribute registers the given 
component and its attribute as a dependent of the recalculated attribute value (so the 
dependent attribute will be notified of a change to all attribute values it depends on). 
Further research is required to determine all the implications on attribute grammars of 
MViews component persistency, version control, and multi-user software development. 
 

MVSL code: 
 
base element class 
 ... 
 relationships 
  attribute all_features : one-to-many all_feature is 
   % calculate all_features from parents and 
class.features relationship 
   ... 
end class 
 
Snart framework code: 
 
 base_class::get_attribute(Class, 
  all_features,AllFeatures,DepComp,DepAttr) :- 
  % calculate value 
  ... 
 
 Class@register_dependent(all_features,DepComp,DepAttr), 
  ... 
 
 base_feature::get_attribute(Feature,environment,Env) :- 
  ... 
  Class@get_attribute( 
   all_features,AllFeatures,Feature,environment), 
  % calculate value 
 

fig. 10.4. Attribute grammars for MVSL and the Snart framework. 

Lazy update record processing could be handled in a similar manner by specifying what 
update records are to be lazily processed and when their lazy processing should be 
scheduled. Update record composition could be supported by sending update records to a 
form of finite state automaton which composes a new update record from a sequence of 
basic update records generated by a component. One implication of this approach is how 
to determine when a composite update record shouldn’t be generated. For example, if a 
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MViewsDP dialogue sub-component is resized in one editing operation it generates a 
composite update record instead of up to four update attribute records. If it is moved and 
then resized over subsequent operations, it should not generate a composite record. 

10.2.6. Partial Generation from Abstract Specification 

The MViews approach of abstract environment specification using MVSL and MVisual 
and then implementation using the Snart framework has proved very flexible. A 
disadvantage, however, is that much common information, particularly about program 
data representation and display view component appearance, must be replicated when 
implementing an environment. 

Generating reusable Snart framework classes from an abstract environment specification 
may alleviate this problem. These generated classes would be reusable via specialisation 
and would thus overcome the traditional generated environment problem of lack of 
flexibility. Generating parsers and unparsers from grammars would assist the production 
of textual display views which are currently implemented using Prolog code. 

10.2.7. IspelM and SPE Enhancements 

Adding typed variables to Snart would allow experimentation with automatically 
generated inter-class relationships in SPE. Currently all inter-class relationships (such as 
aggregation, method calling and classification) are specified by programmers using 
graphical (and sometimes textual) display views. With a typed language many of these 
relationships can be inferred by parsing method implementations and class interfaces. 
This would generate a complete cross-reference database for classes, similar to that of 
FIELD environments (Reiss 90a and 90b). An implication of this automatic generation of 
relationships is how to efficiently update class relationships when a method or class is 
changed (so only modified relationships need be changed). 

Specialising IspelM for other object-oriented languages may indicate the need for more 
object-oriented software development data and techniques to be stored at the IspelM level. 
For example, an environment for C++ software development could reuse SPE’s analysis 
and design views with little or no change but requires different parsing, unparsing and 
compiler interface support. C++ classes have method argument types would should be 
represented (preferably at the IspelM level, as this is common to all strongly typed object-
oriented languages).  

The useful of SPE and other environments needs to be formally evaluated to determine 
just how such environments enhance software development. (Meyers 91 and Myers 90) 
note the difficulty in comparing new software development environments and visual 
programming techniques to conventional environments. The latter often have much more 



Chapter 10 Conclusions and Future Research Page 295 

well-developed tools while the former are often research projects lacking the fine-tuning 
and polishing of more traditional environments. 

An approach to the evaluation of SPE might be to compare software development in SPE 
to Snart software development using the original LPA MacProlog-based Snart 
environment (as this simple environment has not been well-developed itself). One group 
of unfamiliar Snart programmers could be given SPE to use while another given the LPA 
environment. Development of a common program (such as the drawing program of 
Chapter 3) would provide feedback on how SPE provides better or worse support than the 
LPA environment. Developing more substantial programs in this manner would also be 
required and evaluation of programmers’ subjective view of each environment may also 
prove very useful (as different programmers often like or dislike different aspects of 
software development environments (Glinert and Tanimoto 85)). 

10.2.8. Imperative Classification and Framework Specialisation 

Imperative classification in Snart has proved useful. Adding strong typing to Snart, as 
suggested in the previous section, has a number of interesting implications on the use of 
such imperative classifiers. For example, consider the example in fig. 10.5. from the 
drawing program in Chapter 3. The example on the left shows drawing_window method 
which converts a rectangle object into an foval object using the shape classifier. This 
works well as Snart uses run-time typing so the use of rectangle attributes before the 
classification and oval attributes after the classification is valid. The example on the right 
has a typing problem, as Rect is declared as a rectangle. After the imperative 
classification Rect now refers to an object of type foval! 
 
drawing_window::rectangle_to_oval(Window, 
  Rect) :- 
 Rect@height(Vertical), 
 Rect@width(Horizontal), 
 Rect@classify(shape,foval), 
 Rect@v_radius:=Vertical, 
 Rect@h_radius:=Horizontal, 
 Rect@draw. 
 

drawing_window::rectangle_to_oval( 
  Window:drawing_window, 
  Rect:rectangle) :- 
 Rect@height(Vertical), 
 Rect@width(Horizontal), 
 Rect@classify(shape,foval), 
 % what does Rect now refer to? 
 Rect@v_radius:=Vertical, 
 Rect@h_radius:=Horizontal, 
 Rect@draw. 
 

fig. 10.5. An example of imperative classification in Snart and a typed version of Snart. 

A solution to this might be to define the classify method as returning a new object 
reference of the appropriate type. This still does not stop Rect, or other object references to 
the classified rectangle, from assuming it is still an oval. Another solution might be to keep 
track of all references to classifiable objects and invalidate those that become incompatible 
with the object’s new type. 

Specialisation of IspelM to produce SPE indicated the need for language support for such 
framework specialisation. IspelM classes are not abstract classes and thus instances can be 
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created of them. One problem this causes in a specialisation of IspelM, such as SPE, is that 
objects must be created as instances of SPE classes, if an SPE class specialises an IspelM 
class. For example, base_class from IspelM is specialised to spe_base_class and all classes 
used by SPE must create instances of spe_base_class, not base_class. The MViews 
framework currently solves this problem by allowing environment implementers to over-
ride the base view method used to create new objects (kind_to_component) to support 
creation of the correct class instance. This is hardly an ideal solution as language-level 
support for framework specialisation would ensure the correct instance is always created. 

10.3. Summary 

MViews provides a novel model for ISDEs which support multiple textual and graphical 
views of information with consistency management. MViews provides a model based on 
object dependency graphs for representing program data and subset views of this 
program data. Subset views are rendered graphically or textually with graphical views 
interactively edited and textual views free-edited and parsed. The novel update record 
mechanism is used to maintain textual view consistency, propagate changes between 
components, support undo and redo of editing operations, and support component 
change documentation. 

MVSL and MVisual support the specification of environments based on the MViews 
model. The MViews object-oriented architecture and Snart framework allow these 
environments to be implemented much more easily than without the MViews abstractions 
and building blocks. MViews has been reused to produce SPE, a novel ISDE for 
constructing Snart software. Other environments constructed by reusing MViews include 
an entity-relationship modeller with textual relational database views, a dialogue painter 
with textual constraint specification views, and various program visualisation views for 
SPE. 

MViews can be extended in a number of ways to support the modelling and construction 
of ISDEs which provide flexible version control, multi-user, distributed software 
development, and partial environment generation from abstract specifications.
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Glossary 
Abstract class 

A class which can not have any object instances. Usually used to factor out common data and 
behaviour and is a generalisation class for other classes.  

Aggregation relationship 
An aggregation relationship between two classes indicates that an instance of one class is 
composed of instances of the other class (i.e. a part-of relationship). For example, a drawing 
window object may be composed of zero or more button objects. Aggregation relationships are 
typically used for object-oriented analysis and are refined into client-supplier relationships.  

Association relationship 
An association relationship between two classes indicates one class makes use of the features of 
the other class in some way. For example, a figure class may be associated with a drawing 
window class, indicating the figure class uses the drawing window class in some manner. 
Association relationships are typically used for object-oriented analysis and are refined into client-
supplier relationships.  

Attribute grammars 
Defining the static semantics of a software system in terms of attributes associated with the 
syntactic structures of the software system. 

Attribute recalculation 
The process of recalculating attribute values after an attribute value has changed or some syntactic 
modification has been made to a software system. 

Base component 
An element or relationship representing some base program information. Base components are 
part of the base view and may have zero or more subset view components linked to them. 

Base view 
A collection of program graphs which forms a canonical representation of an entire program. 

Change propagation 
The process of propagating an update (change) to one software system component to other 
components that may be affected by this change. 

Class interface 
The interface of a class is the set of all features defined by the class itself and inherited from all 
the class’s generalisation classes. 
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Classification 
Dynamic classification of an object from membership of one class to membership of a descendant 
of this class. A classifier describes the set of valid descendant classes that can be used for the 
classification of the object and a class may define multiple classifiers. Classification is usually 
used to dynamically “specialise” an object’ class membership using data supplied by a user at run-
time. 

Client-supplier relationship 
A client-supplier relationship between two classes indicates the client makes use of one or more 
features from the supplier. For example, a figure class may use the add picture method of a 
drawing window class and hence a client-supplier relationship from figure to drawing window 
exists. 

Component 
Some view, element or relationship of an MViews system (may be at the base, subset or display 
level). 

Concrete class 
A class which can have object instances (as opposed to an abstract class used for the purpose of 
factoring out common information). 

Consistency management 
The process of keeping software system data consistent under change. For example, if a software 
system component is updated all other components dependent on the updated component’s state 
must be updated in an appropriate way so the software system data is consistent. For example, if 
the interface to a class is changed, all classes using this interface should be re-checked to ensure 
they use the new interface correctly. 

Display component 
An element or relationship that is part of a display view. Display components include icons 
(renderings of subset elements), glue (renderings of subset relationships) and textual display 
components (text forms which represent subset components). 

Display view 
A graphical or textual rendering of a subset view. Display views also supply editor functionality 
for manipulating display components. 

Features 
The features of a class are all the methods and attributes defined by the class, possibly including 
all inherited attributes and methods. 

Generalisation relationship 



Chapter 10 Conclusions and Future Research Page 300 

Generalisation relationships between classes specify that a class is generalised to one or more 
other classes, and are typically used for object-oriented analysis. For example, a drawing window 
class is generalised to a window class and thus inherits all the functionality of this window class. 

Graphical view 
A graphical rendering of a view of a software system. Usually edited interactively or via structure-
oriented editing (but may be free-edited using a drawing editor and parsed). 

Inheritance relationship 
Inheritance relationships between classes specify that one class inherits the data and behaviour of 
another class. Inheritance is typically used for object-oriented design and implementation and 
corresponds to generalisation. For example, a drawing window class inheriting from a window 
class inherits all the data and behaviour of this window class. 

Object dependency graph 
A dependency network between objects where each object has zero or more other objects 
dependent on its state. When the state of an object changes, its dependents must be notified of this 
change so they can update their own state appropriately to keep the system consistent. 

Programming environment 
An environment which assists programmers to implement and debug programs by providing tools 
for these tasks. Integrated programming environments provide an environment in which data and 
user interface integration is supported (i.e. a common data repository and common user interface 
is provided by the different tools). 

Program visualisation 
The process of viewing the static structure and/or dynamic behaviour of programs at a higher level 
of abstraction than program text and debugger trace. Usually utilises some form of graphical 
presentation. 

Software development 
The processes of analysing, designing, implementing, debugging and maintaining software 
systems. In a broader sense it also incorporates project management, collaborative software 
development, version control and configuration management. Integrated software development 
environments provide an environment in which data and user interface integration is supported 
(i.e. a common data repository and common user interface is provided by the different tools). 

Software development environment 
An environment which not only assists programmers to construct and debug programs, but 
includes support for other software development tasks, such as analysis, design and maintenance. 

Software system 
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A super-set of a “program”: software system data includes analysis and design information and 
may include debugging, maintenance, version control, and project management information. 

Structure-oriented editing 
Editing textual and graphical view components via a menu-driven and/or template style. Each 
syntactic program component is successively defined by expanding and filling in templates and 
this process does not permit syntactic errors to occur. 

Subset component 
A subset element or relationship which is a partial view of some base component. Updating a 
subset component is viewed as updating the base component in an appropriate way (for example, 
changing attribute X of the subset component is viewed as changing attribute X of the base 
component). Updating the base component may require the subset component to be updated in an 
appropriate way (for example, changing attribute Y of the base component is viewed as also 
changing attribute Y of the subset component). The subset component and its base component 
may not necessarily have the same attributes (for example, the base component may have 
additional attributes A and B while the subset component has attribute Z, and changing any of 
these attributes does not affect the other component). 

Subset/base relationship 
The relationship between a base component and a subset component. When the base changes, the 
subset component must be notified so it can reconcile its state to that of the base component. 
Similarly, when the subset component is updated it must translate the update on itself into an 
appropriate update on its base component. The MViews architecture provides a generic 
subset/base relationship which translates attribute updates between base and subset components 
(where they have attributes with the same name). This can be specialised to translate other updates 
appropriately. 

Subset view 
A partial view of the base view. Subset views are also made up of program graphs which are 
comprised of subset components. 

Textual view 
A textual rendering of a view of a software system. May be edited in either a free-edited or 
structure-oriented style. 

Unparsed update record 
An update record which has been unparsed into a readable form for inclusion in a textual display 
view to indicate a change in another view or in the update history browser dialogue. For example, 
the update record update_attribute(Feature,feature_name,OldName,NewName) might be 
unparsed into the form % rename feature OldName to NewName. 

Update record 
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A description of the exact change applied to a software system component. For example, 
update_attribute(Comp,Attribute,OldValue,NewValue) describes an update_attribute 
operation applied to Comp renaming Attribute from OldValue to NewValue. 

View 
A view of a software system is a perspective on the system usually showing a subset of the entire 
system’s state (i.e. a view contains a subset of all the elements and relationships between elements 
of the software system). Views are often rendered in various graphical and textual forms and two 
different views may represent the same software system data in the same or different ways.  

View consistency 
The process of keeping two independent views of the same software system data consistent under 
change. For example, if a representation of the data is modified in one view, this should be 
interpreted as the shared software system data being updated (in an appropriate way). Other views 
of this data should also be updated and re-rendered appropriately so all views correctly reflect the 
new state of the software system. MViews achieves view consistency by propagating update 
records between subset and base components which translate these update records into appropriate 
modifications on themselves. 

Visual programming 
The use of graphical views of program structure and/or behaviour to implement all or part of a 
program. Such views are typically edited using interactive or structure-oriented editing.
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Appendix A 

LPA MacProlog Facilities 
 

This appendix gives a brief overview of the facilities provided by LPA MacProlog for 
constructing graphical user interfaces and “database” support. Snart programs can make direct 
use of these facilities by calling predefined LPA predicates. Alternatively, Snart classes can be 
defined which interface to these predicates to provide a class library for constructing user 
interfaces, similar to Interviews [Linton et al 88] and the THINK Class Library [Symantec 91]. 

A.1. LPA Graphics 

LPA provides a Graphics Description Language (GDL) where graphical pictures are specified 
in a declarative way using Prolog terms [LPA 89b]. For example, fig. A.1. shows a GDL 
description of a class icon from SPE. The class icon description is a list of basic graphical 
pictures (i.e. a composite picture) including a filled, round rectangle (box), four text boxes 
containing the names of the class and features shown, and a line separating the class name and 
feature names. The location of each picture element is given in absolute co-ordinates. GDL 
descriptions can include modifiers like blank(fillbox(...)) which indicates the round 
rectangle is filled with a blank (white) pattern. Other modifiers include shading of filled 
pictures with a variety of patterns, scaling and translation of pictures, and modification of the 
drawing pen size, colour and drawing mode. 

figure 
 
draw 
hide 
resize

[blank(fillbox(100, 100, 90, 60, 12, 12)),  
  textbox('Courier', 9, 0, 110, 104, 12, 30, 0, figure),  
  textbox('Courier', 9, 0, 130, 104, 12, 20, 0, draw),  
  textbox('Courier', 9, 0, 145, 104, 12, 20, 0, hide),  
  textbox('Courier', 9, 0, 160, 104, 12, 30 0, resize), 
  line((126,100), (126,60))]

Class Icon GDL description
 

fig. A.1. A GDL description for a class icon. 

GDL pictures are added to graphics windows, which are Macintosh windows supporting a 
drawing pane for rendering pictures and tool pane for manipulating pictures. Every graphics 
window has a list of pictures associated with it, and every picture in this list has a unique name, 
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a GDL description, a local origin (how much to shift the picture when rendering it), and a selection 
flag (selected pictures are highlighted with four squares around their frame). 

LPA provides Prolog predicates to manipulate pictures in a variety of ways. For example: 
• add_pic(class_diagram1, class_icon1, [blank(fillbox(...]) adds a new class 

icon picture to window class_diagram1 identified by class_icon1; 
• del_pic(class_diagram1,class_icon1) removes class_icon1 from class_diagram1; 
• get_pic(class_diagram1,class_icon1,Description) binds Description to the GDL 

picture description for class_icon1; 
• sel_pics(class_diagram1,[class_icon1,...]) selects the list of given pictures; 
• and shift_pics(class_diagram1,[class_icon1,...],(YDelta,XDelta)) moves the 

named pictures by YDelta and XDelta. 

Picture elements are drawn in order (i.e. the first element drawn first, the second over the top of 
the first, and so on) and a window’s picture list is drawn in reverse order (i.e. the last picture 
name being drawn first, the second to last next, and so on). LPA automatically redraws pictures 
if they are affected by a change to other pictures in a window. This relieves the need for 
programmers to implement their own window refreshing algorithms and greatly simplifies 
such tasks as shifting pictures and modifying picture descriptions. 

Graphics windows are composed of a drawing pane, a tool pane and an optional viewing pane. 
Graphical editing tools are associated with a window and any editing operations applied to the 
drawing window (clicking on pictures, dragging pictures and so on) are sent to a predicate 
defined by the current editing tool. LPA provides predicates to implement rubber-banding, 
marqui selection of pictures and cut-and-paste operations. Tool building predicates are 
provided for editing text selections, dragging selected pictures and processing mouse clicks. 
Advanced support for incremental picture redrawing and programmer-managed validation 
and invalidation of drawing regions is also provided. 

A.2. LPA Menus and Dialogs 

LPA provides a comprehensive range of declarative menu and dialog specification predicates. 
Fig. A.2. shows a menu definition for IspelM. Selecting a menu item results in a predicate call of 
the form MenuName(MenuItem). Menu extensions such as checked items, menu styles, fonts and 
picture items are also supported. 

Dialog specification is one of the most useful aspects of LPA’s graphical user interface support. 
Dialogs are defined in a similar manner to menus with a single predicate call. Fig. A.3. shows a 
dialog definition from IspelM. 

Default values for dialogs are supplied by the specification of a dialog (and can be bound 
Prolog variables passed to the predicate defining the dialog). Returned values are passed back 



Appendix A LPA MacProlog Facilities Page A307 

in variables that were unbound on creation of the dialog. Both modal and non-modal dialogs 
are supported with check boxes, radios, text fields, edit fields, pictures and menus being 
supplied by LPA. Validation of input can be performed by providing a predicate to be called as 
part of the dialog specification. Using Prolog to implement declarative input checking 
predicates in conjunction with declarative dialog specification worked very well in the 
implementation of MViews and IspelM. 

% The Views menu. 
% 
mv_create_ViewsMenu :- 
 kill_menu('Views'), 
  install_menu('Views', 
    ['Create Element View', 
     'Kill View', 
     'Rename View', 
     'Make Current View', 
     '(-', 
     'Select Element View', 
     'Select A View', 
     '(-', 
     'Make View Focus', 
     'Make Default Text View']). 
 
'Views'(Item) :- 
mv select menu item('Views',Item). 

Views Menu Views Menu Specification  

fig. A.2. A menu description from IspelM. 

% Get feature details. 
%  
is_feature_details(OldName,NewName,OldKind,NewKind, 
  OldType,NewType,Show,Action) :- 
 centred(Top,Left,200,290), 
 is_convert_feature_kind(OldKind, 
   OAttribute,OMethod,OAbstract,OInherited), 
 !, mdialog(Top,Left,200,290, 
  [button(110,150,20,60,'Change'), 
   button(170,220,20,60,'Cancel'), 
   button(140,150,20,60,'Remap'), 
   button(110,220,20,60,'Hide'), 
   button(140,220,20,60,'Remove'), 
     text(10,10,16,220,'Feature name:'), 
     edit(30,10,16,220,OldName,gread(NewName)), 
     text(50,10,16,220,'Feature type:'), 
     edit(70,10,16,220,OldType,gread(NType)), 
     radio(110,10,16,90,'Attribute',OAttribute,NAttribute), 
     radio(130,10,16,90,'Method',OMethod,NMethod), 
     radio(150,10,16,90,'Deferred',OAbstract,NAbstract), 
     radio(170,10,16,90,'Inherited',OInherited,NInherited), 
     check(90,120,16,110,'Show Feature',on,NShow), 
     text(90,10,16,100,'Feature kind:')], 
  Btn,is_check_feature_details(NewName,NType,NAttribute, 
   NMethod,NAbstract,NInherited,NewKind,NShow,Show,Action)),

 is_blank_or_atom(NType,NewType). 

Feature Details Dialog Dialog Specification
 

fig. A.3. A dialog description from IspelM. 

LPA supports text windows that provide an editing pane where users perform conventional 
text editing operations (typing text, cut, copy and paste, and text selection and deletion). 
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A.3. LPA File and Resource Management 

LPA provides access to the Macintosh file system including resource file management. Files are 
treated as file name/volume id pairs. Resources are identified by numeric or atomic values and 
in the current version of LPA store Prolog atom values (i.e. up to 255 text characters). Prolog 
predicates can be saved in either text or code forms and reloaded incrementally or as an entire 
“image”. 

These facilities can be used to provide a rudimentary database in which arbitrary Prolog data 
items can be stored. An arbitrary Prolog data item can be written to a text window and the text 
window contents written to a file or resource (in the latter case, using several resources if the 
window’s text is greater than 255 bytes, as described in Chapter 7). Given the “address” of the 
data item’s text in a file (either as a file position or resource ID) the data can be converted back 
into a Prolog term by performing a read at the file position, or reloading the text into a window 
from resources and reading from the window.
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Appendix B 

The Snart Language 
 

This appendix gives a more complete description of Snart than Chapter 3. The language 
syntax and run-time object manipulation predicates and methods are described, together 
with the extended LPA MacProlog environment for Snart. A description of the compiler 
and run-time system implementation is given. A comparison of language features and 
general philosophies is presented between Snart and other object-oriented Prolog systems. 
A brief description of a version of Snart ported to Quintus Prolog is supplied together 
with some proposed extensions to the language itself. Snart currently runs under LPA 
MacProlog (LPA) on the Macintosh (version 4.5). For more information about LPA, see 
(LPA 92). 

B.1. Syntax 

Snart programs are composed of three basic parts: 
• class definitions which define the name and kind (abstract or normal) of a class, 

the parents and renamed features for the class, and the features for the class 
(attributes and their types, methods, deferred methods and classifiers) 

• method predicates which implement methods for a class 
• prolog predicates which interact with Snart method predicates (by being called by 

method predicates and/or accessing Snart objects) 

Snart class definitions, method predicates and Prolog predicates can be in the same LPA 
program window, or in different program windows. 

B.1.1. Class Definitions 

Fig. B.1. shows the syntax for a Snart class definition. Abstract classes can not have 
instances created of them. Parent classes, if specified, must exist and must not inherit from 
the class being defined. Renamed features must also exist (i.e. be inherited from the parent 
class) and must not be renamed to names of features either being defined in this class or 
being renamed from other parent classes. Features are redefined in the new class by just 
repeating the name used in the class’s parent. 
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Attribute types are not currently used except when defaulting values for an attribute (see 
below). However, they should be valid attribute types as defined above. Classes in the 
class name list of a classifier must exist, be sub-classes of the class being defined, and there 
must be no repetition of a class or any of its descendants in the class name list (i.e. all 
classes in the class name list must be disjoint under inheritance from the class being 
defined). 
 
ClassDefinition ::= 
  ClassKind ‘(‘ ClassName ‘,’ 
    parents ‘([‘ParentList ‘])’ ‘,’ 
    features ‘([‘ FeatureList ‘])’ ‘)’; 
 
ClassKind ::= abstract_class | class; 
 
ClassName ::= atom; 
 
ParentList ::= 
  /* empty */ 
| Parent 
| Parent ‘,’ ParentList; 
 
Parent ::= 
  ClassName 
| ClassName ‘([‘ RenameList ‘])’; 
 
RenameList ::= 
  rename ‘(‘ FeatureName ‘,’ FeatureName 
‘)’ 
| rename ‘(‘ FeatureName ‘,’ FeatureName 
‘)’ ‘,’ 
  RenameList; 
 
FeatureName ::= atom; 
 

FeatureList ::= 
  /* empty */ 
| FeatureDefinition 
| FeatureDefinition, 
  FeatureList; 
 
FeatureDefinition ::= 
  Attribute 
| Method 
| DeferredMethod 
| Classifier; 
 
Attribute ::= FeatureName ‘:’ 
AttributeType; 
 
AttributeType ::= atom | term | boolean | 
  integer | string | 
  list ‘(‘ AttributeType ‘)’ | ClassName; 
 
Method ::= FeatureName; 
 
DeferredMethod ::=  
  FeatureName ‘(‘ deferred ‘)’; 
 
Classifier ::=  
  FeatureName ‘:’ ‘[‘ ClassNameList ‘]’; 
 
ClassNameList ::= 
  ClassName 
| ClassName ‘,’ ClassNameList; 
 

fig. B.1. Syntax for Snart class definitions. 

B.1.2. Method Predicates 

Fig. B.2. shows the basic method predicate syntax for Snart. 
 
MethodPredicateDefinition ::= 
  MethodPredicate. 
| MethodPredicate :- 
  MethodPredicateDefinition; 
 
MethodPredicate ::= 
 ClassName ‘::’ FeatureName( 
  ObjectVariable ‘,’ ArgumentList); 
 
 

MethodPredicateDefinition ::= 
  PrologPredicate; 
 
ObjectVariable ::= PrologVariable; 
 
ArgumentList ::=  
  PrologTerm 
| PrologTerm ‘,’ 
  ArgumentList; 

fig. B.2. Syntax for Snart method predicates. 

Multiple clauses for method predicates can be defined, with the appropriate clause being 
executed in the same manner as for standard Prolog predicate clauses. The ClassName for 
a method predicate must be a class name with a class definition and the FeatureName 
used must be a method of this class. The first argument of a method predicate is always a 
variable bound to the object ID of the object the method is being executed for (i.e. the 
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object sent the FeatureName message). Further arguments are bound to the remaining 
arguments in the feature call. 

B.1.3. Prolog Predicates 

Prolog predicates may be defined use the conventional LPA Prolog predicate syntax. 
These may be positioned before or after method predicates and class definitions they are 
associated with, or defined in different program windows. 

B.2. Objects 

Objects are created using the create method common to all classes. Feature calls are made 
using the @ operator, and attribute assignment using the := operator (fig. B.3.). 
 
Object@create(ClassName,ArgumentList) 
 
Object@FeatureName(ArgumentList) 
 

Object@AttributeName:=AttributeValue 
 
AttributeValue : PrologTerm; 

fig. B.3. Syntax of object creation, feature calling and attribute assignment. 

The create method call can have only a ClassName argument, in which case the new 
object is just created and any create method predicate defined for it is not called. A feature 
call may be a fetch of an attribute value (in which case it has one argument being a 
variable or value which is unified with the attribute value of the object). If no such 
attribute value has been assigned for the object, the call fails. If no such attribute exists for 
the object’s class, execution of the program is aborted with an error message displayed. 

If a feature call is a method call, the appropriate method predicate for the object is called 
with the first argument being the object ID, the rest being the arguments given to the 
feature call. If the method predicate call succeeds then the feature call succeeds, otherwise 
the feature call fails. If the method doesn’t exist for the object’s class, execution is aborted. 

Attribute assignment stores a value associated with the object which can be accessed by a 
feature call of the form Object@AttributeName(Value). Attribute assignment always 
succeeds unless the attribute doesn’t exist for the object’s class, in which case execution is 
aborted. 

Further method calls defined for all objects are described in table B.1. 
 

Method Description 

Object@dispose Disposes of Object 

Object@copy(-NewObject) Duplicates Object and returns NewObject as duplicated 

Object ID 
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Object@member(+ClassName) Succeeds if Object is a descendant of ClassName 

Object@default(+Attribute,?Value) Returns value of Attribute for Object, or default value for 

type if no value exists 

Object@default(+Attribute, 

  +Default,?Value) 

Same as default/2, but returns Default if no value exists for 

Attribute for Object 

Object@is_object Succeeds if Object a valid Snart object 

Object@object_attribute(+Attribute) Succeeds if Attribute a valid attribute for Object 

Object@object_attribute(+Attribute, 

  ?Type) 

Returns type of Attribute for Object, fails if Attribute not a 

valid attribute for Object 

Object@print Prints out attributes and class for Object 

Object@classify(Classifier, 

  ClassName) 

Classifies Object to ClassName using Classifier classification 

attribute 

Object@AttributeName?=Value Backtrackable attribute assignment, resets old value on 

failure 

table B.1. Method calls defined for all Snart objects. 

The object manipulation methods described in table B.1. can also be invoked on an object 
as a predicate. Table B.2. shows the correspondence of Methods to predicates. Predicate 
invocation is more efficient, as it by-passes the Snart method despatcher. 
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Method Call Predicate Call 

Object@dispose delete_object(+Object) 

Object@class(?ClassName) returns the class an object belongs to 

Object@copy(-NewObject) copy_object(+Object,-NewObject) 

Object@member(+ClassName) member_class(+Object,+ClassName) 

Object@default(+Attribute,?Value) default_value(+Object,+Attribute,?Value) 

Object@default(+Attribute, 

  +Default,?Value) 

default_value(+Object,+Attribute, 

  +Default,?Value) 

- is_object(+Object) 

Object@object_attribute(+Attribute) object_attribute(+Object,+Attribute) 

Object@object_attribute(+Attribute, 

  ?Type) 

object_attribute(+Object,+Attribute, 

  ?Type) 

Object@print print_object(+Object) 

Object@classify(Classifier, 

  ClassName) 

classify_object(+Object,+Classifier, 

  +ClassName) 

- is_class(+ClassName) 

Object@AttributeName?=Value - 

table B.2. Method calls and their equivalent predicate calls. 

B.3. Environment 

To support Snart programming, the LPA environment has been extended. Extra menu 
items are added to provide location facilities for classes and method predicates, printing 
of class and object data, compilation and optimization of classes, and deletion of objects. 

B.3.1. Search Menu 

Fig. B.4. (a) shows the Search menu from Snart. The LPA menu items are Find... through 
to Call graph. These are documented in the LPA Environment manual (LPA, 89b). 
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figs. B.4 (a) and (b). The Snart Search and Eval Menus. 

Find Class... 
Find Selected Class 
Find Named Class... 

Find Class opens a dialog with all currently defined classes listed in a scrolling 
menu. After selecting a class, the class definition is searched for in the LPA 
program windows, and the class definition highlighted and its window brought to 
the front. Find Selected Class locates and highlights the class name given by the 
currently selected item of text in a window. Find Named Class asks for the name of 
a class and highlights it. 

Find Method Defn... 
A dialog box with edit fields for the class and method names is opened. The user 
keys the names and the method predicate for the class is located and highlighted. 
Alternatively, the user may request menu dialogs of the currently defined classes 
and the methods for a class name, and choose from these. 

Find Object... 
A dialog box with edit fields for an object ID, class name, and attribute values is 
opened. After entering data into one or more fields, Snart searches all currently 
defined objects for one or more that matches the description. If one is found, a 
listing of the object’s class and attribute values is printed in a display window. If 
more than one is found, their object ID’s are printed. 

Find Named Object... 
An object ID is requested and the object’s attribute values and class printed in a 
display window. 
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Print Class... 
Print Selected Class 
Print Named Class... 

Print Class requests a class from a menu dialog of all currently defined classes. The 
class parents, attributes and methods are printed in a display window. Print 
Selected Class prints details for the class name given by the currently selected item 
of text in a window. Print Named Class asks for the name of a class and prints its 
details. 

B.3.2. Eval Menu 

Fig. B.4. (b) shows the Eval menu from Snart. The LPA menu items Query... through to 
Leash are documented in the LPA Environment Manual (LPA, 89b). 

Compile Classes 
Compile All Classes 
Compile Selected... 
Compile Named Classes... 

Compile Classes recompiles the class definitions for all classes in modified program 
windows. Their definitions are only recompiled if they have changed from their 
previously compiled definition. Sub-classes are recompiled if their parents have 
altered. Compile All Classes forces the recompilation of all Snart classes whether 
they have been modified or not. Compile Selected compiles all classes selected from 
a menu list. Compile Named Classes recompiles all classes entered by the user. 

Spy Method... 
No Spy Method... 
Clear Method Spys 

Spy Method requests class and method names, and sets a debugger spy point on 
the selected method. No Spy Method... clears the spy point on the selected class and 
method. Clear Method Spys clears all spy points on Snart method predicates. 

Delete Class... 
Delete Named Classes... 
Delete Objects 

Delete Class deletes the compiled definition of a selected class. Delete Named 
Classes deletes the definitions of classes typed in by the user. Delete Objects 
destroys all currently defined Snart objects. 

B.3.3. Defining and Compiling Classes and Method Predicates 

Snart class definitions and method predicates are defined in the same windows as LPA 
Prolog code. After entering or modifying Snart code, the Snart classes are recompiled 
(using the Compile Classes menu item) before invoking a Prolog predicate that uses the 
classes. Class and method definitions may be modified but left uncompiled during 
debugging. 
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Class definitions are converted into an internal form when a window is recompiled and 
their method despatch tables are regenerated when the compiler is invoked. Method 
predicates are basically ordinary Prolog predicates called on a message invocation, thus 
methods use standard Prolog code and Snart feature calls. 

Snart objects can be either deleted after their classes have been modified, and the program 
re-executed to re-build them, or left intact and used with modified method predicate and 
class definitions. If an old object is used (e.g. attribute accessed) with a new class and an 
incompatibility occurs, Snart notifies the user of an error. 

Errors in Snart (e.g. accessing an invalid attribute, calling a nonexistent method) are all 
run-time errors detected by the Snart predicates. These cause termination of the current 
Prolog process with appropriate debugging information. The only compile-time errors 
detected are non-existent classes or duplicate feature names for a class. 

B.3.4. Debugging Snart Programs 

The LPA debugger is used to debug Snart method predicates. Snart objects can be printed 
for debugging using the Search menu, and spy points set and cleared on methods using 
the Eval menu. When tracing a method call, the LPA debugger calls the Snart method 
despatcher to determine the attribute fetch or method predicate call to make. 
Programmers can then decide whether to Leap through the call or Creep through the 
method predicate code. 

B.3.5. Saving Snart Programs 

Snart classes and method predicates are saved along with normal Prolog code they are 
defined with. On reloading a Snart program, the classes must be recompiled to restore 
their definitions. Object code can be saved, and on loading the Snart classes do not have to 
be compiled (the Snart compiler does not have to be loaded, only the Snart object 
predicate definitions). Currently, no support is provided to make Snart objects persistent. 
Object data can be saved as Prolog terms, and new objects created when the old data is 
reloaded. 

B.4. Compiler 

Snart class definitions and method predicates are pre-compiled before invoking a Prolog 
predicate that makes use of Snart. Thus we have a compilation phase similar to that of 
object-oriented languages like Eiffel (Meyer, 88) and C++ (Winblad et al,  90). 
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B.4.1. Class and Method Predicate Storage 

When LPA compiles program windows, class definitions and method predicates are read 
with conventional LPA Prolog code, and are predicates of the form: 

ClassDefinition = ClassKind(ClassName,parents(Parents),features(Features)) 
MethodPredicate = ClassName::MethodName(ObjectID,Arg1,...,Argn) :- 

 MethodImplementation. 

Class definitions must be converted into a predicate form with a unique predicate name, 
rather than using “class” or “abstract_class”, as LPA Prolog does not allow predicate 
definitions to be defined over different windows, or to be separated by other predicates. 
Method predicates use an infix operator ‘::’ to link their class and method names, which 
must be converted into a single atomic form. 

For optimallity, the Snart compiler only recompiles a class if its definition has been 
recompiled by LPA since the last invocation of the Snart compiler. Snart keeps an integer 
property called sn_last_compile to remember the last compilation “time”of a class 
definition. This is incremented each time a compilation is performed, and only class 
definitions with numbers higher than the last compile are checked. Thus Snart must also 
change class definition predicates to record the last time they were compiled by LPA. 

Snart uses term_expansion/2 to convert class definitions and method predicates into an 
internal form. Class definitions are prefixed by their name (with a ‘c_’ appended to ensure 
they are unique from any other Prolog predicates), and have the last compilation time 
number added to their definition. Method predicates have their class and method names 
joined to form an atomic predicate name that can be directly called by the Snart method 
despatcher. Fig.s B.6.. and B.7. illustrate this translation process using the drawing 
program from Chapter 3 as an example. 
 
abstract_class(figure, 
  parents([figure]), 
  features([ 
    visible(boolean), 
    create, 
    draw, 
    resize(deferred) 
  ])). 
 
figure::create(FigureID) :- 
 FigureID@visible := false. 

class(rectangle, 
  parents([ 
    closed_figure([ 
      rename(create,fig_create) 
    ]) 
  ]), 
  features([ 
    width:integer,height:integer, 
    create,draw,resize 
  ])). 
 
rectangle::draw(RectangleID) :- 
  RectangleID@width(Width), 
  RectangleID@height(Height), 
  draw_figure(rectangle,Width,Height). 
 

 

fig. B.6. Rectangle class and method predicate definitions. 
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Snart must also have a mechanism for quickly finding all defined classes. In addition to 
translating the class definition predicate into an internal form, Snart records the class 
name as a property of the form: 

<ClassName,sn_class_defn,PredicateName> 

where: 
PredicateName = concat(‘c_’,ClassName) 

 

c_figure(10,[],abstract, 

  [visible(figure,attribute,boolean), 

   create(figure,method,’figure::create’), 

   draw(figure,method,’figure::draw’), 

   resize(figure,deferred,’’)]). 

 

‘figure::create’(FigureID) :- 

  FigureID@visible := false. 

 

rectangle::draw’(RectangleID) :- 

  RectangleID@width(Width), 

  RectangleID@height(Height), 

  draw_figure(rectangle,Width,Height). 
 

‘c_rectangle(10,[closed_figure([ 

    rename(create,fig_create)])], 

  [width(rectangle,attribute,integer), 

   height(rectangle,attribute,integer), 

   create(rectangle,method, 

     ’rectangle::create’), 

   

draw(rectangle,method,’rectangle::draw’), 

   resize(rectangle,method, 

     ‘rectabgle::resize’)]). 

 
 

fig. B.7. Using term_expansion to convert rectangle class into internal form. 

B.4.2. The Compilation Process 

When a programmer has modified some class definitions or method predicates and wants 
them recompiled, sn_compile_classes/0 is called. Snart firstly finds all classes using the 
sn_class_defn property. It then determines if the class’s definition has been modified 
(using the sn_last_compile property, which is incremented by one). For each modified 
class definition, Snart recompiles the class. 

To recompile a class, Snart processes the class’s features and parents lists. Each parent 
class is recompiled if it has been updated since the last compilation. Features are inherited 
from each parent, and are renamed according to the rename list associated with each 
parent. Any duplicate features caused by multiple, repeated inheritance are removed. The 
parents and class features lists are then merged with any features redefined in the class 
replacing the parent features of the same name. The merged list is then checked for any 
duplicates. Fig B.8. illustrates this process. 
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Compiling rectangle... 
% class data 
Parents = [closed_figure([rename(create,fig_create)])] 
Features = 
  [width(rectangle,attribute,integer), 
   height(rectangle,attribute,integer), 
   create(rectangle,method,’rectangle::create’), 
   draw(rectangle,method,’rectangle::draw’), 
   resize(rectangle,method,‘rectangle::resize’)] 
% Compile closed_figure if necessary... 
ParentFeatures= 
  [visible(figure,attribute,boolean), 
   fig_create(figure,method,’figure::create’), 
   draw(figure,method,’figure::draw’), 
   resize(figure,deferred,’’)] 
% Merge ParentFeatures and Features reporting duplicates 
(if any) 
ObjectFeatures = 
  [width(rectangle,attribute,integer), 
   height(rectangle,attribute,integer), 
   create(rectangle,method,’rectangle::create’), 
   draw(rectangle,method,’rectangle::draw’), 
   resize(rectangle,method,‘rectabgle::resize’), 
   fig_create(figure,method,’figure::create’), 
   visible(figure,attribute,boolean)] 
ObjectParents = [closed_figure] 

fig. B.8. Inheriting features and attaching method predicate names for a class. 

The Snart compiler now determines if this new definition has altered since the last time it 
compiled the class. The compiled class format is looked up and compared to the new 
format. If either of the features or parent lists has changed, or the class’s kind has changed, 
the new class definition is stored and the method dispatch table for the class regenerated. 
If the class has changed, any children of the class are recompiled (to ensure their 
definitions are kept consistent). Snart stores the children of a class using a list property 
sn_children, which is updated each time a child class is compiled. 

The compilation process is complete once all updated classes have been recompiled (and 
the transitive closure of their children have been too, if necessary). Note if a class 
definition has not yet been compiled (i.e. it has just been added by a programmer), it is 
always compiled. Its sn_children property is set to [], and as any children of the class are 
found, their names are added to this list. 

B.4.3. Compiled Class Format 

Snart stores compiled class definitions as a property of the form: 
<ClassName,sn_class_data,ClassKind(ObjectParents)> 

In addition to this predicate, Snart sets properties for each method and feature for the 
class, of the form: 
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<ClassName,MethodName,MethodPredicate> 

<ClassName,AttributeName,attribute(AttributeType)> 

These are used by the method despatcher for quick look-up of a class’s method predicates 
and attribute and classifier types.  Deferred methods are not added to the despatch table 
and abstract classes have no method or attribute despatch tables generated (as no 
instances of abstract classes can be created). The full despatch table is generated for a class 
(including all its inherited features) for maximum speed. Alternatively, only features 
defined for a class (including its renames) can be generated and features looked up at run-
time by searching a class's ancestors. 

B.5. Run-time System 

B.5.1. Object Creation, Attributes and Destruction 

Snart objects are identified by an integer atom (which is used as their object ID). On object 
creation, a property of the form: 

<ObjectID,sn_object,ClassName> 

is set, which identifies the class an object belongs to. All Snart object predicates use this 
property to determine whether an object is valid, and what class it belongs to. 

When an object attribute is set by: 
ObjectID@AttributeName:=Value 

Snart checks the object is valid (by accessing its sn_object property) and checks the 
attribute name is valid (by calling ClassName(AttributeName,attribute,Type)). Then 
Snart sets a property of the form: 

<ObjectID,AttributeName,Value> 

On object attribute access of the form: 
ObjectID@AttributeName(Value) 

Snart simply looks up a property of the form: 
<ObjectID,AttributeName,Value> 

and returns Value bound to the property value. If the attribute value property is not 
found, Snart checks the attribute name’s validity for the object’s class. If valid, the object 
lookup fails, otherwise an exception is raised and the current Prolog process aborts. 

On object deletion, Snart checks the object is valid, and then removes all attribute 
properties associated with the object (including sn_object). 
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B.5.2. Method Calls 

On a method call of the form: 
ObjectID@MethodName(Argument1,...,Argumentn) 

the Snart method despatcher first finds the object’s class (by looking up sn_object for 
ObjectID), and then looks up a property of the form: 

<ClassName,MethodName,Predicate> 

If found, Snart then invokes the method predicate using: 
Predicate(ObjectID,Argument1,...,Argumentn) 

If the predicate look-up failed, Snart tries to find a default method predicate common to 
all objects, and executes this if found. Otherwise Snart raises an exception saying the 
method is invalid for the object, and aborts the current Prolog process 

The called method predicate can fail, in which case Snart just fails the method call and 
allows the calling predicate to take what ever action it desires (i.e. the method call fails in 
the same manner a Prolog predicate fails). 

When the create method is called for an object, the object ID given is expected to be a 
variable. Snart firstly creates an object using new_object (see below). If a method predicate 
ClassName::create is defined for the new object’s class, this is then called with the 
remaining arguments of create. 

B.5.3. Other Object Predicates and Methods 

new_object(-ClassName,-ObjectID) 

Creates a new object of type ClassName and returns the new object’s ID as ObjectID. 
Aborts if ClassName is not a valid Snart class name. 

object_class(-ObjectID,?ClassName) and ObjectID@class(?ClassName) 

Returns <ObjectID,sn_object,ClassName> property for the given object.Aborts if the 
object does not exist. 

copy_object(-ObjectID,+NewObjectID) and ObjectID@copy(+NewObjectID) 

Calls new_object to create NewObjectID of same class as ObjectID. Copies all property 
values of ObjectID to NewObjectID. Aborts if ObjectID does not exist. 

member_class(-ObjectID,-ClassName) and ObjectID@member(-ClassName) 

Gets object’s class and does check of class membership using the parents the object’s class. 
This check is recursive and fails if ClassName is not an ancestor of ObjectID. 
member_class is optimised by keeping a list of all visited classes during the search. This is 
because multiple, repeated inheritance can mean the object’s class inherits from a class 
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more than once, and the search process need not re-visit a class and check its ancestors for 
ClassName if already checked once. 

object_attribute(-ObjectID,-AttributeName) and 

ObjectID@attribute(-AttributeName) 

Gets a list of attributes for ObjectID’s class using the attribute look-up table and succeeds if 
AttributeName is on this list. Three argument form returns the type of the attribute 
requested. 

classify_object(-ObjectID,-Classifier,-NewClass) and 

ObjectID@classify(-Classifier,-NewClass) 

Looks up classifier attribute and changes object’s class by changing sn_object. Also 
records NewClass as value of Classifier property for ObjectID. On re-classifying this 
object, attributes not compatible with old class are removed, then object re-classified. If a 
class has more than one classifier and this object has been classified previously, 
classify_object makes the object a member of both classes (if NewClass is not a 
descendant of the object’s previous classification classes). Snart generates a new class of 
the form ‘sn_merged([ClassName1,ClassName2,...])’. The method and attribute 
despatch tables for this class are a union of the ClassName1 and ClassName2 tables. Aborts 
if the classification is invalid (e.g. NewClass not on the list of classes for Classifier). 

is_class(-ClassName) 

Checks if ClassName has a predicate of the form snc_ClassName (i.e. is a valid, compiled 
Snart class). 

is_object(-ObjectID) and ObjectID@is_object 

Looks up the <ObjectID,sn_object,ClassName> property for ObjectID. Succeeds if this 
property is found, fails otherwise. 

B.5.4. Object Spying 

Snart objects can be spied by sn_trace_object(ObjectID[,FeatureNames]). This 
generates events that equate to method entry/exit and attribute update by calling 
sn_entry(ObjectID, Method(Arguments)), sn_exit(ObjectID, Method(Arguments), 

Success?) and sn_set_value(ObjectID, Attribute, OldValue, NewValue). Calling 
sn_untrace_object(ObjectID[,FeatureNames]) will remove the event generation for the 
object or given features. 

Object spying is implemented by classifying an object to a merged class made up of the 
object’s orginal class and a special spy class. This spy class provides additional methods 
sn_set_attribute and sn_despatch_method. These are used in preference to the default 
method despatching and attribute updating by the Snart method despatcher if no 
despatch table entries for a method or attribute are found. Classification deletes the 
despatch table entries for classified classes and looks up values from the classes that form 



Appendix B The Snart Language Page B323 

the merged (union) class dynamically. Any sn_set_attribute and sn_despatch_method 
methods defined are used in preference to this default look-up. Spied features thus 
generate tracing events by having sn_set_attribute and sn_despatch_method generate 
the events and then call the method defined by a classifier class to maintain an object’s 
orginal behaviour. 

B.5.5. Object Persistency 

Snart objects can be stored in a persistent object store and reloaded when accessed. 
Updated objects are rewritten to the store when it is closed or on demand. 
sn_create_object_store(File,Path) and sn_open_object_store(File,Path) create and 
open an object store respectively. Objects which inherit from a class sn_persistent are 
assumed to be persistent and behave as such. sn_close_object_store(File) writes any 
updated objects to the store and closes it. sn_write_objects updates the store without 
closing it. Currently only one object store is allowed to be open at one time and object 
stores can not be merged. 

Persistent objects are implemented in a similar way to spyed objects with persistent 
providing additional meta-level methods sn_alloc_id and sn_delete for allocating and 
deleting persistent storage for a new object. sn_set_attribute marks an object as updated 
so sn_write_objects will save its state. An additional predicate sn_find_object is defined 
to reload an object from persistent storage when it is accessed for the first time (as its 
object data won’t be in-core). Persistency and object spying are consistent as a spied, 
persistent object will first generate events and then perform persistency-management 
operations.  

B.6. Performance 

The object-oriented structure of Snart introduces an extra level of abstraction over 
conventional Prolog. Snart programs are structured around classes and data is stored as 
objects verses the conventional Prolog structure supported by LPA. We compare the 
performance of Snart to LPA Prolog in three ways: 

• speed 
• memory requirements 
• program structuring, reusability, debugging and maintenance 

B.6.1. Speed 

Fig. B.9. illustrates the performance of Snart feature calls compared with Prolog predicate 
calls. This test used 100 calls to predicates that performed exactly the same processing. 
The Snart method despatcher must look-up the correct method predicate to call for an 
object (which involves getting the object’s class and finding the correct method predicate 
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the the method call selector). One argument feature calls may be either an attribute fetch 
or a method call and Snart must determine whether to fetch an attribute value or call a 
method at run-time. Hence the extra time needed for one argument calls verses other 
kinds. Typically Snart feature calls incur a 40% execution time overhead compared to 
Prolog predicate calls. As Snart methods may call conventional Prolog predicates to do 
part of their processing, this overhead is often much less in Snart application programs. 
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fig. B.9. Snart method predicate calls vs. Prolog predicate calls. 

Fig. B.10. compares attribute fetching and assignment in Snart to prolog programs using 
the Prolog database and LPA’s property management predicates. This test used 200 
accesses or assignments of the same data for each technique. Snart attribute fetches and 
assignment compare well to conventional LPA properties for getting and setting values. 
However, Snart is significantly slower if the attribute has not been assigned a value (Snart 
will try to find a method for the object if an attribute fetch on a one-argument feature call 
fails, hence the extra over-head). The Prolog database is most efficient for looking up 
attribute values (which have either been assigned or not). However, it is extremely slow 
for modifying an attribute value (as the old clause must be retracted and a new clause 
asserted). 
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fig. B.10. Snart attribute access/assignment vs. Prolog database and LPA properties. 

B.6.2. Memory Requirements 

The memory requirements for programs using Snart objects and LPA properties are 
almost identical. When creating many small objects, a small over-head is incurred as Snart 
must store a class name against each object created. As property management in LPA is 
more efficient in both time and space than using the Prolog database to store values, Snart 
objects take up less space than similar programs using the database. 

B.6.3. Programming in Snart vs. conventional LPA Prolog 

Snart provides several improvements on raw LPA Prolog programming: 
• program structuring around classes 
• uniform treatment of data as objects (instances of classes) 
• modification of classes does not necessarily invalidate object data 
• reuse of programs via inheritance, type aggregation and client-server 
• compile-time and run-time checking of classes for program and data 

consistency 

As Snart is a hybrid language, Snart programs can make use of any conventional LPA 
Prolog program while using an object-oriented structure. This support for high-level 
structuring enhances Snart programs compared with equivalent Prolog programs in 
several ways: 

• Snart programs are more easily modified, as changes to the class hierarchies are 
easier to identify than changes to Prolog predicates (especially when changing 
the way in which data is accessed and stored). 
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• Reuse of Snart programs is easier using inheritance and composition from 
existing classes. 

• Snart classes can be modified while preserving their instances (which is very 
useful for debugging). Prolog programs using either the database or properties 
are seldom as easy to change (Grundy 91). 

• Snart programs have a more well-defined structure and can be organised into 
frameworks and other building-blocks more naturally than conventional Prolog 
code. 

B.7. Comparison to Other Object-Oriented Prologs 

Most object-oriented extensions to Prolog, including Protalk (Quintus 91), Prolog++ 
(Pountain 90) and ObjVProlog (Malenfant et al 89) treat classes as objects. Classes are 
defined by creating instances of a “class” object, and objects by duplicating a class object 
or creating instances of it. Snart treats classes like Eiffel and C++: as implementations of 
abstract data types which are defined at compile-time. Thus Snart programs have a 
similar design philosophy to strongly-typed object-oriented languages and do not use 
concepts not readily portable to these languages. 

Snart is a simple object-oriented language with classes being composed of parent and 
feature definitions. ObjVProlog and other meta-class based languages define meta-level 
classes which can in turn be specialised to provide new types of objects behaviour. 
Examples include persistent objects and parallel objects (Malenfant et al 89). Snart treats 
all feature calls the same with an identical syntax. Most other Prologs have different forms 
of attribute access and method calling. 

Snart class hierarchies are fixed at run-time, whereas other object-oriented Prologs 
adopting the class-as-object approach can modify their set of classes as desired at run-
time. The Snart approach follows the same approach as class-based languages such as 
C++ and Eiffel and is more appropriate for software engineering support for programs. 
Lack of run-time class creation does not appear to make Snart any less useful as a 
prototyping language in our experience. 

Snart programs tend to be more easily maintained than Protalk programs which must 
either define class creation predicates or store class definitions separately to Prolog 
programs. Prolog++ programs define their class objects along with LPA Prolog code in 
program windows in the same manner as Snart. 

The implementation of Snart compiles classes into a very compact form with method 
despatch tables being generated for each concrete class. Prolog++, Protalk and ObjVProlog 
have similar yet different methods for handling method despatch. Prolog++ keeps a list of 
super-classes which are searched on method look-up and the appropriate predicate called. 
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Protalk holds a predicate name which is called with an object ID, method selector and 
method call arguments. This predicate then determines the action to take on the method 
call. Attributes are accessed or set by calling the same predicate with an attribute name 
and value (a variable for attribute look-up). The Protalk approach is very slow and adds 
large over-heads for method calling over conventional Prolog predicate calling. 

Prolog++ provides a number of compilation optimisations including first-term indexing 
and direct method calling of inherited features. It also provides daemon support for data 
and event-driven programming and information hiding. Snart could be extended to 
support all these facilities and optimisations, but some are not in the style of languages we 
may wish to implement Snart programs in. 

Snart shares common object-oriented facilities with most other object-oriented Prologs. 
Snart is based on the C++ notion of a distinction between classes and objects, however, 
and hence is more suitable for implementing software and using as a representative 
object-oriented language than other Prologs we have seen. 

B.8. Quintus Snart 

We have ported Snart to Quintus Prolog (Quintus 91a) which runs on Unix systems. This 
port was done to illustrate Snart can be transferred to Prolog systems other than LPA 
MacProlog and can run on machines other than the Macintosh. We briefly describe the 
Quintus Prolog version of Snart and the differences between this version and the original 
Macintosh Snart. 

B.8.1. Compiler 

The Snart compiler is basically the same for both the LPA and Quintus versions. Quintus 
does not allow variable functor names which were quite extensively used in the Snart 
compiler. As Quintus provides better module facilities and other program structuring 
support, the Quintus version of the compiler is somewhat cleaner than the LPA version. 
Both compilers generate exactly the same compiled class definitions and method and 
attribute look-up tables. 

B.8.2. Run-time System 

The run-time systems for the two versions of Snart are significantly different. The Quintus 
version currently uses the Prolog database to store object information, as Quintus does not 
provide the property management facilities of LPA. Quintus also does not provide as 
flexible predicate calling functions as LPA so the method despatcher is somewhat more 
complicated. Both versions support the same object manipulation method and predicate 
calls. To make the Quintus version perform better in terms of run-time speed (particularly 
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for attribute updating) we could implement a property management system similar to 
that of LPA Prolog. 

B.8.3. Environment 

As Quintus Prolog uses a command-line environment, Snart provides access to its internal 
predicates for compiler invocation and object manipulation. This allows programmers to 
compile classes by invoking the predicate sn_compile_classes and to display objects by 
calling ObjectID@print. The Quintus environment for Snart is not nearly as natural to use 
as the LPA Prolog version. We could extend this to provide similar window-based 
facilities by extending Quintus’s X-windows based environment to provide pull-down 
menus for Snart similar to those provided by LPA.  

B.9. Future Extensions 

B.9.1. Explicit Redefinition and Information Hiding 

Snart allows any feature inherited from a parent to be redefined in a class by simply 
defining a new feature of the same name. Snart currently supports no information hiding 
with all features being visible and accessible outside an object. 

To provide explicit redefining is a very simple compilation check to ensure features 
redefined have a redefine(FeatureName) entry in the rename list associated with a parent 
class. To support information hiding run-time checks must be included to ensure access to 
a private or protected feature is valid. To do this, the Snart compiler must inspect all 
predicates (including method predicates) and associate a “called by” class with every 
feature call. The method despatcher can then check whether methods and attributes are 
being accessed correctly for the object being sent the message (as part of the feature look-
up process). Features accessed incorrectly can then cause the current Prolog process to 
abort and report the error. 

B.9.2. Data-driven Support 

Data and event-driven programs are difficult to write in Snart without providing explicit 
methods that set/get object attribute values and record updates to objects (as done for the 
MViews framework described in Chapter 7). The disadvantage of this approach is that 
attribute updates and other updates to an object must be explicitly catered for when 
designing and implementing a program. Subsequent modification of the program may 
require additional updates to be reported and hence modification of existing classes to 
provide for the needs of these changes. Chapter 7 compares language-based and 
framework-based support for data-driven programs in further detail. 
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To extend Snart to allow data-driven programs based on attribute changes is relatively 
simple. A predicate can be associated with each class (or even each attribute of a class) 
which is called when the attribute is set via the := operator. This can be built into Snart 
with no loss of run-time efficiency, even for predicates with no need for an “update” 
predicate by changing the attribute parameter of the 
ClassName(AttributeName,attribute,Type) predicates in the look-up table for attributes. 
The new parameter is the predicate to call to perform for attribute of the object’s attribute 
(set_value at present). This predicate and any dependent objects that are sent messages on 
the attribute update could be implemented to provide a similar facility to the Smalltalk 
model-view relationship (Goldberg and Robson 84). 

To extend Snart to notify other objects when an object’s methods are invoked or exit is 
somewhat more difficult. This type of “update” is useful when complex changes are made 
(e.g. an element is added to, removed from or simply moved within a list attribute) and 
the kind of change is important, not just the fact that an update has occurred. MViews 
requires these updates to be explicitly determined to record the kind of change (for storing 
against base elements, updating subset view elements, redrawing display elements and 
providing a generic undo/redo facility). Trapping every object method call, as done in the 
Cerno debugger for tracing Snart programs (Fenwick and Hosking 93), is prohibitively 
expensive. We could provide a facility similar to that for the Snart debugger (see Chapter 
9) which causes “features of interest” to call predicates with their arguments before and 
after execution. 

B.9.3. Optimisations for Performance Enhancement 

The run-time performance of Snart could be enhanced by performing several 
optimizations when compiling Snart programs. Calls to renamed, inherited features could 
be converted into direct predicate calls. For example, in the example in fig. B.11., we can 
change the compiled code to that on the bottom right. 
 
abstract_class(figure, 
  parents([]), 
  features([create,...])). 
 
figure::create(Figure,Location) :- 
  Figure@location:=Location, 
  Figure@visible:=false. 
 
class(rectangle, 
 parents([figure( 
   [rename(create,fig_create])]), 
 features([create,...])). 
 
rectangle::create(Rectangle,Location, 
    Width,Height) :- 
  Rectangle@fig_create(Location), 
  Rectangle@width:=Width, 
  Rectangle@height:=Height. 
 

% Unoptimized code: 
 
‘rectangle::create’(Rectangle,Location, 
    Width,Height) :- 
  Rectangle@fig_create(Location), 
  Rectangle@width:=Width, 
  Rectangle@height:=Height. 
 
% Optimized code: 
 
‘rectangle::create’(Rectangle,Location, 
    Width,Height) :- 
  ‘figure::create’(Ractangle,Location), 
  Rectangle@width:=Width, 
  Rectangle@height:=Height. 
 

fig. B.11. Optimizing method despatch for Snart. 
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Snart can perform a simple optimization of its method and attribute look-up tables by 
compiling them using an optimized LPA program window. Method predicates can also be 
compiled using an optimized program window to give first-term indexing and other 
optimizations. To allow for first-term indexing, however, Snart must not have the first 
argument of method predicates being a variable for the ID of an object. We should thus 
move this default variable to being, for example, the last argument of a method predicate. 

If we extend Snart to allow for typed variables for object ID’s (see below), we can also 
optimize the method despatcher at compile-time and perform various type checks (e.g. to 
support information hiding and check for existing features at compile-time). Note that all 
these optimizations require the Snart compiler to look at every predicate call in a term to 
ensure that the appropriate checks and optimizations are performed. As this may be quite 
a large overhead, optimizations should only be performed on user request. 

B.9.4. Typed Variables 

Adding typed variables to Snart also requires compile-time checking of all terms in a 
Snart program to remove the typing information for asserted predicates. Fig. B.12. shows 
a ‘typed’ version of the predicates in fig. B.11. 
 
abstract_class(figure, 
  parents([]), 
  features([create,...])). 
 
figure::create(Figure:figure,Location) :- 
  Figure@location:=Location, 
  Figure@visible:=false. 
 
 

class(rectangle, 
 parents([figure( 
   [rename(create,fig_create])]), 
 features([create,...])). 
 
rectangle::create(Rectangle:rectangle, 
    Location,Width,Height) :- 
  Rectangle@fig_create(Location), 
  Rectangle@width:=Width, 
  Rectangle@height:=Height. 
 

fig. B.12. Typed Snart variables. 

As the general class of an object can now be determined at compile-time, the Snart 
compiler could make any checks for incorrectly accessing private features outside a class, 
accessing nonexistent features for a class and type mis-matches (e.g. adding figure objects 
to a list of rectangle objects). Note that we must strip all this extra information about types 
from terms before asserting them as it will confuse Prolog’s unification algorithm (an 
integer object ID will not match an argument of the form Figure:figure). 

B.9.5. Lazy, Functional Feature Evaluation 

Snart currently provides support for object-oriented, logic programming (with an 
imperative flavour being added by assignment to object attributes). It would also be 
useful to provide lazy, functional evaluation of object features (functions) in a similar 
manner to Kea (Hosking et al 90). 
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Snart could be extended to declare “functional” methods and attributes, as shown in fig. 
B.13. area and volume are only re-evaluated when one of their dependent values is 
changed (by attribute assignment or re-evaluation). 
 
class(rectangle, 
 parents([figure( 
   [rename(create,fig_create])]), 
 features([width:integer,height:integer 
   functional area,...])). 
 
rectangle::area(Rectangle,Area) :- 
  Area is Rectangle@width * 
Rectangle@height. 
 

class(box, 
  parents([]), 
  features([base:rectangle,depth:integer, 
    functional volume,...])). 
 
 
box::volume(Box,Volume) :- 
  Volume is Box@base@area * Box@depth. 

fig. B.13. Lazy, functional features in Snart. 

These features are evaluated in a lazy fashion, so they are not executed until their value is 
actually required. We could then, for example, declare structures that are recursive and 
hence (theoretically) infinite, but since their values are only evaluated when needed, only 
take up as much space as required. In addition, we gain language-based support for such 
concepts as attribute grammars (data-driven evaluation of language semantics) (Reps and 
Teitelbaum 87) and tool-based abstraction using functional dependencies (Kaiser et al 92). 

To implement functional features in Snart would require a similar mechanism to Kea, 
where various dependencies are maintained between functional and possibly non-
functional attributes. A change propagation algorithm would re-evaluate any attributes 
whose value depended on one or more changed values.
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Appendix C 

A Gofer Implementation of MVSL 
 

-- 
-- MVSL Abstract Syntax Definition 
-- 
 
infix   2 := 
infixl  1 :& 
 
type Ide = String 
 
data Program = Pro [Decl] Command 
 
-- Declarations 
-- 
data Decl = BaseView Ide [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] | 
 BaseElement Ide [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] | 
 BaseRelationship Ide ParentDecl ChildDecl [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] | 
 SubsetView Ide ComponentDecl [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] | 
 SubsetElement Ide [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] | 
 SubsetRelationship Ide ParentDecl ChildDecl [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] | 
 Component Ide [AttributeDecl] [RelationshipDecl] [OperationDecl] [UpdateDecl] | 
 Global Ide Type 
 
data ComponentDecl = Components [Ide] 
data ParentDecl = Parent Type 
data ChildDecl = Child Type 
data AttributeDecl = Attribute Ide Type 
data RelationshipDecl = Relationship Ide Type 
data OperationDecl = Operation Ide [OpArgumentDecl] [LocalDecl] Command | 
  Function Ide [OpArgumentDecl] Type [LocalDecl] Command 
data UpdateDecl = Update Ide [LocalDecl] Exp [LocalDecl] Command 
 
data OpArgumentDecl = InArg Ide Type | OutArg Ide Type 
data LocalDecl = Arg Ide Type 
 
-- Commands & Operations 
-- 
data Command = Exp := Exp | 
 Eskip | 
 Eifthen Exp Command Command | 
 Ewhile Exp Command | 
 Eforall Exp Exp Command | 
 EWrite Exp | 
 Command :& Command | 
 AddElement Ide Exp | 
 DeleteComponent Exp | 
 Establish Type Exp Exp Exp | 
 EstablishLink Type Exp Exp | 
 Reestablish Exp Exp Exp | 
 Disolve Type Exp Exp | 
 Record Exp Ide [Exp] | 
 Store Exp Ide [Exp] | 
 CreateView Ide Exp | 
 AddViewComponent Exp Exp | 
 RemoveViewComponent Exp Exp | 
 ApplyOp Exp [Exp] 
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-- Expressions 
-- 
data Exp = IntLit Int | 
 StringLit String | 
 True_ | False_ | 
 Ident String | 
 Op Opr Exp Exp | 
 CompVal Exp Ide | 
 FuncOp Exp [Exp]  
 
data Opr = Plus | Minus | Times | Divide | Gt | Lt | Eq | Neq | And | Or | Append | Remove 
 
-- Types 
-- 
data Type = BoolType | 
 StringType | 
 IntType | 
 ListType Type | 
 OneToOne Ide | 
 OneToMany Ide | 
 ComponentType Ide | 
 CompAttrType Ide Ide 
-- 
-- MVSL Declarations 
-- 
-- Given a list of program declarations, produce a type-map  
-- 
 
-- DeclValue maps type identifier to type value 
-- 
type DeclValue = Ide -> TypeValue 
 
emptyDeclValue :: DeclValue 
emptyDeclValue _ = TNotDefined 
 
updateDeclValue :: DeclValue -> Ide -> TypeValue -> DeclValue 
updateDeclValue dv n tv i = if i==n then tv else dv i 
 
-- BasicKind gives the basic kinds of MViews components 
-- 
data BasicKind = KBaseView | KBaseEl | KBaseRel | 
 KSubsetView | KSubsetEl | KSubsetRel | 
 KComp | KLinkRel 
 
-- TypeValue stores type for an identifier 
-- 
-- Type values may be integers, lists, components, etc. or the whole 
-- value for a component declaration. 
-- 
-- A component's basic kind,attribute values (which must be allocated  
-- when the component is created) and the type of each component value 
-- (attributes, relationships, operations, etc.) 
-- 
data TypeValue = TCompData BasicKind [Ide] CompTypes | 
 TString | 
 TInteger | 
 TBool | 
 TList TypeValue | 
 TOneToOne Ide | 
 TOneToMany Ide | 
 TComp Ide | 
 TCompAttr Ide Ide | 
 TVoid | 
 TAny | 
 TNotDefined 
 
instance Eq TypeValue where 
 TString == TString = True 
 TInteger == TInteger = True 
 TBool == TBool = True 
 TList t1 == TList t2 = t1 == t2 
 TComp c1 == TComp c2 = c1 == c2 
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 TAny == _ = True 
 _ == TAny = True 
 _ == _ = False 
 
-- CompTypes maps identifiers to their component type 
-- 
type CompTypes = Ide -> CompType 
 
emptyCompTypes :: CompTypes 
emptyCompTypes _ = CNotDefined 
 
updateCompTypes :: CompTypes -> Ide -> CompType -> CompTypes 
updateCompTypes ct n v i = if i==n then v else ct i 
 
-- A Component type is one of attribute, relationship, etc. 
-- 
-- parent, child and components for relationships and views are stored 
-- as CAttribute 
-- 
data CompType = CAttribute TypeValue | 
 CRelationship TypeValue | 
 COperation OpArgs TypeValue OpLocals CommandMeaning | 
 CUpdates [CUpdate] | 
 CNotDefined 
 
-- Updates may have >1 value (e.g. several update_attributes for 
-- different types and guards). 
-- 
data CUpdate = UpdateOp OpArgs OpLocals ExpMeaning CommandMeaning 
 
-- Arguments are in or out 
-- 
type OpArgs = [(Ide,InOrOut,TypeValue)] 
data InOrOut = In | Out 
 
updateOpArgs :: OpArgs -> Ide -> InOrOut -> TypeValue -> OpArgs 
updateOpArgs oa n io t = oa++[(n,io,t)] 
 
-- Local variables have identifier and type 
-- 
type OpLocals = [(Ide,TypeValue)] 
 
updateOpLocals :: OpLocals -> Ide -> TypeValue -> OpLocals 
updateOpLocals ol n t = ol++[(n,t)] 
 
-- Operations and update operations have a meaning given a State 
-- (i.e. given one state produce another - see below for State etc.) 
-- 
-- Update operation guards have a Value given a State (see below) 
-- 
type CommandMeaning = (State -> Command -> State) -> State -> State 
type ExpMeaning = (State -> Exp -> Value) -> State -> Value 
 
-- Compute the declarations value for a list of program declarations 
-- 
-- Returns DeclValue for program and a list of identifiers  
-- to create locations for (i.e. globals) 
-- 
-- rel_comps computes any link relationships defined by the component 
-- and adds a DeclValue for their name (name = CompKind.RelName) 
-- 
program_decls :: [Decl] -> DeclValue -> [Ide] -> (DeclValue,[Ide]) 
program_decls [] dv gs = (dv,gs) 
program_decls (d:ds) dv gs = (new_dv,new_gs) where 
 (n,tv,rs,globals) = decl_value d 
 (new_dv,new_gs) = program_decls ds  
  (updateDeclValue (rel_comps dv rs n)  n tv) (gs++globals) 
 
-- Compute the Ide/TypeValue/Link Relationships/Globals for a declaration 
-- 
-- For each basic component kind the CompTypes value is computed, including the 
-- attributes it defines (so space for these can be allocated when the 
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-- component is created), any default values for the component (see below), 
-- and its declaration values are processed to produce a CompTypes value for each 
-- identifier. 
-- 
decl_value :: Decl -> (Ide,TypeValue,[RelationshipDecl],[Ide]) 
decl_value (BaseView name as rs os us) = (name,tv,rs,[]) where 
 (names,comp_ts) = default_types KBaseView (update_types (op_types (rel_types (attribute_types  
  ([],emptyCompTypes) as) rs) os) us) 
 tv = (TCompData KBaseView names comp_ts) 
decl_value (BaseElement name as rs os us) = (name,tv,rs,[]) where 
 (names,comp_ts) = default_types KBaseEl (update_types (op_types (rel_types (attribute_types  
  ([],emptyCompTypes) as) rs) os) us) 
 tv = (TCompData KBaseEl names comp_ts) 
decl_value (BaseRelationship name pd cd as rs os us) = (name,tv,rs,[]) where 
 (names,comp_ts) = default_types KBaseRel (update_types (op_types (rel_types (attribute_types  
  (parent_types (child_types ([],emptyCompTypes) cd) pd) as) rs) os) us) 
 tv = (TCompData KBaseRel names comp_ts) 
decl_value (SubsetView name els as rs os us) = (name,tv,rs,[]) where 
 (names,comp_ts) = default_types KSubsetView (update_types (op_types (rel_types (attribute_types  
  (comp_types ([],emptyCompTypes) els) as) rs) os) us) 
 tv = (TCompData KSubsetView names comp_ts) 
decl_value (SubsetElement name as rs os us) = (name,tv,rs,[]) where 
 (names,comp_ts) = default_types KSubsetEl (update_types (op_types (rel_types (attribute_types  
  ([],emptyCompTypes) as) rs) os) us) 
 tv = (TCompData KSubsetEl names comp_ts) 
decl_value (SubsetRelationship name pd cd as rs os us) = (name,tv,rs,[]) where 
 (names,comp_ts) = default_types KSubsetRel (update_types (op_types (rel_types (attribute_types  
  (parent_types (child_types ([],emptyCompTypes) cd) pd) as) rs) os) us) 
 tv = (TCompData KSubsetRel names comp_ts) 
decl_value (Component name as rs os us) = (name,tv,rs,[]) where 
 (names,comp_ts) = default_types KComp (update_types (op_types (rel_types (attribute_types  
  ([],emptyCompTypes) as) rs) os) us) 
 tv = (TCompData KComp names comp_ts) 
decl_value (Global name t) = (name,type_value t,[],[name]) 
 
-- Compute link relationships for a component 
-- 
rel_comps :: DeclValue -> [RelationshipDecl] -> Ide -> DeclValue 
rel_comps dv [] comp_name = dv 
rel_comps dv ((Relationship name (OneToOne _)):rs) comp_name = new_dv where 
 new_dv = rel_comps (updateDeclValue dv (comp_name++"."++name) link_rel) rs comp_name 
rel_comps dv ((Relationship name (OneToMany _)):rs) comp_name = new_dv where 
 new_dv = rel_comps (updateDeclValue dv (comp_name++"."++name) link_rel) rs comp_name 
 
link_rel :: TypeValue 
link_rel = TCompData KLinkRel [] emptyCompTypes 
 
-- Compute parent declaration for component 
-- 
parent_types :: ([Ide],CompTypes) -> ParentDecl -> ([Ide],CompTypes) 
parent_types (names,ct) (Parent t) = 
 (["parent"]++names,updateCompTypes ct "parent" (CAttribute (type_value t))) 
 
-- Compute child declaration for component 
-- 
child_types :: ([Ide],CompTypes) -> ChildDecl -> ([Ide],CompTypes) 
child_types (names,ct) (Child t) = 
 (["child"]++names,updateCompTypes ct "child" (CAttribute (type_value t))) 
 
-- Compute component types for subset view 
-- 
comp_types :: ([Ide],CompTypes) -> ComponentDecl -> ([Ide],CompTypes) 
comp_types (names,ct) (Components comps) =  
 (["components"]++names,updateCompTypes ct "components" (CAttribute (TList TAny))) 
 
-- Compute attribute types for list of attribute declarations 
-- 
attribute_types :: ([Ide],CompTypes) -> [AttributeDecl] -> ([Ide],CompTypes) 
attribute_types (names,ct) [] = (names,ct) 
attribute_types (names,ct) ((Attribute n t):as) = 
 attribute_types ([n]++names,(updateCompTypes ct n (CAttribute (type_value t)))) as 
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-- Compute relationship types for list of relationship declarations 
-- 
rel_types :: ([Ide],CompTypes) -> [RelationshipDecl] -> ([Ide],CompTypes) 
rel_types (names,ct) [] = (names,ct) 
rel_types (names,ct) ((Relationship n t):rs) = 
 rel_types ([n]++names,(updateCompTypes ct n (CRelationship (type_value t)))) rs 
 
-- Compute operation types for list of operation declarations 
-- 
op_types :: ([Ide],CompTypes) -> [OperationDecl] -> ([Ide],CompTypes) 
op_types (names,ct) [] = (names,ct) 
op_types (names,ct) ((Operation n arg_decls loc_decls command):os) = 
 op_types ([n]++names,(updateCompTypes ct n (op_value arg_decls loc_decls (op_meaning command)))) os 
op_types (names,ct) ((Function n arg_decls t loc_decls command):os) = 
 op_types ([n]++names,(updateCompTypes ct n (fn_value arg_decls t loc_decls (op_meaning command)))) os 
 
-- Compute update types for list of update declarations 
-- 
-- This produces a list of guarded, input-only operations which are  
-- event-driven by updates on a component. 
-- 
update_types :: ([Ide],CompTypes) -> [UpdateDecl] -> ([Ide],CompTypes) 
update_types (names,ct) [] = (names,ct) 
update_types (names,ct) ((Update n arg_decls guard loc_decls command):us) = nt where 
 upd_op = update_value arg_decls loc_decls (exp_meaning guard) (op_meaning command) 
 nt = case (ct n) of 
  (CUpdates updates) -> 
    update_types (names,(updateCompTypes ct n (CUpdates (updates++[upd_op])))) us 
  CNotDefined -> 
    update_types ([n]++names,(updateCompTypes ct n (CUpdates [upd_op]))) us 
 
-- "Meanings" for operations and expressions 
-- 
op_meaning :: Command -> (State -> Command -> State) -> State -> State 
op_meaning c fn s = fn s c 
 
exp_meaning :: Exp -> (State -> Exp -> Value) -> State -> Value 
exp_meaning e fn s = fn s e 
 
-- Value of an operation declaration 
-- 
-- Defined as its argument's types and in/out status, its local's types  
-- and the meaning of its associated command 
-- 
op_value :: [OpArgumentDecl] -> [LocalDecl] -> CommandMeaning -> CompType 
op_value as ls command = (COperation (op_arg_types as) TVoid (local_types ls) command) 
 
-- Value of a "functional operation" is same as for operation but with a type 
-- 
fn_value :: [OpArgumentDecl] -> Type -> [LocalDecl] -> CommandMeaning -> CompType 
fn_value as t ls command = (COperation 
 (op_arg_types as) (type_value t) (updateOpLocals (local_types ls) "result" (type_value t)) command) 
 
-- Value of an "update operation" is same for operation but arguments are input-only 
-- 
update_value :: [LocalDecl] -> [LocalDecl] -> ExpMeaning -> CommandMeaning -> CUpdate 
update_value as ls guard command = (UpdateOp (update_arg_types as) (local_types ls) guard command) 
 
-- Bind operation arguments to in/out status and type 
-- 
op_arg_types :: [OpArgumentDecl] -> OpArgs 
op_arg_types [] =[] 
op_arg_types ((InArg n t):as) = 
 updateOpArgs (op_arg_types as) n In (type_value t) 
op_arg_types ((OutArg n t):as) = 
 updateOpArgs (op_arg_types as) n Out (type_value t) 
 
-- Bind local variables to type 
-- 
local_types :: [LocalDecl] -> OpLocals 
local_types [] = [] 
local_types ((Arg n t):as) = 



Appendix C  A Gofer Implementation of MVSL Page C338 

 updateOpLocals (local_types as) n (type_value t) 
 
-- Bind update arguments to type 
-- 
update_arg_types :: [LocalDecl] -> OpArgs 
update_arg_types [] = [] 
update_arg_types ((Arg n t):as) = updateOpArgs (update_arg_types as) n In (type_value t) 
 
-- Value of a type 
-- 
type_value :: Type -> TypeValue 
type_value (BoolType) = (TBool) 
type_value (StringType) = (TString) 
type_value (IntType) = (TInteger) 
type_value (ListType t) = (TList (type_value t)) 
type_value (OneToOne c) =(TOneToOne c) 
type_value (OneToMany c) = (TOneToMany c) 
type_value (ComponentType n) = (TComp n) 
type_value (CompAttrType c a) = (TCompAttr c a) 
 
-- Default attributes and component types for a component given its "BasicKind" 
-- 
data DefaultType = Default Ide CompType 
 
default_types :: BasicKind -> ([Ide],CompTypes) -> ([Ide],CompTypes) 
default_types _ cts = 
 addCompTypes [ 
  (Default "class" (CAttribute TString)), 
  (Default "relationships" (CAttribute (TList TAny))), 
  (Default "updates" (CAttribute (TList TAny)))] cts 
 
addCompTypes :: [DefaultType] -> ([Ide],CompTypes) -> ([Ide],CompTypes) 
addCompTypes [] (names,ct) = (names,ct) 
addCompTypes ((Default n t):ds) (names,ct) = addCompTypes ds ([n]++names,(updateCompTypes ct n t)) 
 
-- 
-- MViews state definitions 
-- 
 
-- A CompStore is used to record the attribute values for a component. 
-- A distinguished attribute "class" gives the component kind for 
-- a component instance. 
-- 
type CompID = Int 
type CompStore = CompID -> Ide -> CompValue 
data CompValue = NoCValue | CValue Dv 
 
emptyCompStore :: CompStore 
emptyCompStore _ _ = NoCValue 
 
new_comp :: CompStore -> Ide -> (CompStore,CompID) 
new_comp s k = new_comp' 1 where 
 new_comp' i = case s i "class" of  
  NoCValue -> (updateCompStore s i "class" (Rv (Vstring k)),i) ; _ -> new_comp' (i+1) 
 
updateCompStore :: CompStore -> CompID -> Ide -> Dv -> CompStore 
updateCompStore s c a v i j = if i==c && j==a then (CValue v) else s i j 
 
remove_comp :: CompStore -> CompID -> CompStore 
remove_comp s c i j = if i==c then NoCValue else s i j 
 
-- Relationships have parent/child attribute values in CompStore 
-- 
is_rel :: State -> CompID -> Bool 
is_rel s r = rel_kind where 
 (CValue (Rv (Vstring kind))) = comps s r "class" 
 (TCompData bk names cts) = declarations s kind 
 rel_kind = case bk of 
  KBaseRel -> True 
  KSubsetRel -> True 
  KLinkRel -> True 
  _ -> False 
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-- All relationships for a component are stored by "relationships" 
-- 
comp_rels :: State -> CompID -> [CompID] 
comp_rels s c = rels where 
 rels = case comps s c "relationships" of 
  (CValue (Rv (Vlist rel_values))) -> values_to_comps rel_values 
  _ -> [] 
 
-- View components for a view are stored in "components" 
-- 
view_comps :: State -> CompID -> [CompID] 
view_comps s c = vcomps where 
 (CValue (Rv (Vlist comp_values))) = comps s c "components" 
 vcomps = values_to_comps comp_values 
 
values_to_comps :: [Value] -> [CompID] 
values_to_comps [] = [] 
values_to_comps ((Vcomp c):vs) = [c]++values_to_comps vs 
 
-- Denotable values 
-- 
data Dv = Loc Location | Rv Value | CompValue CompID Ide 
 
-- Expressable values 
-- 
data Value = Vnum Int | Vbool Bool | Vstring String | Vcomp CompID | Vlist [Value] | Nil 
 
-- instance of == for Value 
-- 
 
instance Eq Value where 
 (Vnum a) == (Vnum b) = a == b 
 (Vbool a) == (Vbool b) = a == b 
 (Vstring a) == (Vstring b) = a == b 
 (Vlist a) == (Vlist b) = same_list a b 
 (Vcomp a) == (Vcomp b) = a == b 
 _ == _ = False 
 
same_list [] [] = True 
same_list (x:xs) (y:ys) = x == y && same_list xs ys 
 
-- 
-- Store/Location for state variables 
-- 
 
type Location = Int 
type Store = Location->ValueOrUnused 
data ValueOrUnused = Used Value | Unused 
 
-- allocate new location in Store 
-- 
new :: Store -> Location 
new s = new' 0 where 
 new' i = case s i of Unused -> i ; _ -> new' (i+1) 
 
updateStore :: Store -> Location -> Value -> Store 
updateStore s l v i = if i == l then Used v else s i 
 
deallocStore :: Store -> Location -> Store 
deallocStore s l i = if i==l then Unused else s i 
 
emptyStore :: Store 
emptyStore _ = Unused 
 
-- return a list of n free locations from store 
-- 
news :: Int -> Store -> ([Location],Store) 
news n s = news1 n [] s where 
 news1 0 ls s = (ls,s) 
 news1 (n+1) ls s = news1' where 
  l = new s 
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  news1' = news1 n (l:ls) (updateStore s l Nil)  
 
-- 
-- Environment for state variables 
-- 
type Env = Ide -> ValueOrUnbound 
data ValueOrUnbound = Bound Dv | Unbound 
 
updateEnv :: Env -> Ide -> Dv -> Env 
updateEnv e "" v i = e i 
updateEnv e id v i = if i == id then Bound v else e i 
 
deallocEnv :: Env -> Ide -> Env 
deallocEnv e id i = if i == id then Unbound else e i 
 
emptyEnv :: Env 
emptyEnv _ = Unbound 
 
-- Given a list of names and locations, bind names to locations in environment 
-- 
extendEnv :: [Ide] -> [Location] -> Env -> Env 
extendEnv [] [] e = e 
extendEnv (n:ns) (l:ls) e = updateEnv (extendEnv ns ls e) n (Loc l) 
 
-- Update records are a "term" of form Kind(Value1,Value2,...). 
-- Outputs are just update records on a component. 
-- 
data UpdateRecord = UpdateRec Ide [Value] 
data Output = OV CompID UpdateRecord 
 
-- 
-- The MViews program state is a tuple with component and location stores, an environment  
-- and output list. 
-- State also stores the DeclValue for a program as operations and updates must be  
-- despatched on a per-component basis (could pass this value to all functions using  
-- State, but its easiest to put it here). 
-- 
 
type State = (CompStore,Env,Store,[Output],DeclValue) 
 
emptyState :: DeclValue -> State 
emptyState dv = (emptyCompStore,emptyEnv,emptyStore,[],dv) 
 
-- State update functions 
-- 
update_comps :: State -> CompStore -> State 
update_comps (_,e,s,o,dv) c = (c,e,s,o,dv) 
 
update_env :: State -> Env -> State 
update_env (c,_,s,o,dv) e = (c,e,s,o,dv) 
 
update_store :: State -> Store -> State 
update_store (c,e,_,o,dv) s = (c,e,s,o,dv) 
 
update_output :: State -> [Output] -> State 
update_output (c,e,s,_,dv) o = (c,e,s,o,dv) 
 
-- State access functions 
-- 
comps :: State -> CompStore 
comps (c,_,_,_,_) = c 
 
env :: State -> Env 
env (_,e,_,_,_) = e 
 
store :: State -> Store 
store (_,_,s,_,_) = s 
 
output :: State -> [Output] 
output (_,_,_,o,_) = o 
 
declarations :: State -> DeclValue 
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declarations (_,_,_,_,dv) = dv 
 
-- 
-- MVSL Commands 
-- 
-- Includes: 
--   := 
--   if-then 
--   while 
--   forall 
--   Command ; Command 
--   Comp.Operation(...args...) 
-- 
 
-- Meaning of all commands is the meaning of a basic command 
-- or the meaning of a component-specific operation. 
-- 
command_meaning :: State -> Command -> State 
command_meaning s c@(l := r) = assign s c 
command_meaning s c@(Eskip) = s 
command_meaning s c@(Eifthen e c1 c2) = if_then s c 
command_meaning s c@(Ewhile e com) = while s c 
command_meaning s c@(Eforall v e com) = for_all s c 
command_meaning s c@(EWrite e) = write s c 
command_meaning s c@(c1 :& c2) = sequence s c 
command_meaning s c = operation_command s c 
 
-- Assignment of the form lvalue := rvalue 
-- 
assign :: State -> Command -> State 
assign s (lexp := rexp) = assign_result s lv rv where 
 lv = exp_val s lexp 
 rv = rval s (exp_val s rexp) 
 
-- The effect of assign_result is to change the value of a variable 
-- or change a component attribute value. For the second case, an 
-- update record is generated. 
-- 
assign_result :: State -> Dv -> Value -> State 
assign_result s (Loc l) rvalue = update_store s (updateStore (store s) l rvalue) 
assign_result s (CompValue c a) rvalue = new_s where 
 (CValue (Rv old_v)) = (comps s) c a 
 assigned_s = update_comps s (updateCompStore (comps s) c a (Rv rvalue)) 
 new_s = update_dependents assigned_s c (UpdateRec "update_attribute" [Vcomp c,Vstring a,old_v,rvalue]) 
 
-- Conditional execution of the form  
-- if <expression> then <command-if-true> else <command-if-false> end if 
-- 
if_then :: State -> Command -> State 
if_then s (Eifthen expr if_command else_command) = new_s where 
 (Vbool ev) = rval s (exp_val s expr) 
 new_s = if ev then command_meaning s if_command 
  else command_meaning s else_command 
 
-- Conditional looping of the form 
-- while <expression-true> to <command> end while 
-- 
while :: State -> Command -> State 
while s c@(Ewhile expr command) = new_s where 
 (Vbool ev) = rval s (exp_val s expr) 
 new_s = if ev then while (command_meaning s command) c 
  else s 
 
-- List iteration of the form 
-- forall <variable> on <list> do <command> end forall 
-- 
for_all :: State -> Command -> State 
for_all s (Eforall var expr command) = do_forall e s v command where 
 v = exp_val s var 
 (Vlist e) = rval s (exp_val s expr) 
 do_forall [] s v command = s 
 do_forall (x:xs) s v command = new_s where 
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  v_s = assign_result s v x 
  c_s = command_meaning s command 
  new_s = do_forall xs c_s v command 
 
-- Write command (for debugging) 
-- 
-- Generates an "update record" which outputs an expression value 
-- 
write :: State -> Command -> State 
write s (EWrite e) = new_s where 
 v = rval s (exp_val s e) 
 new_s = update_output s ((output s)++[OV 0 (UpdateRec "write" [v])]) 
 
-- Sequentional commands of the form 
-- <command1> <command2> ... <commandn> 
-- 
sequence :: State -> Command -> State 
sequence s (c1 :& c2) = command_meaning (command_meaning s c1) c2 
 
-- 
-- The meaning of MViews Basic Operations 
-- 
-- Defines: 
--  update_attribute(in CompiD,in AttributeName,in NewValue) 
--  add_element(in Kind,out CompID) 
--  delete_element(in CompID) 
--  establish(in Kind,in Parent,in Child,out NewRelID) 
--  reestablish(in RelID,in NewParent,in NewChild) 
--  disolve(in Kind,in Parent,in Child) 
--  create_view(in Kind,out ViewID) 
--  add_view_element(in ViewID,out CompID) 
--  remove_view_element(in ViewID, in CompID) 
--  record(in CompID,in Kind,in [Value]) 
--  store(in CompID,in Kind,in [Value]) 
--  Comp.Op([Value]) 
-- 
 
-- Meaning of basic operation "commands" 
-- 
operation_command :: State -> Command -> State 
operation_command s c@(Record e k u) = record_update s c 
operation_command s c@(AddElement k e) = add_element s c 
operation_command s c@(DeleteComponent e) = delete_component s c 
operation_command s c@(Establish kind p ch v) = establish_rel s c 
operation_command s c@(EstablishLink kind p ch) = establish_link_rel s c 
operation_command s c@(Reestablish r p ch) = reestablish_rel s c 
operation_command s c@(Disolve k p ch) = disolve_rel s c 
operation_command s c@(CreateView k v) = create_view s c 
operation_command s c@(AddViewComponent v e) = add_view_component s c 
operation_command s c@(RemoveViewComponent v e) = remove_view_component s c 
operation_command s c@(Store e k u) = store_update s c 
operation_command s c@(ApplyOp e args) = apply_operation s c 
 
-- add_element(in Kind,out CompID) 
-- 
add_element :: State -> Command -> State 
add_element s (AddElement kind new_var) = new_s where 
 (comp_s,new_c) = add_component s kind 
 (Loc new_loc) = exp_val comp_s new_var 
 new_s = update_store comp_s (updateStore (store comp_s) new_loc (Vcomp new_c)) 
 
-- Add a new component and set given variable to the new component ID 
-- 
add_component :: State -> Ide -> (State,CompID) 
add_component s kind = (new_s,new_c) where 
 (new_comps,new_c) = new_comp (comps s) kind 
 (TCompData bk vs ct) = declarations s kind 
 alloc_attributes [] cs c ct = cs 
 alloc_attributes (n:ns) cs c ct =  
  case (ct n) of 
   (CAttribute t) -> 
    if n == "class" then alloc_attributes ns cs c ct 
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     else updateCompStore (alloc_attributes ns cs c ct) c n (Rv Nil) 
   _ -> alloc_attributes ns cs c ct 
 new_s = update_comps s (alloc_attributes vs new_comps new_c ct) 
 
-- delete_element(in CompID) 
-- 
delete_component :: State -> Command -> State 
delete_component s (DeleteComponent exp) = new_s where 
 (Vcomp c) = rval s (exp_val s exp) 
 new_s = do_delete_component s c 
 
do_delete_component :: State -> CompID -> State 
do_delete_component s c = new_s where 
 updated_s = update_dependents s c (UpdateRec "delete_element" [Vcomp c]) 
 dissolved_r = disolve_relationships (comp_rels s c) updated_s 
 new_s = delete_comp dissolved_r c 
 
-- Disolve all relationships to component 
-- 
disolve_relationships [] s = s 
disolve_relationships (r:rs) s =  
 disolve_relationships rs (do_disolve_rel s r) 
 
-- Remove all component data from state 
-- 
delete_comp :: State -> CompID -> State 
delete_comp s c = new_s where 
 removed_view = remove_from_view s c 
  -- remove from owning view (if any) 
 new_s = update_comps removed_view (remove_comp (comps removed_view) c) 
 
-- establish_rel(in Kind,in Parent,in Child,out NewRel) 
-- 
establish_rel :: State -> Command -> State 
establish_rel s (Establish kind parent child new_rel) = new_s where 
 rk = rel_kind_type kind 
 (Vcomp p) = rval s (exp_val s parent) 
 (Vcomp c) = rval s (exp_val s child) 
 (comp_s,new_r) = do_establish_rel s rk p c 
 (Loc new_loc) = exp_val comp_s new_rel 
 new_s = update_store comp_s  
  (updateStore (store comp_s) new_loc (Vcomp new_r)) 
 
do_establish_rel :: State -> Ide -> CompID -> CompID -> (State,CompID) 
do_establish_rel s rk p c = (new_s,new_r) where 
 (r_s,new_r) = add_component s rk 
 new_rs = updateCompStore (updateCompStore (comps r_s) new_r "parent" (Rv (Vcomp p))) 
  new_r "child" (Rv (Vcomp c)) 
 new_pcr = updateCompStore new_rs p "relationships" (Rv (Vlist (comps_to_values([new_r]++comp_rels r_s 
p)))) 
 new_pcc = updateCompStore new_pcr c "relationships" (Rv (Vlist (comps_to_values ([new_r]++comp_rels r_s 
c)))) 
 updated_s = update_comps r_s new_pcc 
 new_s = update_dependents updated_s c  
  (UpdateRec "establish_rel" [Vstring rk,Vcomp p,Vcomp c]) 
 
-- Convert CompIDs to Values 
-- 
comps_to_values :: [CompID] -> [Value] 
comps_to_values [] = [] 
comps_to_values (c:cs) = [comp_to_value c]++comps_to_values cs 
 
comp_to_value :: CompID -> Value 
comp_to_value c = (Vcomp c) 
 
-- establish_rel(in Kind,in Parent,in Child) 
-- 
establish_link_rel :: State -> Command -> State 
establish_link_rel s (EstablishLink kind parent child) = new_s where 
 rk = rel_kind_type kind 
 (Vcomp p) = rval s (exp_val s parent) 
 (Vcomp c) = rval s (exp_val s child) 
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 (new_s,new_r) = do_establish_rel s rk p c 
 
-- reestablish_rel(in Rel,in Parent,in Child) 
-- 
reestablish_rel :: State -> Command -> State 
reestablish_rel s (Reestablish rel parent child) = new_s where 
 (Vcomp r) = rval s (exp_val s rel) 
 (Vcomp p) = rval s (exp_val s parent) 
 (Vcomp c) = rval s (exp_val s child) 
 new_s = do_reestablish_rel s r p c 
 
do_reestablish_rel s r p c = new_s where 
 (CValue (Rv (Vcomp old_p))) = comps s r "parent" 
 (CValue (Rv (Vcomp old_c))) = comps s r "child" 
 (CValue (Rv k)) = (comps s) r "class" 
 -- "disolve" relationship for old_p/old_c 
 updated_s1 = update_dependents s r  
  (UpdateRec "disolve_rel" [k,Vcomp old_p,Vcomp old_c]) 
 dissolved_pcr = updateCompStore (comps updated_s1) old_p "relationships"  
  (Rv (Vlist (comps_to_values (remove_all [r] (comp_rels updated_s1 old_p) (==) )))) 
 dissolved_pcc = updateCompStore dissolved_pcr old_c "relationships"  
  (Rv (Vlist (comps_to_values (remove_all [r] (comp_rels updated_s1 old_c) (==) )))) 
 updated_s2 = update_comps updated_s1 dissolved_pcc 
 -- "establish" relationship for p/c 
 new_rs = updateCompStore (updateCompStore (comps updated_s2) r "parent" (Rv (Vcomp p))) 
  r "child" (Rv (Vcomp c)) 
 new_pcr = updateCompStore new_rs p "relationships"  
  (Rv (Vlist (comps_to_values ([r]++comp_rels updated_s2 p)))) 
 new_pcc = updateCompStore new_pcr c "relationships"  
  (Rv (Vlist (comps_to_values ([r]++comp_rels updated_s2 c)))) 
 updated_s3 = update_comps updated_s2 new_pcc 
 new_s = update_dependents updated_s3 c  
  (UpdateRec "establish_rel" [k,Vcomp p,Vcomp c]) 
 
-- disolve_rel(in Kind,in Parent,in Child) 
-- 
disolve_rel :: State -> Command -> State 
disolve_rel s (Disolve kind parent child) = new_s where 
 rk = rel_kind_type kind 
 vp@(Vcomp p) = rval s (exp_val s parent) 
 vc@(Vcomp c) = rval s (exp_val s child) 
 rs = filter (rel_kind_child s rk c) (comp_rels s p) 
 dislove_rels [] s = s 
 disolve_rels (r:rs) s = disolve_rels rs (do_disolve_rel s r) 
 new_s = disolve_rels rs s 
 
-- Find all relationships with same kind/child from parent 
-- 
rel_kind_child :: State -> Ide -> CompID -> CompID -> Bool 
rel_kind_child s kind child rel = result where 
 (CValue (Rv (Vcomp c))) = comps s rel "child" 
 (CValue (Rv (Vstring rkind))) = comps s rel "class" 
 result = if (child == c) && (rkind==kind) then True else False 
 
-- Find all relationships of given kind i 
-- 
find_kind_rels :: [CompID] -> State -> Ide -> [CompID] 
find_kind_rels [] s kind = [] 
find_kind_rels (r:rs) s kind = rs where 
 (CValue (Rv (Vstring rkind))) = (comps s) r "class" 
 rs = if rkind == kind then [r]++find_kind_rels rs s kind 
  else find_kind_rels rs s kind 
 
-- Remove all values from relationships and dependents list for 
-- dissolved relationship and delete the relationship component. 
-- 
do_disolve_rel :: State -> CompID -> State 
do_disolve_rel s r = new_s where 
 (CValue (Rv (Vcomp p))) = comps s r "parent" 
 (CValue (Rv (Vcomp c))) = comps s r "child" 
 (CValue (Rv kind_val)) = (comps s) r "class" 
 updated_s = update_dependents s r (UpdateRec "disolve_rel" [kind_val,Vcomp p,Vcomp c]) 
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 dissolved_r = disolve_relationships (comp_rels updated_s r) updated_s 
 dissolved_pcr = updateCompStore (comps updated_s) p "relationships"  
  (Rv (Vlist (comps_to_values (remove_all [r] (comp_rels updated_s p) (==) )))) 
 dissolved_pcc = updateCompStore dissolved_pcr c "relationships"  
  (Rv (Vlist (comps_to_values (remove_all [r] (comp_rels updated_s c) (==) )))) 
 new_s = delete_comp (update_comps updated_s dissolved_pcc)  r 
 
-- create_view(in kind,out ViewID) 
-- 
create_view :: State -> Command -> State 
create_view s (CreateView kind new_view) = new_s where 
 (comp_s,new_v) = do_create_view s kind 
 (Loc new_loc) = exp_val comp_s new_view 
 new_s = update_store comp_s (updateStore (store comp_s) new_loc (Vcomp new_v)) 
  
do_create_view s kind = (new_s,new_v) where 
 (v_s,new_v) = add_component s kind 
 new_s = update_comps v_s (updateCompStore (comps v_s) new_v "components" (Rv (Vlist []))) 
 
-- add_view_element(in View,in Comp) 
-- 
add_view_component :: State -> Command -> State 
add_view_component s (AddViewComponent view comp) = new_s where 
 (Vcomp v) = rval s (exp_val s view) 
 (Vcomp c) = rval s (exp_val s comp) 
 new_s = do_add_view_component s v c 
 
do_add_view_component s v c = new_s where 
 new_comps1 = updateCompStore (comps s) c "view" (Rv (Vcomp v)) 
 new_comps2 = updateCompStore new_comps1 v "components"  
  (Rv (Vlist (comps_to_values (view_comps s v++[c])))) 
 new_s = update_comps s new_comps2 
 
-- remove_view_element(in View,in Comp) 
-- 
remove_view_component :: State -> Command -> State 
remove_view_component s (RemoveViewComponent view comp) = new_s where 
 (Vcomp v) = rval s (exp_val s view) 
 (Vcomp c) = rval s (exp_val s comp) 
 new_s = do_remove_view_component s v c 
 
do_remove_view_component s v c = new_s where 
 new_comps1 = updateCompStore (comps s) c "view" (Rv Nil) 
 new_comps2 = updateCompStore new_comps1 v "components"  
  (Rv (Vlist (comps_to_values (remove_all [c] (view_comps s v) (==) )))) 
 new_s = update_comps s new_comps2 
 
-- Remove component from its view (if its in one) 
-- 
remove_from_view :: State -> CompID -> State 
remove_from_view s c = remove_view s c view where 
 view = (comps s) c "view" 
 remove_view s c NoCValue = s 
 remove_view s c (CValue (Rv (Vcomp v))) = do_remove_view_component s v c 
 
-- store_update(in Comp,in UpdateValue) 
-- 
-- Updates are stored in default attribute "updates" for every component 
-- 
store_update :: State -> Command -> State 
store_update s (Store expr kind args) = new_s where 
 arg_vals [] s = [] 
 arg_vals (x:xs) s = [rval s (exp_val s x)]++arg_vals xs s 
 (Vcomp c) = rval s (exp_val s expr) 
 (CValue (Rv (Vlist c_updates))) = (comps s) c "updates" 
 new_updates = c_updates++[Vlist ([Vstring kind]++arg_vals args s)] 
 -- i.e. updates stored as list of the form: [kind,Value1,...,Valuen] 
 new_s = update_comps s (updateCompStore (comps s) c "updates" (Rv (Vlist new_updates))) 
 
-- CompExp.OpName([ArgExp]) 
--  
-- Component-specific operation meaning is: 



Appendix C  A Gofer Implementation of MVSL Page C346 

--  - compute arguments 
--  - allocate component values  
--      (c.f. OO language method - scope = object's class values + args & locals) 
--  - allocate value/variable arguments 
--  - allocate locals 
--  - allocate "self" local 
--  - get meaning of operation command 
--  - deallocate self 
--  - deallocate locals 
--  - deallocate arguments 
--  - deallocate component values 
-- 
apply_operation :: State -> Command -> State 
apply_operation s (ApplyOp exp arg_exps) = new_s where 
 (CompValue c op) = exp_val s exp 
 (CValue (Rv (Vstring ct))) = (comps s c "class") 
 (TCompData bk vs cts) = (declarations s) ct 
 arg_vals :: [Exp] -> State -> [Value] 
 arg_vals [] s = [] 
 arg_vals (e:es) s = (arg_vals es s)++[(exp_rval s e)] 
 new_s = case (cts op) of 
  (COperation args t locs command) -> op_result where 
   arg_vals = eval_args arg_exps s 
   old_env = env s 
   pre_op_s = alloc_self (alloc_locals (alloc_and_bind_args  
 (alloc_comp_values s vs c) args arg_vals) locs) c 
   post_op_s = dealloc_comp_values (dealloc_args (dealloc_locals  
 (dealloc_self (command command_meaning pre_op_s)) locs) args) vs c 
   op_result = update_env post_op_s old_env 
  (CUpdates updates) -> apply_updates updates s c (arg_vals arg_exps s) vs 
   -- call update operation as an operation 
 
-- Evaluate lvalues for arguments 
-- 
eval_args :: [Exp] -> State -> [Dv] 
eval_args [] s = [] 
eval_args (e:es) s = (eval_args es s)++[(exp_val s e)] 
 
-- Allocate component values 
-- 
alloc_comp_values :: State -> [Ide] -> CompID -> State 
alloc_comp_values s [] c = s 
alloc_comp_values s (n:ns) c = alloc_comp_values new_s ns c where 
 new_env = updateEnv (env s) n (CompValue c n) 
 new_s = update_env s new_env 
 
-- Allocate & bind arguments for operation 
-- 
-- In arguments have new location which is the Value of actual argument 
--   (i.e. value parameters) 
-- Out arguments have same Dv as actual argument 
--   (i.e. variable parameters) 
-- 
alloc_and_bind_args :: State -> OpArgs -> [Dv] -> State 
alloc_and_bind_args s [] [] = s 
alloc_and_bind_args s ((n,In,_):as) (v:vs) = new_s where 
 rv = rval s v 
 l = new (store s) 
 new_store = updateStore (store s) l rv 
 new_env = updateEnv (env s) n (Loc l) 
 new_s = alloc_and_bind_args (update_store (update_env s new_env) new_store) as vs 
alloc_and_bind_args s ((n,Out,_):as) (v:vs) = new_s where 
 new_env = updateEnv (env s) n v 
 new_s = alloc_and_bind_args (update_env s new_env) as vs 
 
-- Allocate locals for operation 
-- 
alloc_locals :: State -> OpLocals -> State 
alloc_locals s args = new_s where 
 loc_names [] = [] 
 loc_names ((n,_):ns) = [n]++loc_names ns 
 an = loc_names args 
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 (ls,new_store) = news (length an) (store s) 
 new_env = extendEnv an ls (env s) 
 new_s = update_store (update_env s new_env) new_store 
 
-- Allocate "self" variable for operation 
-- 
alloc_self :: State -> CompID -> State 
alloc_self s c = new_s where 
 l = new (store s) 
 new_store = updateStore (store s) l (Vcomp c) 
 new_env = updateEnv (env s) "self" (Loc l) 
 new_s = update_store (update_env s new_env) new_store 
 
-- Deallocate a list of identifiers from Store 
-- 
dealloc :: State -> [Ide] -> State 
dealloc s ns = new_s where 
 dealloc_ids :: [Ide] -> Env -> Store -> (Env,Store) 
 dealloc_ids [] e s = (e,s) 
 dealloc_ids (n:ns) e s = dealloc_ids ns (deallocEnv e n) (deallocStore s l) where 
  (Bound (Loc l)) = e n 
 (new_env,new_store) = dealloc_ids ns (env s) (store s) 
 new_s = update_store (update_env s new_env) new_store 
 
-- Deallocate "self" variable for operation 
-- 
dealloc_self :: State -> State 
dealloc_self s = dealloc s ["self"] 
 
-- Deallocate arguments for operation 
-- 
dealloc_args :: State -> OpArgs -> State 
dealloc_args s [] = s 
dealloc_args s ((n,In,_):as) = dealloc_args (dealloc s [n]) as 
dealloc_args s ((n,Out,_):as) = new_s where 
 new_env = deallocEnv (env s) n 
 new_s = dealloc_args (update_env s new_env) as 
 
-- Deallocate locals for operation 
-- 
dealloc_locals :: State -> OpLocals -> State 
dealloc_locals s args = new_s where 
 loc_names [] = [] 
 loc_names ((n,_):ns) = [n]++loc_names ns 
 an = loc_names args 
 new_s = dealloc s (loc_names args) 
 
-- Deallocate component values 
-- 
dealloc_comp_values :: State -> [Ide] -> CompID -> State 
dealloc_comp_values s [] c = s 
dealloc_comp_values s (n:ns) c = dealloc_comp_values new_s ns c where 
 new_s = update_env s (deallocEnv (env s) n) 
 
-- record_update(in Exp, in Kind, in [Exp]) 
-- 
record_update :: State -> Command -> State 
record_update s (Record comp_exp kind values) = new_s where 
 eval_exps :: [Exp] -> State -> [Value] 
 eval_exps [] s = [] 
 eval_exps (e:es) s = 
  [(exp_rval s e)]++eval_exps es s 
 (Vcomp c) = exp_rval s comp_exp 
 new_s = update_dependents s c (UpdateRec kind (eval_exps values s)) 
 
-- Dependents for a component are: 
--  1) itself 
--  2) all relationships it participates in 
--  3) all other components its connected to via its relationships 
-- 
dependents :: State -> CompID -> [CompID] 
dependents s c = deps where 
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 rs = comp_rels s c 
 deps = [c]++rs++collect_deps rs s c 
 collect_deps [] s c = [] 
 collect_deps (x:xs) s c = cd where 
  (CValue (Rv (Vcomp parent))) = comps s x "parent" 
  (CValue (Rv (Vcomp child))) = comps s x "child" 
  cd = if parent == c then [child]++collect_deps xs s c 
   else [parent]++collect_deps xs s c 
 
-- Send update record to dependents for a component 
-- 
update_dependents :: State -> CompID -> UpdateRecord -> State 
update_dependents s c u = new_s where 
 update_dependents1 [] s _ = s 
 update_dependents1 (d:ds) s u = 
  update_dependents1 ds (update_from s d u) u 
 output_s = update_output s ((output s)++[(OV c u)]) 
 new_s = update_dependents1 (dependents s c) output_s  u 
 
-- Process update from another component 
-- 
update_from :: State -> CompID -> UpdateRecord -> State 
update_from s d (UpdateRec kind arg_vals) = new_s where 
 (CValue (Rv (Vstring k))) = comps s d "class" 
 (TCompData bk vs ct) = (declarations s) k 
 new_s = case (ct kind) of 
  (CUpdates updates) -> apply_updates updates s d arg_vals vs 
  _ -> s 
 
-- Apply an update to a component (if it supports the update) 
-- 
-- Update operations are performed by finding a match (correct kind,  
-- number and type of args and guard that evaluates to true) and 
-- applying the operation as for component-specific operations 
-- 
apply_updates :: [CUpdate] -> State -> CompID -> [Value] -> [Ide] -> State 
apply_updates [] s d arg_vals vs = s 
apply_updates ((UpdateOp args locs g command):us) s d arg_vals vs = 
 if same_length_and_type (reverse args) arg_vals s 
  then upd_s else apply_updates us s d arg_vals vs where 
   vals :: [Value] -> [Dv] 
   vals [] = [] 
   vals (v:vs) = (vals vs)++[Rv v] 
   old_env = env s 
   pre_op_s = alloc_self (alloc_locals (alloc_and_bind_args  
 (alloc_comp_values s vs d) args (vals arg_vals)) locs) d 
   upd_s = case (g exp_rval pre_op_s) of 
    (Vbool True) -> op_result where 
  post_op_s = dealloc_comp_values (dealloc_self (dealloc_locals ( 
   dealloc_args (command command_meaning pre_op_s) args) locs)) vs d 
  op_result = update_env post_op_s old_env 
    _ -> apply_updates us s d arg_vals vs 
 
same_length_and_type :: OpArgs -> [Value] -> State -> Bool 
same_length_and_type [] [] s = True 
same_length_and_type [] (a:b) s = False 
same_length_and_type (a:b) [] s = False 
same_length_and_type ((n,io,tv):as) (v:vs) s =  
 if tv == (value_to_type v s) || (value_to_type v s) == TAny 
  then same_length_and_type as vs s else False 
 
value_to_type :: Value -> State -> TypeValue 
value_to_type (Vbool b) s = TBool 
value_to_type (Vnum i) s = TInteger 
value_to_type (Vstring st) s = TString 
value_to_type (Vlist []) s = TList TAny 
value_to_type (Vlist (h:t)) s = TList (value_to_type h s) 
value_to_type (Vcomp c) s = TComp k where 
 (CValue (Rv (Vstring k))) = (comps s c "class") 
value_to_type Nil s = TAny 
value_to_type _ s = TNotDefined 
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-- 
-- Expression values for MVSL 
-- 
 
-- Get the value (Value) of an expression (i.e. an rvalue) 
-- 
rval :: State -> Dv -> Value 
rval s (Loc l) = r where (Used r) = (store s) l 
rval s (Rv v) = v 
rval s (CompValue c a) = cv where 
 (CValue (Rv (Vstring ct))) = (comps s c "class") 
 (TCompData bk vs comp_types) = (declarations s) ct 
 cv = case (comp_types a) of 
  (CAttribute t) -> av where 
   (CValue (Rv av)) = (comps s) c a 
  (CRelationship t) -> (rel_value c s a t) 
  (COperation [] t [] command) -> fn_result where 
   old_env = env s 
   pre_op_s = command command_meaning (alloc_self (alloc_comp_values s vs c) c) 
   (Bound result) = (env pre_op_s) "result" 
   fn_result = rval pre_op_s result 
   
-- Get the denotable value for an expression (i.e. an lvalue) 
-- 
-- The value of a functional operation name is one of: 
--  - if name is CAttribute, = component attribute value 
--  - if name is CRelationship, = one of: 
-- - relationship components (where component is parent or child) 
--      - component (if relationship is one-to-one link rel) 
--      - list of components (if relationship is one-to-many link rel) 
--  - if name is COperation = value of function (value of "result" after 
--  executing function as per component-specific operations 
-- 
exp_val :: State -> Exp -> Dv 
exp_val _ (IntLit i) = Rv (Vnum i) 
exp_val _ (StringLit s) = Rv (Vstring s) 
exp_val _ True_ = Rv (Vbool True) 
exp_val _ False_ = Rv (Vbool False) 
exp_val s (Ident i) = ev where 
 (Bound ev) = (env s) i 
exp_val s (CompVal e a) = (CompValue c a) where 
 (Vcomp c) = exp_rval s e 
exp_val s (FuncOp c_exp arg_exps) = ev where 
 (CompValue c a) = exp_val s c_exp 
 (CValue (Rv (Vstring ct))) = (comps s c "class") 
 (TCompData bk vs comp_types) = (declarations s) ct 
 ev = case (comp_types a) of 
  (COperation args t locs command) -> fn_result where 
   arg_vals = eval_args arg_exps s 
   pre_op_s = command command_meaning (alloc_self (alloc_locals  
    (alloc_and_bind_args (alloc_comp_values s vs c) args arg_vals) locs) c) 
   (Bound result) = (env pre_op_s) "result" 
   fn_result = (Rv (rval pre_op_s result)) 
  _ -> (CompValue c a) 
exp_val s (Op op lexpr rexpr) = opval op lv rv where 
 lv = rval s (exp_val s lexpr) 
 rv = rval s (exp_val s rexpr) 
 opval Plus     (Vnum a) (Vnum b) = (Rv (Vnum (a+b))) 
 opval Minus    (Vnum a) (Vnum b) = (Rv (Vnum (a-b))) 
 opval Times    (Vnum a) (Vnum b) = (Rv (Vnum (a*b))) 
 opval Divide   (Vnum a) (Vnum b) = (Rv (Vnum (a/b))) 
 opval Gt       (Vnum a) (Vnum b) = (Rv (Vbool (a>b))) 
 opval Lt       (Vnum a) (Vnum b) = (Rv (Vbool (a<b))) 
 opval Eq       a b = (Rv (Vbool (a==b))) 
 opval Neq      a b = (Rv (Vbool (a/=b))) 
 opval And      (Vbool a) (Vbool b) = (Rv (Vbool (a&&b))) 
 opval Or       (Vbool a) (Vbool b) = (Rv (Vbool (a||b))) 
 opval Append   (Vlist a) (Vlist b) = (Rv (Vlist (a++b))) 
 opval Remove   (Vlist a) (Vlist b) = (Rv (Vlist (remove_all b a (==)))) 
  
-- Get the Value for an expression 
-- 
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exp_rval :: State -> Exp -> Value 
exp_rval s e = rval s (exp_val s e) 
 
-- List manipulation functions 
-- 
 
-- append_once - append new values to list if not already members of list 
-- 
append_once :: [a] -> [a] -> (a->a->Bool) -> [a] 
append_once list append compare = new_list where 
 to_append = remove_all list append compare 
 new_list = list ++ to_append 
 
-- remove_all - remove all values in first list from second list 
-- 
remove_all :: [a] -> [a] -> (a->a->Bool) -> [a] 
remove_all r l compare = new_list where 
 remove [] a = [] 
 remove (x:xs) y = if compare x y then remove xs x else [x]++(remove xs y) 
 remove_all' [] l = l 
 remove_all' (x:xs) l = remove_all' xs (remove l x) 
 new_list = remove_all' r l 
 
-- member - is given CompID a member of the CompID list? 
-- 
member :: a -> [a] -> (a->a->Bool) -> Bool 
member e es compare = result where 
 member_test [] e = False 
 member_test (x:xs) y = if compare x y then True else member_test xs y 
 result = member_test es e 
 
-- rel_value 
-- 
-- Value of a relationship is one of: 
--  list of relationship components (if relationship type is a component) 
--  list of components (if relationship type is one-to-one, one-to-many) 
-- 
rel_value :: CompID -> State -> Ide -> TypeValue -> Value 
rel_value c s a (TCompAttr kind porc) = (Vlist (map comp_to_value comps)) where 
 rels =filter (rel_kind s kind) (comp_rels s c) 
 comps = parent_or_child_comps rels porc s c 
rel_value c s a (TOneToOne comp) = rel where 
 rk = rel_kind_comp s c a 
 rels = filter (rel_kind s rk) (comp_rels s c) 
 comps = parent_or_child_comps rels "parent" s c 
 rel = if comps == [] 
  then Nil 
  else (Vcomp comp) where 
   (comp:rest) = comps 
rel_value c s a (TOneToMany comp) = (Vlist (map comp_to_value comps)) where 
 rk = rel_kind_comp s c a 
 rels = filter (rel_kind s rk) (comp_rels s c) 
 comps = parent_or_child_comps rels "parent" s c 
 
-- Find all relationships of same kind and parent/child value 
-- 
rel_kind :: State -> Ide -> CompID -> Bool 
rel_kind s kind r = result where 
 (CValue (Rv (Vstring rk))) = comps s r "class" 
 result = if (kind==rk) then True else False 
rel_kind_and_porc s kind r = result where 
 (CValue (Rv (Vstring rk))) = comps s r "class" 
 result = if (kind==rk) then True else False 
 
-- Construct list of connected components (parent/child of relationships) 
-- 
parent_or_child_comps :: [CompID] -> Ide -> State -> CompID -> [CompID] 
parent_or_child_comps [] porc s comp = [] 
parent_or_child_comps (r:rs) "parent" s comp = porc_comps where 
 (CValue (Rv (Vcomp p))) = comps s r "parent" 
 (CValue (Rv (Vcomp c))) = comps s r "child" 
 porc_comps = if p == comp then [c]++parent_or_child_comps rs "parent" s comp else 
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  parent_or_child_comps rs "parent" s comp 
parent_or_child_comps (r:rs) "child" s comp = porc_comps where 
 (CValue (Rv (Vcomp p))) = comps s r "parent" 
 (CValue (Rv (Vcomp c))) = comps s r "child" 
 porc_comps = if c == comp then [p]++parent_or_child_comps rs "child" s comp 
   else parent_or_child_comps rs "child" s comp 
 
-- "kind" for a component relationship given a component/attribute name pair 
-- 
rel_kind_comp :: State -> CompID -> Ide -> Ide 
rel_kind_comp s c a = k++"."++a where 
 (CValue (Rv (Vstring k))) = comps s c "class" 
 
-- "kind" for a relationship given a Type 
-- The kind is either the relationship's component name or the owner/relationship name 
-- 
rel_kind_type :: Type -> Ide 
rel_kind_type (ComponentType c) = c 
rel_kind_type (CompAttrType c a) = c++"."++a 
 
 
-- 
-- MVSL program meaning 
-- 
-- Given a type map and a sequence of "inputs", produce a sequence of "outputs" 
-- 
-- Inputs are updates generated by MVisual (i.e. update records) and are translated into 
-- operations by the current view. 
-- 
-- Outputs are updates produced by executing MVSL operations on the current state 
-- (which also stores the current inputs and outputs). 
-- 
 
data Input = IV Ide [Value] 
 
-- Meaning of a Program is defined by its outputs given a set of inputs and definition 
-- 
program :: Program -> [Input] -> [Output] 
program (Pro decls command) i = out where 
 (dv,gs) = program_decls decls emptyDeclValue [] 
 init_s = alloc_globals (emptyState dv) gs 
 com_s = command_meaning init_s command 
 out = output (run_program i com_s) 
 
-- Need globals for program definition 
-- 
alloc_globals :: State -> [Ide] -> State 
alloc_globals s gs = new_s where 
 (ls,new_store) = news (length gs) (store s) 
 new_env = extendEnv gs ls (env s) 
 new_s = update_store (update_env s new_env) new_store 
 
-- Program is "run" by interpreting a sequence of "inputs" from MVisual 
-- 
run_program :: [Input] -> State -> State 
run_program [] s = s 
run_program (i:is) s = new_s where 
 new_s = run_program is (apply_input_update i s) 
 
-- Translate input "update" record into operation on a component 
-- 
-- Conceptually, MVisual generates these updates in respose to user interaction 
-- MVSL's outputs are interpreted by MVisual which then updates view renderings 
-- to indicate program change 
-- 
apply_input_update :: Input -> State -> State 
apply_input_update (IV "update_attribute" [Vcomp c,Vstring name,new]) s = 
 assign_result s (CompValue c name) new 
apply_input_update (IV "add_element" [Vstring kind]) s = new_s where 
 (new_s,_) = add_component s kind 
apply_input_update (IV "delete_component" [Vcomp c]) s = 
 do_delete_component s c 
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apply_input_update (IV "establish_rel" [Vstring kind,Vcomp parent,Vcomp child]) s = new_s where 
 (new_s,_) = do_establish_rel s kind parent child 
apply_input_update (IV "reestablish_rel" [Vcomp r,Vcomp p,Vcomp c]) s = 
 do_reestablish_rel s r p c 
apply_input_update (IV "disolve_rel" [Vcomp r]) s = 
 do_disolve_rel s r 
apply_input_update (IV "create_view" [Vstring kind]) s = new_s where 
 (new_s,_) = do_create_view s kind 
apply_input_update (IV "add_view_component" [Vcomp v,Vcomp e]) s = 
 do_add_view_component s v e 
apply_input_update (IV "remove_view_component" [Vcomp v,Vcomp e]) s = 
 do_remove_view_component s v e 
apply_input_update (IV "update" [Vcomp c,Vlist (Vstring kind:upd)]) s = 
 update_from s c (UpdateRec kind upd) 
apply_input_update _ s = s
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Appendix D 

An MVSL Specification of IspelM 
 

-- Global values 
-- 
program : program 
 -- base view reference 
 
-- Initial computation 
-- 
initialise 
 add_element(program,program) 
 record_update(program,“init”,[]) 
end initial 
 
-- Program for IspelM 
-- 
base view program 
 attributes 
  name : string 
 
 relationships 
  clusters : one-to-many cluster 
  classes : one-to-many class 
 
 operations 
  -- Locate a class... 
  -- 
  find_class(in name : like class.name) : class is 
  local 
   aclass : class 
  begin 
   result := nil 
   forall aclass on classes do 
    if aclass.name = name then 
     result := aclass 
    end if 
   end forall 
  end find_class 
 
 updates 
  -- Initialise program details 
  -- 
  -- This update is send by the program_details dialog 
  -- 
  details(in pname:string, in clname:string, in cname:string, 
   in ckind:like base_class.kind) local 
   cluster : cluster 
   class : class 
   view : class_diagram 
   icon : class_icon 
  is 
   program.name:=pname 
   add_element(cluster,cluster) 
   cluster.name:=clname 
   establish(program.clusters,program,cluster) 
   cluster.add_class(cname,ckind,class) 
   create_view(class_diagram,view) 
   add_element(class_icon,icon) 



Appendix D An MVSL Specification of IspelM Page D354 

   add_view_element(view,icon) 
   view.name:=‘root class’ 
   establish(icon.base,class,icon) 
  end details 
 
end program 
 
-- Base cluster element 
-- 
base element cluster 
 attributes 
  cluster_name : string 
 
 relationships 
  classes : one-to-many class 
 
 operations 
  -- class manipulation 
  -- 
  add_class(in name : like class.class_name, in kind : like class.kind, 
   out new_class : class) is 
   add_element(class,new_class) 
   new_class.kind := kind 
   establish(cluster.classes,self,new_class) 
   establish(program.classes,program,new_class) 
  end add_class 
 
  remove_class(in class : class) is 
   dissolve(cluster.classes,self,class) 
   dissolve(program.classes,program,class) 
  end remove_class 
 
end cluster 
 
-- The base element class 
-- 
base element class 
 attributes 
  class_name : string 
  kind : [normal, abstract] 
 
 relationships 
  cluster : one-to-one cluster 
  generalisations : generalisation.child 
  client_suppliers : client_supplier.parent 
  classifiers : classifier.parent 
  features : one-to-many feature 
  specialisations : one-to-many class 
  all_features : one-to-many all_feature 
 
 operations 
  -- add/remove/find feature 
  -- 
  add_feature(in name : like feature.feature_name, 
   in kind : like feature.kind, 
   in type : like feature.type_name, 
   out new_feature : feature) 
  is 
   add_element(feature,new_feature) 
   new_feature.init(kind,type) 
   establish(class.features,self,new_feature) 
  end add_feature 
 
  remove_feature(in name : like feature.feature_name) local 
   feature : feature 
  is 
   forall feature on features do 
    if feature.feature_name = name then 
     delete_comp(feature) 
    end if 
   end forall 
  end remove_feature 
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  find_feature(in name : like feature.feature_name) : feature local 
   feature : feature 
  is 
   result := nil 
   forall feature on features 
    if feature.name = name then 
     result := feature 
    end if 
   end forall 
  end find_feature 
 
  -- add/remove generalisations 
  -- 
  add_gen(in parent : class, out new_rel : generalisation) is 
   establish(generalisation,parent,self,new_rel) 
  end add_gen 
 
  remove_gen(in parent : class) is 
   dissolve(generalisation,parent,self) 
  end remove_gen 
 
  -- add/remove/find client-suppliers 
  -- 
  add_cs( 
   in ckind : like client_supplier.kind, 
   in cfeature : like client_supplier.client_feature, 
   in cname : like client_supplier.client_name, 
   in stype : like client_supplier.supplier_type, 
   in sfeature : like client_supplier.supplier_feature, 
   out new_cs : client_supplier) 
  is 
   if program.find_class(stype) then 
    establish(client_supplier,self,program.find_class(stype),new_cs) 
   else 
    establish(client_supplier,self,nil,new_cs) 
   end if 
   new_cs.init(ckind,cfeature,cname,stype,sfeature) 
  end add_cs 
 
  remove_cs(in supplier : class) is 
   dissolve(client_supplier,self,supplier) 
  end remove_cs 
 
  find_cs( 
   in ckind : like client_supplier.kind, 
   in cfeature : like client_feature, 
   in cname : like client_name, 
   in stype : like supplier_type, 
   in sfeature : like supplier_feature) : client_supplier 
  local 
   cs : client_supplier 
  is 
   result := nil 
   forall cs on client_suppliers do 
    if cs.ckind = ckind and 
     cs.client_feature = cfeature and 
     cs.client_name = cname and 
     cs.stype = stype and 
     cs.sfeature = sfeature then 
     result := cs 
    end if 
   end forall 
  end find_cs 
 
 updates 
  -- Check rename of class is valid 
  -- 
  update_attribute(class : class, 
   name : attribute, 
   oldname : string, 
   newname : string) 
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  where 
   class = self and 
   name = “class_name” 
  is 
   if program.find_class(newname) \= self then 
    store_update(self,”error”,[base_class_name(new_name)]) 
   else 
    store_update(self,“rename_class”,[oldname,newname]) 
   end if 
  end update_attribute 
 
end class 
 
-- Class interface 
-- 
component all_feature 
 attributes 
  owning_class : like class.class_name 
  owner_feature : like feature.feature_name 
  class_name : like feature.feature_name 
  kind : like feature.kind 
  type : like feature.type_name 
end all_feature 
 
-- Base generalisation relationship 
-- 
base relationship generalisation 
 parent class 
 child class 
 relationships 
  renames : one-to-many rename 
 
 updates 
  -- Updates go to owning_class - not stored by generalisation 
  -- 
  establish(kind : string, parent : generalisation, child : rename) 
  where 
   kind = “rename” and parent = self 
  is 
   store_update(parent,“add rename”,[self,rename]) 
  end establish 
 
  dissolve(kind : string, parent : generalisation, child : rename) 
  where 
   kind = “rename” and parent = self 
  is 
   store_update(parent,“remove rename”,[self,rename]) 
  end establish 
 
  -- When establish/dissolve generalistions, 
  -- maintain specialisations list attribute 
  -- 
  establish(rel:relationship, 
   kind : string, 
   parent : class, 
   child : class) 
  where 
   rel = self and kind = “generalisation” 
  is 
   store_update(parent,“add_gen”,[child,parent]) 
   establish(class.specialisations,parent,self) 
  end establish 
  
  dissolve(rel:relationship, 
   kind:string, 
   parent : class, 
   child : class) 
  where 
   rel = self and kind = “generalisation” 
  is 
   store_update(parent,“remove_gen”,[child,parent]) 
    dissolve(class.specialisations,parent,self) 
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  end establish 
 
end generalisation 
 
-- Generalisation renamed features 
-- 
component rename 
 attributes 
  parent_name : like feature.feature_name 
  child_name : like feature.feature_name 
end rename 
 
-- Base client-supplier relationship 
-- 
base relationship client_supplier 
 parent class 
 child class 
 attributes 
  kind : [aggregate,local,call] 
  client_feature : like feature.feature_name 
  client_name : like feature.feature_name 
  supplier_type : like class.class_name 
  supplier_feature : like feature.feature_name 
 
 operations 
  create_cs( 
    in cfeature : like client_feature, 
    in cname : like client_name, 
    in stype : like supplier_type, 
    in sfeature : like supplier_feature) is 
   client_feature := cfeature 
   client_name := cname 
   supplier_type := stype 
   supplier_feature := sfeature 
  end create_cs 
 
   -- Compute supplier for client-supplier (from supplier_type value) 
  -- 
  compute_supplier is 
   if program.find_class(supplier_type) then 
    reestablish(self,parent,program.find_class(supplier_type)) 
   else 
    reestablish(self,parent,nil) 
    end if 
  end compute_cs 
 
 updates 
  -- Recompute supplier on type change 
  -- 
  update_attribute(cs : client_supplier, 
   name:string,  
   oldtype : like client_supplier.supplier_type, 
   newtype : like client_supplier.supplier_type) 
  where 
   cs = self and name = “supplier_type” 
  is 
   compute_supplier 
   store_update(parent,”update_attribute”, 
    [self,supplier_type,oldtype,newtype]) 
  end update_attribute 
 
  -- updates to parent 
  -- 
  update_attribute(cs : client_supplier, 
   name : attribute, 
   oldtype : string, 
   newtype : string) where 
   cs = self 
  is 
   store_update(parent,“update_attribute”,[self,name,oldtype,newtype]) 
  end update_attribute 
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  update_attribute(cs : client_supplier, 
   name : attribute, 
   oldtype : like client_supplier.kind, 
   newtype : like client_supplier.kind) where 
   cs = self and name = “kind” 
  is 
   store_update(parent,“change cs kind”,[self,”kind”,oldtype,newtype]) 
  end update_attribute 
 
  -- Convert updates for class and store 
  -- 
  establish(rel:relationship, 
   kind:string, 
   client : class, 
   supplier : class) where 
   rel = self and kind = “client_supplier” 
  is 
   store_update(parent,“add_cs”, 
    [self,client_feature,client_name,supplier_type,supplier_feature]) 
  end establish 
 
  dissolve(rel:relationship, 
   kind:string, 
   client : class, 
   supplier : class) where 
   rel = self and kind = “client_supplier” 
  is 
   store_update(parent,“remove_cs”, 
    [self,client_feature,client_name,supplier_type,supplier_feature]) 
  end establish 
 
end client_supplier 
 
-- Base classifier relationship 
-- 
base relationship classifier 
 parent class 
 child class 
 attributes 
  name : string 
 
 updates 
  -- Updates to class 
  -- 
  update_attribute(cl : classifier, 
   name:attribute, 
   oldvalue:string, 
   newvalue:string) 
  where 
   cl = self and name = “name” 
  is 
   store_update(parent,“rename classifier”, 
    [self,name,oldvalue,newvalue]) 
  end update_attribute 
 
  establish(rel:relationship, 
   kind : string, 
   owner : class, 
   classify_to : class) 
  where 
   rel=self and kind = “classifier” 
  is 
   store_update(parent,“add_classifier”,[self,classify_to]) 
  end establish 
 
  dissolve(rel:relationship, 
   kind : string, 
   owner : class, 
   classify_to : class) 
  where 
   rel=self and kind = “classifier” 
  is 
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   store_update(parent,“remove_classifier”,[self,classify_to]) 
  end establish 
 
end classifier 
 
-- Base feature element 
-- 
base element feature 
 attributes 
  feature_name : string 
  kind : [attribute, method, deferred, inherited] 
  type_name : string 
 
 relationships 
  owning_class : one-to-one class 
 
 operations 
  -- Initialise feature 
  -- 
  init(in new_kind : like feature.kind, 
   in new_type : like feature.type_name) is 
   kind := new_kind 
   type_name := new_type 
  end init 
     
 updates 
  -- Updates against feature (if method) and owning_class 
  -- 
  update_attribute(feature:feature, 
   name:string, 
   old : string, 
   new : string) 
  where 
   feature = self 
  is 
   if name = “feature_name” then 
    store_update(owning_class,”rename feature”, 
     [self,old,new]) 
    if kind = method then 
     store_update(self,”rename feature”,[self,old,new]) 
    end if 
   else 
    store_update(owning_class,”change feature type”, 
    [self,old,new]) 
    if kind = method then 
     store_update(self,”change feature type”, 
      [“change feature type”,self,old,new]) 
    end if 
   end if 
  end update_attribute 
 
end feature 
 
-- Class icons represent class name/kind and arbitrary features (as their names) 
-- 
subset element class_icon 
 attributes 
  class_name : like class.class_name 
  kind : like class.kind 
  feature_names : list like feature.feature_name 
 
 relationships 
  view : one-to-one class_diagram_view 
  base : one-to-one class 
 
 operations 
  -- feature name maintenance 
  -- 
  add_feature_name(in name : like feature.feature_name) is 
   feature_names := feature_names ++ {name} 
  end add_feature 
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  remove_feature_name(in name : like feature.feature_name) is 
   feature_names := feature_names -- {name} 
  end remove_feature 
 
  -- reselect new class 
  -- 
  reselect_class(in name : like class.class_name) 
  local 
   other_class : class 
  is 
   other_class := program.find_class(name) 
   if other_class \== self then 
    dissolve(base,base,self) 
    class_name := name 
    map 
   end if 
  end reselect_class 
 
  -- Map this class icon to a base class 
  -- 
  map(in do_map : boolean) 
   base_class : class 
  is 
   base_class := program.find_class(class_name) 
   if base_class \== nil then 
    if do_map then 
     establish(base,base_class,self) 
    end if 
   else 
    if do_map then 
     program.default_cluster.add_class(class_name,kind,base_class) 
     establish(sbase,base_class,self) 
    end if 
   end if 
  end map 
 
 updates 
  -- Change/Remap a feature name 
  -- 
  change_feature(name : like feature.feature_name, 
   new_name:like feature.feature_name, 
   new_type:like feature.type_name, 
   new_kind:like feature.kind, 
   show:boolean) 
  local 
   feature : base_feature 
  is 
   if base \== nil then 
    feature := base.find_feature(name) 
    if feature \== nil then 
     feature.feature_name := new_name 
     feature.type_name := new_type 
     feature.kind := new_kind 
    end if 
   end if 
   remove_feature_name(name) 
   if show then 
    add_feature_name(new_name) 
   end if 
  end change_feature 
 
  remap_feature(name, new_name:like feature.feature_name, 
   new_type:like feature.type_name, 
   new_kind:like feature.kind, 
   show:boolean) where true local 
   feature : feature 
  is 
   feature := base.find_feature(new_name) 
   if feature = nil then 
    base.add_feature(new_name,new_type,new_kind,feature) 
   end if 
   remove_feature_name(name) 
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   if show then 
    add_feature_name(new_name) 
   end if 
  end remap_feature 
 
  -- Translate base feature updates into feature_names 
  -- 
  establish(class : class, 
   kind : string, 
   class : class, 
   feature : feature) 
  where 
   kind = “class.features” 
  is 
   add_feature_name(feature.feature_name) 
  end establish 
 
  dissolve(class : class, 
   kind : string, 
   class : class, 
   feature : feature) 
  where 
   kind = “class.features” 
  is 
   remove_feature_name(feature.feature_name) 
  end dissolve 
 
  -- Translate base attribute updates into subset changes 
  -- 
  update_attribute(class : class, 
   name : string, 
   old : string, 
   new : string) 
  where 
   class = base and name = “class_name” 
  is 
   class_name := new 
  end update_attribute 
 
  update_attribute(class : class, 
   name : string, 
   old : like class.kind, 
   new : like class.kind) 
  where 
   class = base and name = “kind” 
  is 
   kind := new 
  end update_attribute 
 
  -- Translate subest updates into base updates 
  -- 
  update_attribute(class : class_icon, 
   name : string, 
   old : string, 
   new : string) 
  where 
   class = self and name = “class_name” 
  is 
   if base \== nil then 
    base.class_name := new 
   end if 
  end update_attribute 
 
  update_attribute(class : class_icon, 
   name : string, 
   old : like class.kind, 
   new : like class.kind) 
  where 
   class = self and name = “kind” 
  is 
   if base \== nil then 
    base.kind := new 
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   end if 
  end update_attribute 
 
end class_icon 
 
-- Generalisation Glue 
-- 
subset relationship generalisation_glue 
 parent class_icon 
 child class_icon 
 
 relationships 
  view : one-to-one class_diagram_view 
  base : one-to-one generalisation 
 
 operations 
  -- map gen glue to base generalisation 
  -- 
  map(do_map : boolean) 
  local 
   parent_class : class 
   child_class : class 
   gen : generalisation 
  is 
   parent_class := parent.base 
   child_class := child.base 
   if parent_class \== nil and child_class \== nil then 
    gen := child_class.find_gen(parent_class) 
    if gen \== nil then 
     if do_map then 
      establish(base,gen,self) 
     end if 
    else 
     if do_map then 
      child_class.add_gen(parent_class,gen) 
      establish(base,gen,self) 
     end if 
    end if 
   end if 
  end map 
 
end generalisation_glue 
 
-- Classifier glue 
-- 
subset relationship classifier_glue 
 parent class_icon 
 child class_icon 
 attributes 
  name : string 
 
 relationships 
  view : one-to-one class_diagram_view 
  base : one-to-one classifier 
 
 operations 
  -- Map to base classifier 
  -- 
  map(in do_map : boolean) 
  local 
   parent : class 
   child : class 
   classifier : classifier 
  is 
   parent := parent.base 
   child := child.base 
   if parent \== nil and child \== nil then 
    classifier := parent.find_cl(name,child) 
    if classifier \== nil then 
     if do_map then 
      establish(base,classifier,self) 
     end if 
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    else 
     if do_map then 
      establish(classifier,parent,child,classifier) 
      classifier.init(name) 
      establish(base,classifier,self) 
      result := classifier 
     end if 
    end if 
   end if 
  end map 
 
 updates 
  -- Base->subset 
  update_attribute(cl : classifier, 
   name : string,  
   old : string, 
   new : string) where 
   cl = base and name = “name” 
  is 
   name := name 
  end update_attribute 
 
  -- subset->base 
  update_attribute(cl : classifier_glue, 
   name : string, 
   old : string, 
   new : string) where 
   cl = self and name = “name” 
  is 
   if base \== nil then 
    base.name := name 
   end if 
  end update_attribute 
 
end classifier_glue 
 
-- Feature or client-supplier glue 
-- (represents features as aggregate client-suppliers) 
-- 
subset relationship cs_or_feature 
 parent class_icon 
 child class_icon 
 attributes 
  client_feature : like client_supplier.client_feature 
  client_name : like client_supplier.client_name 
  supplier_type : like client_supplier.supplier_type 
  supplier_feature : like client_supplier.supplier_feature 
  kind : like client_supplier.kind 
 
 relationships 
  view : one-to-one class_diagram_view 
  cs : one-to-one client_supplier 
  feature : one-to-one feature 
 
 operations 
  -- map to cs or feature 
  -- 
  map(in do_map) 
  local 
   parent : class 
   child : class 
   feature : feature 
   cs : client_supplier 
  is 
   parent := parent.base 
   child := child.base 
   if kind = aggregate then 
    -- map to base feature... 
    if cs \== nil then 
     disolve(cs,cs,self) 
    end if 
    if feature = nil and parent \== nil then 
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     feature := parent.find_feature(client_feature) 
     if feature \== nil then 
      if do_map then 
       establish(feature,feature,self) 
      end if 
     else 
      if do_map then 
       parent.add_feature( 
        client_feature,aggregate,supplier_type,feature) 
       establish(feature,feature,self) 
      end if 
     end if 
    end if 
   else 
    if feature \== nil then 
     disolve(feature,feature,self) 
    end if 
    if cs = nil and parent \== nil then 
     cs := parent.find_cs(kind,client_feature, 
      client_name,supplier_type,supplier_feature) 
     if cs \== nil then 
      if do_map then 
       establish(cs,cs,self) 
      end if 
     else 
      if do_map then 
       parent.add_cs(kind,client_feature, 
        client_name,supplier_type,supplier_feature,cs) 
       establish(cs,cs,self) 
      end if 
     end if 
    end if 
   end if 
  end susbet_kind 
 
 updates 
  -- Updates from base feature 
  -- 
  update_attribute(feature : feature, 
   name : string, 
   old : string, 
   new : string) 
  where true 
  is 
   if name = “feature_name” then 
    client_feature := new 
   else 
    if name = “type_name” then 
     supplier_type := new 
    end if 
   end if 
  end update_attribute 
 
  -- Updates from client_supplier 
  -- 
  update_attribute(cs : client_supplier, 
   name : string, 
   old : string, 
   new : string) 
  where true 
  is 
   if name = “client_feature” then 
    client_feature := new 
   else 
    if name = “client_name” then 
     client_name := new 
    else 
     if name = “supplier_type” then 
      supplier_type := new 
     else 
      if name = “supplier_feature” then 
       supplier_feature := new 



Appendix D An MVSL Specification of IspelM Page D365 

      end if 
     end if 
    end if 
   end if 
  end update_attribute 
 
  -- If supplier_type changed => reselect child class 
  -- 
  update_attribute(cs : cs_or_feature, 
   name : string, 
   old : string, 
   new : string) 
  where 
   cs = self and name = “supplier_type” 
  is 
   child.reselect_class(new) 
   if feature \== nil then 
    feature.type_name := new 
    feature.type_class := child 
   else 
    cs.supplier_type := new 
    cs.supplier := child 
   end if 
  end update_attribute 
 
  -- Updates to base 
  -- 
  update_attribute(cs : cs_or_feature, 
   name : string, 
   old : string, 
   new : string) 
  where 
   cs = self 
  is 
   if feature \== nil then 
    if name = “client_feature” then 
     feature.client_feature := name 
    end if 
   else 
    if name = “client_feature” then 
     cs.client_feature := new 
    else 
     if name = “client_name” then 
      cs.client_name := new 
     else 
      if name = “supplier_feature” then 
       cs.supplier_feature := new 
      end if 
     end if 
    end if 
   end if 
  end update_attribute 
 
end cs_or_feature 
 
-- Class text 
-- 
subset element class_text 
 attributes 
  class_name : like base_class.name 
 
 relationships 
  view : one-to-one class_code_view 
  base : one-to-one class 
 
 updates 
  -- parse updates 
  parsed_attribute(name : like feature.feature_name, 
   type : like feature.type_name) where true local 
   feature : feature 
  is 
   feature := base.find_feature(name) 
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   if feature \== nil then 
    if feature.type_name \== type then 
     feature.type_name := type 
    end if 
    feature.kind := attribute 
   else 
    base.add_feature(name,attribute,type,feature) 
   end if 
  end parsed_attribute 
 
end class_text 
 
-- Feature text 
-- 
subset element feature_text 
 attributes 
  class_name : like base_class.class_name 
  feature_name : like base_feature.feature_name 
 
 relationships 
  view : one-to-one class_code_view 
  base : one-to-one class 
 
end feature_text 
 
-- Class diagram view 
-- 
subset view class_diagram_view 
 components 
  class_icon, generalisation_glue, cs_or_feature, classifier_glue 
 
 attributes 
  name : string 
 
 relationships 
  focus : one-to-one class 
 
 updates 
  -- Expand 
  -- 
  expand(icon : class_icon, 
   kind : string, 
   gen : generalisation) 
  where 
   icon.base = gen.parent 
  local 
   new_icon : class_icon 
   new_glue : generalisation_glue 
  is 
   add_element(class_icon,new_icon) 
   add_view_component(self,new_icon) 
   establish(generalisation_glue,icon,new_icon,new_glue) 
   add_view_component(self,new_glue) 
  end expand 
 
  -- add_icon 
  -- 
  add_icon(kind:string,X:integer,Y:integer) 
  where 
   kind = “class_icon” 
  local 
   new_class : class_icon 
  is 
   add_element(class_icon,new_class) 
   new_class.x:=X 
   new_class.y:=Y 
   add_view_element(self,new_class) 
   record_update(new_class,”init_details”,[]) 
   new_class.map 
  end add_icon 
 
  -- add glue 
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  -- 
  add_glue(kind:string,parent : class_icon,child : class_icon) where 
   kind = “generalisation_glue” 
  local 
   new_gen : generalisation_glue 
  is 
   establish(generalisation_glue,parent,child,new_gen) 
   record_update(new_gen,“init_details”,[]) 
   new_gen.map 
  end add_glue 
 
end class_diagram_view 
 
-- Class text view 
-- 
subset view class_code_view 
 components 
  class_text, feature_text 
 
 attributes 
  name : string 
  
 relationships 
  class_focus : one-to-one class_text 
  feature_focus : one-to-one feature_text 
 
end class_code_view
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Appendix E 

An MVisual Specification for IspelM 
 

This appendix gives a more complete description of the user interaction aspects of IspelM 
using the MVisual notation introduced in Chapter 5. 

E.1. IspelM Component Appearance 

Fig E.1. shows the MVisual appearance definition for a class_icon. Class icons display the 
class_name, feature_names and kind from an MVSL class_icon. The border around a 
class icon is dependent on the value of kind and the size of the border must enclose all 
feature names and class name for the icon. 

ClassName

FeatName1
FeatName2

normal abstract

class_icon : Appearance

class_icon: 
class_name 

feature_names 
kind

 

fig E.1. Class icon appearance. 

Fig E.2. shows the appearance of generalisation and classifier glue. Fig E.3. shows the 
appearance of client-supplier glue. Client-supplier glue comes in four basic appearances: 

• code-level aggregates (which are the same as class features) which have a 
feature (attribute) name 

• “local” class references (i.e. method arguments and local variables) which have 
a feature (method) name and local variable name 
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• feature calls (method call or attribute fetch) which have an optional client 
feature name (caller) and optional supplier feature name (called) 

• design-level aggregates and locals with no client feature/name values (but 
which are directional class associations). 

Name

Name

gen_glue : Appearance
Name

Name

cl_glue : Appearance

 

fig E.2. Generalisation and classifier glue. 
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Supplier

cs_glue: 
client_feature
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client_feature 
client_name

kind = local
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fig E.3. Client-supplier glue appearance. 

E.2. IspelM Component Interaction and Updates 

Fig E.4. shows the appearance of graphical class diagram views and the additon tools 
supported by these views. Class diagram views also support tools for arbitrary graphical 
manipulation (dragging, selecting, clicking, hiding and creating new component views). 
They provide addition tools for icon, glue and feature additions. The affect of applying 
these addition tools is to either open dialogs (MVisual views) for the affected graphical 
entities the tool is applied to or to send updates to MVSL components. 
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fig. E.4. Appearance of class diagram views and their addition tools. 

Existing graphical entities can have their details updated by applying update details tools. 
Fig. E.5. shows these tools being applied to existing class diagram view entities. 
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fig. E.5. Class diagram view update details tools. 
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Subset class diagram views can expand subset components into a graphical class diagram 
view. The effect of this expansion is defined in fig. E.6. where different values for an 
expand update produce different icons and glue. 
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fig E.7. Class diagram view expansion of icons and glue. 

Fig E.8. shows the affect of double-clicking and option-clicking on a class icon. Different 
parts of the icon produce different affects (the “click point” notion) which is indicated by 
different updates being sent to views or MVSL components. 

class_icon : pointer tool double-click points
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class features(ClassName, 
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component views 
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display
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(dc = double-click)

class info 
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(oc = option-click)
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class_icon : Drag

 

fig E.8. Double-click/option-click actions for a class_icon. 
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Figs. E.9. (a) and (b) illustrate the affect on a class_icon of dragging the icon and 
renaming the icon name or features it contains. Glue connected to the icon must be 
redrawn if the icon is moved while the icon must be redrawn to enclose the longest name 
it contains.  
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Name
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Name

Name Name
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fig E.9. (a) and (b) Affect on class_icon glue when icon dragged and on icon when 
names are changed. 

Fig E.10. illustrates the effect of parsing a textual view (which has a Snart syntax). Parse 
updates are sent to appropriate MVSL textual forms in the view which will in turn 
determine if they should send updates to the base view. 

 Class Text View : Parsing and Updating
%updates_start(Text1) 
%updates_end 
  
class(Name1, 
  parents([ 
    P1([rename(a,b)]), 
    P2]), 
  features([ 
    Attribute1:Type1,
    Attribute2:Type2,
    Method1, 
    Method2(deferred)
  ])). 
  
%updates_start(Text2) 
%updates_end 
  
Class1::Method1(A,B,C) :-
  code. 
  
Predicate(A,B,C) :-
  code.

parse

parse Text1 

parsed_gen( 
P1,[rename(a,b)])

parsed_attribute( 
Attribute1,Type1)

parsed_method( 
Method1,method)

parsed_method( 
Method2,deferred)

parse

parse

Text2 
parsed_method_pred( 

Class1,Method1)parse

parsed_pred( 
Predicate)

parse

 

fig E.10. Parsing a textual view with a Snart-like syntax. 
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Fig E.11. illustrates the effect of unparsing stored base element updates for a dialog or 
textual view. 

 
Class Text View : Stored Base Update Unparsing

rename_class(Old,New) -> "rename class ",Old," to ",New 
change_kind(ClassName,Old,New) -> "change class ",ClassName," kind to ",New 
add_feature(FeatureName,TypeName) -> "add feature ",FeatureName,":",TypeName 
remove_gen(ParentName) -> "remove generalisation to ",ParentName 
... 

 

Fig E.11. Unparsing stored updates for textual views or dialogs. 

Fig E.12. shows the affect of applying stored updates to a textual view using a Snart-like 
syntax. 

 Class Text View : Applying Updates 

%updates_start(Text1) 
%updates_end 
  
class(Name1, 
  parents([ 
    P1([rename(a,b)]), 
    P2]), 
  features([ 
    Attribute1:Type1, 
    Attribute2:Type2, 
    Method1, 
    Method2(deferred) 
  ])). 
  
%updates_start(Text2) 
%updates_end 
  
Class1::Method1(A,B,C) :-
  code. 
  
Predicate(A,B,C) :-
  code.

rename_class(Name1,New) 

change_kind( 
Name1,Old,normal)

"class(New,"
(1)

(2)

(1)
(2)

change_kind( 
Name1,Old,abstract)

(3) 
(3)

"class(Name1,"

"abstract_class(Name1,"

add_feature(FeatureName,
TypeName)

"FeatureName:TypeName"
(4)

add_feature(FeatureName,'')

(5) "FeatureName"

remove_feature(Method1)

(4)

(5)

(6)
""

 

Fig E.12. Affect of applying updates to a textual view with a Snart-like syntax. 

E.3. MViews and IspelM Dialogs 

Fig E.13. shows an MViews dialog for selecting a component view from a list of views the 
component appears in. The affect of selecting the view name is to have the appropriate 
view sent a display update. 
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fig E.13. View selection dialog for MViews. 

Fig E.14. shows the features selection dialog for IspelM. Programmers can select a feature 
and perform various actions on the feature depending on the dialog button used. 
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remove
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FeatureName2)

ClassIcon.view
 

fig E.14. The features selection dialog for IspelM. 
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Fig E.15. illustrates the add feature dialog for IspelM. This allows programmers to add 
features to a class (or change an existing feature) and specify/change various attributes of 
the feature. 

 add_feature (ClassIcon,FeatureName)
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Hide
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ClassIcon 

ClassIcon 
remap_feature( 
FeatureName, 

NewFeatureName, 
NewTypeName, 

Kind,Show) 

change_feature( 
FeatureName, 

NewFeatureName, 
NewTypeName, 

Kind,Show) 

FeatureName: 
feature_name 

type_name 
kind 

remove_feature_name( 
NewFeatureName)

 

fig E.15. The add feature dialog from IspelM. 

Fig E.16. shows the generali class information dialog from IspelM. Like the features 
selection dialog, this allows programmers to select different class components and 
manipulate them or expand them into a view. 



Appendix E An MVisual Specification for IspelM Page E377 

 

ExpandRemoveViews Cancel

-----Generalisations----

---Specialisations---

---Client/servers---

---Classifiers---

GenClassName1
GenClassName2

SpecClassName1
SpecClassName2

CSName1
CSName2

ClClassName1 
ClClassName2

Class Info (Class,ClassIcon)

{
{
{
{

click, return

componment views
(GenClassName2)

GenClassName2

click

remove

click

expand(ClassIcon,gen, 
GenClassName2) 

ClassIcon.view 

Class: 
gens 
specs 

client_suppliers 
classifiers. 

classes

 

fig E.16. The general class information dialog from IspelM. 

Fig E.17. shows the client-supplier update details dialog. This is used to initially specify 
the attributes for a new client-supplier relationship and to update the details of an existing 
client-supplier relationship (or, using Remap, to find another base client-supplier 
relationship to represent). 
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fig E.17. The client-supplier update details dialog for IspelM. 

Fig E.18. shows the classifier update details dialog. Like the client-supplier update details 
dialog, this allows programmers to initialise, update and remap classifier glue. 

 cl_details(ClGlue)

Classifier Name:
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change_cl(ClassifierName,
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fig E.18. The classifier update details dialog from IspelM.
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Appendix F 

A BNF Grammar for MVSL 
 

Program ::= 
  program Ide 
   DeclList 
   Command 
  end Ide 
 ; 
 
DeclList ::= 
  DeclList 
  Decl 
 | Decl 
 | -- empty 
 ; 
 
Decl ::= 
  BaseViewDecl 
 | BaseElDecl 
 | BaseRelDecl 
 | SubsetViewDecl 
 | SubsetElDecl 
 | SubsetRelDecl 
 | CompDecl 
 | GlobalDecl 
 ; 
 
BaseViewDecl ::= 
  base view Ide 
   AttributesDecl 
   RelationshipsDecl 
   OperationsDecl 
   UpdatesDecl 
  end Ide 
 ; 
 
BaseElDecl ::= 
  base element Ide 
   AttributesDecl 
   RelationshipsDecl 
   OperationsDecl 
   UpdatesDecl 
  end Ide 
 ; 
 
BaseRelDecl ::= 
  base relationship Ide 
   ParentDecl 
   ChildDecl 
   AttributesDecl 
   RelationshipsDecl 
   OperationsDecl 
   UpdatesDecl 
  end Ide 
 ; 
 
SubsetViewDecl ::= 
  subset view Ide 
   ComponentsDecl 
   AttributesDecl 
   RelationshipsDecl 
   OperationsDecl 
   UpdatesDecl 
  end Ide 
 ; 

 
SubsetElDecl ::= 
  subset element Ide 
   AttributesDecl 
   RelationshipsDecl 
   OperationsDecl 
   UpdatesDecl 
  end Ide 
 ; 
 
SubsetRelDecl ::= 
  susbet relationship Ide 
   AttributesDecl 
   RelationshipsDecl 
   OperationsDecl 
   UpdatesDecl 
  end Ide 
 ; 
 
CompDecl ::= 
  component Ide 
   AttributesDecl 
   RelationshipsDecl 
   OperationsDecl 
   UpdatesDecl 
  end Ide 
 ; 
 
GlobalDecl ::= 
  Ide ‘:’ Type 
 ; 
 
ParentDecl ::= 
  parent Ide 
 ; 
 
ChildDecl ::= 
  child Ide 
 ; 
 
ComponentsDecl ::= 
  components CompList 
 ; 
 
CompList ::= 
  CompList 
  Ide 
 | 
  Ide 
 | 
  -- empty 
 ; 
 
AttributeDecl ::= 
  attributes AttributeList 
 | 
  -- empty 
 ; 
 
AttributeList ::= 
  AttributeList 
  Attribute 
 | Attribute 
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 | -- empty 
 ; 
 
Attribute ::= 
  Ide ‘:’ Type 
 ; 
 
RelationshipDecl ::= 
  relationships RelationshipList 
 | -- empty 
 ; 
 
RelationshipList ::= 
  RelationshipList 
  Relationship 
 | Relationship 
 | -- empty 
 ; 
 
Relationship::= 
  Ide ‘:’ Type 
 ; 
 
OperationDecl ::= 
  operations OperationList 
 | -- empty 
 ; 
 
OperationList ::= 
  OperationList 
  Operation 
 | Operation 
 ; 
 
Operation ::= 
  Ide OpArgList OpType 
  LocalDecl 
  is 
  Command 
  end Ide 
 ; 
 
OpArgList :: = 
  ‘(‘ OpArgs ‘)’ 
 | -- empty 
 ; 
 
OpArgs ::= 
  OpArgs 
  OpArg 
 | OpArg 
 ; 
 
OpArg ::= 
  in Ide ‘:’ Type 
 | out Ide ‘:’ Type 
 ; 
 
LocalDecl ::= 
  locals Locals 
 | -- empty 
 ; 
 
Locals ::= 
  Locals 
  Local 
 | Local 
 ; 
 
Local ::= 
  Ide ‘:’ Type 
 ; 
 
UpdateDecl ::= 
  updates UpdateList 
 | -- empty 
 ; 
 
UpdateList ::= 
  UpdateList 
  Update 

 | Update 
 ; 
 
Update ::= 
  Ide UpdArgList 
  where Exp 
  LocalDecl 
  is 
  Command 
  end Ide 
 ; 
 
UpdArgList ::= 
  ‘(‘ UpdArgs ‘)’ 
 | -- empty 
 ; 
 
UpdArgs ::= 
  UpdArgs 
  UpdArg 
 | UpdArg 
 ; 
 
UpdArg ::= 
  Ide ‘:’ Type 
 ; 
  
Command ::= 
  Exp := Exp 
 | if Exp then Command else Command end 
if 
 | while Exp do Command end while 
 | forall Exp on Exp do Command end 
forall 
 | add_element ‘(‘ Ide ‘,’ Exp ‘)’ 
 | delete_component ‘(‘ Exp ‘)’ 
 | establish ‘(‘ Ide ‘,’ Exp ‘,’ Exp 
‘,’ Exp ‘)’ 
 | establish ‘(‘ Ide ‘,’ Exp ‘,’ Exp ) 
 | reestablish ( Exp ‘, Exp , Exp ) 
 | dissolve ‘(‘ Ide ‘,’ Exp ‘,’ Exp ‘)’ 
 | record ‘(‘ Exp , Ide ‘,’ ExpList ‘)’ 
 | store ‘(‘ Exp , Ide ‘,’ ExpList ‘)’ 
 | create_view ‘(‘ Ide ‘,’ Exp ‘)’ 
 | add_view_component ‘(‘ Exp , Exp ) 
 | remove_view_component ‘(‘ Exp ‘,’ 
Exp ‘)’ 
 | Exp 
 | Exp ‘(‘ ExpList ‘)’ 
 
Exp ::= 
  Integer 
 | true 
 | false 
 | String 
 | Ide 
 | Exp ‘+’ Exp 
 | Exp ‘-’ Exp 
 | Exp ‘*’ Exp 
 | Exp ‘\’ Exp 
 | ‘(‘ Exp ‘)’ 
 | Exp and Exp 
 | Exp or Exp 
 | Exp ‘=‘ Exp 
 | Exp ‘\==‘ Exp 
 | Exp ‘.’ Ide 
 | Exp ‘(‘ ExpList ‘)’ 
 ; 
 
ExpList ::= 
  ExpList 
  Exp 
 | Exp 
 ; 
 
Type ::= 
  integer 
 | boolean 
 | string 
 | list Type 
 | Ide 
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 | Ide ‘.’ Ide 
 | ‘one-to-one’ Type 

 | ‘one-to-many’ Type 
 ; 
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